CN116144070A - 介电弹性体材料的制备方法及压力传感器 - Google Patents

介电弹性体材料的制备方法及压力传感器 Download PDF

Info

Publication number
CN116144070A
CN116144070A CN202310055755.0A CN202310055755A CN116144070A CN 116144070 A CN116144070 A CN 116144070A CN 202310055755 A CN202310055755 A CN 202310055755A CN 116144070 A CN116144070 A CN 116144070A
Authority
CN
China
Prior art keywords
dielectric elastomer
elastomer material
porous
cacu
pdms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310055755.0A
Other languages
English (en)
Inventor
李谊
杨秋月
王艺璇
马延文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202310055755.0A priority Critical patent/CN116144070A/zh
Publication of CN116144070A publication Critical patent/CN116144070A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • B32B2255/102Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer synthetic resin or rubber layer being a foamed layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/044Elimination of an inorganic solid phase
    • C08J2201/0444Salts
    • C08J2201/0446Elimination of NaCl only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明提供了一种介电弹性体材料的制备方法及压力传感器,所述介电弹性体材料的制备方法包括:将CaCu3Ti4O12粉末和RGO粉末加入至PDMS预聚物溶液中搅拌并混合均匀后,得到混合溶液;在混合溶液中加入NaCl盐颗粒并混合均匀,再加入PDMS交联固化剂,得到初步固化浆料:将初步固化浆料加入至热压机的模具内,通过热压处理将初步固化浆料压制成薄膜,并用水洗去除NaCl盐颗粒,而后将薄膜从模具内剥离,得到多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料。本发明所制备的介电弹性体材料具有高介电常数、多孔结构、高透气性和轻薄便携等特点,由该介电弹性体材料制备得到的压力传感器具有高灵敏度、高稳定性、高柔性和高透气性的优势,具有良好的应用前景。

