WO2022178955A1 - 一种转移加氢制备2,5-呋喃二甲醇 - Google Patents

一种转移加氢制备2,5-呋喃二甲醇 Download PDF

Info

Publication number
WO2022178955A1
WO2022178955A1 PCT/CN2021/085391 CN2021085391W WO2022178955A1 WO 2022178955 A1 WO2022178955 A1 WO 2022178955A1 CN 2021085391 W CN2021085391 W CN 2021085391W WO 2022178955 A1 WO2022178955 A1 WO 2022178955A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
catalyst
reaction
ethanol
based compound
Prior art date
Application number
PCT/CN2021/085391
Other languages
English (en)
French (fr)
Inventor
曾宪海
冯云超
龙思诗
唐兴
孙勇
林鹿
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Publication of WO2022178955A1 publication Critical patent/WO2022178955A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention belongs to the field of organic synthesis, in particular to the synthesis of 2,5-furandimethanol, and more particularly to a method for preparing 2,5-furandimethanol by transfer hydrogenation.
  • 2,5-Furandimethanol can be produced by selective hydrogenation of biomass-based platform compound 5-hydroxymethylfurfural, which can be used in synthetic resins, pharmaceutical intermediates, rayon and functional polyesters.
  • Catalytic transfer hydrogenation is an important method to produce 2,5-furandimethanol, but current research (Angew.Chem.Int.Ed.2016,55,11101–11105; ACS Catal.2016,6,1420-1436;Applied Catalysis B: Environment-tal 248 (2019) 31–43) mainly uses the more expensive and toxic isopropanol as the hydrogen source, and generally has the problems of low utilization of metal atoms and low reactive conversion frequency. Ethanol is an abundant, renewable, non-toxic green solvent and can also be used as a hydrogen source for transfer hydrogenation, but it is difficult.
  • Single-atom catalysts are catalysts with 100% atom utilization, which are mainly used for CO oxidation and electrocatalysis (Angewandte Chemie International Edition 2020, 59, 10514-10518, Science 2019, 364, 1091-1094.), but extremely It is rarely used in transfer hydrogenation reactions.
  • the purpose of the present invention is to overcome the defects of the prior art, and finally provide a method for preparing 2,5-furandimethanol by transfer hydrogenation through a large number of attempts and researches.
  • a method for preparing 2,5-furandimethanol by transfer hydrogenation comprising the following steps:
  • the methylol-functionalized carbon-based compound, nickel single-atom catalyst and ethanol were added into a stainless steel closed reactor, and the air was replaced with a protective gas, and a catalytic reaction occurred to generate 2,5-furandimethanol.
  • the protective gas is nitrogen.
  • the hydroxymethyl-functionalized carbon-based compound is selected from 5-hydroxymethylfurfural, hydroxymethylbenzaldehyde, and hydroxymethylacetophenone.
  • the nickel single-atom catalyst is Ni x /CN, where x is the mass fraction of nickel, preferably 1 to 6, more preferably 2.1-3.8, that is, Ni 2.1-3.8 /CN.
  • the preparation method of the nickel single-atom catalyst is as follows: carbonized nitrogen, terephthalic acid, triethylenediamine and nickel nitrate are dissolved in DMF solution, and then the solvent is distilled off under normal pressure; calcination in a tube furnace under nitrogen atmosphere to obtain single sub-catalyst Ni x /CN. More preferably, the preparation method of the single-atom catalyst is as follows: 9 g of carbonitride obtained by calcining dicyandiamide at 550° C.
  • the conditions of the catalytic reaction are as follows: the temperature is 130-190° C., the stirring speed is 400-800 rpm, and the reaction time is 1-10 h. In a more preferred embodiment, the conditions of the catalytic reaction are: a temperature of 150-170° C., a stirring speed of 500-700 rpm, and a reaction time of 2.5-7.5 h. Further preferably, the conditions of the catalytic reaction are as follows: the temperature is 160° C., the stirring speed is 600 rpm, and the reaction time is 5 h.
  • the beneficial effects of the present invention are as follows: the present invention successfully uses a nickel single-atom catalyst to catalyze carbon-based compounds into alcohols in an ethanol system for the first time, and experiments show that the catalyst exhibits extremely high catalytic activity and selectivity for methylol-functionalized aldehydes.
  • the preparation method of the catalyst used in the present invention is simple, the raw materials are cheap, and the industrialization is easy.
  • the method of the invention uses regenerable and non-toxic ethanol as the hydrogen source to carry out the reduction reaction, the reaction process is safe, green and environmentally friendly, the product selectivity is high, the reaction active conversion frequency (TOF) exceeds all the non-precious metal catalysts reported so far, and has extremely high performance.
  • TOF reaction active conversion frequency
  • Fig. 1 is the GC spectrum of 2,5-furandimethanol prepared in Example 1 of the present invention.
  • the nickel single-atom catalyst of the present embodiment its preparation method is as follows:
  • the preparation method of the nickel single-atom catalyst in this embodiment is the same as that of the nickel single-atom catalyst preparation example 1, except that the weight of nickel nitrate added therein is 0.2 g.
  • the obtained nickel single sub-catalyst was measured by ICP-OES to be Ni 3.8 /CN.
  • the GC-MS spectrum of the dimethyl 2,5-furandicarboxylate prepared in this example is shown in FIG. 1 .
  • the selectivity to 2,5-furandimethanol was calculated to be 96% and the molar yield was 95% after gas chromatography analysis.
  • the selectivity to 2,5-furandimethanol was calculated to be 96% and the molar yield was 95% after gas chromatography analysis.
  • the selectivity to 2,5-furandimethanol was calculated to be 94% and the molar yield was 93% after gas chromatography analysis.
  • the selectivity to 2,5-furandimethanol was calculated to be 97% and the molar yield was 94% after gas chromatography analysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种转移加氢制备2,5-呋喃二甲醇的方法,其是将羟甲基功能化碳基化合物、镍单原子催化剂和乙醇加入不锈钢密闭反应器中,氮气置换空气,催化5-羟甲基糠醛制备2,5-呋喃二甲醇。所述催化羟甲基功能化碳基化合物的条件为:反应温度130~190℃,搅拌转速400~800rpm,反应时间1~10h。所述5-羟甲基糠醛、镍单原子催化剂和乙醇的比例为0.26g:0.03~0.3g:5~30mL。本发明首次成功以单原子催化剂在乙醇体系中催化碳基化合物为醇,所使用催化剂制备方法简单且原料廉价,易于工业化;可再生和无毒的乙醇为氢源进行还原反应,反应过程安全,绿色环保,产物选择性高,反应活转化频率(TOF)超过目前所报道的所有非贵金属催化剂,具有极大的工业化应用价值。

Description

一种转移加氢制备2,5-呋喃二甲醇 技术领域
本发明属于有机合成领域,具体涉及2,5-呋喃二甲醇的合成,更具体涉及一种转移加氢制备2,5-呋喃二甲醇的方法。
背景技术
2,5-呋喃二甲醇可由生物质基平台化合物5-羟甲基糠醛选择性加氢制得,其可用于合成树脂、药物中间体、人造纤维和功能聚酯等。
催化转移加氢是制2,5-呋喃二甲醇的重要方法,但目前的研究(Angew.Chem.Int.Ed.2016,55,11101–11105;ACS Catal.2016,6,1420-1436;Applied Catalysis B:Environmen-tal 248(2019)31–43)主要以较贵和有毒的异丙醇为氢源,且普遍存在金属原子利用率低,反应活转化频率低的问题。乙醇是一种丰富、可再生、无毒的绿色溶剂,亦可作为转移加氢的氢源,但难度较大。单原子催化剂是一种原子利用率可达100%的催化剂,主要用于CO氧化和电催化(Angewandte Chemie International Edition 2020,59,10514-10518,Science 2019,364,1091-1094.),但极少用于转移加氢反应。
因此,本发明开发单原子催化剂在乙醇体系下转移加氢中的应用,意义重大。
发明内容
本发明的目的在于克服现有技术缺陷,通过大量尝试研究,最终提供一种转移加氢制备2,5-呋喃二甲醇的方法。
本发明的技术方案如下:
一种转移加氢制备2,5-呋喃二甲醇的方法,其特征在于,包括如下步骤:
将羟甲基功能化碳基化合物、镍单原子催化剂和乙醇加入不锈钢密闭反应器中,以保护气置换空气,发生催化反应以生成2,5-呋喃二甲醇。
优选地,所述保护气为氮气。
在具体实施方式中,所述羟甲基功能化碳基化合物选自5-羟甲基糠醛、羟甲基苯甲醛、羟甲基苯乙酮。
具体实施方式中,所述镍单原子催化剂是Ni x/CN,其中,x为镍的质量分数,优选为1至6,更优选为2.1-3.8,即为Ni 2.1-3.8/CN。优选地,所述镍单原子催化剂的制备方法如下:将碳化氮、对苯二甲酸酸、三乙二胺和硝酸镍溶于DMF溶液中,然后在常压下蒸 馏出溶剂;将所得固体在管式炉中氮气氛围下焙烧,即得单元子催化剂Ni x/CN。更优选地,所述单原子催化剂的制备方法具体如下:将9g由双氰胺在550℃焙烧4h而得的碳化氮、1.3g对苯二甲酸酸、8g三乙二胺和0.05~0.5g硝酸镍溶于100mL DMF溶液中,然后在常压、120℃下蒸馏出溶剂。所得固体在管式炉中氮气氛围、900℃下焙烧2h,即得镍单原子催化剂Ni x/CN。
在优选实施方式中,所述催化反应的条件为:温度130~190℃,搅拌转速400~800rpm,反应时间1~10h。更优选地实施方式中,所述催化反应的条件为:温度150-170℃,搅拌转速500-700rpm,反应时间2.5~7.5h。进一步优选地,所述催化反应的条件为:温度160℃,搅拌转速600rpm,反应时间5h。
本发明的有益效果是:本发明首次成功以镍单原子催化剂在乙醇体系中催化碳基化合物为醇,实验表明该催化剂对羟甲基功能化的醛表现出极高的催化活性和选择性。本发明所使用催化剂制备方法简单且原料廉价,易于工业化。本发明的方法以可再生和无毒的乙醇为氢源进行还原反应,反应过程安全,绿色环保,产物选择性高,反应活转化频率(TOF)超过目前所报道的所有非贵金属催化剂,具有极大的工业化应用价值。为进一步说明本发明的效果,下表显示了本发明方法与现有技术的效果比较。
Figure PCTCN2021085391-appb-000001
Figure PCTCN2021085391-appb-000002
Figure PCTCN2021085391-appb-000003
附图说明
图1为本发明实施例1所制得的2,5-呋喃二甲醇的GC图谱。
具体实施方式
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。
镍单原子催化剂制备例一
本实施例的镍单原子催化剂,其制备方法如下:
将9g碳化氮(由双氰胺在550℃焙烧4h而得)、1.3g对苯二甲酸、8g三乙二胺和0.1g硝酸镍溶于100mL DMF溶液中,然后在常压、120℃下蒸馏出溶剂。所得固体在管式炉中氮气氛围、900℃下焙烧2h,即得镍单元子催化剂,根据ICP-OES测得,其为Ni 2.1/CN。
镍单原子催化剂制备例二
本实施例的镍单原子催化剂,其制备方法与镍单原子催化剂制备例一相同,只不过其中添的硝酸镍的重量为0.2g。所得到的镍单元子催化剂,根据ICP-OES测得,其为Ni 3.8/CN。
实施例1
将0.126g 5-羟甲基糠醛、0.04g Ni 2.1/CN和10mL乙醇加入不锈钢密闭反应器中,氮气置换空气,于600rpm搅拌速度下加热至160℃进行反应3h,反应结束后,冷却至室温。催化剂离心分离,对反应液进行检测。经过气相色谱分析(外标法),计算2,5-呋喃二甲醇的选择性为96%,摩尔产率为95%。
本实施例所制得的2,5-呋喃二甲酸二甲酯的GC-MS图谱如图1所示。
实施例2
将0.126g 5-羟甲基糠醛、0.04g Ni 3.8/CN和10mL乙醇加入不锈钢密闭反应器中,氮 气置换空气,于600rpm搅拌速度下加热至160℃进行反应2.5h,反应结束后,冷却至室温。催化剂离心分离,对反应液进行检测。
经过气相色谱分析,计算2,5-呋喃二甲醇的选择性为96%,摩尔产率为95%。
实施例3
将0.25g 5-羟甲基糠醛、0.08g Ni 3.8/CN和20mL乙醇加入不锈钢密闭反应器中,氮气置换空气,于600rpm搅拌速度下加热至160℃进行反应2.5h,反应结束后,冷却至室温。催化剂离心分离,反应液进行检测。
经过气相色谱分析,计算2,5-呋喃二甲醇的选择性为96%,摩尔产率为95%。
实施例4
将0.126g 5-羟甲基糠醛、0.04g Ni 3.8/CN和10mL乙醇加入不锈钢密闭反应器中,氮气置换空气,于600rpm搅拌速度下加热至160℃进行反应5h,反应结束后,冷却至室温。催化剂离心分离,对反应液进行检测。
经过气相色谱分析,计算2,5-呋喃二甲醇的选择性为94%,摩尔产率为93%。
实施例5
将0.12g羟甲基苯甲醛、0.04g Ni 2.1/CN和10mL乙醇加入不锈钢密闭反应器中,氮气置换空气,于600rpm搅拌速度下加热至160℃进行反应3h,反应结束后,冷却至室温。催化剂离心分离,对反应液进行检测。
经过气相色谱分析,计算2,5-呋喃二甲醇的选择性为97%,摩尔产率为94%。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (10)

  1. 一种转移加氢制备2,5-呋喃二甲醇的方法,其特征在于,包括如下步骤:
    将羟甲基功能化碳基化合物、镍单原子催化剂和乙醇加入不锈钢密闭反应器中,以保护气置换空气,发生催化反应以生成2,5-呋喃二甲醇。
  2. 如权利要求1所述的方法,其特征在于,所述保护气为氮气。
  3. 如权利要求1所述的方法,其特征在于,其特征在于,所述羟甲基功能化碳基化合物选自5-羟甲基糠醛、羟甲基苯甲醛、羟甲基苯乙酮。
  4. 如权利要求1所述的方法,其特征在于,所述镍单原子催化剂是Ni x/CN,其中,x为镍的质量分数。
  5. 如权利要求4所述的方法,其特征在于,所述x的值为1至6,优选为2.1至3.8。
  6. 如权利要求5所述的方法,其特征在于,所述镍单原子催化剂的制备方法如下:将碳化氮、对苯二甲酸酸、三乙二胺和硝酸镍溶于DMF溶液中,然后在常压下蒸馏出溶剂;将所得固体在管式炉中氮气氛围下焙烧,即得镍单元子催化剂Ni x/CN。
  7. 如权利要求6所述的方法,其特征在于,所述镍单原子催化剂的制备方法具体如下:
    将9g由双氰胺在550℃焙烧4h而得的碳化氮、1.3g对苯二甲酸酸、8g三乙二胺和0.05~0.5g硝酸镍溶于100mL DMF溶液中,然后在常压、120℃下蒸馏出溶剂。所得固体在管式炉中氮气氛围、900℃下焙烧2h,即得单元子催化剂Ni x/CN。
  8. 如权利要求1至7任一项所述的方法,其特征在于,所述催化反应的条件为:温度130~190℃,搅拌转速400~800rpm,反应时间1~10h。
  9. 如权利要求8所述的方法,其特征在于,所述催化反应的条件为:温度150-170℃,搅拌转速500-700rpm,反应时间2.5~7.5h。
  10. 如权利要求9所述的方法,其特征在于,所述催化反应的条件为:温度160℃,搅拌转速600rpm,反应时间5h。
PCT/CN2021/085391 2021-02-26 2021-04-02 一种转移加氢制备2,5-呋喃二甲醇 WO2022178955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110218777.5 2021-02-26
CN202110218777.5A CN112979588B (zh) 2021-02-26 2021-02-26 一种转移加氢制备2,5-呋喃二甲醇

Publications (1)

Publication Number Publication Date
WO2022178955A1 true WO2022178955A1 (zh) 2022-09-01

Family

ID=76351176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085391 WO2022178955A1 (zh) 2021-02-26 2021-04-02 一种转移加氢制备2,5-呋喃二甲醇

Country Status (2)

Country Link
CN (1) CN112979588B (zh)
WO (1) WO2022178955A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070287845A1 (en) * 2006-06-09 2007-12-13 Battelle Memorial Institute Hydroxymethylfurfural Reduction Methods and Methods of Producing Furandimethanol
CN106946820A (zh) * 2017-03-29 2017-07-14 厦门大学 2,5‑呋喃二甲醇及其醚化产物的合成方法
CN107442177A (zh) * 2017-07-31 2017-12-08 淮阴师范学院 5‑羟甲基糠醛选择性加氢合成2,5‑呋喃二甲醇的方法
CN110128378A (zh) * 2019-05-06 2019-08-16 厦门大学 一种利用5-羟甲基糠醛选择性加氢制备2,5-呋喃二甲醇的方法
CN110204519A (zh) * 2019-05-06 2019-09-06 厦门大学 一种利用5-羟甲基糠醛转移加氢制备2,5-呋喃二甲醇的方法
CN110283147A (zh) * 2019-07-05 2019-09-27 浙江大学 甲酸供氢、非贵金属负载氮杂碳催化5-hmf转移氢化制备2,5-呋喃二甲醇的方法
CN111138388A (zh) * 2020-01-17 2020-05-12 浙江大学 一种甲酸供氢下果糖一锅法制备2,5-呋喃二甲醇的方法
CN111875566A (zh) * 2020-08-21 2020-11-03 湖南师范大学 一种制备2,5-二甲基呋喃的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007146836A1 (en) * 2006-06-09 2007-12-21 Battelle Memorial Institute Hydroxymethylfurfural reduction methods and methods of producing furandimethanol
CN103554066B (zh) * 2013-11-13 2016-01-20 中国科学技术大学 一种2,5-二甲基呋喃的制备方法
WO2016043589A1 (en) * 2014-09-19 2016-03-24 Rijksuniversiteit Groningen Method for reducing hydroxymethylfurfural (hmf)
CN105289619B (zh) * 2015-11-19 2018-06-29 中科合成油技术有限公司 镍基催化剂及其制备方法与在5-羟甲基糠醛加氢中的应用
CN107051566B (zh) * 2017-03-22 2020-02-14 湖北大学 氮杂碳包覆钴催化剂的制备方法及基于上述催化剂的不饱和化合物催化转移加氢的方法
CN111100100B (zh) * 2020-01-14 2023-02-14 浙江大学衢州研究院 呋喃二甲酸的绿色合成方法及所用催化剂

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070287845A1 (en) * 2006-06-09 2007-12-13 Battelle Memorial Institute Hydroxymethylfurfural Reduction Methods and Methods of Producing Furandimethanol
CN106946820A (zh) * 2017-03-29 2017-07-14 厦门大学 2,5‑呋喃二甲醇及其醚化产物的合成方法
CN107442177A (zh) * 2017-07-31 2017-12-08 淮阴师范学院 5‑羟甲基糠醛选择性加氢合成2,5‑呋喃二甲醇的方法
CN110128378A (zh) * 2019-05-06 2019-08-16 厦门大学 一种利用5-羟甲基糠醛选择性加氢制备2,5-呋喃二甲醇的方法
CN110204519A (zh) * 2019-05-06 2019-09-06 厦门大学 一种利用5-羟甲基糠醛转移加氢制备2,5-呋喃二甲醇的方法
CN110283147A (zh) * 2019-07-05 2019-09-27 浙江大学 甲酸供氢、非贵金属负载氮杂碳催化5-hmf转移氢化制备2,5-呋喃二甲醇的方法
CN111138388A (zh) * 2020-01-17 2020-05-12 浙江大学 一种甲酸供氢下果糖一锅法制备2,5-呋喃二甲醇的方法
CN111875566A (zh) * 2020-08-21 2020-11-03 湖南师范大学 一种制备2,5-二甲基呋喃的方法

Also Published As

Publication number Publication date
CN112979588B (zh) 2022-03-29
CN112979588A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
CN103159606B (zh) 一种以糠醛为原料制备环戊酮的方法
CN105289619B (zh) 镍基催化剂及其制备方法与在5-羟甲基糠醛加氢中的应用
CN103785470B (zh) 一种用于合成丙烯酸的催化剂的制备方法
CN107398276B (zh) 一种催化5-羟甲基糠醛选择性加氢脱氧制备2,5-二甲基呋喃的催化剂及制备方法
AU2021100679A4 (en) A method of preparing carbon supported transition metal catalysts for hydrogenation from bio-oil
CN111875566A (zh) 一种制备2,5-二甲基呋喃的方法
CN112742482B (zh) 一种催化加氢的催化剂及其制备方法与应用
CN112194577A (zh) 一种糠醛及其衍生物水相加氢重排制备环戊酮类化合物的方法
CN111253212B (zh) 一种制备2,5-己二醇的方法
CN112125781B (zh) 一种糠醛加氢水解转化成1,2,5-戊三醇的方法
WO2022178955A1 (zh) 一种转移加氢制备2,5-呋喃二甲醇
CN113528176A (zh) 一种生物质液体燃料的制备方法
CN115138392B (zh) 富含含氧官能团的多功能生物炭催化剂及制备方法
CN114377718B (zh) 一种镍铜双金属催化剂及制备方法和应用
CN103586045B (zh) 一种制低碳烯烃催化剂及其制备方法
CN109705069A (zh) 一种2,5-呋喃二甲酸的制备方法
CN111087282A (zh) 一种催化转化糠醛和糠醇制备环戊醇的方法
Bhattacharyya et al. Catalytic synthesis of lactic acid from acetaldehyde, carbon monoxide, and water
CN109305909B (zh) 甘油一步法合成丙烯酸的方法
CN101125789A (zh) 利用固载的十二钨稀土杂多酸盐生产生物乙烯的方法
CN110452195B (zh) 一种5-羟甲基糠醛脱氢制备2,5-呋喃二甲醛的方法
CN112824395A (zh) 一种乙酰丙酸制备γ-戊内酯的方法
CN112898126B (zh) 一种制备3-羟甲基环戊醇的方法
CN109304193B (zh) 用于甘油制丙烯醛的催化剂
CN109305908B (zh) 甘油合成丙烯酸的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927389

Country of ref document: EP

Kind code of ref document: A1