WO2023097765A1 - 一种可拉伸多功能传感器及其制备方法和应用 - Google Patents

一种可拉伸多功能传感器及其制备方法和应用 Download PDF

Info

Publication number
WO2023097765A1
WO2023097765A1 PCT/CN2021/137763 CN2021137763W WO2023097765A1 WO 2023097765 A1 WO2023097765 A1 WO 2023097765A1 CN 2021137763 W CN2021137763 W CN 2021137763W WO 2023097765 A1 WO2023097765 A1 WO 2023097765A1
Authority
WO
WIPO (PCT)
Prior art keywords
sebs
solution
sensor
substrate
pva
Prior art date
Application number
PCT/CN2021/137763
Other languages
English (en)
French (fr)
Inventor
刘志远
李光林
韩飞
于玫
赵阳
王琳
李向新
李岩
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2023097765A1 publication Critical patent/WO2023097765A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/49Systems involving the determination of the current at a single specific value, or small range of values, of applied voltage for producing selective measurement of one or more particular ionic species

Definitions

  • the invention relates to the technical field of flexible electronics, in particular to a stretchable multifunctional sensor and its preparation method and application.
  • human sweat may contain rich physiological information, and through the concentration analysis of sweat components, we can understand the dynamics of our body from the molecular level.
  • scientists from all over the world have conducted in-depth research on wearable sweat sensors and have made some progress.
  • Ali Javey's research group from Berkeley, California proposed a flexible microfluidic sweat sensor patch to enhance real-time electrochemical sensing and sweat rate analysis through sweat sampling.
  • the assembly embeds ion-selective sensors and an electrical impedance-based sweat rate sensor on a flexible plastic substrate.
  • the patch enables automated sweat analysis by interfacing sensing components with a printed circuit board capable of on-site signal conditioning, analysis, and transmission.
  • Peng Huisheng's research group at Fudan University proposed a method of using conductive carbon fiber as the base material to prepare a sweat sensor by coating the sensing material.
  • the sensor can be combined with clothing by weaving to realize real-time monitoring of human sweat. .
  • the sensor is not stretchable, and tighter clothing is needed to achieve a more accurate sensing effect when weaving.
  • the research group of Shen Guozhen, a researcher at the Beijing Institute of Semiconductors, Chinese Academy of Sciences proposed a method for fabricating a flexible sweat sensor on a PET film. This method realizes the combination of self-powered materials and sensing materials, but the PET film is a non-stretchable Materials, in practical applications, have great inapplicability to the deformation generated by human muscle stretching.
  • step (3) patterning the SEBS substrate obtained in step (2) by magnetron sputtering and sputtering gold to obtain a patterned SEBS substrate;
  • step (4) Deposit metal platinum on the blank area on the SEBS substrate treated in step (4) to prepare a temperature sensor, and finally encapsulate the circuit part except the area where the sensor is located by polymer spin coating;
  • the second aspect of the present invention provides the stretchable multifunctional sensor prepared by the above preparation method.
  • SEBS is called Styrene Ethylene Butylene Styrene is a linear three-block copolymer with polystyrene as the terminal block and ethylene-butene copolymer obtained by hydrogenation of polybutadiene as the middle elastic block.
  • the PVA solution is to dissolve PVA in deionized water, and the mass ratio of PVA to deionized water is 1 to 100%;
  • the SEBS solution is to dissolve SEBS in an organic solvent wherein, the mass concentration of the SEBS solution is 1 to 50%, and the organic solvent is selected from any one of cyclohexane, n-hexane, xylene, toluene, chloroform and tetrahydrofuran.
  • the mass ratio of PVA and deionized water in the PVA solution is 1%, 10%, 20%, 30%, 40%, 50%, 60% , 70%, 80%, 90% and 100% etc.;
  • the concentration of the SEBS solution is 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, etc.
  • the substrate in step (2) is a rigid substrate, and the rigid substrate is a silicon sheet or a glass sheet;
  • the coating method is selected from any one of spin coating method, drop coating method and blade coating method;
  • the uniform coating of the PVA solution and the SEBS solution on the substrate in sequence is to uniformly coat the PVA solution on the rigid substrate to obtain a PVA layer, and evenly coat the SEBS solution on the PVA after drying. layer;
  • the spin coating parameter of the spin coating is 500 ⁇ 5000 rpm, the spin coating time is 30 seconds ⁇ 5 minutes; the drying temperature of the drying is 30 ⁇ 100°C, and the drying time is 1 ⁇ 30min ;
  • the thickness of the SEBS solution evenly coated on the PVA layer is 5-500 ⁇ m.
