WO2022179252A1 - 一种超薄多孔可拉伸薄膜电极的制备方法 - Google Patents

一种超薄多孔可拉伸薄膜电极的制备方法 Download PDF

Info

Publication number
WO2022179252A1
WO2022179252A1 PCT/CN2021/137592 CN2021137592W WO2022179252A1 WO 2022179252 A1 WO2022179252 A1 WO 2022179252A1 CN 2021137592 W CN2021137592 W CN 2021137592W WO 2022179252 A1 WO2022179252 A1 WO 2022179252A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
thin
preparing
film electrode
polymer
Prior art date
Application number
PCT/CN2021/137592
Other languages
English (en)
French (fr)
Inventor
刘志远
李光林
谢瑞杰
赵阳
于玫
李向新
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2022179252A1 publication Critical patent/WO2022179252A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes

Definitions

  • the invention belongs to the technical field of novel flexible electrodes, and in particular relates to a preparation method of an ultra-thin porous stretchable film electrode.
  • the EMG signal can reflect the muscle state of the human body in real time, and its long-term monitoring can have important applications in the fields of human health monitoring, intelligent prosthetics, and human-computer interaction.
  • Surface electrodes are the most common and widely used EMG monitoring electrodes due to their non-invasive nature.
  • the current commercial use is mainly gel wet electrodes. Due to its long-term use, it is prone to symptoms such as water loss and user allergies. Dry electrodes made of flexible materials have attracted people's attention. However, most dry electrodes are composed of non-breathable polymer materials.
  • the prepared electrodes are attached to the body surface and cause sweat to accumulate. Long-term wear is prone to symptoms such as inflammation and allergy, which affects its long-term use.
  • the gas permeability of the electrodes is improved by fabricating the electrodes directly on these gas permeable substrates or by attaching the electrodes to them.
  • Such materials usually have poor adhesion to the skin, which affects the sensing performance of the electrodes.
  • the second is to prepare conductive electrodes directly on the skin.
  • the conductive layer is prepared on a soluble substrate, and after it is attached to human skin, the substrate is dissolved, so that the conductive layer is directly prepared on the skin.
  • such electrodes are less stable, and a slight touch can cause them to completely lose their sensing performance. Therefore, the preparation of porous ultrathin stretchable thin film electrodes has become a hot topic in the invention of surface dry electrodes.
  • the present invention dissolves the polymer material in the polymer material. After the organic solvent is spread on the surface of the liquid whose surface tension is greater than that of the polymer solution and does not dissolve the polymer material, an ultra-thin liquid film is formed. layer to prepare a body surface EMG electrode with both excellent adhesion and air permeability.
  • the polymer material is dissolved in an organic solvent, and it is added dropwise on the water surface to spread an ultra-thin liquid film. With the volatilization of the organic solvent, the polymer solute is precipitated and shrunk to spontaneously form a porous ultra-thin film, on which the magnetron sputters Ultrathin porous stretchable EMG electrodes were prepared after a layer of gold was injected.
  • the technical solution of the present invention is specifically, a preparation method of an ultra-thin porous stretchable film electrode, comprising the following steps:
  • Step 1 Dissolving the polymer material in an organic solvent to obtain a uniform polymer solution
  • Step 2 drop the polymer solution on the surface of the liquid whose surface tension is greater than that of the polymer solution and does not dissolve the polymer material to spread to form an ultra-thin liquid film, and a porous polymer film is spontaneously formed during the volatilization of the organic solvent;
  • Step 3 preparing a conductive layer on the porous polymer film to obtain an ultra-thin porous stretchable film electrode.
  • the polymer material is selected from one of styrene butadiene block copolymer, hydrogenated styrene butadiene block copolymer, and ethylene-vinyl acetate copolymer or a mixture of several;
  • the organic solvent is selected from one or more mixtures of carbon disulfide, chloroform, toluene, dichloromethane, dichloroethane, benzene, tetrahydrofuran, xylene, and freon .
  • the concentration of the polymer solution is 1 wt % to 15 wt %, preferably 7.5 wt %.
  • the surface tension is greater than that of the polymer solution
  • the liquid that does not dissolve the polymer material is one or both of water or a salt solution
  • the salt solution is preferably a NaCl solution, KCl solution or NaSO4 solution.