Description

介电弹性体材料的制备方法及压力传感器
技术领域
本发明涉及一种介电弹性体材料的制备方法及压力传感器,属于电子材料和传感器技术领域。
背景技术
传感器是一类能够灵敏地感知环境温度、湿度、压力等变化的电子器件。传统传感器采用刚性结构,具有不可拉伸性和机械性能较弱等缺陷,限制了其柔性可穿戴领域应用。柔性传感器具有超强环境适应性,在电子皮肤、软体机器人、可穿戴设备等领域具有广泛的应用。柔性压力传感器是一种可以感知外界压力变化的传感器件,在医疗健康监控、可穿戴电子皮肤等领域极具应用潜力。柔性压力传感器可以根据工作原理不同,分为电容型、压阻型和压电型。电容型压力传感器具有灵敏度高、空间分辨率高等特点,在长期使用中能保持极佳的稳定性和低的功耗,因而得到了广泛的应用。
电容型压力传感器的工作原理是以介电弹性体元件感受压力,并把弹性元件的位移量转换成电容量的变化。电容式压力传感器灵敏度定义为电容输出量变化和压力输入量的比值。通过提高介电弹性体的介电常数是提高电容式压力传感器的灵敏度最有效的方法之一。但是,目前的柔性压力传感器存在介电弹性体材料介电常数不高、灵敏度不高、透气性差等问题,严重限制了柔性压力传感器的大规模推广应用。
有鉴于此,确有必要提出一种介电弹性体材料的制备方法及压力传感器,以解决上述问题。
发明内容
本发明的目的在于提供一种介电弹性体材料的制备方法及压力传感器,具有高灵敏度、高透气性、高循环稳定性等优势。
为实现上述目的,本发明提供了一种介电弹性体材料的制备方法,主要包括以下步骤:
步骤1、将CaCu3Ti4O12粉末和RGO粉末加入至PDMS预聚物溶液中搅拌并混合均匀后,得到混合溶液;
步骤2、在混合溶液中加入NaCl盐颗粒并混合均匀,再加入PDMS交联固化剂,得到初步固化浆料;
步骤3、将初步固化浆料加入至热压机的模具内,通过热压处理将初步固化浆料压制成薄膜,并用水洗去除NaCl盐颗粒,而后将薄膜从模具内剥离,得到多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料。
作为本发明的进一步改进,步骤1中,所述CaCu3Ti4O12粉末为1-4g,所述RGO粉末为0.1-0.3g,所述PDMS预聚物溶液为10ml。
作为本发明的进一步改进,步骤2中,所述NaCl盐颗粒的粒径为200-400μm。
作为本发明的进一步改进,步骤3中,所述薄膜在热压处理后的厚度为500-800μm。
作为本发明的进一步改进,所述多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料中,所述CaCu3Ti4O12的质量百分数为9-28%。
作为本发明的进一步改进,所述多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料中,所述RGO的质量百分数为1-3%。
为实现上述目的,本发明还提供了一种压力传感器,包括顶层透气薄膜电极、所述多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料和底层透气薄膜电极,所述多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料应用如上所述的介电弹性体材料的制备方法进行制备。
作为本发明的进一步改进,所述顶层透气薄膜电极和所述底层透气薄膜电极为多孔Ag NW/TPU柔性透气导电薄膜材料。
作为本发明的进一步改进,所述多孔Ag NW/TPU柔性透气导电薄膜材料的厚度为5-10μm,方阻为5-10Ω/sq。
作为本发明的进一步改进,所述多孔Ag NW/TPU柔性透气导电薄膜材料的制备方法包括:
S1、将1.5g的TPU和0.15mL的PEG溶解在100ml的THF溶液中,得到混合溶液;
S2、使用迈耶棒将S1得到的5ml混合溶液均匀地涂覆在玻璃基板;
S3、将玻璃基板放入高湿度的环境中,10min后将薄膜从玻璃表面剥离获得多孔TPU薄膜;
S4、将1mg/mL的AgNWs溶液喷涂于多孔TPU薄膜表面,烘干后得到多孔Ag NW/TPU柔性透气导电薄膜材料。
本发明的有益效果是:本发明所制备的介电弹性体材料具有高介电常数、多孔结构、高透气性和轻薄便携等特点,由该介电弹性体材料制备得到的压力传感器具有高灵敏度、高稳定性、高柔性和高透气性的优势,具有良好的应用前景。
附图说明
图1是本发明介电弹性体材料的光学照片。
图2是本发明介电弹性体材料的介电常数测试图。
图3是本发明介电弹性体材料的透气性能测试图。
图4是本发明压力传感器中顶层透气薄膜电极和底层透气薄膜电极为多孔Ag NW/TPU柔性透气导电薄膜材料的SEM图。
图5是本发明压力传感器的灵敏度测试图。
图6是本发明压力传感器的透气性能测试图。
图7是本发明压力传感器的循环性能测试图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
在此,需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
另外,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
如图1至图7所示,本发明揭示了一种介电弹性体材料的制备方法及压力传感器,所述介电弹性体材料的制备方法采用CaCu3Ti4O12材料和RGO材料填入PDMS薄膜,并利用盐模板浸出造孔法获得多孔泡沫结构制备,主要包括以下步骤:
步骤1、将CaCu3Ti4O12粉末和RGO粉末加入至PDMS预聚物溶液中搅拌并混合均匀后,得到混合溶液;
步骤2、在混合溶液中加入NaCl盐颗粒并混合均匀,再加入PDMS交联固化剂,得到初步固化浆料;
步骤3、将初步固化浆料加入至热压机的模具内,通过热压处理将初步固化浆料压制成薄膜,并用水洗去除NaCl盐颗粒,而后将薄膜从模具内剥离,得到多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料。
以下将对步骤1至步骤3进行详细说明。
步骤1中,所述CaCu3Ti4O12粉末为1-4g,所述RGO粉末为0.1-0.3g,所述PDMS预聚物溶液为10ml。
步骤2中,所述NaCl盐颗粒的粒径为200-400μm,所述混合溶液中加入900g的NaCl盐颗粒。
步骤3中,所述薄膜在热压处理后的厚度为500-800μm。
所述多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料中,所述CaCu3Ti4O12的质量百分数为9-28%,所述RGO的质量百分数为1-3%。
所述压力传感器包括顶层透气薄膜电极、所述多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料和底层透气薄膜电极,所述多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料应用如上所述的介电弹性体材料的制备方法进行制备。
特别地,所述顶层透气薄膜电极和所述底层透气薄膜电极为多孔Ag NW/TPU柔性透气导电薄膜材料。所述多孔Ag NW/TPU柔性透气导电薄膜材料的厚度为5-10μm,方阻为5-10Ω/sq。
所述多孔Ag NW/TPU柔性透气导电薄膜材料的制备方法包括:
S1、将1.5g的TPU和0.15mL的PEG溶解在100ml的THF溶液中,得到混合溶液;
S2、使用迈耶棒将S1得到的5ml混合溶液均匀地涂覆在玻璃基板;
S3、将玻璃基板放入高湿度的环境中,10min后将薄膜从玻璃表面剥离获得多孔TPU薄膜;
S4、将1mg/mL的AgNWs溶液喷涂于多孔TPU薄膜表面,烘干后得到多孔Ag NW/TPU柔性透气导电薄膜材料。
以下将结合实施例对本发明进行说明。
实施例1
(1)多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料的制备:将一定量(1-4g)的CaCu3Ti4O12粉末和一定量(0.1-0.3g)的RGO加入10ml的PDMS预聚物A中,搅拌均匀获得混合液;
在上述混合液中加入900g粒径为200-400μm的NaCl盐颗粒,混合均匀后再加入PDMS交联固化剂B获得初步固化浆料;
将上述初步固化浆料加入热压机上的模具内,热压处理将初步固化浆料压制成一定厚度的薄膜,水洗去除NaCl盐颗粒,将薄膜从磨具内剥离,即制得多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料。
如图1所示,制备的多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料的介电常数最高可达197,如图2所示,透气性可达14.15mg/h cm2,如图3所示。
(2)多孔Ag NW/TPU柔性透气导电薄膜材料的制备:
将1.5g的TPU和0.15mL的PEG溶解在100ml的THF溶液中,得到混合溶液;
使用迈耶棒将S1得到的5ml混合溶液均匀地涂覆在玻璃基板;
将玻璃基板放入高湿度的环境中(相对湿度99%,温度25℃),10min后将薄膜从玻璃表面剥离获得多孔TPU薄膜
将1mg/mL的AgNWs溶液喷涂于多孔TPU薄膜表面,烘干后得到多孔Ag NW/TPU柔性透气导电薄膜材料,如图4所示。
(3)压力传感器的组装:
在多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料的顶层和底层添加多孔Ag NW/TPU柔性透气导电薄膜材料分别为顶电极和底电极,获得“三明治”结构的电容型柔性透气的压力传感器。
制备的柔性透气压力传感器具有高灵敏度、高透气性和高稳定性。其最高灵敏度可达3.38KPa-1,如图5所示,透气性可达11.28mg/h cm2,如图6所示。压力传感器在经过10000圈的压缩释放以后,电容测试性能没有明显变化,如图7所示。
综上所述,本发明所制备的介电弹性体材料由CaCu3Ti4O12、RGO和PDMS三种材料复合制备,具有高介电常数、多孔结构、高透气性和轻薄便携等特点,由该介电弹性体材料制备得到的压力传感器具有高灵敏度、高稳定性、高柔性和高透气性的优势,具有良好的应用前景。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