  • the magnetron sputtering in step (3) is carried out in an argon atmosphere, the condition of magnetron sputtering is that the degree of vacuum is less than or equal to 10 -3 Pa, the sputtering power is less than or equal to 200w, and the time is 5- 30 seconds; the patterned sputtering of gold is carried out by using a pre-prepared mask, and the mask has a specially designed pattern.
  • the magnetron sputtering in step (3) is carried out in an argon atmosphere, and the bonding force between metal gold and the SEBS substrate is improved by controlling the vacuum degree, sputtering power and time;
  • the reticle is pre-prepared and patterned with a specific design.
  • the circuit on the substrate obtained after patterning and sputtering gold by magnetron sputtering can be used for the detection of human body surface electromyography signals, and the line width and The pattern is designed to have an effective detection effect on the human body surface EMG signal.
  • the precursor solution is a calcium ion selective precursor solution, a sodium ion selective precursor solution and a potassium ion selective precursor solution.
  • the electrochemical method is cyclic voltammetry
  • the electrochemical solution used in the electrochemical method is a mixed solution of aniline and sulfuric acid.
  • the calcium ion selective precursor solution is composed of tetrakis (3,5-bis (trifluoromethyl) phenyl) sodium borate, polyvinyl chloride, diisooctyl sebacate, calcium Ionophore II is prepared by dissolving in 700 ⁇ L tetrahydrofuran solution according to the weight ratio of 0.1-1.5:30-34.5:69.4-61:0.5-3;
  • the sodium ion selective precursor solution is composed of tetrakis (3,5-bis( Trifluoromethyl) phenyl) sodium borate, polyvinyl chloride, diisooctyl sebacate, and sodium ionophore X are dissolved in the ratio of 0.1-1.5: 30-34.5: 31-69.4: 0.5-3 according to the weight ratio Formed in 700 ⁇ L tetrahydrofuran solution;
  • the potassium ion selective precursor solution is composed of sodium tetraphenylborate, polyvinyl chloride
  • step (5) metal platinum is deposited by magnetron sputtering, the magnetron sputtering is carried out in an argon atmosphere, and the condition of magnetron sputtering is that the degree of vacuum is less than or equal to 10 -3 Pa , the sputtering power is less than or equal to 200W, and the time is 5-30 seconds.
  • the circuit part except the area where the sensor is located is encapsulated by polymer spin coating, and the polymer is selected from any one of SEBS and PDMS polymer materials.
  • step (5) metal platinum is deposited on the blank area on the SEBS substrate using a mask, and the vacuum degree, sputtering power and Time, in order to improve the bonding force of platinum and substrate material.
  • step (5) the circuit part except the area where the sensor is located is encapsulated by polymer spin coating, which can prevent the circuit in the non-sensing area from being exposed to the air, affecting the sensing stability and device durability .
  • the flexible PCB board with the wireless Bluetooth output function described in step (6) is prepared in advance, and various electronic components are combined with the Bluetooth module through the design of the circuit for collecting, Process and output the signal of the multi-function sensor to realize the real-time transmission of the signal.
  • a flexible wearable and stretchable electronic material with a high degree of integration which is connected to a flexible PCB circuit board with a wireless Bluetooth output function through an external wire, and realizes the detection of ion concentration and concentration in human sweat components.
  • Real-time monitoring of pH, as well as real-time transmission of body surface temperature and myoelectric signals during human movement and can well adapt to scenarios such as skin deformation and muscle stretching in dynamic human activities.
  • flexible smart materials and many other It has great application potential in this field.
  • PVA solution specifically, an aqueous solution with a mass ratio of PVA to deionized water of 1:1;
  • SEBS solution specifically a solution with a mass ratio of SEBS to cyclohexane of 1:1;
  • step (3) The substrate obtained in step (2) is patterned and sputtered gold by magnetron sputtering using a mask, the conditions of magnetron sputtering are vacuum degree 10 -3 Pa, sputtering power 200W, time 5 seconds;
  • the calcium ion selective precursor solution, the sodium ion selective precursor solution and the potassium ion selective precursor solution are drip-coated on part of the patterned sputtered gold circuit by dispensing, and the solvent is evaporated at room temperature
  • the calcium ion selective precursor solution is tetrakis (3,5-bis (trifluoromethyl) phenyl) sodium borate, polyvinyl chloride, diisooctyl sebacate, calcium ionophore II is prepared by dissolving in 700 ⁇ L tetrahydrofuran solution according to the weight ratio of 1:32:65:1.5;
  • the sodium ion selective precursor solution is tetrakis (3,5-bis (trifluoromethyl) phenyl) boric acid Sodium, polyvinyl chloride, diisooctyl sebacate, and sodium ionophore X were dissolved in 700 ⁇ L of tetrahydrofuran solution at a weight
  • Electroplating polyaniline on a part of the patterned sputtered gold circuit by cyclic voltammetry is used to prepare a pH sensor; wherein the electrochemical solution is a mixed solution of aniline and sulfuric acid;
  • step (4) Deposit metal platinum on the blank area of the substrate after step (4) at a vacuum degree of 10 -3 Pa, with a power of 200 W and a time of 15 s; then use PDMS spin coating to encapsulate the circuit part except the area where the sensor is located;
  • step (6) Connect the terminal reserved on the substrate processed in step (5) to a flexible PCB board with a wireless bluetooth output function to obtain a stretchable multifunctional sensor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Electrochemistry (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种可拉伸多功能传感器及其制备方法和应用。利用SEBS良好的可拉伸性和极强的粘黏性,通过磁控溅射金在SEBS基底上用于检测体表肌电信号,通过电路修饰制备汗液检测传感器和pH传感器,通过沉积金属铂制备温度传感器,通过聚合物旋涂封提高稳定性和耐久使用性;最后通过外接线与具有无线蓝牙输出功能的柔性PCB电路板连接,实现实时监测和实时传输。该可拉伸多功能传感器能够很好的适应在人体动态活动中皮肤的形变和肌肉的拉伸等场景,在柔性可穿戴电子材料和智能便携式健康医疗设备等领域具有重要应用潜力。

Description

一种可拉伸多功能传感器及其制备方法和应用 技术领域
本发明涉及柔性电子技术领域,尤其涉及一种可拉伸多功能传感器及其制备方法和应用。
背景技术
近年来,由于可穿戴电子材料的不断发展,越来越多的柔性电子材料逐渐从实验室走向商业化,融入人们生活的各个方面。其中,柔性可穿戴传感器作为柔性电子材料的重要组成部分,在近年来也取得了很大的发展和进步,例如柔性应变传感器、柔性触觉传感器和柔性温度传感器等。一方面,柔性传感器克服了传统半导体基传感器的不可拉伸和弯曲的缺点;另一方面,实现简单、低成本、集成度高的柔性传感器的制备是未来柔性电子进一步发展的重要基石。
据报道,人体汗液可能含有丰富的生理信息,通过对汗液组分的浓度分析,我们可以从分子水平了解我们身体的动态情况。近年来,来自世界各地的科学家对可穿戴式的汗液传感器进行了深入的研究,也取得了一定的进展。例如,来自加州伯克利的Ali Javey课题组提出了一种柔性微流控汗液传感器贴片,通过汗液采样来增强实时电化学传感和汗液率分析,该设备包含一个螺旋图案的微流体组件,该组件嵌入了离子选择传感器和一个基于电阻抗的汗液速率传感器,该传感器位于柔性塑料基板上。通过将传感组件与能够进行现场信号调理、分析和传输的印刷电路板连接,该贴片能够自动进行汗液分析。尽管该汗液传感器已经取得了一定的效果,但是对于人体在运动时的皮肤形变适应性较差。另外,复旦大学彭慧胜课题组提出了一种利用导电碳管纤维为基底材料,通过包覆传感材料制备汗液传感器的方法,该传感器可以利用编织方式与衣物相结合,实现对人体汗液的实时监测。但是该传感器不具有可拉伸性,而且在编织使用时需借助较紧身的衣服才能够实现较为准确的传感效果。此外,中科院北京半导体研究所沈国震研究员课题组提出了一种在PET膜上制备柔性汗液传感器的方法,该方法实现了自供电材料与传感材料的结合,但是PET膜是一种不可拉伸的材料,在实际应用中对于人体肌肉拉伸的产生的形变具有很大的不适用性。
通过上述对柔性汗液传感器的进展总结可以发现,现阶段在柔性可穿戴汗液传感器的研究中已经取得了一定的进展,但是对于可拉伸可穿戴汗液传感器的研究尚属于空白,这主要是由于实现可拉伸性的同时,传感器的其他性能会受到不同程度的影响。
技术问题
基于背景技术中提出的问题,本发明在柔性可拉伸基底SEBS上,实现基底可拉伸性的同时,借助SEBS极强的粘附性制备了导电性极其稳定的设计电路,然后在此基础上利用旋涂和点胶等方式制备了柔性可拉伸汗液传感器。另外,这种在SEBS基底上制备的电路可以实现对人体体表肌电信号的检测,进一步提高了传感的功能性。最后,通过温度和pH传感器的引入,极大程度地提高了可拉伸传感器的传感集成度,然后结合具有无限输出功能的柔性PCB电路板,使这种多功能传感器不仅适用于生物医学工程中的很多应用,而且在智能便携式健康医疗设备等领域具有很大的应用前景。
技术解决方案
为实现上述目的,本发明采用的技术方案如下:
本发明第一方面提供一种可拉伸多功能传感器的制备方法,包括以下步骤:
(1)配制PVA(聚乙烯醇)溶液和SEBS溶液;
(2)在基底上依次均匀涂覆PVA溶液和SEBS溶液,待溶剂完全挥发得到SEBS基底;
(3)将步骤(2)得到的SEBS基底通过磁控溅射进行图案化溅射金得到图案化的SEBS基底;
(4)将步骤(3)得到的图案化的SEBS基底上的部分电路修饰后制备人体体表肌电信号检测传感器、汗液检测传感器和pH传感器;
(5)在步骤(4)处理后的SEBS基底上的空白区域沉积金属铂,制备温度传感器,最后通过聚合物旋涂封装除了传感器所在区域的电路部分;
(6)将SEBS基底上预留的接线端通过与具有无线蓝牙输出功能的柔性PCB板进行连接,得到可拉伸多功能传感器。
本发明第二方面提供上述制备方法制备得到的可拉伸多功能传感器。
本发明第三方面提供上述制备方法制备得到的可拉伸传感器在检测人体汗液组分和pH、体表温度和肌电信号方面的应用。
在本发明的技术方案中,SEBS,全称为Styrene Ethylene Butylene Styrene,是以聚苯乙烯为末端段,以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物。
作为优选的实施方式,步骤(1)中,所述PVA溶液为将PVA溶解于去离子水中,PVA和去离子水的质量比为1~100%;所述SEBS溶液为将SEBS溶解于有机溶剂中,所述SEBS溶液的的质量浓度为1~50%,所述有机溶剂选自环己烷、正己烷、二甲苯、甲苯、三氯甲烷和四氢呋喃中的任一种。
在某些具体的实施方式中,步骤(1)中,所述PVA溶液中的PVA和去离子水的质量比为1%、10%、20%、30%、40%、50%、60%、70%、80%、90%和100%等;
所述SEBS溶液浓度为1%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%等。
作为优选的实施方式,步骤(2)中的基底为刚性基底,所述刚性基底为硅片或玻璃片;
优选的,步骤(2)中,所述涂覆方法选自旋涂法、滴涂法和刮涂法中的任一种;
优选的,步骤(2)中,所述在基底上依次均匀涂覆PVA溶液和SEBS溶液具体为将PVA溶液均匀涂覆在刚性基底上得到PVA层,烘干后将SEBS溶液均匀涂覆在PVA层上;
优选的,所述旋涂的旋涂参数为500~5000转/分钟,旋涂时间为30秒~5分钟;所述烘干的烘干温度为30~100℃,烘干时间为1~30min;
优选的,所述SEBS溶液均匀涂覆在PVA层上的厚度为5~500μm。
在某些具体的实施方式中,步骤(2)中所述基底的尺寸为3~6寸,如3寸、4寸、5寸和6寸等。
在某些具体的实施方式中,步骤(2)中所述旋涂法的旋涂参数为500转/分钟、1000转/分钟、2000转/分钟、3000转/分钟、4000转/分钟和5000转/分钟等,旋涂时间为30秒、1分钟、2分钟、3分钟、4分钟或5分钟等;所述烘干的烘干温度为30℃、40℃、50℃、60℃、70℃、80℃、90℃或100℃等,烘干时间为1min、5min、10min、20min或30min等。
在某些具体的实施方式中,步骤(2)中所述SEBS溶液均匀涂覆在PVA层上的厚度为5μm、50μm、100μm、150μm、200μm、250μm、300μm、350μm、400μm或500μm等。
作为优选的实施方式,步骤(3)中所述磁控溅射在氩气氛围中进行,磁控溅射的条件为真空度小于等于10 -3Pa,溅射功率小于等于200w,时间5-30秒;所述图案化溅射金是利用预先准备好的掩膜版进行的,所述掩膜版具有特定设计的图案。
在某些具体的实施方式中,步骤(3)中所述磁控溅射在氩气氛围中进行,并通过控制真空度、溅射功率和时间,以提高金属金与SEBS基底的结合力;所述掩膜版为预先准备好的,并具有特定设计的图案化。
在本发明的技术方案中,通过磁控溅射进行图案化溅射金后得到的基底上的电路可以用于对人体体表肌电信号的检测,通过掩膜版对金电路的线宽和图案进行设计,对人体体表肌电信号具有有效的检测效果。
作为优选的实施方式,步骤(4)中所述汗液检测传感器的电路的传感离子包括Ca 2+、Na +和K +离子,所述制备汗液检测传感器修饰方法为通过点胶的方式滴涂具有离子响应性能的前驱体溶液,并在室温下使溶剂挥发;
优选的,所述前驱体溶液为钙离子选择性前驱体溶液、钠离子选择性前驱体溶液和钾离子选择性前驱体溶液。
作为优选的实施方式,步骤(4)中所述制备pH传感器的电路的修饰方式为,在制备pH传感器的电路上通过电化学镀聚苯胺;
优选的,所述电化学法为循环伏安法,所述电化学法所用的电化学溶液为苯胺和硫酸的混合溶液。
在某些具体的实施方式中,钙离子选择性前驱体溶液为由四(3,5-二(三氟甲基)苯基)硼酸钠、聚氯乙烯、癸二酸二异辛酯、钙离子载体Ⅱ按照重量比为0.1-1.5:30-34.5:69.4-61:0.5-3的比例溶解在700μL四氢呋喃溶液中配制形成;钠离子选择性前驱体溶液为由四(3,5-二(三氟甲基)苯基)硼酸钠、聚氯乙烯、癸二酸二异辛酯、钠离子载体X按照重量比为0.1-1.5:30-34.5:31-69.4:0.5-3的比例溶解在700μL四氢呋喃溶液中配制形成;钾离子选择性前驱体溶液为由四苯硼钠、聚氯乙烯、癸二酸二异辛酯、缬氨霉素按照重量比为0.1-1:30-35:69.4-62:0.5-2的比例溶解在400μL环己酮溶液中配制形成。三种离子传感前驱体溶液分别通过点胶的方式分布在特定位置,并在室温下使溶剂挥发。
作为优选的实施方式,步骤(5)中通过磁控溅射的方式沉积金属铂,所述磁控溅射在氩气氛围中进行,磁控溅射的条件为真空度小于等于10 -3Pa,溅射功率小于等于200W,时间5-30秒。
作为优选的实施方式,步骤(5)中所述通过聚合物旋涂封装除了传感器所在区域的电路部分,所述聚合物选自SEBS,PDMS聚合物材料中的任一种。
在本发明的技术方案中,步骤(5)中所述利用掩膜版在SEBS基底上空白区域沉积金属铂,采用磁控溅射的方式,控制测控溅射铂的真空度、溅射功率和时间,以提高铂与基底材料的结合力。
在本发明的技术方案中,步骤(5)中通过聚合物旋涂封装除了传感器所在区域的电路部分,可以避免非传感区域的线路暴露在空气中,影响传感稳定性和器件耐久使用性。
在本发明的技术方案中,步骤(6)中所述具有无线蓝牙输出功能的柔性PCB板是预先准备好的,通过电路的设计,将各种电子元器件和蓝牙模块结合,用于收集、处理和输出多功能传感器的信号,实现对信号的实时传输。
有益效果
利用本发明的技术方案,可制成集成度较高的柔性可穿戴可拉伸电子材料,通过外接线与具有无线蓝牙输出功能的柔性PCB电路板连接,实现了对人体汗液成分中离子浓度和pH的实时监测,以及对体表温度和人体运动时肌电信号的实时传输,并能够很好的适应在人体动态活动中皮肤的形变和肌肉的拉伸等场景,在未来柔性智能材料等多个领域上具有巨大的应用潜力。
本发明的实施方式
下面结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护范围。
实施例1
本实施例中的可拉伸多功能传感器的制备方法如下:
(1)配制PVA溶液:具体为PVA与去离子水质量比1:1的水溶液;
配制SEBS溶液,具体为将SEBS与环己烷质量比为1:1的溶液;
(2)将PVA溶液以2000转/分钟的转速均匀旋涂在3寸的硅片上,时间为30秒;然后将其在80℃下烘干15min;然后将SEBS溶液通过旋涂法旋涂在PVA层上,厚度为300μm;
(3)将步骤(2)得到的基底利用掩模版通过磁控溅射进行图案化溅射金,磁控溅射的条件为真空度10 -3Pa,溅射功率200W,时间5秒;
(4)将钙离子选择性前驱体溶液、钠离子选择性前驱体溶液和钾离子选择性前驱体溶液通过点胶的方式滴涂在图案化溅射金的部分电路上,室温下使溶剂挥发用于制备汗液检测传感器;其中钙离子选择性前驱体溶液为四(3,5-二(三氟甲基)苯基)硼酸钠、聚氯乙烯、癸二酸二异辛酯、钙离子载体Ⅱ按照重量比为1:32:65:1.5的比例溶解在700μL四氢呋喃溶液中配制成的;钠离子选择性前驱体溶液为由四(3,5-二(三氟甲基)苯基)硼酸钠、聚氯乙烯、癸二酸二异辛酯、钠离子载体X按照重量比为1:32:45:1.5的比例溶解在700μL四氢呋喃溶液中配制形成;钾离子选择性前驱体溶液为由四苯硼钠、聚氯乙烯、癸二酸二异辛酯、缬氨霉素按照重量比为1:35:62:1.5的比例溶解在400μL环己酮溶液中配制形成;
通过循环伏安法在图案化溅射金的部分电路上电镀聚苯胺,用于制备pH传感器;其中电化学溶液为苯胺和硫酸的混合溶液;
(5)在步骤(4)处理后的基底的空白区域在真空度10 -3Pa沉积金属铂,功率为200W,时间为15s;然后用PDMS旋涂封装除了传感器所在区域的电路部分;
(6)将步骤(5)处理后的基底上预留的接线端通过与具有无线蓝牙输出功能的柔性PCB板进行连接,得到可拉伸多功能传感器。
以上所述的具体实施例,对本发明的目的,技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种可拉伸多功能传感器的制备方法,其特征在于,包括以下步骤:
    (1)配制PVA(聚乙烯醇)溶液和SEBS溶液;
    (2)在基底上依次均匀涂覆PVA溶液和SEBS溶液,待溶剂完全挥发得到SEBS基底;
    (3)将步骤(2)得到的SEBS基底通过磁控溅射进行图案化溅射金得到图案化的SEBS基底;
    (4)将步骤(3)得到的图案化的SEBS基底上的部分电路修饰后制备汗液检测传感器和pH传感器;
    (5)在步骤(4)处理后的SEBS基底上的空白区域沉积金属铂,制备温度传感器,最后通过聚合物旋涂封装除了传感器所在区域的电路部分;
    (6)将SEBS基底上预留的接线端通过与具有无线蓝牙输出功能的柔性PCB板进行连接,得到可拉伸多功能传感器。
  2. 如权利要求1所述的制备方法,其特征在于,步骤(1)中,所述PVA溶液为将PVA溶解于去离子水中,PVA和去离子水的质量比为1~100%;所述SEBS溶液为将SEBS溶解于有机溶剂中,所述SEBS溶液的的质量浓度为1~50%,所述有机溶剂选自环己烷、正己烷、二甲苯、甲苯、三氯甲烷和四氢呋喃中的任一种。
  3. 如权利要求1所述的制备方法,其特征在于,步骤(2)中的基底为刚性基底,所述刚性基底为硅片或玻璃片;
    优选的,步骤(2)中,所述涂覆方法选自旋涂法、滴涂法和刮涂法中的任一种;
    优选的,步骤(2)中,所述在基底上依次均匀涂覆PVA溶液和SEBS溶液具体为将PVA溶液均匀涂覆在刚性基底上得到PVA层,烘干后将SEBS溶液均匀涂覆在PVA层上;
    优选的,所述PVA溶液均匀旋涂的旋涂参数为500~5000转/分钟,旋涂时间为30秒~5分钟;所述烘干的烘干温度为30~100℃,烘干时间为1~30min;
    优选的,所述SEBS溶液均匀涂覆在PVA层上的厚度为5~500μm。
  4. 如权利要求1所述的制备方法,其特征在于,步骤(3)中所述磁控溅射在氩气氛围中进行,磁控溅射的条件为真空度小于等于10 -3Pa,溅射功率小于等于200W,时间5-30秒;所述图案化溅射金是利用预先准备好的掩膜版进行的,所述掩膜版具有特定设计的图案。
  5. 如权利要求1所述的制备方法,其特征在于,步骤(4)中所述汗液检测传感器的电路的传感离子包括Ca 2+、Na +和K +离子,所述制备汗液检测传感器修饰方法为通过点胶的方式滴涂具有离子响应性能的前驱体溶液,并在室温下使溶剂挥发;
    优选的,所述前驱体溶液为钙离子选择性前驱体溶液、钠离子选择性前驱体溶液和钾离子选择性前驱体溶液。
  6. 如权利要求1所述的制备方法,其特征在于:步骤(4)中所述制备pH传感器的电路的修饰方式为,在制备pH传感器的电路上通过电化学镀聚苯胺;
    优选的,所述电化学法为循环伏安法,所述电化学法所用的电化学溶液为苯胺和硫酸的混合溶液。
  7. 如权利要求1所述的制备方法,其特征在于:步骤(5)中通过磁控溅射的方式沉积金属铂,所述磁控溅射在氩气氛围中进行,磁控溅射的条件为真空度小于等于10 -3Pa,溅射功率小于等于200W,时间5-30秒。
  8. 如权利要求1所述的制备方法,其特征在于:步骤(5)中所述通过聚合物旋涂封装除了传感器所在区域的电路部分,所述聚合物选自SEBS,PDMS聚合物材料中的任一种。
  9. 如权利要求1-8任意一项所述的制备方法制备得到的可拉伸多功能传感器。
  10. 如权利要求1-8任意一项所述的制备方法制备得到的可拉伸传感器在检测人体汗液组分和pH、体表温度和肌电信号方面的应用。
PCT/CN2021/137763 2021-12-01 2021-12-14 一种可拉伸多功能传感器及其制备方法和应用 WO2023097765A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111458938.4 2021-12-01
CN202111458938.4A CN114354567A (zh) 2021-12-01 2021-12-01 一种可拉伸多功能传感器及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023097765A1 true WO2023097765A1 (zh) 2023-06-08

Family

ID=81096907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137763 WO2023097765A1 (zh) 2021-12-01 2021-12-14 一种可拉伸多功能传感器及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114354567A (zh)
WO (1) WO2023097765A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115998299B (zh) * 2022-12-15 2024-05-10 哈尔滨工业大学 一种透气、高基底粘附柔性可拉伸神经电极及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548318A (zh) * 2016-01-25 2016-05-04 深圳大学 一种可穿戴电化学传感器电极及可穿戴电化学传感器
WO2018004191A1 (ko) * 2016-06-29 2018-01-04 서울대학교 산학협력단 바이오 센싱 장치 및 약물 전달 장치
CN110753453A (zh) * 2019-11-07 2020-02-04 深圳第三代半导体研究院 一种柔性基底上稳定导电互联通路的制备方法
US20200155047A1 (en) * 2017-06-02 2020-05-21 Northwestern University Microfluidic systems for epidermal sampling and sensing
CN113061285A (zh) * 2021-02-26 2021-07-02 中国科学院深圳先进技术研究院 一种超薄多孔可拉伸薄膜电极的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107655398B (zh) * 2017-09-13 2020-06-19 中国科学院深圳先进技术研究院 一种高灵敏度可拉伸柔性应变传感器及其制备方法
US11530909B2 (en) * 2018-09-03 2022-12-20 Research & Business Foundation Sungkyunkwan University Fiber composite and preparing method of the same
CN110205805B (zh) * 2019-05-23 2022-02-15 深圳第三代半导体研究院 一种具有中空结构的柔性可拉伸纤维及其制备方法与应用
CN110974249B (zh) * 2019-12-13 2021-06-29 华中科技大学 一种表皮贴附式血氧饱和度检测系统及其制备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548318A (zh) * 2016-01-25 2016-05-04 深圳大学 一种可穿戴电化学传感器电极及可穿戴电化学传感器
WO2018004191A1 (ko) * 2016-06-29 2018-01-04 서울대학교 산학협력단 바이오 센싱 장치 및 약물 전달 장치
US20200155047A1 (en) * 2017-06-02 2020-05-21 Northwestern University Microfluidic systems for epidermal sampling and sensing
CN110753453A (zh) * 2019-11-07 2020-02-04 深圳第三代半导体研究院 一种柔性基底上稳定导电互联通路的制备方法
CN113061285A (zh) * 2021-02-26 2021-07-02 中国科学院深圳先进技术研究院 一种超薄多孔可拉伸薄膜电极的制备方法

Also Published As

Publication number Publication date
CN114354567A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
Ren et al. Flexible sensors based on organic–inorganic hybrid materials
CN103961073B (zh) 压阻式电子皮肤及其制备方法
CN110192868B (zh) 基于石墨烯复合材料的柔性钙钾离子检测传感器及其制备方法
CN109781312B (zh) 一种电容式压力传感器及其制备方法
CN113959603A (zh) 一种柔性电容式压力传感器及其制造方法
CN106198635A (zh) 一种基于有机场效应晶体管的湿度传感器及其制备方法
CN113155327B (zh) 一种仿生微阵列柔性电极及其制备方法、柔性压力传感器
WO2023097765A1 (zh) 一种可拉伸多功能传感器及其制备方法和应用
CN110108759A (zh) 一种基于聚苯胺/半导体金属氧化物纳米复合薄膜的呼吸氨气传感器及其制备方法
Chen et al. Bio‐inspired artificial perceptual devices for neuromorphic computing and gesture recognition
CN114360761B (zh) 基于可拉伸半导体的多功能传感电子皮肤及其制备方法
CN107565020B (zh) 一种基于有机场效应管的甲醛传感器及其制备方法
CN110534641B (zh) 一种基于弹性聚合物作为活性层的可拉伸忆阻器及其制备方法与应用
CN108303145A (zh) 一种单电极透明柔性电子皮肤及其制作方法
CN113340483A (zh) 一种仿生微结构的柔性力学传感器及其制备方法
CN111765995A (zh) 一种自驱动抗菌型柔性电子皮肤及其制备方法
CN110988057A (zh) 汗液传感器、集成电极阵列及其制备方法
CN109029801B (zh) 一种金属纳米线复合膜压力传感器及其制备方法
Chen et al. Microstructured flexible pressure sensor based on nanofibrous films for human motions and physiological detection
CN110098063A (zh) 一种柔性金电极及制备方法
CN115219575B (zh) 一种可拉伸的电化学三维微电极及其在生物分子检测方面的应用
CN117405751A (zh) 一种多参数柔性/可穿戴汗液传感器及其制备方法
CN111156891A (zh) 一种本征可拉伸应变传感器及其制备方法与应用
CN115266882A (zh) 基于水伏效应的自供电柔性水分传感器及制备方法、应用
CN208350247U (zh) 一种柔性应力传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966189

Country of ref document: EP

Kind code of ref document: A1