  • the dropwise amount of the polymer solution is 10 ⁇ L-100 ⁇ L, preferably 15-20 ⁇ L.
  • step 2 the volatilization rate of the organic solvent is regulated between 0.4 mg/cm 2 *min-5 mg/cm 2 *min, and the pore size of the obtained membrane can range from non-porous to centimeter-level pores. control between.
  • the thickness of the polymer film is 20 nm-1000 nm, wherein the thinnest thickness of the self-supporting polymer film is 100 nm.
  • the method for preparing the conductive layer includes magnetron sputtering, thermal evaporation, electron beam deposition, spray coating, blade coating, and dip coating.
  • the metal materials of magnetron sputtering, thermal evaporation, and electron beam deposition include one or a combination of gold, silver, copper, platinum, titanium, and iridium.
  • the conditions of magnetron sputtering are: argon partial pressure: 3.8Pa, power 150W; thickness of sputtering is 7nm-20nm, preferably 15-18nm.
  • the thermal evaporation and electron beam deposition conditions are as follows: the gas pressure is less than 3*10 -3 Pa, and the evaporation rate is 0.1-20 nm/s, preferably 0.3-0.7 nm/s.
  • the conductive layer prepared by spraying method, blade coating method and dip coating method adopts the conductive nanoparticle aqueous dispersion as the conductive material, preferably the aqueous dispersion of metal nanomaterials, carbon nanomaterials, and conductive macromolecules as the conductive material.
  • the mass concentration of the conductive nanoparticle aqueous dispersion is 0.1-20 mg/mL, preferably 0.5-5 mg/mL.
  • the spraying time is 1-20min, preferably 8-10min.
  • the ultra-thin porous stretchable film electrode prepared in the third step is directly attached to the skin by means of van der Waals force.
  • the principle of the preparation method of the ultra-thin porous stretchable film electrode of the present invention is as follows: when two immiscible liquids are added together, the phenomenon of delamination will occur. Using this phenomenon, the present invention dissolves the polymer material in the organic solvent, and then drops the solution on the surface of the liquid whose surface tension is greater than that of the polymer solution and does not dissolve the polymer material to spread it into a thin film. A porous polymer film is spontaneously formed on the liquid surface.
  • the thickness and porosity of the film can be regulated by controlling the concentration of the polymer solution, the amount of dripping and the concentration of the organic solvent in the volatilization space, and then the conductive layer is prepared on the ultra-thin porous film to prepare an ultra-thin porous flexible stretchable film. electrode.
  • the surface tension is greater than that of the polymer solution, and the surface of the liquid in which the polymer material is insoluble is spread to form an ultra-thin liquid film, and after the organic solvent volatilizes, it spontaneously forms a porous ultra-thin film.
  • the formed film has less force with the above-mentioned liquid, and the prepared film can be easily picked up, avoiding the complicated transfer process required in the traditional preparation method, and increasing the mobility of the electrode.
  • the liquid is easily spread on the surface of the liquid into a high-quality thin film with a uniform thickness, so the preparation method of the present invention is simple, and the requirements for instruments are low.
  • the electrode prepared by the present invention has a thickness of several hundreds of nanometers, it can be well attached to the skin, thereby realizing high-performance monitoring of human physiological electrical signals.
  • the thin film electrode prepared by the present invention has good air permeability due to its porous structure, and can achieve good air permeability while being well attached to the human body, and can realize long-term monitoring of human physiological electrical signals.
  • FIG. 1 is a road map of the preparation method of the ultra-thin porous film electrode of the present invention.
  • FIG. 2 is an optical microscope characterization diagram of ultrathin films with different apertures prepared in Example 1 of the present invention. (upper row of rulers: 1 cm, lower row of rulers: 500 ⁇ m).
  • Fig. 3 is the characterization diagram of Example 1, in which, Fig. a) thickness characterization of ultra-thin porous film; b) surface light microscope characterization of ultra-thin porous film; c) characterization of stretchability of ultra-thin porous electrode; d) ultra-thin porous film The electrodes were super-attached to the skin; e) EMG was collected during exercise; f) The response of the skin after the ultra-thin porous electrodes were attached to the skin for 24 h.
  • Figure 4 is the characterization diagram of Example 2, in which, Figure a) Preparation of transparent ultra-thin porous stretchable electrode by spraying method; b) SEM characterization of ultra-thin porous stretchable electrode; c) Ultra-thin porous stretchable electrode stretchable Extensibility characterization.
  • FIG. 1 is a schematic flow chart of the preparation method of the ultra-thin porous stretchable film electrode in Example 1 of the present invention.
  • the specific preparation method is as follows: dissolving the hydrogenated styrene butadiene block copolymer in toluene to obtain a polymer solution with a mass fraction of 8wt%, drop it on the surface of a 5wt% NaCl aqueous solution, and control the volatilization rate of toluene to be 0.40 mg /cm 2 *min, 0.7 mg/cm 2 *min and 4.04 mg/cm 2 *min, and then sputtering 17 nm gold on it as a conductive layer after film transfer.
  • the volatilization rate of toluene was 0.7 mg/cm 2 *min to obtain a film with a thickness of 108 nm, and the stretchability of the obtained electrode exceeded 120%. It has excellent adhesion to the skin and can also successfully monitor EMG signals during exercise. Due to its excellent air permeability, it does not have any effect on the skin after being attached to the skin for 24 hours.
  • the styrene butadiene block copolymer was dissolved in toluene to obtain a polymer solution with a mass fraction of 10%, which was added dropwise to the surface of a 5% NaCl aqueous solution, and the volatilization rate of toluene was controlled to be 0.7 mg/cm 2 *min to obtain A thin film with a thickness of 700 nm was sprayed with silver nanowires with a concentration of 5 mg/mL on it as a conductive layer.
  • the prepared electrodes can successfully collect EMG.
  • the ethylene-vinyl acetate copolymer was dissolved in chloroform to prepare a solution with a mass fraction of 10 wt%, which was added dropwise to the surface of deionized water, and the volatilization rate of toluene was controlled to be 0.7 mg/cm 2 *min to obtain a film with a thickness of 600 nm,
  • the silver nanowires with a concentration of 5 mg/mL were sprayed on it as a conductive layer.
  • the stretchability of the prepared electrode exceeds 200%.
  • FIG. 2 is an optical microscope characterization diagram of ultra-thin films with different apertures in Example 1 of the present invention.
  • Figure 3 is a characterization diagram of a film with a thickness of 108 nm obtained in Example 1 with a toluene volatilization rate of 0.7 mg/cm 2 *min, in which, Figure a) thickness characterization of ultra-thin porous film; b) ultra-thin porous film surface light microscope characterization; c) Characterization of the stretchability of the ultrathin porous electrode; d) The ultrathin porous electrode was superattached to the skin; e) EMG was collected during exercise; f) The reaction of the skin after the ultrathin porous electrode was attached to the skin for 24 h . From Figure a), it can be seen that the thickness of the self-supporting film prepared by the present invention is at least 108 nm.
  • the prepared film has micron-scale pores. From Figure c), it can be seen that the sputtered 17 nm The stretchability of the ultra-thin porous electrode prepared with gold as the conductive layer exceeds 120%. It can be seen from Figure d) that the prepared electrode can be super-attached to the skin, and the texture of the skin is clearly visible; it can be seen from Figure e). The electrode can still effectively collect the EMG signal during the process of human body movement, and has strong anti-motion artifact performance. It can be seen from Figure f) that the electrode has good air permeability, and the skin does not touch the human body for 24 hours. There will be any signs of inflammation, whereas commercial gel electrodes will show noticeable redness of the skin.
  • Figure 4 is the characterization diagram of Example 2, in which, Figure a) Preparation of transparent ultra-thin porous stretchable electrode by spraying method; b) SEM characterization of ultra-thin porous stretchable electrode; c) Ultra-thin porous stretchable electrode stretchable Extensibility characterization. It can be seen from Figure a) that a transparent self-supporting porous conductive electrode can be prepared by this method. From Figure b), it can be seen that AgNWs are randomly arranged on the film, and the electrode is a porous electrode. From Figure c), it can be seen that the prepared The electrode stretchability exceeds 90%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明属于新型柔性电极技术领域,公开了一种超薄多孔可拉伸薄膜电极的制备方法,包括以下步骤:步骤一、将高分子材料溶于有机溶剂中,得到均匀的高分子溶液;步骤二、将高分子溶液滴加在表面张力大于高分子溶液,且不溶解高分子材料的液体表面上铺展形成超薄液膜,在有机溶剂的挥发过程中自发形成多孔的高分子薄膜;步骤三、在多孔的高分子薄膜上制备导电层得到超薄多孔可拉伸薄膜电极。本发明制备方法简单,成本低,可实现电极厚度在几百纳米的调控,所制备的薄膜电极由于其多孔结构而具有较好的透气性,可实现对人体生理电信号的长时间监测。

Description

一种超薄多孔可拉伸薄膜电极的制备方法 技术领域
本发明属于新型柔性电极技术领域,尤其涉及一种超薄多孔可拉伸薄膜电极的制备方法。
背景技术
肌电信号可以实时反映人体的肌肉状态,对其长期监测可以在人体健康监测、智能假肢、人机交互等领域具有重要应用。体表电极由于其无创性,是目前最为常见和广泛应用的一种肌电监测电极。现行商业化使用的主要是凝胶湿电极,由于其在长期使用过程中,容易出现失水,使用者过敏等症状,由柔性材料所制备的干电极受到了人们的关注。但大多数干电极是由不透气的高分子材料组成,所制备的电极贴附在体表导致汗液聚集,长期佩戴容易出现发炎、过敏等症状,影响其长期使用。提升电极的透气性的方法主要包括两种:一是选取透气性好的基底,如织物、皮革、无纺布等材料。通过直接在这些透气性基底上制备电极或将电极贴附在其上以提升电极的透气性。然而这类材料通常与皮肤贴附性较差,影响电极的传感性能。二是直接在皮肤上制备出导电电极。如将导电层制备在可溶性基底上,将其贴附在人体皮肤上之后,使基底溶解,从而将导电层直接制备在皮肤上。但这类电极稳定性较差,轻微碰触就会导致其完全丧失传感性能。因此制备多孔的超薄可拉伸薄膜电极成为体表干电极的发明热点。
技术问题
针对背景技术中提出的现有技术仍难以同时实现干电极与皮肤的贴附性与透气性,限制了干电极在体表肌电长期监测中的应用的问题,本发明将高分子材料溶于有机溶剂后铺展在表面张力大于高分子溶液,且不溶解高分子材料的液体表面上形成超薄液膜,在有机溶剂的挥发过程中自发形成超薄多孔可拉伸薄膜,在其上制备导电层制备出兼具优异贴附性和透气性的体表肌电电极。
技术解决方案
为达上述目的,本发明采用如下技术方案:
本发明将高分子材料溶于有机溶剂,将其滴加在水面铺展成超薄液膜,随着有机溶剂的挥发,高分子溶质析出并收缩自发形成多孔超薄薄膜,在其上磁控溅射一层金后制备出超薄多孔可拉伸肌电电极。
本发明的技术方案具体为,一种超薄多孔可拉伸薄膜电极的制备方法,包括以下步骤:
步骤一、将高分子材料溶于有机溶剂中,得到均匀的高分子溶液;
步骤二、将高分子溶液滴加在表面张力大于高分子溶液,且不溶解高分子材料的液体表面上铺展形成超薄液膜,在有机溶剂的挥发过程中自发形成多孔的高分子薄膜;
步骤三、在多孔的高分子薄膜上制备导电层得到超薄多孔可拉伸薄膜电极。
在本发明的技术方案中,步骤一中,所述高分子材料选自苯乙烯丁二烯嵌段共聚物、氢化苯乙烯丁二烯嵌段共聚物、乙烯-醋酸乙烯共聚物中的一种或几种的混合物;
在本发明的技术方案中,步骤一中,所述有机溶剂选自二硫化碳、氯仿、甲苯、二氯甲烷、二氯乙烷、苯、四氢呋喃、二甲苯、氟利昂中的一种或几种的混合物。
在本发明的技术方案中,步骤一中,所述高分子溶液浓度为1wt%至15wt%,优选为7.5wt%。
在本发明的技术方案中,步骤二中,表面张力大于高分子溶液,且不溶解高分子材料的液体为水或者盐溶液中的一种或两种,所述盐溶液优选为NaCl溶液、KCl溶液或NaSO 4溶液。
在本发明的技术方案中,步骤二中,所述高分子溶液的滴加量为10μL-100μL,优选为15-20μL。
在本发明的技术方案中,步骤二中,有机溶剂的挥发速率为0.4mg/cm 2*min-5 mg/cm 2*min之间进行调控,所得薄膜孔径可在无孔至厘米级孔之间进行调控。
在本发明的技术方案中,所述步骤二中,高分子薄膜的厚度为20nm-1000nm,其中可自支撑的高分子薄膜的最薄厚度为100nm。
步骤三中,所述制备导电层的方法包括磁控溅射、热蒸镀、电子束沉积、喷涂法、刮涂法、蘸涂法。
其中,所述磁控溅射、热蒸镀、电子束沉积的金属材料包括金、银、铜、铂、钛、铱金中的一种或几种的组合。磁控溅射的条件为:氩气分压:3.8Pa,功率150W;溅射的厚度为7nm-20nm,优选为15-18nm。热蒸镀、电子束沉积条件为:气压小于3*10 -3Pa,蒸镀速率为0.1-20nm/s,优选为0.3-0.7nm/s。
其中,喷涂法、刮涂法、蘸涂法制备导电层采用导电纳米颗粒水分散液为导电材料,优选为采用金属纳米材料、碳纳米材料、导电高分子的水分散液为导电材料。导电纳米颗粒水分散液的质量浓度为0.1-20mg/mL,优选为0.5-5mg/mL。喷涂时间为1-20min,优选为8-10min。
在本发明的技术方案中,所述步骤三制备的超薄多孔可拉伸薄膜电极依靠范德华力直接贴合于皮肤上。
本发明超薄多孔可拉伸薄膜电极的制备方法的原理为:当两种不相溶的液体加到一块时,会产生分层的现象。利用这一现象,本发明将高分子材料溶于有机溶剂中,之后将溶液滴加在表面张力大于高分子溶液,且不溶解高分子材料的液体表面使其铺展成薄膜,待有机试剂挥发可在液面上自发形成多孔的高分子薄膜。通过控制高分子溶液的浓度、滴加量及挥发空间中有机溶剂的浓度可以对成膜的厚度及多孔性进行调控,之后在超薄多孔薄膜上制备导电层制备出超薄多孔柔性可拉伸电极。
有益效果
与现有技术相比,本发明的有益效果为:
1、本发明将高分子材料溶于有机溶剂后在表面张力大于高分子溶液,且不溶解高分子材料的液体表面铺展形成超薄液膜,待有机溶剂挥发之后自发行成多孔超薄薄膜。相比固体基底,所形成的薄膜与上述液体作用力较小,所制备的薄膜可以轻易捞起,避免了传统制备方式中所需要的复杂的转移过程,增加了电极的机动性能。
2、液体在液体表面很容易铺展成厚度均一的高质量薄膜,因此本发明制备方法简单,对仪器要求较低,本发明不需要复杂的仪器,便可实现电极厚度在几百纳米的调控。
3、本发明所制备的电极,由于其厚度在几百纳米级别,可以与皮肤较好贴附,实现对人体生理电信号的高性能监测。
4、本发明所制备的薄膜电极由于其多孔结构而具有较好的透气性,在与人体较好贴附的同时可以实现较好的透气性,可实现对人体生理电信号的长时间监测。
附图说明
图1为本发明超薄多孔薄膜电极的制备方法的路线图。
图2为本发明实施例1制备得到的不同孔径的超薄薄膜的光镜表征图。(上排标尺:1cm,下排标尺:500μm)。
图3为实施例1的表征图,其中,图 a)超薄多孔薄膜的厚度表征;b)超薄多孔薄膜表面光镜表征;c)超薄多孔电极可拉伸性表征;d)超薄多孔电极与皮肤超贴附;e)在运动中采集肌电;f)超薄多孔电极与皮肤贴附24 h后,皮肤的反应。
图4为实施例2的表征图,其中,图 a)喷涂法制备透明超薄多孔可拉伸电极;b)超薄多孔可拉伸电极SEM表征;c)超薄多孔可拉伸电极可拉伸性表征。
本发明的实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
下面结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护范围。
实施例1
如图1所示是本发明实施例1超薄多孔可拉伸薄膜电极的制备方法的流程示意图。具体的制备方法为:将氢化苯乙烯丁二烯嵌段共聚物溶于甲苯得质量分数为8wt%的高分子溶液,将其滴加在5wt%的NaCl水溶液表面,控制甲苯挥发速率为0.40 mg/cm 2*min,0.7mg/cm 2*min和4.04 mg/cm 2*min时,然后捞膜转移后在在其上溅射17nm金作为导电层。其中,甲苯挥发速率为0.7mg/cm 2*min得到厚度为108nm的薄膜,所得电极拉伸性超过120%。其与皮肤具有优异的贴附性,在运动过程中也可以对肌电信号进行成功监测。由于其优异的透气性,在于皮肤贴附24h后不对皮肤产生任何影响。
实施例2
将苯乙烯丁二烯嵌段共聚物溶于甲苯得质量分数为10%的高分子溶液,将其滴加在5%的NaCl水溶液表面,控制甲苯挥发速率为0.7mg/cm 2*min,得厚度为700nm的薄膜,在其上喷涂浓度为5mg/mL的银纳米线做导电层。所制备的电极可以对肌电进行成功采集。
实施例3
将乙烯-醋酸乙烯共聚物溶于氯仿制备得质量分数为10wt%的溶液,将其滴加在去离子水表面,控制甲苯挥发速率为0.7mg/cm 2*min,得厚度为600nm的薄膜,在其上喷涂浓度为5mg/mL的银纳米线做导电层。所制备电极拉伸性超过200%。
一、结果与表征
图2为本发明实施例1中的不同孔径超薄薄膜的光镜表征图。其中,图 a)甲苯挥发速率为0.40 mg/cm 2*min时所形成的薄膜;b)甲苯挥发速率为0.71 mg/cm 2*min时所形成的薄膜;c)甲苯挥发速率为4.04 mg/cm 2*min时所形成的薄膜(上排标尺:1cm,下排标尺:500μm)。从图2中可以看出随着甲苯挥发速率的提升,所得超薄薄膜的孔径从厘米级别(图2a)缩小至微米级别(图2b),进一步提升甲苯的挥发速率可以实现无孔薄膜的制备(图2c),表明本发明所提供的方法可以实现对超薄可拉伸薄膜孔径的有效调控。
图3为实施例1甲苯挥发速率为0.7mg/cm 2*min得到厚度为108nm的薄膜的表征图,其中,图 a)超薄多孔薄膜的厚度表征;b)超薄多孔薄膜表面光镜表征;c)超薄多孔电极可拉伸性表征;d)超薄多孔电极与皮肤超贴附;e)在运动中采集肌电;f)超薄多孔电极与皮肤贴附24 h后,皮肤的反应。从图 a)可以看出本发明所制备的可自支撑薄膜的厚度最低为108 nm,从图b)可以看出所制备的薄膜具有微米级别的孔,从图 c)可以看出溅射17 nm金作为导电层制备得到的超薄多孔电极可拉伸性超过120%,从图 d)可以看出所制备的电极可以与皮肤进行超贴附,皮肤的纹理清晰可见;从图 e)可以看出电极在人体运动过程中仍可对肌电信号进行有效采集,具有较强的抗运动伪影性能,从图 f)可以看出电极具有较好的透气性,在与人体接触24 h后皮肤不会出现任何发炎现象,而商用凝胶电极则会出现明显的皮肤发红现象。
图4为实施例2的表征图,其中,图 a)喷涂法制备透明超薄多孔可拉伸电极;b)超薄多孔可拉伸电极SEM表征;c)超薄多孔可拉伸电极可拉伸性表征。从图 a)可以看出通过此方法可以制备出透明的自支撑多孔导电电极,从图b)可以看出AgNWs在薄膜上随机排布,且电极为多孔电极,从图 c)可以看出所制备的电极可拉伸性超过90%。
以上所述的具体实施例,对本发明的目的,技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种超薄多孔可拉伸薄膜电极的制备方法,其特征在于,包括以下步骤:
    步骤一、将高分子材料溶于有机溶剂中,得到均匀的高分子溶液;
    步骤二、将高分子溶液滴加在表面张力大于高分子溶液,且不溶解高分子材料的液体表面上铺展形成超薄液膜,在有机溶剂的挥发过程中自发形成多孔的高分子薄膜;
    步骤三、在多孔的高分子薄膜上制备导电层得到超薄多孔可拉伸薄膜电极。
  2. 根据权利要求1所述的一种超薄多孔可拉伸薄膜电极的制备方法,其特征在于,步骤一中,所述高分子材料选自苯乙烯丁二烯嵌段共聚物、氢化苯乙烯丁二烯嵌段共聚物、乙烯-醋酸乙烯共聚物中的一种或几种的混合物。
  3. 根据权力要求1所述的一种超薄多孔可拉伸薄膜电极的制备方法,其特征在于,步骤一中,所述有机溶剂选自二硫化碳、氯仿、甲苯、二氯甲烷、二氯乙烷、苯、四氢呋喃、二甲苯、氟利昂中的一种或几种的混合物。
  4. 根据权力要求1所述的一种超薄多孔可拉伸薄膜电极的制备方法,其特征在于,步骤一中,所述高分子溶液浓度为1wt%至15wt%,优选为7.5wt%。
  5. 根据权力要求1所述的一种超薄多孔可拉伸薄膜电极的制备方法,其特征在于,步骤二中,所述表面张力大于高分子溶液,且不溶解高分子材料的液体为水或者盐溶液中的一种或两种,所述盐溶液优选为NaCl溶液、KCl溶液或NaSO 4溶液。
  6. 根据权力要求1所述的一种超薄多孔可拉伸薄膜电极的制备方法,其特征在于,步骤二中,所述高分子溶液的滴加量为10μL-100μL,优选为15-20μL。
  7. 根据权力要求1所述的一种超薄多孔可拉伸薄膜电极的制备方法,其特征在于,步骤二中,有机溶剂的挥发速率为0.4mg/cm 2*min-5 mg/cm 2*min之间进行调控,所得薄膜孔径可在无孔至厘米级孔之间进行调控。
  8. 根据权力要求7所述的一种超薄多孔可拉伸薄膜电极的制备方法,其特征在于,所述步骤二中,高分子薄膜的厚度为20nm-1000nm,其中可自支撑的高分子薄膜的最薄厚度为100nm。
  9. 根据权利要求1所述的一种超薄多孔可拉伸薄膜电极的制备方法,其特征在于,步骤三中,所述制备导电层的方法包括磁控溅射、热蒸镀、电子束沉积、喷涂法、刮涂法、蘸涂法;
    优选的,所述磁控溅射、热蒸镀、电子束沉积的金属材料包括金、银、铜、铂、钛、铱金中的一种或几种的组合;
    优选的,磁控溅射的条件为:氩气分压:3.8Pa,功率150W;溅射的厚度为7nm-20nm,优选为15-18nm;
    热蒸镀、电子束沉积条件为:气压小于3*10 -3Pa,蒸镀速率为0.1-20nm/s,优选为0.3-0.7nm/s;
    优选的,喷涂法、刮涂法、蘸涂法制备导电层采用导电纳米颗粒水分散液为导电材料,优选为采用金属纳米材料、碳纳米材料、导电高分子的水分散液为导电材料;
    导电纳米颗粒水分散液的质量浓度为0.1-20mg/mL,优选为0.5-5mg/mL。喷涂时间为1-20min,优选为8-10min。
  10. 根据权利要求1所述的一种超薄多孔可拉伸薄膜电极的制备方法,其特征在于,所述步骤三制备的超薄多孔可拉伸薄膜电极依靠范德华力直接贴合于皮肤上。
PCT/CN2021/137592 2021-02-26 2021-12-13 一种超薄多孔可拉伸薄膜电极的制备方法 WO2022179252A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110215869.8 2021-02-26
CN202110215869.8A CN113061285B (zh) 2021-02-26 2021-02-26 一种超薄多孔可拉伸薄膜电极的制备方法

Publications (1)

Publication Number Publication Date
WO2022179252A1 true WO2022179252A1 (zh) 2022-09-01

Family

ID=76558984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137592 WO2022179252A1 (zh) 2021-02-26 2021-12-13 一种超薄多孔可拉伸薄膜电极的制备方法

Country Status (2)

Country Link
CN (1) CN113061285B (zh)
WO (1) WO2022179252A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116144070A (zh) * 2023-01-17 2023-05-23 南京邮电大学 介电弹性体材料的制备方法及压力传感器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061285B (zh) * 2021-02-26 2021-10-22 中国科学院深圳先进技术研究院 一种超薄多孔可拉伸薄膜电极的制备方法
CN114081499B (zh) * 2021-11-23 2024-01-12 吉林大学 一种具有二梯度孔的柔性透气表面肌电电极及其制备方法
CN114360809A (zh) * 2021-12-01 2022-04-15 中国科学院深圳先进技术研究院 一种超薄可拉伸薄膜电极的制备方法
CN114354567A (zh) * 2021-12-01 2022-04-15 中国科学院深圳先进技术研究院 一种可拉伸多功能传感器及其制备方法和应用
CN116041777B (zh) * 2023-01-10 2024-01-30 四川大学 一种水伏发电材料、发电器件及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298083A (zh) * 2016-10-31 2017-01-04 南方科技大学 一种柔性透明电极的制备方法
CN108053946A (zh) * 2017-11-30 2018-05-18 南京工业大学 一种可拉伸、低电阻变化的导电纤维的制备方法
US20180212148A1 (en) * 2015-07-16 2018-07-26 Korea Advanced Institute Of Science And Technology Ultra-fast method for preparing organic/inorganic thin film by using self-diffusion effects
CN111584768A (zh) * 2020-05-27 2020-08-25 北京交通大学 一种有机电致发光器件薄膜制备方法及装置
CN111944177A (zh) * 2020-08-20 2020-11-17 中山大学 一种聚合物超薄膜成膜体系以及聚合物超薄膜
CN112263255A (zh) * 2020-09-28 2021-01-26 北京师范大学 一种基于导电聚合物转移的石墨烯皮肤电极及其制备方法
CN113061285A (zh) * 2021-02-26 2021-07-02 中国科学院深圳先进技术研究院 一种超薄多孔可拉伸薄膜电极的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9908178B2 (en) * 2014-10-28 2018-03-06 Kookmin University Industry Academy Cooperation Foundation Method for preparing ultrathin silver nanowires, and transparent conductive electrode film product thereof
CN106409428B (zh) * 2015-07-31 2017-11-07 中国科学院宁波材料技术与工程研究所 可自支撑超薄透明导电碳纳米管薄膜及其制备方法与应用
CN109727706B (zh) * 2019-03-08 2021-01-29 华南协同创新研究院 一种柔性透明导电薄膜及其制备方法
CN111320773A (zh) * 2020-03-31 2020-06-23 陕西科技大学 一种自支撑的柔性导电超疏水薄膜的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180212148A1 (en) * 2015-07-16 2018-07-26 Korea Advanced Institute Of Science And Technology Ultra-fast method for preparing organic/inorganic thin film by using self-diffusion effects
CN106298083A (zh) * 2016-10-31 2017-01-04 南方科技大学 一种柔性透明电极的制备方法
CN108053946A (zh) * 2017-11-30 2018-05-18 南京工业大学 一种可拉伸、低电阻变化的导电纤维的制备方法
CN111584768A (zh) * 2020-05-27 2020-08-25 北京交通大学 一种有机电致发光器件薄膜制备方法及装置
CN111944177A (zh) * 2020-08-20 2020-11-17 中山大学 一种聚合物超薄膜成膜体系以及聚合物超薄膜
CN112263255A (zh) * 2020-09-28 2021-01-26 北京师范大学 一种基于导电聚合物转移的石墨烯皮肤电极及其制备方法
CN113061285A (zh) * 2021-02-26 2021-07-02 中国科学院深圳先进技术研究院 一种超薄多孔可拉伸薄膜电极的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116144070A (zh) * 2023-01-17 2023-05-23 南京邮电大学 介电弹性体材料的制备方法及压力传感器

Also Published As

Publication number Publication date
CN113061285B (zh) 2021-10-22
CN113061285A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
WO2022179252A1 (zh) 一种超薄多孔可拉伸薄膜电极的制备方法
CN105543796B (zh) 一种由磁控溅射制备纳米多孔铜薄膜材料的方法
US7087249B2 (en) Treatment of mucosal membranes
KR101067176B1 (ko) 전기 이중층 커패시터용 바인더
WO2022217952A1 (zh) 一种直接在皮肤上纺丝制备纤维膜干电极的方法
Sant et al. Nanostructure, dissolution and morphology characteristics of microcidal silver films deposited by magnetron sputtering
CN114279601A (zh) 一种柔性纳米膜压力传感器及其制备方法
KR20200018025A (ko) 전도성 복합 용액을 이용한 전도성 복합체 및 그의 제조방법
TW201408825A (zh) 一維金屬奈米結構之製造方法
CN110085350B (zh) 石墨烯包覆银纳米线透明导电薄膜及其制备方法
Zhao et al. Low-temperature alkali corrosion induced growth of nanosheet layers on NiTi alloy and their corrosion behavior and biological responses
CN110448798B (zh) 石墨烯人工耳蜗电极及其制作方法
UA46720C2 (uk) Спосіб одержання антимікробного матеріалу, спосіб досягнення антимікробного ефекту, антимікробна форма срібного матеріалу, тонкозернистий антимікробний матеріал та спосіб одержання тонкозернистого антимікробного матеріалу
CN115376757B (zh) 一种抗氧化的铜纳米线透明电极及其制备方法和应用
WO2023097766A1 (zh) 一种超薄可拉伸薄膜电极的制备方法
JP3585973B2 (ja) ミクロ細孔ガス透過性電極構造の製法及びミクロ細孔ガス透過性電極構造
CN113197546B (zh) 一种高透性摩擦纳米传感器及其制备方法
CN112812689B (zh) 一种基于胶原/纳米碳复合载药导电涂层的离子导入电极及其制备方法
WO2023097765A1 (zh) 一种可拉伸多功能传感器及其制备方法和应用
Pan et al. Optimization of sputtering condition of IrOx thin film stimulation electrode for retinal prosthesis application
TW202015745A (zh) 具修復面皰之高分子敷材及其製備方法
WO2023070864A1 (zh) 基于反应离子刻蚀的柔性可拉伸金膜电极及其制备方法
CN113896942A (zh) 一种透气性表皮电极及其制备方法
CN115715683A (zh) 一种可拉伸多孔薄膜干电极及其制备方法
JP2000017488A (ja) 重合膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927676

Country of ref document: EP

Kind code of ref document: A1