1.一种介电弹性体材料的制备方法,其特征在于,主要包括以下步骤:
步骤1、将CaCu3Ti4O12粉末和RGO粉末加入至PDMS预聚物溶液中搅拌并混合均匀后,得到混合溶液;
步骤2、在混合溶液中加入NaCl盐颗粒并混合均匀,再加入PDMS交联固化剂,得到初步固化浆料;
步骤3、将初步固化浆料加入至热压机的模具内,通过热压处理将初步固化浆料压制成薄膜,并用水洗去除NaCl盐颗粒,而后将薄膜从模具内剥离,得到多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料。
2.根据权利要求1所述的介电弹性体材料的制备方法,其特征在于:步骤1中,所述CaCu3Ti4O12粉末为1-4g,所述RGO粉末为0.1-0.3g,所述PDMS预聚物溶液为10ml。
3.根据权利要求1所述的介电弹性体材料的制备方法,其特征在于:步骤2中,所述NaCl盐颗粒的粒径为200-400μm。
4.根据权利要求1所述的介电弹性体材料的制备方法,其特征在于:步骤3中,所述薄膜在热压处理后的厚度为500-800μm。
5.根据权利要求1所述的介电弹性体材料的制备方法,其特征在于:所述多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料中,所述CaCu3Ti4O12的质量百分数为9-28%。
6.根据权利要求1所述的介电弹性体材料的制备方法,其特征在于:所述多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料中,所述RGO的质量百分数为1-3%。
7.一种压力传感器,其特征在于,包括顶层透气薄膜电极、所述多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料和底层透气薄膜电极,所述多孔CaCu3Ti4O12/RGO/PDMS的介电弹性体材料应用如权利要求1-6中任一项所述的介电弹性体材料的制备方法进行制备。
8.根据权利要求1所述的压力传感器,其特征在于:所述顶层透气薄膜电极和所述底层透气薄膜电极为多孔Ag NW/TPU柔性透气导电薄膜材料。
9.根据权利要求8所述的压力传感器,其特征在于:所述多孔Ag NW/TPU柔性透气导电薄膜材料的厚度为5-10μm,方阻为5-10Ω/sq。
10.根据权利要求8所述的压力传感器,其特征在于,所述多孔Ag NW/TPU柔性透气导电薄膜材料的制备方法包括:
S1、将1.5g的TPU和0.15mL的PEG溶解在100ml的THF溶液中,得到混合溶液;
S2、使用迈耶棒将S1得到的5ml混合溶液均匀地涂覆在玻璃基板;
S3、将玻璃基板放入高湿度的环境中,10min后将薄膜从玻璃表面剥离获得多孔TPU薄膜;
S4、将1mg/mL的AgNWs溶液喷涂于多孔TPU薄膜表面,烘干后得到多孔Ag NW/TPU柔性透气导电薄膜材料。
CN202310055755.0A 2023-01-17 2023-01-17 介电弹性体材料的制备方法及压力传感器 Pending CN116144070A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310055755.0A CN116144070A (zh) 2023-01-17 2023-01-17 介电弹性体材料的制备方法及压力传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310055755.0A CN116144070A (zh) 2023-01-17 2023-01-17 介电弹性体材料的制备方法及压力传感器

