WO2022176996A1 - 電気化学反応セル用シール材、電気化学反応セルカートリッジ、及び、電気化学反応セル用シール材の製造方法 - Google Patents

電気化学反応セル用シール材、電気化学反応セルカートリッジ、及び、電気化学反応セル用シール材の製造方法 Download PDF

Info

Publication number
WO2022176996A1
WO2022176996A1 PCT/JP2022/006810 JP2022006810W WO2022176996A1 WO 2022176996 A1 WO2022176996 A1 WO 2022176996A1 JP 2022006810 W JP2022006810 W JP 2022006810W WO 2022176996 A1 WO2022176996 A1 WO 2022176996A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical reaction
reaction cell
sealing material
ceramic particles
fuel gas
Prior art date
Application number
PCT/JP2022/006810
Other languages
English (en)
French (fr)
Inventor
洋 佃
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020237027361A priority Critical patent/KR20230131242A/ko
Priority to CN202280015135.8A priority patent/CN116964790A/zh
Priority to DE112022000445.2T priority patent/DE112022000445T5/de
Priority to US18/276,693 priority patent/US20240105969A1/en
Publication of WO2022176996A1 publication Critical patent/WO2022176996A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a sealing material for an electrochemical reaction cell, an electrochemical reaction cell cartridge, and a method for manufacturing the sealing material for an electrochemical reaction cell.
  • Fuel cells which generate electricity by chemically reacting fuel gas and oxidizing gas, have characteristics such as excellent power generation efficiency and environmental friendliness.
  • solid oxide fuel cells Solid Oxide Fuel Cell: SOFC
  • ceramics such as zirconia ceramics as electrolytes, and hydrogen, city gas, natural gas, petroleum, methanol, and carbon-containing raw materials are gasified
  • a gas such as a gasification gas produced by the company is supplied as a fuel gas and reacted in a high temperature atmosphere of about 700°C to 1000°C to generate power.
  • Solid oxide fuel cells are sometimes provided with a sealing material to prevent unnecessary mixing of the fuel gas and the oxidant gas. If the sealing material does not sufficiently prevent gas permeation, the oxidizing gas enters from the oxidizing gas side to the fuel gas side through the sealing material, and oxidizes the fuel gas, resulting in a decrease in performance such as power generation efficiency. become a factor that invites
  • Patent Document 1 a sealing material is placed between a fuel cell that generates power and a current collecting member that extracts the power generated by the fuel cell, thereby preventing the mixture of fuel gas and oxidant gas.
  • a preventable fuel cell stack is disclosed.
  • Patent Literature 1 describes that a good sealing effect can be obtained by forming such a sealing material containing glass.
  • a sealing material containing glass provides a good sealing effect, but when a pressure difference occurs between the fuel gas and the oxidizing gas separated by the sealing material, damage is likely to occur due to the pressure difference.
  • a pressure difference occurs between the fuel gas and the oxidant gas, which may cause damage such as cracks in the sealing material.
  • a fuel cell connected to a gas turbine or the like is operated at a pressure higher than normal pressure (atmospheric pressure), but the pressure difference between the fuel gas system and the oxidant gas system is kept substantially constant. As shown in the figure, it is always controlled by the differential pressure regulating valve.
  • An object of the present disclosure is to provide a sealing material for a fuel cell, a fuel cell cartridge, and a method for manufacturing the sealing material for a fuel cell, which can effectively prevent this.
  • This problem is not limited to fuel cells, but is common to other types of fuel cells.
  • problems are not limited to cells for fuel cells, but also electrolytic cells that produce hydrogen by electrolysis of water or steam, electrochemical cells that are capable of both power generation and hydrogen production, and carbon dioxide that uses the produced hydrogen.
  • methanation electrochemical cells that produce methane from carbon.
  • cells for fuel cells and these electrochemical cells are collectively referred to as electrochemical reaction cells.
  • the sealing material for an electrochemical reaction cell includes: A sealing material for an electrochemical reaction cell for isolating a fuel gas and an oxidant gas in the electrochemical reaction cell, a plurality of ceramic particles; a curing agent for curing the plurality of ceramic particles; including The apparent porosity is 10-25%.
  • the electrochemical reaction cell cartridge includes: at least one electrochemical reaction cell stack including an electrochemical reaction cell; a current collecting member for extracting power generated by the at least one electrochemical reaction cell stack; a sealing material for an electrochemical reaction cell according to at least one embodiment of the present disclosure; with The electrochemical reaction cell sealing material is arranged between the fuel gas channel and the oxidant gas channel of the at least one electrochemical reaction cell stack.
  • a method for manufacturing a sealing material for an electrochemical reaction cell includes: A method for manufacturing a sealing material for an electrochemical reaction cell for isolating a fuel gas and an oxidant gas in an electrochemical reaction cell, comprising: A step of curing the plurality of ceramic particles with a curing agent is provided so that the apparent porosity is 10 to 25%.
  • an electrochemical fuel cell that can effectively prevent damage while ensuring good leak performance It is possible to provide a reaction cell sealing material, an electrochemical reaction cell cartridge, and a method for manufacturing an electrochemical reaction cell sealing material.
  • FIG. 1 shows one aspect of a cell stack according to an embodiment.
  • 1 shows one aspect of an electrochemical reaction cell module according to the present embodiment.
  • 1 shows a cross-sectional view of one aspect of an electrochemical reaction cell cartridge according to the present embodiment.
  • FIG. It is an example of a microscope captured image of a sealant.
  • 4B is a schematic diagram schematically showing the internal structure of the sealing material shown in FIG. 4A;
  • FIG. It shows the correlation between the relative density of the sealing material and the porosity of open pores and closed pores. Verification test results of samples A to D using ceramic particles having different composition ratios are shown.
  • FIG. 4 is an explanatory diagram of a leak rate measurement test;
  • 4 is a flow chart showing one aspect of a method for manufacturing a sealing material according to the present embodiment.
  • a cylindrical (cylindrical) cell stack of a solid oxide fuel cell (SOFC) will be described as an example, but this is not necessarily the case. good too.
  • An electrochemical reaction cell is formed on the substrate, but a thick electrode (a fuel electrode or an air electrode) may be formed instead of the substrate to serve as the substrate.
  • the fuel electrode may be formed thick and used as the substrate tube, and the use of the substrate tube is not limited.
  • the substrate tube in this embodiment is described as having a cylindrical shape, the substrate tube may be cylindrical, and the cross section is not necessarily limited to a circular shape, and may be an elliptical shape, for example.
  • a cell stack such as a flat tubular, which is obtained by vertically crushing the peripheral surface of a cylinder, may also be used.
  • FIG. 1 shows one aspect of the cell stack 101 according to the embodiment.
  • the cell stack 101 includes, for example, a cylindrical base tube 103, a plurality of electrochemical reaction cells 105 formed on the outer peripheral surface of the base tube 103, and an interconnector 107 formed between adjacent electrochemical reaction cells 105.
  • the electrochemical reaction cell 105 is formed by laminating a fuel electrode 109, a solid electrolyte membrane 111, and an air electrode 113.
  • the cell stack 101 includes an air electrode of the electrochemical reaction cell 105 formed at one end of the substrate tube 103, which is the most end in the axial direction, among the plurality of electrochemical reaction cells 105 formed on the outer peripheral surface of the substrate tube 103.
  • 113 is provided with a lead film 115 electrically connected via an interconnector 107, and the lead film 115 is electrically connected to the fuel electrode 109 of the electrochemical reaction cell 105 formed at the other end of the electrochemical reaction cell 105.
  • the substrate tube 103 is made of a porous material, such as CaO-stabilized ZrO2 (CSZ), a mixture of CSZ and nickel oxide (NiO) (CSZ+NiO), or Y2O3 - stabilized ZrO2 ( YSZ), or MgAl2 . It is mainly composed of O4 and the like.
  • the substrate tube 103 supports the electrochemical reaction cell 105, the interconnector 107, and the lead film 115, and the fuel gas supplied to the inner peripheral surface of the substrate tube 103 is supplied to the substrate tube 103 through the pores of the substrate tube 103.
  • the fuel is diffused to the fuel electrode 109 formed on the outer peripheral surface of the fuel cell 103 .
  • the fuel electrode 109 is composed of a composite oxide of Ni and a zirconia-based electrolyte material, such as Ni/YSZ.
  • the thickness of the fuel electrode 109 is 50 ⁇ m to 250 ⁇ m, and the fuel electrode 109 may be formed by screen printing slurry.
  • the fuel electrode 109 has Ni, which is a component of the fuel electrode 109, catalyzing the fuel gas. This catalytic action causes the fuel gas supplied through the substrate tube 103, such as a mixed gas of methane (CH 4 ) and water vapor, to react and reform into hydrogen (H 2 ) and carbon monoxide (CO). It is.
  • CH 4 methane
  • CO carbon monoxide
  • the fuel electrode 109 combines hydrogen (H 2 ) and carbon monoxide (CO) obtained by reforming and oxygen ions (O 2 ⁇ ) supplied through the solid electrolyte membrane 111 with the solid electrolyte membrane 111. are electrochemically reacted near the interface to produce water (H 2 O) and carbon dioxide (CO 2 ). At this time, the electrochemical reaction cell 105 generates electricity by electrons released from the oxygen ions.
  • Fuel gases that can be supplied to and used in the fuel electrode 109 of the solid oxide electrochemical reaction cell include hydrogen (H 2 ), carbon monoxide (CO), hydrocarbon gases such as methane (CH 4 ), city gas,
  • hydrogen H 2
  • CO carbon monoxide
  • hydrocarbon gases such as methane (CH 4 )
  • city gas In addition to natural gas, gasification gas produced from carbon-containing raw materials such as petroleum, methanol, and coal with a gasification facility can be used.
  • the solid electrolyte membrane 111 is mainly made of YSZ, which has airtightness and high oxygen ion conductivity at high temperatures. This solid electrolyte membrane 111 moves oxygen ions (O 2 ⁇ ) generated at the air electrode to the fuel electrode.
  • the thickness of the solid electrolyte membrane 111 located on the surface of the fuel electrode 109 is 10 ⁇ m to 100 ⁇ m, and the solid electrolyte membrane 111 may be formed by screen printing slurry.
  • the air electrode 113 is made of, for example, LaSrMnO 3 -based oxide or LaCoO 3 -based oxide, and slurry is applied to the air electrode 113 by screen printing or using a dispenser.
  • This air electrode 113 generates oxygen ions (O 2 ⁇ ) by dissociating oxygen in an oxidizing gas such as supplied air near the interface with the solid electrolyte membrane 111 .
  • the air electrode 113 can also have a two-layer structure.
  • the air electrode layer (intermediate air electrode layer) on the solid electrolyte membrane 111 side exhibits high ion conductivity and is composed of a material with excellent catalytic activity.
  • the cathode layer (cathode conductive layer) on the cathode intermediate layer may be composed of a perovskite oxide represented by Sr- and Ca-doped LaMnO 3 . By doing so, power generation performance can be further improved.
  • the oxidizing gas is a gas containing approximately 15% to 30% oxygen, and air is typically suitable, but other than air, mixed gas of combustion exhaust gas and air, mixed gas of oxygen and air is available.
  • the interconnector 107 is composed of a conductive perovskite-type oxide represented by M 1-x L x TiO 3 (M is an alkaline earth metal element, L is a lanthanide element) such as SrTiO 3 system, and the slurry is screen-printed. do.
  • M is an alkaline earth metal element
  • L is a lanthanide element
  • the interconnector 107 is a dense film that prevents mixing of the fuel gas and the oxidizing gas.
  • the interconnector 107 has stable durability and electrical conductivity in both an oxidizing atmosphere and a reducing atmosphere.
  • This interconnector 107 electrically connects the air electrode 113 of one electrochemical reaction cell 105 and the fuel electrode 109 of the other electrochemical reaction cell 105 in the adjacent electrochemical reaction cells 105 to The reaction cells 105 are connected in series.
  • the lead film 115 is required to have electronic conductivity and to have a coefficient of thermal expansion close to that of other materials constituting the cell stack 101. Therefore, the combination of Ni such as Ni/YSZ and the zirconia-based electrolyte material is preferable. It is composed of M 1 -xLxTiO 3 (M is an alkaline earth metal element, L is a lanthanide element) such as a composite material or SrTiO 3 system.
  • M is an alkaline earth metal element
  • L is a lanthanide element
  • This lead film 115 guides the DC power generated by the plurality of electrochemical reaction cells 105 connected in series by the interconnector 107 to near the end of the cell stack 101 .
  • FIG. 2 shows one aspect of the electrochemical reaction cell module according to this embodiment
  • FIG. 3 shows a cross-sectional view of one aspect of the electrochemical reaction cell cartridge according to this embodiment.
  • the electrochemical reaction cell module 201 includes, for example, at least one electrochemical reaction cell cartridge 203 and a pressure vessel 205 that houses the at least one electrochemical reaction cell cartridge 203, as shown in FIG.
  • a case where the electrochemical reaction cell module 201 includes a plurality of electrochemical reaction cell cartridges 203 will be exemplified.
  • the cell stack 101 of the cylindrical electrochemical reaction cell is illustrated in FIG. 2, the cell stack is not necessarily limited to this, and may be, for example, a flat cell stack.
  • the electrochemical reaction cell module 201 also includes a fuel gas supply pipe 207, a plurality of fuel gas supply branch pipes 207a, a fuel gas discharge pipe 209, and a plurality of fuel gas discharge branch pipes 209a.
  • the electrochemical reaction cell module 201 includes an oxidizing gas supply pipe (not shown), an oxidizing gas supply branch pipe (not shown), an oxidizing gas discharge pipe (not shown), and a plurality of oxidizing gas discharge branch pipes (not shown). not shown).
  • the fuel gas supply pipe 207 is provided outside the pressure vessel 205 and connected to a fuel gas supply unit that supplies fuel gas of a predetermined gas composition and a predetermined flow rate corresponding to the power generation amount of the electrochemical reaction cell module 201. , are connected to a plurality of fuel gas supply branch pipes 207a.
  • the fuel gas supply pipe 207 branches and guides a predetermined flow rate of the fuel gas supplied from the fuel gas supply section described above to a plurality of fuel gas supply branch pipes 207a.
  • the fuel gas supply branch pipe 207 a is connected to the fuel gas supply pipe 207 and also to the plurality of electrochemical reaction cell cartridges 203 .
  • the fuel gas supply branch pipe 207a guides the fuel gas supplied from the fuel gas supply pipe 207 to the plurality of electrochemical reaction cell cartridges 203 at a substantially equal flow rate, and the power generation performance of the plurality of electrochemical reaction cell cartridges 203 is substantially reduced. It is for uniformity.
  • the fuel gas discharge branch pipe 209 a is connected to the plurality of electrochemical reaction cell cartridges 203 and to the fuel gas discharge pipe 209 .
  • This fuel gas discharge branch pipe 209 a guides the exhaust fuel gas discharged from the electrochemical reaction cell cartridge 203 to the fuel gas discharge pipe 209 .
  • the fuel gas discharge pipe 209 is connected to a plurality of fuel gas discharge branch pipes 209 a and part of it is arranged outside the pressure vessel 205 .
  • This fuel gas discharge pipe 209 guides the exhaust fuel gas discharged from the fuel gas discharge branch pipe 209 a at a substantially uniform flow rate to the outside of the pressure vessel 205 .
  • the pressure vessel 205 Since the pressure vessel 205 is operated at an internal pressure of 0.1 MPa to about 3 MPa and an internal temperature of from the atmospheric temperature to about 550° C., it has durability and corrosion resistance to oxidants such as oxygen contained in the oxidizing gas.
  • oxidants such as oxygen contained in the oxidizing gas.
  • the materials we have are used.
  • a stainless steel material such as SUS304 is suitable.
  • the electrochemical reaction cell cartridge 203 as shown in FIG. and an oxidizing gas discharge header 223 .
  • the electrochemical reaction cell cartridge 203 also includes an upper tube sheet 225a, a lower tube sheet 225b, an upper heat insulator 227a, and a lower heat insulator 227b.
  • the electrochemical reaction cell cartridge 203 has a fuel gas supply header 217, a fuel gas discharge header 219, an oxidizing gas supply header 221, and an oxidizing gas discharge header 223 arranged as shown in FIG.
  • the fuel gas and the oxidizing gas flow in opposite directions inside and outside the cell stack 101.
  • the oxidizing gas may flow in a direction perpendicular to the longitudinal direction of the cell stack 101 .
  • the power generation chamber 215 is a region formed between the upper heat insulator 227a and the lower heat insulator 227b.
  • the power generation chamber 215 is a region in which the electrochemical reaction cells 105 of the cell stack 101 are arranged, and is a region in which the fuel gas and the oxidizing gas are electrochemically reacted to generate power.
  • the temperature near the center of the cell stack 101 in the longitudinal direction of the power generation chamber 215 is monitored by a temperature measuring unit (temperature sensor, thermocouple, etc.). A high temperature atmosphere of up to 1000°C is created.
  • the fuel gas supply header 217 is an area surrounded by the upper casing 229a and the upper tube plate 225a of the electrochemical reaction cell cartridge 203, and the fuel gas is supplied through the fuel gas supply holes 231a provided in the upper part of the upper casing 229a. It communicates with the branch pipe 207a.
  • the plurality of cell stacks 101 are joined to the upper tube plate 225a by a sealing material 237a. is introduced into the substrate tubes 103 of the plurality of cell stacks 101 at a substantially uniform flow rate to substantially uniform the power generation performance of the plurality of cell stacks 101 .
  • the fuel gas discharge header 219 is an area surrounded by the lower casing 229b and the lower tube plate 225b of the electrochemical reaction cell cartridge 203, and fuel gas discharge (not shown) is performed by the fuel gas discharge holes 231b provided in the lower casing 229b. It communicates with the branch pipe 209a.
  • the plurality of cell stacks 101 are joined to the lower tube sheet 225b and the sealing material 237b, and the fuel gas discharge header 219 passes through the inside of the base tube 103 of the plurality of cell stacks 101 to the fuel gas discharge header 219.
  • the exhaust fuel gas supplied to is collected and led to the fuel gas discharge branch pipe 209a through the fuel gas discharge hole 231b.
  • An oxidizing gas having a predetermined gas composition and a predetermined flow rate corresponding to the amount of power generated by the electrochemical reaction cell module 201 is branched to the oxidizing gas supply branch pipe and supplied to the plurality of electrochemical reaction cell cartridges 203 .
  • the oxidizing gas supply header 221 is an area surrounded by the lower casing 229b, the lower tube sheet 225b, and the lower heat insulator 227b of the electrochemical reaction cell cartridge 203.
  • the oxidizing gas supply header 221 is provided on the side surface of the lower casing 229b.
  • the hole 233a communicates with an oxidizing gas supply branch pipe (not shown).
  • the oxidizing gas supply header 221 receives a predetermined flow rate of oxidizing gas supplied from an oxidizing gas supply branch pipe (not shown) through an oxidizing gas supply hole 233a to generate power through an oxidizing gas supply gap 235a, which will be described later. It leads to chamber 215 .
  • the oxidizing gas discharge header 223 is an area surrounded by the upper casing 229a of the electrochemical reaction cell cartridge 203, the upper tube plate 225a, and the upper heat insulator 227a.
  • the hole 233b communicates with an oxidizing gas discharge branch pipe (not shown).
  • the oxidizing gas discharge header 223 discharges the exhaust oxidizing gas supplied from the power generation chamber 215 to the oxidizing gas discharge header 223 through an oxidizing gas discharge gap 235b, which will be described later, through the oxidizing gas discharge hole 233b. It leads to an oxidizing gas discharge branch pipe (not shown).
  • the upper tube sheet 225a is positioned between the top plate of the upper casing 229a and the upper heat insulator 227a so that the upper tube sheet 225a, the top plate of the upper casing 229a, and the upper heat insulator 227a are substantially parallel to each other. is fixed to the side plate of the
  • the upper tube plate 225a has a plurality of holes corresponding to the number of cell stacks 101 provided in the electrochemical reaction cell cartridge 203, and the cell stacks 101 are inserted into the holes.
  • the upper tube plate 225a airtightly supports one end of each of the plurality of cell stacks 101 via one or both of the sealing material 237a and the adhesive member, and also includes the fuel gas supply header 217 and the oxidizing gas discharge header. 223.
  • the upper heat insulator 227a is arranged at the lower end of the upper casing 229a so that the upper heat insulator 227a, the top plate of the upper casing 229a, and the upper tube plate 225a are substantially parallel, and are fixed to the side plates of the upper casing 229a.
  • the upper heat insulator 227 a is provided with a plurality of holes corresponding to the number of cell stacks 101 provided in the electrochemical reaction cell cartridge 203 . The diameter of this hole is set larger than the outer diameter of the cell stack 101 .
  • the upper heat insulator 227a has an oxidizing gas discharge gap 235b formed between the inner surface of this hole and the outer surface of the cell stack 101 inserted through the upper heat insulator 227a.
  • the upper heat insulator 227a partitions the power generation chamber 215 and the oxidizing gas discharge header 223.
  • the upper tube sheet 225a and the like are made of a metal material with high temperature durability such as Inconel. It prevents thermal deformation.
  • the upper heat insulator 227a guides the exhaust oxidizing gas, which has passed through the power generation chamber 215 and is exposed to high temperatures, to the oxidizing gas exhaust header 223 through the oxidizing gas exhaust gap 235b.
  • the fuel gas and the oxidizing gas flow inside and outside the cell stack 101 facing each other.
  • the exhaust oxidizing gas undergoes heat exchange with the fuel gas supplied to the power generation chamber 215 through the interior of the substrate tube 103, and the upper tube sheet 225a made of a metal material is prevented from buckling. It is cooled to a temperature at which it does not deform and is supplied to the oxidizing gas discharge header 223 . Further, the temperature of the fuel gas is raised by heat exchange with the exhaust oxidizing gas discharged from the power generation chamber 215 and supplied to the power generation chamber 215 . As a result, the fuel gas preheated to a temperature suitable for power generation can be supplied to the power generation chamber 215 without using a heater or the like.
  • the lower tube sheet 225b is placed between the bottom plate of the lower casing 229b and the lower heat insulator 227b, and on the side plate of the lower casing 229b so that the bottom plate of the lower tube sheet 225b, the bottom plate of the lower casing 229b, and the lower heat insulator 227b are substantially parallel to each other. Fixed.
  • the lower tube plate 225b has a plurality of holes corresponding to the number of cell stacks 101 provided in the electrochemical reaction cell cartridge 203, and the cell stacks 101 are inserted into the holes.
  • the lower tube sheet 225b airtightly supports the other ends of the plurality of cell stacks 101 via either one or both of the sealing material 237b and the adhesive member, and the fuel gas discharge header 219 and the oxidizing gas supply header. 221.
  • the lower heat insulator 227b is arranged at the upper end of the lower casing 229b so that the bottom plate of the lower heat insulator 227b, the bottom plate of the lower casing 229b, and the lower tube sheet 225b are substantially parallel, and is fixed to the side plate of the lower casing 229b.
  • the lower heat insulator 227b is provided with a plurality of holes corresponding to the number of cell stacks 101 provided in the electrochemical reaction cell cartridge 203. As shown in FIG. The diameter of this hole is set larger than the outer diameter of the cell stack 101 .
  • the lower heat insulator 227b has an oxidizing gas supply gap 235a formed between the inner surface of this hole and the outer surface of the cell stack 101 inserted through the lower heat insulator 227b.
  • the lower heat insulator 227b partitions the power generation chamber 215 and the oxidizing gas supply header 221.
  • the lower tube sheet 225b and the like are made of a metal material such as Inconel that is resistant to high temperatures. It prevents.
  • the lower heat insulator 227b guides the oxidizing gas supplied to the oxidizing gas supply header 221 to the power generation chamber 215 through the oxidizing gas supply gap 235a.
  • the fuel gas and the oxidizing gas flow inside and outside the cell stack 101 facing each other.
  • the exhaust fuel gas that has passed through the interior of the substrate tube 103 and the power generation chamber 215 is heat-exchanged with the oxidizing gas supplied to the power generation chamber 215, and the lower tube plate 225b made of a metal material is produced. etc. are cooled to a temperature at which they are not deformed such as buckling and supplied to the fuel gas discharge header 219 .
  • the oxidizing gas is heated by heat exchange with the exhaust fuel gas and supplied to the power generation chamber 215 .
  • the oxidizing gas heated to a temperature required for power generation can be supplied to the power generation chamber 215 without using a heater or the like.
  • the DC power generated in the power generation chamber 215 is led out to the vicinity of the end of the cell stack 101 through the lead films 115 made of Ni/YSZ or the like provided in the plurality of electrochemical reaction cells 105, and then is supplied to the electrochemical reaction cell cartridge 203.
  • Current is collected by a current collecting rod (not shown) through a current collecting plate (not shown) and taken out of each electrochemical reaction cell cartridge 203 .
  • the DC power led out of the electrochemical reaction cell cartridges 203 by the current collector rods is connected to the power generated by each electrochemical reaction cell cartridge 203 in a predetermined series number and parallel number, and the electrochemical reaction cell module 201 and is converted into predetermined AC power by a power conversion device (such as an inverter) such as a power conditioner (not shown), and supplied to a power supply destination (for example, load equipment or power system). .
  • a power conversion device such as an inverter
  • a power conditioner not shown
  • Sealing material 237 includes a plurality of ceramic particles and a curing agent for curing the plurality of ceramic particles.
  • a ceramic particle is a particulate material composed of a sintered body produced by heat-treating an inorganic substance, and may be either a metallic material or a non-metallic material.
  • the ceramic particles comprise at least one of Al2O3 , ZrO2, ZrSiO2 and MgO.
  • the curing agent is a material for forming the aforementioned sealing agent 117 as a molded body by curing ceramic particles.
  • the hardener comprises at least one of a cementitious hardener (eg, Si--Ca--Al--O-based cement) or a phosphate-based hardener.
  • the ceramic particles When a phosphoric acid-based curing agent is used as the curing material, the ceramic particles preferably contain MgO.
  • Magnesium phosphate is synthesized when MgO and a phosphoric acid-based curing agent are mixed, and the ceramic particles can be preferably cured by magnesium phosphate.
  • the sealing material 237 has a structure in which ceramic particles are hardened with a hardening agent.
  • FIG. 4A is an example of a microscopic image of the sealant 117
  • FIG. 4B is a schematic diagram showing the internal structure of the sealant 117 shown in FIG. 4A.
  • a microstructure in which fine gaps 10 (open pores) exist between ceramic particles is formed by curing ceramic particles having a predetermined particle size with a curing agent.
  • the gap 10 includes open pores 10a that communicate with the outside and closed pores 10b that do not communicate with the outside (in FIG. Pores 10c are also shown).
  • the sealing agent 117 allows leakage through the gap 10 while ensuring a sealing effect to the extent that the performance of the electrochemical reaction cell is not deteriorated, so that the fuel gas and the oxidation Damage to the sealing material 237 can be suppressed even when a pressure difference occurs between the agent gas and the agent gas.
  • the ceramic particles forming the sealing material 237 preferably do not melt at the operating temperature (for example, 600° C.) of the sealing portion of the electrochemical reaction cell. Thereby, the gap 10 can be preferably maintained even during the operation of the electrochemical reaction cell.
  • the leakage rate required for the sealing material 237 is in the range of 0.5 to 2.0% in order to ensure both the performance of the electrochemical reaction cell and the prevention of breakage of the sealing material 237. It has been found to be preferred that The leak rate of the sealing material 237 depends on the ratio of the gaps 10 that are open pores included in the sealing material 237 .
  • FIG. 5 shows the correlation between the relative density of the sealing material 237 and the porosity of the open pores 10a and the closed pores 10b.
  • the relative density of the sealing material 237 increases, the number of open pores 10a decreases rapidly.
  • a tendency for closed pores 10b to increase with increasing relative density is shown.
  • the apparent porosity PA is used as the porosity of the open pores 10a passing through the sealing material.
  • the apparent porosity PA in this specification is based on JIS standard: Test method for ceramic materials for electrical insulation (JIS C 2141-1992).
  • the apparent porosity PA is obtained by the following formula as a percentage of the total volume of the open pores 10a of the ceramic particles to the bulk volume.
  • PA (%) (m3-m1) / (m3-m2) x 100 (1)
  • m1 is the dry weight of the test piece corresponding to the sealing material 237 to be evaluated for the apparent porosity PA
  • m2 is the underwater mass of the saturated test piece
  • m3 is the mass of the saturated test piece. be.
  • the test piece used for evaluation of the apparent porosity PA has a mass of 5 g or more, and chipping or the like is removed before the measurement (more specifically, it is similar to the manufacturing method of the sealing material 237 described later). Samples molded into pellets according to the procedure are used). The dry weight m1 is obtained by drying the test piece prepared in this way in a constant temperature bath adjusted to 105 to 120 ° C. When it reaches a constant weight, it is taken out of the constant temperature bath, placed in a desiccator, allowed to reach room temperature, and weighed. Obtained by weighing. A balance with a sensitivity of 1 mg or more was used.
  • the underwater mass m2 is obtained by measuring the underwater mass of a water-saturated test piece prepared by saturating the test piece.
  • a water-saturated test piece is obtained by the following procedure. Place the dried, constant weight specimen in a dry beaker, which is then placed in a vacuum vessel. A beaker of 200 ml or more specified in JIS R 3503 is used. The degree of vacuum is maintained at 2 to 3 ⁇ 10 3 Pa for 5 minutes. After holding, pour distilled water into the beaker in this vacuum vessel. After the test piece is sufficiently immersed in distilled water, the test piece is evacuated for 5 minutes, and then air is introduced to return the pressure to atmospheric pressure.
  • the mass m3 of the water-saturated test piece is obtained by taking out the above-mentioned water-saturated test piece from the water, quickly wiping off the water droplets on the surface with wet gauze, and then weighing it. After the gauze is sufficiently soaked with water, it is squeezed to remove only water droplets on the surface of the test piece.
  • FIG. 6 shows the verification test results of samples A to D using ceramic particles with different composition ratios.
  • samples A to D containing ZrSiO 2 and MgO as ceramic particles and phosphoric acid-based curing agent P 2 O 3 as a curing agent at a predetermined composition ratio are used.
  • the composition ratio of sample A is 80:8:12
  • the composition ratio of sample B is 75:13:12
  • the composition ratio of sample C is 50:38:12
  • the composition ratio of sample D is The composition ratio is 40:48:12.
  • FIG. 7 is an explanatory diagram of the leak rate measurement test.
  • a diffusion cell 16 having a closed space partitioned into a first space 12 and a second space 14 by samples A to D is prepared (diffusion cell 16 is kept at a constant temperature T[K]).
  • the fuel gas G A is introduced into the first space 12 of the diffusion cell 16 at a molar flow rate of F A [mol/s]
  • the oxidizing gas G B is introduced into the second space 14 at a molar flow rate of F B [mol/s]. /s].
  • the fuel gas G A introduced into the first space 12 , and the oxidant gas G B introduced into the second space 14 interdiffuses, and the mixed gas from the first space 12 flows out at a molar flow rate F L ( F A L +F B L ) (mole fraction
  • F L F A L +F B L
  • the ratio-based composition is y A L , y B L
  • F A L is the molar flow rate occupied by the fuel gas G A in the mixed gas flowing out of the first space 12
  • F B L is the molar flow rate occupied by the oxidant gas G B in the mixed gas flowing out from the first space 12.
  • FAU is the molar flow rate of the fuel gas G A in the mixed gas flowing out of the second space 14
  • FBU is the molar flow rate of the oxidant gas G in the mixed gas flowing out of the second space 14.
  • the leak rate of sample A is 0%, which is smaller than the lower limit (0.5%) of the above range.
  • the apparent porosity of sample A is 6%, which is smaller than the lower limit (10%) of the above range also from the viewpoint of apparent porosity.
  • Sample B has a leak rate of 0.5%, which is included in the above range. Moreover, the apparent porosity of sample B is 10%, which is also within the above range from the viewpoint of apparent porosity. In such sample B, a pressure difference was generated between the fuel gas and the oxidant gas by allowing a certain amount of leakage while ensuring a sealing effect to the extent that the performance of the electrochemical reaction cell was not lowered. Even in this case, damage to the sealing material 237 can be suppressed.
  • Sample C has a leak rate of 2.0%, which is included in the above range. Moreover, the apparent porosity of sample C is 25%, which is also within the above range from the viewpoint of apparent porosity. In such sample C, a pressure difference was generated between the fuel gas and the oxidant gas by allowing a certain amount of leakage while ensuring a sealing effect to the extent that the performance of the electrochemical reaction cell was not lowered. Even in this case, damage to the sealing material 237 can be suppressed.
  • sample D the leak rate is 5.0%, which is higher than the upper limit (2.0%) of the above range.
  • the apparent porosity of sample D is 32%, which is higher than the upper limit (25%) of the above range from the viewpoint of apparent porosity.
  • Such a sample D is good in that leakage is allowed to prevent breakage, but the mixing of the fuel gas and the oxidant gas is large, and there is a concern that the performance of the electrochemical reaction cell may be degraded.
  • the leakage rate of samples B and C is 0.5 to 2.0% (apparent porosity is 10 to 25%), so that the performance of the electrochemical reaction cell is ensured. It was experimentally verified that both the leak performance required for air conditioning and the prevention of breakage due to pressure differences are compatible.
  • the apparent porosity (or leak rate) of the sealing material 237 may be adjusted by selecting the particle size of ceramic particles contained in the sealing material 237 .
  • the plurality of ceramic particles included in the sealing material 237 have different particle sizes.
  • the apparent porosity (or leak rate) can be adjusted by appropriately selecting the particle size of the ceramic particles forming the sealing material 237 and changing the filling rate of the ceramic particles in a predetermined volume. .
  • the sealing material 237 may be composed of ceramic particles having a single particle size.
  • the apparent porosity of the sealing material 237 may be adjusted by selecting the type of ceramic particles contained in the sealing material 237 .
  • the plurality of ceramic particles included in the sealing material 237 include different types.
  • the apparent porosity (or leak rate) can be adjusted by appropriately selecting the type of ceramic particles forming the sealing material 237 and changing the filling rate of the ceramic particles in a predetermined volume.
  • the sealing material 237 may be composed of a single type of ceramic particles.
  • samples A to D were also evaluated for reduction resistance and heat cycle resistance.
  • FIG. 8 is a flow chart showing one aspect of the method for manufacturing the sealing material 237 according to this embodiment.
  • ceramic particles which are one of the components of the sealing agent 117, are selected (step S10).
  • at least one is selected from Al 2 O 3 , ZrO 2 , ZrSiO 2 and MgO, which are candidates for the ceramic particles described above.
  • ceramic particles may be selected to include at least MgO.
  • a curing agent which is another component of the sealing agent 117, is selected (step S11).
  • at least one of cement-based hardening agents eg, Si--Ca--Al--O-based cement
  • phosphoric acid-based hardening agents which are candidates for the hardening agent described above, is selected.
  • the selection of the ceramic particles and curing agent in steps S10 and S11 is such that the apparent porosity of the sealing material 237 manufactured by this manufacturing method is 10 to 25% (or the leak rate is 0.5 to 2.0%). It is done as follows. As described above, the apparent porosity (or leak rate) of the sealing material 237 depends on the particle size or type of the ceramic particles hardened by the hardening material. , the apparent porosity of the sealing material 237 can be adjusted to 10 to 25% (or the leak rate to 0.5 to 2.0%).
  • step S11 may be performed before step S10, or steps S10 and S11 may be performed simultaneously. .
  • the ceramic particles selected in step S10 and the curing agent selected in step S11 are mixed to produce slurry (step S12).
  • the slurry is produced by mixing the selected ceramic particles and hardener in predetermined amounts.
  • ZrSiO 2 and MgO are selected as ceramic particles and H 3 PO 4 (orthophosphoric acid) is selected as a curing agent, they are mixed in predetermined amounts and immersed in alcohol.
  • MgO reacts with H 3 PO 4 to synthesize Mg 3 (PO 4 ) 2 (magnesium phosphate).
  • water is added to the powder obtained by heating, for example, at 50° C. to volatilize the alcohol, thereby producing a slurry.
  • a slurry is produced, for example, by adding 3 g of water per 10 g of powder obtained.
  • step S12 the slurry generated in step S12 is cured and molded (step S13).
  • the slurry for example, is filled in a mold material corresponding to the shape of the sealing material 237 and hardened at a predetermined temperature for a predetermined period of time to complete the sealing material 237 .
  • the cement-based hardening agent is selected as the hardening agent in step S11, the cement-based hardening agent is mixed with water and ceramic particles in step S12, and hardened at a predetermined temperature (for example, room temperature) for a predetermined period of time. Since the sealing material 237 can be formed only by the above steps, the sealing material 237 can be obtained by a simpler procedure.
  • samples A to D used in the verification test of FIG. 6 were obtained by filling a cylindrical mold material with a diameter of 20 mm with the slurry, curing it by reacting it at 80 ° C. for 24 hours, and removing it from the mold material to a thickness of 3 mm.
  • a chemical reaction cell sealing material, an electrochemical reaction cell cartridge, and a method for manufacturing an electrochemical reaction cell sealing material can be provided.
  • a sealing material for an electrochemical reaction cell according to one aspect, A sealing material for an electrochemical reaction cell for isolating a fuel gas and an oxidant gas in the electrochemical reaction cell, a plurality of ceramic particles; a curing agent for curing the plurality of ceramic particles; including The apparent porosity is 10-25%.
  • the sealing material for isolating the fuel gas and the oxidant gas in the electrochemical reaction cell is formed by hardening a plurality of ceramic particles with a hardening agent.
  • the apparent porosity of the sealing material thus constructed depends on the distribution state of the ceramic particles hardened by the hardening agent.
  • the sealing material is configured to have an apparent porosity of 10 to 25%.
  • the plurality of ceramic particles have different particle sizes.
  • the sealing material by configuring the sealing material using ceramic particles having different particle sizes, it is possible to adjust the apparent porosity using the difference in particle size. Thereby, a sealing material having an apparent porosity of 10 to 25% is preferably obtained.
  • the plurality of ceramic particles include different types.
  • the sealing material by configuring the sealing material using ceramic particles having different types, it is possible to adjust the apparent porosity using the difference in types. Thereby, a sealing material having an apparent porosity of 10 to 25% is preferably obtained.
  • the plurality of ceramic particles contain at least one of Al 2 O 3 , ZrO 2 , ZrSiO 2 and MgO.
  • a sealing material having an apparent porosity of 10 to 25% by using ceramic particles containing at least one of Al 2 O 3 , ZrO 2 , ZrSiO 2 and MgO is preferable. obtained in
  • the hardener includes at least one of Si—Ca—Al—O cement and phosphoric acid hardener.
  • a seal having an apparent porosity of 10 to 25% is obtained by using a hardening agent containing at least one of Si—Ca—Al—O-based cement and a phosphoric acid-based hardening material. materials can be suitably obtained.
  • the plurality of ceramic particles contain MgO
  • the hardening material includes a phosphoric acid-based hardening material.
  • MgO is used as the ceramic particles
  • a phosphoric acid-based hardener is used as the hardener.
  • magnesium phosphate is synthesized, and the ceramic particles are hardened by magnesium phosphate.
  • a sealing material having an apparent porosity of 10 to 25% is preferably obtained.
  • the plurality of ceramic particles further includes ZrSiO2 .
  • An electrochemical reaction cell cartridge including an electrochemical reaction cell; a current collecting member for extracting power generated by the at least one electrochemical reaction cell stack; a sealing material for an electrochemical reaction cell according to any one of (1) to (7) above; with The electrochemical reaction cell sealing material is arranged between the fuel gas channel and the oxidant gas channel of the at least one electrochemical reaction cell stack.
  • the sealing material having the above configuration is arranged to isolate the fuel gas and the oxidant gas in the electrochemical reaction cell cartridge.
  • a method for manufacturing a sealing material for an electrochemical reaction cell includes: A method for manufacturing a sealing material for an electrochemical reaction cell for isolating a fuel gas and an oxidant gas in an electrochemical reaction cell, comprising: A step of curing the plurality of ceramic particles with a curing agent is provided so that the apparent porosity is 10 to 25%.
  • a sealing material having an apparent porosity of 10 to 25% can be suitably produced by curing a plurality of ceramic particles using a curing agent.
  • Magnesium phosphate is synthesized as the curing agent by mixing phosphoric acid with the plurality of ceramic particles containing MgO.
  • the ceramic particles containing MgO are made of magnesium phosphate synthesized by mixing MgO with phosphoric acid as a hardening material, and the ceramic particles are hardened to obtain a 10 to 25%
  • a sealing material having a hanging porosity can be suitably manufactured.
  • the hardening agent is a cement-based hardening agent.
  • a sealing material having an apparent porosity of 10 to 25% can be easily produced by hardening the ceramic particles using a cement-based hardening material.
  • Electrochemical Reaction Cell Module 203 Electrochemical reaction cell cartridge 205 pressure vessel 207 fuel gas supply pipe 207a fuel gas supply branch pipe 209 fuel gas discharge pipe 209a fuel gas discharge branch pipe 215 power generation chamber 217 fuel gas supply header 219 fuel gas discharge header 221 oxidizing gas supply header 223 Oxidizing gas discharge header 225a Upper tube plate 225b Lower tube plate 227a Upper heat insulator 227b Lower heat insulator 229a Upper casing 229b Lower casing 231a Fuel gas supply hole 231b Fuel gas discharge hole 233a Oxidizing gas supply hole 233b Oxidizing gas discharge hole 235a Oxidizing gas supply gap 235b Oxidizing gas discharge gap

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Secondary Cells (AREA)

Abstract

電気化学反応セル用シール材は、電気化学反応セルにおいて燃料ガス及び酸化剤ガスを隔離する。電気化学反応セル用シール材は、複数のセラミックス粒子と、複数のセラミックス粒子を硬化するための硬化剤とを含み、見掛気孔率が10~25%である。

Description

電気化学反応セル用シール材、電気化学反応セルカートリッジ、及び、電気化学反応セル用シール材の製造方法
 本開示は、電気化学反応セル用シール材、電気化学反応セルカートリッジ、及び、電気化学反応セル用シール材の製造方法に関する。
 本願は、2021年2月22日に日本国特許庁に出願された特願2021-025909号に基づき優先権を主張し、その内容をここに援用する。
 燃料ガスと酸化性ガスとを化学反応させることにより発電する燃料電池は、優れた発電効率及び環境対応等の特性を有している。このうち、固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)は、電解質としてジルコニアセラミックスなどのセラミックスが用いられ、水素、都市ガス、天然ガス、石油、メタノール、及び炭素含有原料をガス化設備により製造したガス化ガス等のガスなどを燃料ガスとして供給して、およそ700℃~1000℃の高温雰囲気で反応させて発電を行っている。
 固体酸化物形燃料電池では、燃料ガスと酸化剤ガスとの不要な混合を防止するために、シール材が設けられることがある。シール材によるガス透過防止の機能が不十分であると、酸化剤ガス側から酸化剤ガスがシール材を介して燃料ガス側に侵入し、燃料ガスを酸化することで、発電効率等の性能低下を招く要因となる。
 例えば特許文献1では、発電を行う燃料電池セルと、燃料電池セルで発電した電力を取り出すための集電部材との間にシール材を配置することにより、燃料ガスと酸化剤ガスとの混合を防止可能な燃料電池セルスタックが開示されている。特許文献1では、このようなシール材をガラスを含んで構成することにより、良好なシール効果が得られることが記載されている。
特開2018-55914号公報
 ガラスを含んで構成されるシール材は良好なシール効果が得られる一方で、シール材が隔離する燃料ガスと酸化剤ガスとの間に圧力差が生じた場合に、圧力差によって損傷が生じやすい。例えば、ガスタービン等に接続された燃料電池では、燃料ガスと酸化剤ガスとの間に圧力差が生じ、シール材に割れなどの損傷が生じるおそれがある。具体的には、ガスタービン等に接続された燃料電池は常圧(大気圧)よりも高い圧力で運転されるが、燃料ガス系統と酸化剤ガス系統との間の圧力差を略一定に保つように、常時、差圧調整弁で制御している。このため起動時や負荷変化時等において、差圧制御弁の応答遅れや機器異常によって、常圧運転に比べて差圧が過大になるおそれがある。上記特許文献1では、シール材が接触する集電部材に撓みを設けることによってシール材の損傷防止を行っているが、集電部材の構成が複雑になり、また圧力差が大きくなると依然として損傷発生の可能性がある。
 本開示の少なくとも一実施形態は上述の事情に鑑みなされたものであり、燃料ガスと酸化剤ガスとの間で圧力差が生じた場合においても、良好なリーク性能を確保しつつ、損傷発生を効果的に防止可能な燃料電池用シール材、燃料電池カートリッジ、及び、燃料電池用シール材の製造方法を提供することを目的とする。
 尚、このような課題は燃料電池用セルに限らず、他の形式の燃料電池用セルにも共通の課題である。また、このような課題は、燃料電池用セルのみならず、水又は水蒸気の電気分解により水素製造を行う電解セルや発電と水素製造の両方が可能な電気化学セル及び製造した水素を利用し二酸化炭素からメタンを生成するメタネーション用電気化学セルにも共通の課題である。本明細書では燃料電池用セル及びこれらの電気化学セルをまとめて電気化学反応セルという。
 本開示の少なくとも一実施形態に係る電気化学反応セル用シール材は、上記課題を解決するために、
 電気化学反応セルにおいて燃料ガス及び酸化剤ガスを隔離するための電気化学反応セル用シール材であって、
 複数のセラミックス粒子と、
 前記複数のセラミックス粒子を硬化するための硬化剤と、
を含み、
 見掛気孔率が10~25%である。
 本開示の少なくとも一実施形態に係る電気化学反応セルカートリッジは、上記課題を解決するために、
 電気化学反応セルを含む少なくとも1つの電気化学反応セルスタックと、
 前記少なくとも1つの電気化学反応セルスタックで発電された電力を取り出すための集電部材と、
 本開示の少なくとも一実施形態に係る電気化学反応セル用シール材と、
を備え、
 前記電気化学反応セル用シール材は、前記少なくとも1つの電気化学反応セルスタックの燃料ガス流路と酸化剤ガス流路との間に配置される。
 本開示の少なくとも一実施形態に係る電気化学反応セル用シール材の製造方法は、上記課題を解決するために、
 電気化学反応セルにおいて燃料ガス及び酸化剤ガスを隔離するための電気化学反応セル用シール材の製造方法であって、
 見掛気孔率が10~25%になるように、複数のセラミックス粒子を硬化剤を用いて硬化する工程を備える。
 本開示の少なくとも一実施形態によれば、燃料ガスと酸化剤ガスとの間で圧力差が生じた場合においても、良好なリーク性能を確保しつつ、損傷発生を効果的に防止可能な電気化学反応セル用シール材、電気化学反応セルカートリッジ、及び、電気化学反応セル用シール材の製造方法を提供できる。
実施形態に係るセルスタックの一態様を示すものである。 本実施形態に係る電気化学反応セルモジュールの一態様を示すものである。 本実施形態に係る電気化学反応セルカートリッジの一態様の断面図を示すものである。 シール剤の顕微鏡撮像画像の一例である。 図4Aに示されるシール材の内部構造を概略的に示す模式図である。 シール材の相対密度と、開放気孔及び閉塞気孔の気孔率との相関を示すものである。 組成比が異なるセラミックス粒子を用いたサンプルA~Dの検証試験結果を示す。 リーク率測定試験の説明図である。 本実施形態に係るシール材の製造方法の一態様を示すフローチャートである。
 以下に、本発明に係る電気化学反応セル、電気化学反応セルカートリッジ、及び、電気化学反応セルの製造方法の一実施形態について、図面を参照して説明する。
 以下においては、説明の便宜上、紙面を基準として「上」及び「下」の表現を用いて説明した各構成要素の位置関係は、各々鉛直上方側、鉛直下方側を示すものである。また、本実施形態では、上下方向と水平方向で同様な効果を得られるものは、紙面における上下方向が必ずしも鉛直上下方向に限定することなく、例えば鉛直方向に直交する水平方向に対応してもよい。
 また、以下においては、固体酸化物形燃料電池(SOFC)のセルスタックとして円筒形(筒状)を例として説明するが、必ずしもこの限りである必要はなく、例えば平板形のセルスタックであってもよい。基体上に電気化学反応セルを形成するが、基体ではなく電極(燃料極もしくは空気極)が厚く形成されて、基体を兼用したものでも良い。
 まず、図1を参照して本実施形態に係る一例として、基体管を用いる円筒形セルスタックについて説明する。基体管を用いない場合は、例えば燃料極を厚く形成して基体管を兼用してもよく、基体管の使用に限定されることはない。また、本実施形態での基体管は円筒形状を用いたもので説明するが、基体管は筒状であればよく、必ずしも断面が円形に限定されなく、例えば楕円形状でもよい。円筒の周側面を垂直に押し潰した扁平円筒(Flat tubular)等のセルスタックでもよい。ここで、図1は実施形態に係るセルスタック101の一態様を示すものである。セルスタック101は、一例として円筒形状の基体管103と、基体管103の外周面に複数形成された電気化学反応セル105と、隣り合う電気化学反応セル105の間に形成されたインターコネクタ107とを備える。電気化学反応セル105は、燃料極109と固体電解質膜111と空気極113とが積層して形成されている。また、セルスタック101は、基体管103の外周面に形成された複数の電気化学反応セル105の内、基体管103の軸方向において最も端の一端に形成された電気化学反応セル105の空気極113に、インターコネクタ107を介して電気的に接続されたリード膜115を備え、最も端の他端に形成された電気化学反応セル105の燃料極109に電気的に接続されたリード膜115を備える。
 基体管103は、多孔質材料からなり、例えば、CaO安定化ZrO2(CSZ)、CSZと酸化ニッケル(NiO)との混合物(CSZ+NiO)、又はY安定化ZrO2(YSZ)、又はMgAlなどを主成分とされる。この基体管103は、電気化学反応セル105とインターコネクタ107とリード膜115とを支持すると共に、基体管103の内周面に供給される燃料ガスを基体管103の細孔を介して基体管103の外周面に形成される燃料極109に拡散させるものである。
 燃料極109は、Niとジルコニア系電解質材料との複合材の酸化物で構成され、例えば、Ni/YSZが用いられる。燃料極109の厚さは50μm~250μmであり、燃料極109はスラリーをスクリーン印刷して形成されてもよい。この場合、燃料極109は、燃料極109の成分であるNiが燃料ガスに対して触媒作用を備える。この触媒作用は、基体管103を介して供給された燃料ガス、例えば、メタン(CH)と水蒸気との混合ガスを反応させ、水素(H)と一酸化炭素(CO)に改質するものである。また、燃料極109は、改質により得られる水素(H)及び一酸化炭素(CO)と、固体電解質膜111を介して供給される酸素イオン(O2-)とを固体電解質膜111との界面付近において電気化学的に反応させて水(HO)及び二酸化炭素(CO)を生成するものである。なお、電気化学反応セル105は、この時、酸素イオンから放出される電子によって発電する。
 固体酸化物形電気化学反応セルの燃料極109に供給し利用できる燃料ガスとしては、水素(H)および一酸化炭素(CO)、メタン(CH)などの炭化水素系ガス、都市ガス、天然ガスのほか、石油、メタノール、及び石炭などの炭素含有原料をガス化設備により製造したガス化ガスなどが挙げられる。
 固体電解質膜111は、ガスを通しにくい気密性と、高温で高い酸素イオン導電性とを備えるYSZが主として用いられる。この固体電解質膜111は、空気極で生成される酸素イオン(O2-)を燃料極に移動させるものである。燃料極109の表面上に位置する固体電解質膜111の膜厚は10μm~100μmであり固体電解質膜111はスラリーをスクリーン印刷して形成されてもよい。
 空気極113は、例えば、LaSrMnO系酸化物、又はLaCoO系酸化物で構成され、空気極113はスラリーをスクリーン印刷またはディスペンサを用いて塗布される。この空気極113は、固体電解質膜111との界面付近において、供給される空気等の酸化性ガス中の酸素を解離させて酸素イオン(O2-)を生成するものである。
 空気極113は2層構成とすることもできる。この場合、固体電解質膜111側の空気極層(空気極中間層)は高いイオン導電性を示し、触媒活性に優れる材料で構成される。空気極中間層上の空気極層(空気極導電層)は、Sr及びCaドープLaMnOで表されるペロブスカイト型酸化物で構成されても良い。こうすることにより、発電性能をより向上させることができる。
 酸化性ガスとは,酸素を略15%~30%含むガスであり、代表的には空気が好適であるが、空気以外にも燃焼排ガスと空気の混合ガスや、酸素と空気の混合ガスなどが使用可能である。
 インターコネクタ107は、SrTiO系などのM1-xTiO(Mはアルカリ土類金属元素、Lはランタノイド元素)で表される導電性ペロブスカイト型酸化物から構成され、スラリーをスクリーン印刷する。インターコネクタ107は、燃料ガスと酸化性ガスとが混合しないように緻密な膜となっている。また、インターコネクタ107は、酸化雰囲気と還元雰囲気との両雰囲気下で安定した耐久性と電気導電性を備える。このインターコネクタ107は、隣り合う電気化学反応セル105において、一方の電気化学反応セル105の空気極113と他方の電気化学反応セル105の燃料極109とを電気的に接続し、隣り合う電気化学反応セル105同士を直列に接続するものである。
 リード膜115は、電子伝導性を備えること、及びセルスタック101を構成する他の材料との熱膨張係数が近いことが必要であることから、Ni/YSZ等のNiとジルコニア系電解質材料との複合材やSrTiO系などのM-xLxTiO(Mはアルカリ土類金属元素、Lはランタノイド元素)で構成されている。このリード膜115は、インターコネクタ107により直列に接続される複数の電気化学反応セル105で発電された直流電力をセルスタック101の端部付近まで導出すものである。
 次に、図2及び図3を参照して、一実施形態に係る電気化学反応セルモジュール及び電気化学反応セルカートリッジについて説明する。図2は本実施形態に係る電気化学反応セルモジュールの一態様を示すものであり、図3は本実施形態に係る電気化学反応セルカートリッジの一態様の断面図を示すものである。
 電気化学反応セルモジュール201は、図2に示すように、例えば、少なくとも1つの電気化学反応セルカートリッジ203と、これら少なくとも1つの電気化学反応セルカートリッジ203を収納する圧力容器205とを備える。以下の説明では、電気化学反応セルモジュール201が複数の電気化学反応セルカートリッジ203を備える場合について例示的に述べる。尚、図2には円筒形の電気化学反応セルのセルスタック101を例示しているが、必ずしもこの限りである必要はなく、例えば平板形のセルスタックであってもよい。また、電気化学反応セルモジュール201は、燃料ガス供給管207と複数の燃料ガス供給枝管207a及び燃料ガス排出管209と複数の燃料ガス排出枝管209aとを備える。また、電気化学反応セルモジュール201は、酸化性ガス供給管(不図示)と酸化性ガス供給枝管(不図示)及び酸化性ガス排出管(不図示)と複数の酸化性ガス排出枝管(不図示)とを備える。
 燃料ガス供給管207は、圧力容器205の外部に設けられ、電気化学反応セルモジュール201の発電量に対応して所定ガス組成と所定流量の燃料ガスを供給する燃料ガス供給部に接続されると共に、複数の燃料ガス供給枝管207aに接続されている。この燃料ガス供給管207は、上述の燃料ガス供給部から供給される所定流量の燃料ガスを、複数の燃料ガス供給枝管207aに分岐して導くものである。また、燃料ガス供給枝管207aは、燃料ガス供給管207に接続されると共に、複数の電気化学反応セルカートリッジ203に接続されている。この燃料ガス供給枝管207aは、燃料ガス供給管207から供給される燃料ガスを複数の電気化学反応セルカートリッジ203に略均等の流量で導き、複数の電気化学反応セルカートリッジ203の発電性能を略均一化させるものである。
 燃料ガス排出枝管209aは、複数の電気化学反応セルカートリッジ203に接続されると共に、燃料ガス排出管209に接続されている。この燃料ガス排出枝管209aは、電気化学反応セルカートリッジ203から排出される排燃料ガスを燃料ガス排出管209に導くものである。また、燃料ガス排出管209は、複数の燃料ガス排出枝管209aに接続されると共に、一部が圧力容器205の外部に配置されている。この燃料ガス排出管209は、燃料ガス排出枝管209aから略均等の流量で導出される排燃料ガスを圧力容器205の外部に導くものである。
 圧力容器205は、内部の圧力が0.1MPa~約3MPa、内部の温度が大気温度~約550℃で運用されるので、耐力性と酸化性ガス中に含まれる酸素などの酸化剤に対する耐食性を保有する材質が利用される。例えばSUS304などのステンレス系材が好適である。
 ここで、本実施形態においては、複数の電気化学反応セルカートリッジ203が集合化されて圧力容器205に収納される態様について説明しているが、これに限られず例えば、電気化学反応セルカートリッジ203が集合化されずに圧力容器205内に収納される態様とすることもできる。
 電気化学反応セルカートリッジ203は、図3に示す通り、少なくとも1つのセルスタック101と、発電室215と、燃料ガス供給ヘッダ217と、燃料ガス排出ヘッダ219と、酸化性ガス(空気)供給ヘッダ221と、酸化性ガス排出ヘッダ223とを備える。以下の説明では、電気化学反応セルカートリッジ203が複数のセルスタック101を備える場合について例示的に述べる。また、電気化学反応セルカートリッジ203は、上部管板225aと、下部管板225bと、上部断熱体227aと、下部断熱体227bとを備える。尚、本実施形態においては、電気化学反応セルカートリッジ203は、燃料ガス供給ヘッダ217と燃料ガス排出ヘッダ219と酸化性ガス供給ヘッダ221と酸化性ガス排出ヘッダ223とが図3のように配置されることで、燃料ガスと酸化性ガスとがセルスタック101の内側と外側とを対向して流れる構造となっているが、必ずしもこの必要はなく、例えば、セルスタック101の内側と外側とを平行して流れる、または酸化性ガスがセルスタック101の長手方向と直交する方向へ流れるようにしても良い。
 発電室215は、上部断熱体227aと下部断熱体227bとの間に形成された領域である。この発電室215は、セルスタック101の電気化学反応セル105が配置された領域であり、燃料ガスと酸化性ガスとを電気化学的に反応させて発電を行う領域である。また、この発電室215のセルスタック101長手方向の中央部付近での温度は、温度計測部(温度センサや熱電対など)で監視され、電気化学反応セルモジュール201の定常運転時に、およそ700℃~1000℃の高温雰囲気となる。
 燃料ガス供給ヘッダ217は、電気化学反応セルカートリッジ203の上部ケーシング229aと上部管板225aとに囲まれた領域であり、上部ケーシング229aの上部に設けられた燃料ガス供給孔231aによって、燃料ガス供給枝管207aと連通されている。また、複数のセルスタック101は、上部管板225aとシール材237aにより接合されており、燃料ガス供給ヘッダ217は、燃料ガス供給枝管207aから燃料ガス供給孔231aを介して供給される燃料ガスを、複数のセルスタック101の基体管103の内部に略均一流量で導き、複数のセルスタック101の発電性能を略均一化させるものである。
 燃料ガス排出ヘッダ219は、電気化学反応セルカートリッジ203の下部ケーシング229bと下部管板225bとに囲まれた領域であり、下部ケーシング229bに備えられた燃料ガス排出孔231bによって、図示しない燃料ガス排出枝管209aと連通されている。また、複数のセルスタック101は、下部管板225bとシール材237bにより接合されており、燃料ガス排出ヘッダ219は、複数のセルスタック101の基体管103の内部を通過して燃料ガス排出ヘッダ219に供給される排燃料ガスを集約して、燃料ガス排出孔231bを介して燃料ガス排出枝管209aに導くものである。
 電気化学反応セルモジュール201の発電量に対応して所定ガス組成と所定流量の酸化性ガスを酸化性ガス供給枝管へと分岐して、複数の電気化学反応セルカートリッジ203へ供給する。酸化性ガス供給ヘッダ221は、電気化学反応セルカートリッジ203の下部ケーシング229bと下部管板225bと下部断熱体227bとに囲まれた領域であり、下部ケーシング229bの側面に設けられた酸化性ガス供給孔233aによって、図示しない酸化性ガス供給枝管と連通されている。この酸化性ガス供給ヘッダ221は、図示しない酸化性ガス供給枝管から酸化性ガス供給孔233aを介して供給される所定流量の酸化性ガスを、後述する酸化性ガス供給隙間235aを介して発電室215に導くものである。
 酸化性ガス排出ヘッダ223は、電気化学反応セルカートリッジ203の上部ケーシング229aと上部管板225aと上部断熱体227aとに囲まれた領域であり、上部ケーシング229aの側面に設けられた酸化性ガス排出孔233bによって、図示しない酸化性ガス排出枝管と連通されている。この酸化性ガス排出ヘッダ223は、発電室215から、後述する酸化性ガス排出隙間235bを介して酸化性ガス排出ヘッダ223に供給される排酸化性ガスを、酸化性ガス排出孔233bを介して図示しない酸化性ガス排出枝管に導くものである。
 上部管板225aは、上部ケーシング229aの天板と上部断熱体227aとの間に、上部管板225aと上部ケーシング229aの天板と上部断熱体227aとが略平行になるように、上部ケーシング229aの側板に固定されている。また上部管板225aは、電気化学反応セルカートリッジ203に備えられるセルスタック101の本数に対応した複数の孔を有し、該孔にはセルスタック101が夫々挿入されている。この上部管板225aは、複数のセルスタック101の一方の端部をシール材237a及び接着部材のいずれか一方又は両方を介して気密に支持すると共に、燃料ガス供給ヘッダ217と酸化性ガス排出ヘッダ223とを隔離するものである。
 上部断熱体227aは、上部ケーシング229aの下端部に、上部断熱体227aと上部ケーシング229aの天板と上部管板225aとが略平行になるように配置され、上部ケーシング229aの側板に固定されている。また、上部断熱体227aには、電気化学反応セルカートリッジ203に備えられるセルスタック101の本数に対応して、複数の孔が設けられている。この孔の直径はセルスタック101の外径よりも大きく設定されている。上部断熱体227aは、この孔の内面と、上部断熱体227aに挿通されたセルスタック101の外面との間に形成された酸化性ガス排出隙間235bを備える。
 この上部断熱体227aは、発電室215と酸化性ガス排出ヘッダ223とを仕切るものであり、上部管板225aの周囲の雰囲気が高温化し強度低下や酸化性ガス中に含まれる酸化剤による腐食が増加することを抑制する。上部管板225a等はインコネルなどの高温耐久性のある金属材料から成るが、上部管板225a等が発電室215内の高温に晒されて上部管板225a等内の温度差が大きくなることで熱変形することを防ぐものである。また、上部断熱体227aは、発電室215を通過して高温に晒された排酸化性ガスを、酸化性ガス排出隙間235bを通過させて酸化性ガス排出ヘッダ223に導くものである。
 本実施形態によれば、上述した電気化学反応セルカートリッジ203の構造により、燃料ガスと酸化性ガスとがセルスタック101の内側と外側とを対向して流れるものとなっている。このことにより、排酸化性ガスは、基体管103の内部を通って発電室215に供給される燃料ガスとの間で熱交換がなされ、金属材料から成る上部管板225a等が座屈などの変形をしない温度に冷却されて酸化性ガス排出ヘッダ223に供給される。また、燃料ガスは、発電室215から排出される排酸化性ガスとの熱交換により昇温され、発電室215に供給される。その結果、ヒーター等を用いることなく発電に適した温度に予熱昇温された燃料ガスを発電室215に供給することができる。
 下部管板225bは、下部ケーシング229bの底板と下部断熱体227bとの間に、下部管板225bと下部ケーシング229bの底板と下部断熱体227bとが略平行になるように下部ケーシング229bの側板に固定されている。また下部管板225bは、電気化学反応セルカートリッジ203に備えられるセルスタック101の本数に対応した複数の孔を有し、該孔にはセルスタック101が夫々挿入されている。この下部管板225bは、複数のセルスタック101の他方の端部をシール材237b及び接着部材のいずれか一方又は両方を介して気密に支持すると共に、燃料ガス排出ヘッダ219と酸化性ガス供給ヘッダ221とを隔離するものである。
 下部断熱体227bは、下部ケーシング229bの上端部に、下部断熱体227bと下部ケーシング229bの底板と下部管板225bとが略平行になるように配置され、下部ケーシング229bの側板に固定されている。また、下部断熱体227bには、電気化学反応セルカートリッジ203に備えられるセルスタック101の本数に対応して、複数の孔が設けられている。この孔の直径はセルスタック101の外径よりも大きく設定されている。下部断熱体227bは、この孔の内面と、下部断熱体227bに挿通されたセルスタック101の外面との間に形成された酸化性ガス供給隙間235aを備える。
 この下部断熱体227bは、発電室215と酸化性ガス供給ヘッダ221とを仕切るものであり、下部管板225bの周囲の雰囲気が高温化し強度低下や酸化性ガス中に含まれる酸化剤による腐食が増加することを抑制する。下部管板225b等はインコネルなどの高温耐久性のある金属材料から成るが、下部管板225b等が高温に晒されて下部管板225b等内の温度差が大きくなることで熱変形することを防ぐものである。また、下部断熱体227bは、酸化性ガス供給ヘッダ221に供給される酸化性ガスを、酸化性ガス供給隙間235aを通過させて発電室215に導くものである。
 本実施形態によれば、上述した電気化学反応セルカートリッジ203の構造により、燃料ガスと酸化性ガスとがセルスタック101の内側と外側とを対向して流れるものとなっている。このことにより、基体管103の内部を通って発電室215を通過した排燃料ガスは、発電室215に供給される酸化性ガスとの間で熱交換がなされ、金属材料から成る下部管板225b等が座屈などの変形をしない温度に冷却されて燃料ガス排出ヘッダ219に供給される。また、酸化性ガスは排燃料ガスとの熱交換により昇温され、発電室215に供給される。その結果、ヒーター等を用いることなく発電に必要な温度に昇温された酸化性ガスを発電室215に供給することができる。
 発電室215で発電された直流電力は、複数の電気化学反応セル105に設けたNi/YSZ等からなるリード膜115によりセルスタック101の端部付近まで導出した後に、電気化学反応セルカートリッジ203の集電棒(不図示)に集電板(不図示)を介して集電して、各電気化学反応セルカートリッジ203の外部へと取り出される。集電棒によって電気化学反応セルカートリッジ203の外部に導出された直流電力は、各電気化学反応セルカートリッジ203の発電電力を所定の直列数および並列数へと相互に接続され、電気化学反応セルモジュール201の外部へと導出されて、図示しないパワーコンディショナ等の電力変換装置(インバータなど)により所定の交流電力へと変換されて、電力供給先(例えば、負荷設備や電力系統)へと供給される。
 続いてシール材237a、237b(以下、総称する場合には単に「シール材237」と記載する)の構成について詳しく説明する。シール材237は、複数のセラミックス粒子と、複数のセラミックス粒子を硬化するための硬化剤とを含む。
 セラミックス粒子は、無機物を加熱処理することによって生成された焼結体からなる粒子状材料であり、金属材料及び非金属材料を問わない。幾つかの実施形態では、セラミックス粒子は、Al、ZrO、ZrSiO及びMgOの少なくとも一つを含む。
 硬化剤は、セラミックス粒子を硬化させることで、成形体として前述のシール剤117を構成するための材料である。幾つかの実施形態では、硬化剤はセメント系硬化剤(例えばSi-Ca-Al-O系セメント)又はリン酸系硬化剤の少なくとも一つを含む。
 尚、硬化材としてリン酸系硬化剤が用いられる場合、セラミックス粒子はMgOを含むことが好ましい。MgOとリン酸系硬化剤とが混合されるとリン酸マグネシウムが合成され、セラミックス粒子をリン酸マグネシウムによって好適に硬化されることができる。
 このようにシール材237は、セラミックス粒子が硬化剤によって硬化された構成を有する。図4Aはシール剤117の顕微鏡撮像画像の一例であり、図4Bは図4Aに示されるシール材117の内部構造を概略的に示す模式図である。図4A及び図4Bに示すように、所定の粒径を有するセラミックス粒子が硬化剤によって硬化されることにより、セラミックス粒子の間に微細な隙間10(開放気孔)が存在する微構造が形成される。隙間10は、図4Bに示すように、外部に連通する開放気孔10a及び外部に連通しない閉塞気孔10bを含む(図4Bでは開放気孔10aの一態様として、シール材117を貫通するに至った貫通気孔10cも示されている)。シール剤117は、このような微構造を有することにより、電気化学反応セルに性能低下をもたらさない程度のシール効果を確保しながら、隙間10を介したリークを許容することで、燃料ガスと酸化剤ガスとの間に圧力差が生じた場合においてもシール材237の破損発生を抑制できる。
 尚、シール材237を構成するセラミックス粒子は、電気化学反応セルのシール部の運用温度(例えば600℃)において溶融しないものが好ましい。これにより、電気化学反応セルが運用中においても隙間10を好適に維持することができる。
 本発明者の鋭意研究の結果、電気化学反応セルの性能確保とシール材237の破損防止とを両立するために、シール材237に要求されるリーク率は0.5~2.0%の範囲であることが好ましいことが見出された。シール材237のリーク率は、シール材237に含まれる開放気孔である隙間10の割合に依存する。
 ここで図5はシール材237の相対密度と、開放気孔10a及び閉塞気孔10bの気孔率との相関を示すものである。図5に示すように、シール材237の相対密度が増加するに従って、開放気孔10aは急速に減少するが、相対密度が約83%になるとシール材を貫通する空隙の一部が閉じ込められ始め、相対密度の増加と共に閉塞気孔10bが増加する傾向が示されている。
 以下の説明ではシール材を貫通する開放気孔10aに関する気孔率として見掛気孔率PAを用いる。本明細書における見掛気孔率PAは、JIS規格:電気絶縁用セラミック材料試験方法(JIS C 2141-1992)に基づく。見掛気孔率PAは、セラミックス粒子が有する開放気孔10aの全体積のかさ体積に対する百分率として、次式により求められる。
PA(%)=(m3-m1)/(m3-m2)×100   (1)
 ここでm1は、見掛気孔率PAの評価対象であるシール材237に対応する試験片の乾燥重量であり、m2は飽水試験片の水中質量であり、m3は飽水試験片の質量である。
 見掛気孔率PAの評価に用いられる試験片は、質量5g以上であり、測定前にチッピングなどが除去されたものが用いられる(より詳細には、後述のシール材237の製造方法と同様の手順に従ってペレット状に成形されたサンプルが用いられる)。乾燥重量m1は、このように用意された試験片を105~120℃に調整した恒温槽中で乾燥し、恒量に達したとき恒温槽から取り出し、デシケータに入れて室温に達した後、はかりで質量を量ることにより得られる。尚、はかりは感度1mg以上のものを用いた。
 水中質量m2は、試験片を飽水させることで作製された飽水試験片の水中における質量を量ることにより得られる。飽水試験片は、以下の手順により得られる。乾燥、恒量した試験片を乾燥したビーカーの中に入れ、それを真空容器の中に入れる。ビーカーはJIS R 3503に規定する200ml以上のものを用いる。真空度は2~3×10Paで5分間保持する。保持後、この真空容器内のビーカーの中へ蒸留水を入れる。蒸留水は試験片を十分に浸漬したのち、更に5分間真空引きを行い、その後、空気を導入して大気圧に戻す。
 飽水試験片の質量m3は、上述の飽水試験片を水中から取り出し、湿ったガーゼで手早く表面の水滴をぬぐった後、質量を量ることにより得られる。尚、ガーゼは十分に水を含ませた後、試験片表面の水滴だけを取る程度に絞って用いる。
 ここで幾つかのサンプルA~Dを用いて、セラミックス粒子として用いられる材料の組成比とリーク率との関係に関する検証試験結果について説明する。図6は組成比が異なるセラミックス粒子を用いたサンプルA~Dの検証試験結果を示す。図6の検証試験では、セラミックス粒子であるZrSiO、MgOと、硬化剤であるリン酸系硬化剤Pとが、それぞれ所定の組成比で含まれるサンプルA~Dが用いられる。具体的には、サンプルAの組成比は80:8:12であり、サンプルBの組成比は75:13:12であり、サンプルCの組成比は50:38:12であり、サンプルDの組成比は40:48:12である。
 図6に示すリーク率(%)は、以下のリーク率測定試験を用いて測定した。図7はリーク率測定試験の説明図である。この試験では、サンプルA~Dによって第1空間12と第2空間14とに仕切られた閉空間を有する拡散セル16が用意される(拡散セル16は一定温度T[K]に保たれている)。拡散セル16のうち第1空間12には燃料ガスGがモル流量F[mol/s]で導入されるとともに、第2空間14には酸化剤ガスGがモル流量はF[mol/s]で導入される。
 第1空間12及び第2空間14は、特定の見掛気孔率PAを有する多孔質固体であるサンプルA~Dを介して隔離されているため、第1空間12に導入される燃料ガスG、及び、第2空間14に導入される酸化剤ガスGは相互拡散し、第1空間12からの混合ガスがモル流量F(=F +F )で流出するとともに(モル分率基準の組成はy 、y )、第2空間14からの混合ガスがモル流量F(=F +F )で流出する(モル分率基準の組成はy 、y )。ここでF は第1空間12から流出する混合ガスのうち燃料ガスGが占めるモル流量であり、F は第1空間12から流出する混合ガスのうち酸化剤ガスGが占めるモル流量であり、F は第2空間14から流出する混合ガスのうち燃料ガスGが占めるモル流量であり、F は第2空間14から流出する混合ガスのうち酸化剤ガスGが占めるモル流量である。リーク率測定試験では、第1空間12及び第2空間14から流出する混合ガスの流量v[m/s]、v[m/s]を実測し、同時にy 、y をガスクロで分析することにより、次式を用いてリーク率が求められる。
リーク率(%)=(y ×100)/(y +y )   (2)
 図6に示す検証結果によれば、サンプルAではリーク率が0%であり、上記範囲の下限値(0.5%)より小さい。またサンプルAの見掛気孔率は6%であり、見掛気孔率の観点からも上記範囲の下限値(10%)より小さい。このようなサンプルAでは、前述の特許文献1と同様に、リーク性能だけを考えれば良好であるが、燃料ガスと酸化剤ガスとの間に圧力差が発生すると、その圧力差によって破損が生じる可能性が考えられる。
 サンプルBではリーク率が0.5%であり、上記範囲に含まれる。またサンプルBの見掛気孔率は10%であり、見掛気孔率の観点からも上記範囲に含まれる。このようなサンプルBでは、電気化学反応セルに性能低下をもたらさない程度のシール効果を確保しながら、ある程度のリークを許容することで、燃料ガスと酸化剤ガスとの間に圧力差が生じた場合においてもシール材237の破損発生を抑制できる。
 サンプルCではリーク率が2.0%であり、上記範囲に含まれる。またサンプルCの見掛気孔率は25%であり、見掛気孔率の観点からも上記範囲に含まれる。このようなサンプルCでは、電気化学反応セルに性能低下をもたらさない程度のシール効果を確保しながら、ある程度のリークを許容することで、燃料ガスと酸化剤ガスとの間に圧力差が生じた場合においてもシール材237の破損発生を抑制できる。
 サンプルDでは、リーク率が5.0%であり、上記範囲の上限値(2.0%)より大きい。またサンプルDの見掛気孔率は32%であり、見掛気孔率の観点からも上記範囲の上限値(25%)より大きい。このようなサンプルDでは、破損を防止するためにリークを許容している点では良好であるが、燃料ガスと酸化剤ガスとの混合が大きく、電気化学反応セルの性能低下が懸念される。
 このように図6に示す検証試験では、サンプルB、Cにおいてリーク率が0.5~2.0%(見掛気孔率が10~25%)にあることにより、電気化学反応セルの性能確保に必要なリーク性能と、圧力差による破損防止とが両立可能であることが実験的に検証された。
 シール材237における見掛気孔率(又はリーク率)の調整は、シール材237に含まれるセラミックス粒子の粒径の選択によって行われてもよい。例えばシール材237に含まれる複数のセラミックス粒子は、異なる粒径を含む。この場合、シール材237を構成するセラミックス粒子の粒径を適宜選択することで、所定体積におけるセラミックス粒子の充填率を変更することで、見掛気孔率(又はリーク率)の調整が可能となる。
 尚、シール材237の見掛気孔率(又はリーク率)が上記範囲になる限りにおいて、シール材237は単一の粒径を有するセラミックス粒子から構成されてもよい。
 またシール材237における見掛気孔率の調整は、シール材237に含まれるセラミックス粒子の種類の選択によって行われてもよい。例えばシール材237に含まれる複数のセラミックス粒子は、異なる種類を含む。この場合、シール材237を構成するセラミックス粒子の種類を適宜選択することで、所定体積におけるセラミックス粒子の充填率を変更することで、見掛気孔率(又はリーク率)の調整が可能となる。
 尚、シール材237の見掛気孔率(又はリーク率)が上記範囲になる限りにおいて、シール材237は単一の種類のセラミックス粒子から構成されてもよい。
 また図6の検証試験では、サンプルA~Dについて耐還元性及び耐熱サイクル性についても評価を行った。耐還元性は、サンプルA~Dを燃料ガス(H2:N2=60:40(vol%))の雰囲気下で電気化学反応セルの運転温度に近い約600℃で10時間暴露し、剥離等の変化があるか否かを目視で観察することで評価した。これによれば、サンプルA~Dのいずれにおいても、良好な耐還元性が得られることが確認できた。また耐熱サイクル性は、サンプルA~DをYSZペレット上に塗布し、燃料ガス(H2:N2=60:40(vol%))の雰囲気下で、室温と電気化学反応セルのシール部の運転温度に近い約600℃との間で昇降温を10サイクル繰り返し、YSZペレットからの剥離の有無を目視で観察することで評価した。これによれば、サンプルA~Dのいずれにおいても、良好な耐熱サイクル性が得られることが確認できた。
 続いて上記構成を有するシール材237の製造方法について説明する。図8は本実施形態に係るシール材237の製造方法の一態様を示すフローチャートである。
 まずシール剤117の構成要素の一つであるセラミックス粒子の選択を行う(ステップS10)。本実施形態では、前述のセラミックス粒子の候補であるAl、ZrO、ZrSiO及びMgOから少なくとも一つが選択される。また前述したように、ステップS11で硬化剤としてリン酸系硬化剤を選択する場合には、リン酸系硬化剤と混合された際に硬化に有利なリン酸マグネシウムを合成するために、セラミックス粒子に少なくともMgOが含まれるように選択してもよい。
 続いてシール剤117の他の構成要素である硬化剤の選択を行う(ステップS11)。本実施形態では、前述の硬化剤の候補であるセメント系硬化剤(例えばSi-Ca-Al-O系セメント)又はリン酸系硬化剤の少なくとも一つが選択される。
 ステップS10及びS11におけるセラミックス粒子及び硬化剤の選択は、本製造方法によって製造されるシール材237の見掛気孔率が10~25%(又はリーク率が0.5~2.0%)になるように行われる。前述したように、シール材237の見掛気孔率(又はリーク率)は、硬化材によって硬化されるセラミックス粒子の粒径又は種類に依存することから、セラミックス粒子及び硬化剤を適切に選択することで、シール材237の見掛気孔率を10~25%(又はリーク率を0.5~2.0%)に調整することができる。
 尚、図8ではステップS10の後にステップS11を実施する場合を例示的に示しているが、ステップS10の前にステップS11を実施してもよいし、ステップS10及びS11を同時に実施してもよい。
 続いてステップS10で選択されたセラミックス粒子と、ステップS11で選択された硬化剤とを混合し、スラリーを生成する(ステップS12)。スラリーの生成は、選択されたセラミックス粒子及び硬化剤を所定の分量で混合することにより行われる。具体例を説明すると、セラミックス粒子としてZrSiO及びMgOを選択するとともに、硬化剤としてHPO(オルトリン酸)を選択した場合、それぞれを所定の分量で混合しアルコールに浸漬する。これにより、MgOはHPOと反応することにより、Mg(PO(リン酸マグネシウム)が合成される。その後、例えば50℃で加熱し、アルコールを揮発させることで得られた粉体に水を加えることにより、スラリーが生成される。スラリーは、例えば、得られた粉体10gあたりに3gの水を加えることにより生成される。
 続いてステップS12で生成されたスラリーを硬化させて成形を行う(ステップS13)。スラリーは、例えば、シール材237の形状に対応する型材に充填され、所定温度で所定期間かけて硬化されることで、シール材237が完成する。
 尚、ステップS11で硬化剤としてセメント系硬化剤を選択した場合には、ステップS12でセメント系硬化剤にセラミックス粒子を水とともに混合して、所定温度(例えば室温)で所定期間かけて硬化されるだけでシール材237を成形できるため、より簡潔な手順でシール材237を得ることができる。
 尚、図6の検証試験で用いられるサンプルA~Dは、スラリーを直径20mmの円筒状の型材に充填し、80℃で24時間反応させることにより硬化させ、型材から取り出したものを3mmの厚さに削り出すことでペレット状に成形したものを用いている。
 以上説明したように本実施形態によれば、燃料ガスと酸化剤ガスとの間で圧力差が生じた場合においても、良好なリーク性能を確保しつつ、損傷発生を効果的に防止可能な電気化学反応セル用シール材、電気化学反応セルカートリッジ、及び、電気化学反応セル用シール材の製造方法を提供できる。
 その他、本開示の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態を適宜組み合わせてもよい。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)一態様に係る電気化学反応セル用シール材は、
 電気化学反応セルにおいて燃料ガス及び酸化剤ガスを隔離するための電気化学反応セル用シール材であって、
 複数のセラミックス粒子と、
 前記複数のセラミックス粒子を硬化するための硬化剤と、
を含み、
 見掛気孔率が10~25%である。
 上記(1)の態様によれば、電気化学反応セルにおいて燃料ガスと酸化剤ガスとを隔離するためのシール材が、複数のセラミックス粒子が硬化剤によって硬化されることにより構成される。このように構成されたシール材の見掛気孔率は、硬化剤によって硬化されたセラミックス粒子の分布状態に依存する。本態様では、シール材の見掛気孔率を10~25%になるように構成される。これにより、シール材は電気化学反応セルの性能に対する影響が少なくなる程度にリークを許容することで、必要とされるシール性能を確保しながら、燃料ガス及び酸化剤ガスの間における圧力差による損傷発生を効果的に防止できる。
(2)他の態様では上記(1)の態様において、
 前記複数のセラミックス粒子は、異なる粒径を含む。
 上記(2)の態様によれば、異なる粒径を有するセラミックス粒子を用いてシール材を構成することで、粒径の違いを利用した見掛気孔率の調整が可能となる。これにより、10~25%の見掛気孔率を有するシール材が好適に得られる。
(3)他の態様では上記(1)又は(2)の態様において、
 前記複数のセラミックス粒子は、異なる種類を含む。
 上記(3)の態様によれば、異なる種類を有するセラミックス粒子を用いてシール材を構成することで、種類の違いを利用した見掛気孔率の調整が可能となる。これにより、10~25%の見掛気孔率を有するシール材が好適に得られる。
(4)他の態様では上記(1)から(3)のいずれか一態様において、
 前記複数のセラミックス粒子は、Al、ZrO、ZrSiO及びMgOの少なくとも一つを含む。
 上記(4)の態様によれば、Al、ZrO、ZrSiO及びMgOの少なくとも一つを含むセラミックス粒子を用いることで、10~25%の見掛気孔率を有するシール材が好適に得られる。
(5)他の態様では上記(1)から(4)のいずれか一態様において、
 前記硬化剤は、Si-Ca-Al-O系セメント及びリン酸系硬化材の少なくとも一つを含む。
 上記(5)の態様によれば、Si-Ca-Al-O系セメント及びリン酸系硬化材の少なくとも一つを含む硬化剤を用いることで、10~25%の見掛気孔率を有するシール材が好適に得られる。
(6)他の態様では上記(1)から(5)のいずれか一態様において、
 前記複数のセラミックス粒子はMgOを含み、
 前記硬化材はリン酸系硬化材を含む。
 上記(6)の態様によれば、セラミックス粒子としてMgOが用いられるとともに、硬化剤としてリン酸系硬化材が用いられる。MgOとリン酸系硬化材とが混合されるとリン酸マグネシムが合成され、セラミックス粒子はリン酸マグネシウムによって硬化される。これにより、10~25%の見掛気孔率を有するシール材が好適に得られる。
(7)他の態様では上記(6)の態様において、
 前記複数のセラミックス粒子はZrSiOを更に含む。
 上記(7)の態様によれば、硬化剤としてリン酸系硬化材が用いられる場合に、セラミックス粒子としてMgOとともにZrSiOが用いられる。これらの材料を用いることにより、耐還元性及び耐熱サイクル性に優れたシール材が得られる。
(8)一態様に係る電気化学反応セルカートリッジは、
 電気化学反応セルを含む少なくとも1つの電気化学反応セルスタックと、
 前記少なくとも1つの電気化学反応セルスタックで発電された電力を取り出すための集電部材と、
 上記(1)から(7)のいずれか一態様の電気化学反応セル用シール材と、
を備え、
 前記電気化学反応セル用シール材は、前記少なくとも1つの電気化学反応セルスタックの燃料ガス流路と酸化剤ガス流路との間に配置される。
 上記(8)の態様によれば、電気化学反応セルカートリッジにおいて燃料ガスと酸化剤ガスとを隔離するために上記構成を有するシール材が配置される。これにより、シール材によって隔離される燃料ガスと酸化剤ガスとの間に圧力差が生じた場合においても、良好なシール性能を確保しつつ、当該圧力差によってシール材が破損することを好適に防止できる。
(9)一態様に係る電気化学反応セル用シール材の製造方法は、
 電気化学反応セルにおいて燃料ガス及び酸化剤ガスを隔離するための電気化学反応セル用シール材の製造方法であって、
 見掛気孔率が10~25%になるように、複数のセラミックス粒子を硬化剤を用いて硬化する工程を備える。
 上記(9)の態様によれば、複数のセラミックス粒子を硬化剤を用いて硬化することにより、10~25%の見掛気孔率を有するシール材を好適に製造できる。
(10)他の態様では上記(9)の態様において、
 MgOを含む前記複数のセラミックス粒子にリン酸を混合することにより、前記硬化剤としてリン酸マグネシウムを合成する。
 上記(10)の態様によれば、MgOを含むセラミックス粒子としてMgOにリン酸を混合することにより合成されるリン酸マグネシウムを硬化材として、セラミックス粒子を硬化させることで、10~25%の見掛気孔率を有するシール材を好適に製造できる。
(11)他の態様では上記(9)の態様において、
 前記硬化剤はセメント系硬化剤である。
 上記(11)の態様によれば、セラミックス粒子をセメント系硬化材を用いて硬化することにより、10~25%の見掛気孔率を有するシール材を簡易的に製造できる。
10 隙間
12 第1空間
14 第2空間
16 拡散セル
101 セルスタック
103 基体管
105 電気化学反応セル
107 インターコネクタ
109 燃料極
111 固体電解質膜
113 空気極
115 リード膜
117 シール剤
201 電気化学反応セルモジュール
203 電気化学反応セルカートリッジ
205 圧力容器
207 燃料ガス供給管
207a 燃料ガス供給枝管
209 燃料ガス排出管
209a 燃料ガス排出枝管
215 発電室
217 燃料ガス供給ヘッダ
219 燃料ガス排出ヘッダ
221 酸化性ガス供給ヘッダ
223 酸化性ガス排出ヘッダ
225a 上部管板
225b 下部管板
227a 上部断熱体
227b 下部断熱体
229a 上部ケーシング
229b 下部ケーシング
231a 燃料ガス供給孔
231b 燃料ガス排出孔
233a 酸化性ガス供給孔
233b 酸化性ガス排出孔
235a 酸化性ガス供給隙間
235b 酸化性ガス排出隙間

Claims (11)

  1.  電気化学反応セルにおいて燃料ガス及び酸化剤ガスを隔離するための電気化学反応セル用シール材であって、
     複数のセラミックス粒子と、
     前記複数のセラミックス粒子を硬化するための硬化剤と、
    を含み、
     見掛気孔率が10~25%である、電気化学反応セル用シール材。
  2.  前記複数のセラミックス粒子は、異なる粒径を含む、請求項1に記載の電気化学反応セル用シール材。
  3.  前記複数のセラミックス粒子は、異なる種類を含む、請求項1又は2に記載の電気化学反応セル用シール材。
  4.  前記複数のセラミックス粒子は、Al、ZrO、ZrSiO及びMgOの少なくとも一つを含む、請求項1から3のいずれか一項に記載の電気化学反応セル用シール材。
  5.  前記硬化剤は、Si-Ca-Al-O系セメント及びリン酸系硬化材の少なくとも一つを含む、請求項1から4のいずれか一項に記載の電気化学反応セル用シール材。
  6.  前記複数のセラミックス粒子はMgOを含み、
     前記硬化材はリン酸系硬化材を含む、請求項1から5のいずれか一項に記載の電気化学反応セル用シール材。
  7.  前記複数のセラミックス粒子はZrSiOを更に含む、請求項6に記載の電気化学反応セル用シール材。
  8.  電気化学反応セルを含む少なくとも1つの電気化学反応セルスタックと、
     前記少なくとも1つの電気化学反応セルスタックで発電された電力を取り出すための集電部材と、
     請求項1から7のいずれか一項に記載された電気化学反応セル用シール材と、
    を備え、
     前記電気化学反応セル用シール材は、前記少なくとも1つの電気化学反応セルスタックの燃料ガス流路と酸化剤ガス流路との間に配置される、電気化学反応セルカートリッジ。
  9.  電気化学反応セルにおいて燃料ガス及び酸化剤ガスを隔離するための電気化学反応セル用シール材の製造方法であって、
     見掛気孔率が10~25%になるように、複数のセラミックス粒子を硬化剤を用いて硬化する工程を備える、電気化学反応セル用シール材の製造方法。
  10.  MgOを含む前記複数のセラミックス粒子にリン酸を混合することにより、前記硬化剤としてリン酸マグネシウムを合成する、請求項9に記載の電気化学反応セル用シール材の製造方法。
  11.  前記硬化剤はセメント系硬化剤である、請求項9に記載の電気化学反応セル用シール材の製造方法。
PCT/JP2022/006810 2021-02-22 2022-02-21 電気化学反応セル用シール材、電気化学反応セルカートリッジ、及び、電気化学反応セル用シール材の製造方法 WO2022176996A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237027361A KR20230131242A (ko) 2021-02-22 2022-02-21 전기 화학 반응 셀용 시일재, 전기 화학 반응 셀 카트리지,및 전기 화학 반응 셀용 시일재의 제조 방법
CN202280015135.8A CN116964790A (zh) 2021-02-22 2022-02-21 电化学反应电池用密封件、电化学反应电池盒及电化学反应电池用密封件的制造方法
DE112022000445.2T DE112022000445T5 (de) 2021-02-22 2022-02-21 Dichtungsmaterial für elektrochemische Reaktionszelle, elektrochemische Reaktionszellenkartusche und Verfahren zur Herstellung eines Dichtungsmaterials für eine elektrochemische Reaktionszelle
US18/276,693 US20240105969A1 (en) 2021-02-22 2022-02-21 Seal material for electrochemical reaction cell, electrochemical reaction cell cartridge, and method of producing seal material for electrochemical reaction cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-025909 2021-02-22
JP2021025909A JP7064077B1 (ja) 2021-02-22 2021-02-22 電気化学反応セル用シール材、電気化学反応セルカートリッジ、及び、電気化学反応セル用シール材の製造方法

Publications (1)

Publication Number Publication Date
WO2022176996A1 true WO2022176996A1 (ja) 2022-08-25

Family

ID=81535287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006810 WO2022176996A1 (ja) 2021-02-22 2022-02-21 電気化学反応セル用シール材、電気化学反応セルカートリッジ、及び、電気化学反応セル用シール材の製造方法

Country Status (7)

Country Link
US (1) US20240105969A1 (ja)
JP (1) JP7064077B1 (ja)
KR (1) KR20230131242A (ja)
CN (1) CN116964790A (ja)
DE (1) DE112022000445T5 (ja)
TW (1) TWI809724B (ja)
WO (1) WO2022176996A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060462A (ja) * 1999-08-23 2001-03-06 Mitsubishi Heavy Ind Ltd セルチューブのシール構造
JP2005150122A (ja) * 2005-01-05 2005-06-09 Mitsubishi Heavy Ind Ltd 電気化学セル用材料、電気化学セルおよび酸素発生装置
JP2005197242A (ja) * 2004-01-05 2005-07-21 Hyundai Motor Co Ltd 固体酸化物燃料電池用密封材及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080026446A (ko) * 2006-09-20 2008-03-25 엘지마이크론 주식회사 평판형 형광램프
EP3510647A4 (en) * 2016-09-07 2020-04-15 Ambri Inc. GASKETS FOR DEVICES FROM REACTIVE HIGH TEMPERATURE MATERIAL
JP2018055914A (ja) 2016-09-28 2018-04-05 Toto株式会社 固体酸化物形燃料電池セルスタック
JP7133520B2 (ja) 2019-08-06 2022-09-08 直之 村上 コンピユーターの目(pceye)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060462A (ja) * 1999-08-23 2001-03-06 Mitsubishi Heavy Ind Ltd セルチューブのシール構造
JP2005197242A (ja) * 2004-01-05 2005-07-21 Hyundai Motor Co Ltd 固体酸化物燃料電池用密封材及びその製造方法
JP2005150122A (ja) * 2005-01-05 2005-06-09 Mitsubishi Heavy Ind Ltd 電気化学セル用材料、電気化学セルおよび酸素発生装置

Also Published As

Publication number Publication date
KR20230131242A (ko) 2023-09-12
CN116964790A (zh) 2023-10-27
JP2022127754A (ja) 2022-09-01
US20240105969A1 (en) 2024-03-28
JP7064077B1 (ja) 2022-05-10
DE112022000445T5 (de) 2023-10-05
TWI809724B (zh) 2023-07-21
TW202247516A (zh) 2022-12-01

Similar Documents

Publication Publication Date Title
CA2494434C (en) Gas-tight fuel cell assembly
JPWO2019160036A1 (ja) 燃料電池システム及び複合発電システム並びに燃料電池システムの制御方法
JP2018087501A (ja) 複合発電システムの制御装置、複合発電システム、複合発電システムの制御方法および複合発電システムの制御プログラム
WO2022176996A1 (ja) 電気化学反応セル用シール材、電気化学反応セルカートリッジ、及び、電気化学反応セル用シール材の製造方法
JPWO2012157748A1 (ja) 固体酸化物形燃料電池セル及び固体酸化物形燃料電池セルの製造方法
JP3929136B2 (ja) 電気化学セルおよび電気化学装置
JP2015109240A (ja) 燃料電池およびその運転方法
JP6301231B2 (ja) 燃料電池セルスタックおよびその製造方法、燃料電池モジュール、ならびに高温水蒸気電解セルスタックおよびその製造方法
JP7275344B1 (ja) 燃料電池セルおよびその製造方法、燃料電池モジュール、燃料電池カートリッジ
JP6979509B1 (ja) 燃料電池セル、燃料電池カートリッジ、及び、燃料電池セルの製造方法
JP7013605B1 (ja) 燃料電池システムおよび燃料電池システムの運転方法
JP6486716B2 (ja) 燃料電池及び燃料電池の製造方法、並びに、燃料電池の修復方法
JP5646785B1 (ja) 燃料電池
JP6879732B2 (ja) 還元処理システムの制御装置、還元処理システム、還元処理システムの制御方法及び還元処理システムの制御プログラム
EP4151601A1 (en) Electrochemical pump and fuel cell system
EP3588643B1 (en) Electrochemical reaction unit, electrochemical reaction cell stack, and production method for electrochemical reaction unit
JP2022131744A (ja) 燃料電池の温度評価装置、制御装置、及び、温度評価方法
KR20230074212A (ko) 연료 전지 발전 시스템, 및 연료 전지 발전 시스템의 제어 방법
KR20220035237A (ko) 연료 전지 시스템 및 그 제어 방법
JP2016122545A (ja) 固体酸化物形燃料電池及び固体酸化物形燃料電池の製造方法
JP2007042421A (ja) 燃料電池用マニホールド及びその製造方法並びに燃料電池
JP2024063296A (ja) 電気化学反応単セル
JP2021034192A (ja) 固体酸化物形燃料電池用燃料極
JP2018085263A (ja) 電気化学反応セルの支持体および電気化学反応セル
JP2017083119A (ja) 成形体下部支持装置、成形体下部支持方法、燃料電池セルスタックの製造方法及び燃料電池カートリッジの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18276693

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237027361

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112022000445

Country of ref document: DE

Ref document number: 1020237027361

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280015135.8

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 22756313

Country of ref document: EP

Kind code of ref document: A1