Publications (1)

Publication Number Publication Date
CN116144070A true CN116144070A (zh) 2023-05-23

Family

ID=86353820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310055755.0A Pending CN116144070A (zh) 2023-01-17 2023-01-17 介电弹性体材料的制备方法及压力传感器

Country Status (1)

Country Link
CN (1) CN116144070A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022179252A1 (zh) * 2021-02-26 2022-09-01 中国科学院深圳先进技术研究院 一种超薄多孔可拉伸薄膜电极的制备方法
CN115479705A (zh) * 2022-08-19 2022-12-16 江西昌硕户外休闲用品有限公司 一种可印刷透明应力传感器及其制备方法
CN115585914A (zh) * 2022-09-20 2023-01-10 武汉纺织大学 耐温度变化的聚合物基压力传感器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022179252A1 (zh) * 2021-02-26 2022-09-01 中国科学院深圳先进技术研究院 一种超薄多孔可拉伸薄膜电极的制备方法
CN115479705A (zh) * 2022-08-19 2022-12-16 江西昌硕户外休闲用品有限公司 一种可印刷透明应力传感器及其制备方法
CN115585914A (zh) * 2022-09-20 2023-01-10 武汉纺织大学 耐温度变化的聚合物基压力传感器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUNHONG MU,ET AL.: "Enhanced Piezocapacitive Effect in CaCu3Ti4O12−Polydimethylsiloxane Composited Sponge for Ultrasensitive Flexible Capacitive Sensor", ACS APPLIED NANO MATERIALS, vol. 1, 21 December 2017 (2017-12-21), pages 274 - 283 *
WEIXIN ZHOU,ET AL.: "Gas-Permeable, Ultrathin, Stretchable Epidermal Electronics with Porous Electrodes", ACS NANO, vol. 14, 29 April 2020 (2020-04-29), pages 5798 - 5805 *

Similar Documents

Publication Publication Date Title
Masihi et al. A novel printed fabric based porous capacitive pressure sensor for flexible electronic applications
CN106500886B (zh) 一种基于纳米导电材料的柔性应力传感器的制备方法
CN105865667B (zh) 基于微结构化介电层的电容式柔性压力传感器及其制备方法
CN111505065B (zh) 一种基于超级电容传感原理的叉指型对电极式柔性触觉传感器及其制备方法
Li et al. A flexible and ultrasensitive interfacial iontronic multisensory sensor with an array of unique “cup-shaped” microcolumns for detecting pressure and temperature
CN110243276A (zh) 一种应用于指关节的可拉伸应力应变传感器及制备方法
CN109115266A (zh) 一种可穿戴多功能柔性传感器及其制备方法
CN110511569B (zh) 一种基于带刺空心碳微球超灵敏度压力传感薄膜及其制备方法
CN113150371A (zh) 一种pdms海绵基应变传感器及制备方法
Chen et al. Flexible capacitive pressure sensor based on multi-walled carbon nanotubes microstructure electrodes
Sun et al. High-sensitivity tactile sensor based on Ti2C-PDMS sponge for wireless human–computer interaction
CN212301394U (zh) 一种柔性可拉伸气体传感器
CN107266912B (zh) 还原氧化石墨烯-聚酰亚胺热处理泡沫的制备方法
CN106840478A (zh) 一种基于再生胶原蛋白薄膜的柔性压力传感器的制备方法
Wang et al. Flexible and high-performance piezoresistive strain sensors based on multi-walled carbon nanotubes@ polyurethane foam
CN107504893A (zh) 高灵敏度网状石墨烯/弹性体应变传感器及其制备方法
CN110108393A (zh) 一种柔性压阻传感器
Liu et al. High-performance piezoresistive flexible pressure sensor based on wrinkled microstructures prepared from discarded vinyl records and ultra-thin, transparent polyaniline films for human health monitoring
CN116144070A (zh) 介电弹性体材料的制备方法及压力传感器
CN112980022B (zh) 一种多孔碳胶囊基/聚二甲基硅氧烷复合柔性膜及其制备方法和应用
CN112484888A (zh) 一种柔性电容式压力传感器及其制备方法
CN110849510A (zh) 一种压力应力传感器的制备方法及其应用
CN110006560A (zh) 一种柔性压力传感器及压敏材料的制备方法
US11541648B2 (en) VACNT-based flexible electronics for sensing and capacitance applications
CN209639868U (zh) 一种柔性压力传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination