WO2022176860A1 - Intake structure for internal combustion engine - Google Patents

Intake structure for internal combustion engine Download PDF

Info

Publication number
WO2022176860A1
WO2022176860A1 PCT/JP2022/006004 JP2022006004W WO2022176860A1 WO 2022176860 A1 WO2022176860 A1 WO 2022176860A1 JP 2022006004 W JP2022006004 W JP 2022006004W WO 2022176860 A1 WO2022176860 A1 WO 2022176860A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
valve
passage
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2022/006004
Other languages
French (fr)
Japanese (ja)
Inventor
裕高 河津
加代子 武市
治 江水
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2023500859A priority Critical patent/JP7403707B2/en
Publication of WO2022176860A1 publication Critical patent/WO2022176860A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an intake structure for an internal combustion engine that includes partitions that divide an intake passage into a plurality of sections.
  • a tumble valve is provided downstream of the throttle valve, and a partition plate portion, which is a partition portion, is provided downstream of the tumble valve from the inlet pipe to the intake port,
  • the partition plate partitions the intake passage into a lower secondary passage and an upper main passage.
  • the lower secondary passage serves as a tumble passage, and the tumble valve substantially opens and closes the upper main passage.
  • the tumble valve is a valve that can also be called an intake distribution valve or an intake control valve, and may not be provided in an internal combustion engine provided with the partition section (see, for example, Patent Document 2).
  • an object of the present invention is to more effectively direct intake air flowing through a plurality of passages divided by the partitions into a combustion chamber in an internal combustion engine having an intake passage divided by the partitions. To provide a configuration that enables inhalation.
  • one aspect of the present invention is a partition configured to divide an intake passage into a plurality of sections, the partition separating a first intake passage and a second intake passage in the intake passage; It is provided on the downstream side of the partition so as to direct the flow of intake air from the second intake passage to the combustion chamber in a direction that intersects the flow direction of intake air from the first intake passage to the combustion chamber. and a downstream side wall portion.
  • the intake air flowing from the second intake passage to the combustion chamber is less likely to be affected by the intake air flowing from the first intake passage to the combustion chamber. Therefore, it becomes possible to more effectively draw the intake air flowing through the plurality of passages divided by the partition into the combustion chamber.
  • the first intake passage is defined as the above-mentioned
  • the partition extends into the intake passage so as to define a second intake passage on the second direction side, and the downstream side wall portion is the first direction side.
  • At least part of the downstream side wall portion extends along the valve axis of the intake valve.
  • At least a part of the downstream side wall is positioned closer to the exhaust than the valve axis of the intake valve. and is provided on the valve axis side of an imaginary line passing through an intermediate point between the exhaust side end of the opening of the intake valve and the valve axis and parallel to the valve axis. .
  • This arrangement makes it possible to more effectively direct the intake air from the second intake passage into the combustion chamber, more preferably to the intake side of the combustion chamber.
  • a central axis in the flow direction of the outlet portion of the first intake passage which is defined at the downstream edge of the partition portion, extends so as to pass through an opening range of the intake valve on the exhaust side when the intake valve is opened.
  • the downstream side wall portion A section is formed so that the flow of intake air from the second intake passage to the combustion chamber is directed from the first direction side to the second direction side of the flow of intake air from the first intake passage to the combustion chamber.
  • the internal combustion engine includes a single intake valve
  • the partition is formed so that the second intake passage extends along both sides of the first intake passage in the intake air flow direction, and the downstream side wall portion is , are provided downstream of the second intake passage so as to be located on both sides in the flow direction of the intake air of the intake valve.
  • the downstream side wall portion directs the flow of intake air from the second intake passage to the combustion chamber from the side of the flow of intake air from the first intake passage to the combustion chamber of the opening of the intake valve. It is provided so as to face the opening on the intake side. With this configuration, it is possible to more effectively reduce the influence of the intake air from the first intake passage on the intake air from the second intake passage.
  • the downstream side wall portion has a curvature smaller than the average curvature of the wall portion defining the intake passage.
  • the intake air flowing through the plurality of passages divided by the partition is It becomes possible to inhale into the combustion chamber more effectively.
  • FIG. 1 is a schematic configuration diagram of the essential parts of an internal combustion engine according to one embodiment of the present invention.
  • 2A is a cross-sectional view of the internal combustion engine of FIG. 1 and is a cross-sectional view of the internal combustion engine taken along line IIA-IIA of FIG. 1.
  • FIG. 2B is a cross-sectional view of the internal combustion engine of FIG. 1, and is a cross-sectional view of the internal combustion engine taken along line IIB-IIB of FIG. 2C is a cross-sectional view of the internal combustion engine of FIG. 1, taken along line IIC-IIC of FIG. 1.
  • FIG. FIG. 3 is a diagram showing a three-dimensional model of a downstream portion of an intake passage of the internal combustion engine of FIG.
  • FIG. 4 is a view of the three-dimensional model of FIG. 3 viewed from the left and right.
  • FIG. 5 is a diagram of the three-dimensional model of FIG. 3 as seen from below.
  • 6A is a cross-sectional view of the three-dimensional model of FIG. 3, and a cross-sectional view along line VIA-VIA of FIG. 4.
  • FIG. 6B is a cross-sectional view of the three-dimensional model in FIG. 3, and a cross-sectional view along line VIB-VIB in FIG. 6C is a cross-sectional view of the three-dimensional model of FIG. 3, and is a cross-sectional view along line VIC-VIC of FIG. 4.
  • FIG. 7 is an enlarged cross-sectional view of a portion of the internal combustion engine of FIG. 1, enlarging the downstream side of the intake passage.
  • 8A is a schematic diagram of a downstream portion of an intake passage of the internal combustion engine of FIG. 1, viewed from above.
  • FIG. 8B is a schematic diagram of the downstream side portion of the intake passage of the internal combustion engine of FIG. 1, viewed from the left-right direction.
  • 9 is a schematic cross-sectional view of the internal combustion engine of FIG. 1.
  • FIG. FIG. 10A is a computer simulation result for the internal combustion engine of FIG.
  • FIG. 10B is a computer simulation result for a comparative internal combustion engine.
  • FIG. 11A is a schematic diagram of the downstream portion of the intake passage of the comparative internal combustion engine, viewed from above.
  • FIG. 11B is a schematic diagram of the downstream side portion of the intake passage of the comparative internal combustion engine, viewed from the left-right direction.
  • 4 is a graph showing the results of measuring the flow rate of intake air flowing through the intake port by computer simulation.
  • 4 is a graph showing the results of measuring the flow velocity of intake air in a cylinder of an internal combustion engine by computer simulation;
  • FIG. 1 is a cross-sectional view of the cylinder head 14 side of the internal combustion engine 10 along the axis (cylinder axis) C of the cylinder bores 12b of the cylinder block 12 of the internal combustion engine 10.
  • FIG. 1 is a cross-sectional view of the cylinder head 14 side of the internal combustion engine 10 along the axis (cylinder axis) C of the cylinder bores 12b of the cylinder block 12 of the internal combustion engine 10.
  • FIG. 1 is a cross-sectional view of the cylinder head 14 side of the internal combustion engine 10 along the axis (cylinder axis) C of the cylinder bores 12b of the cylinder block 12 of the internal combustion engine 10.
  • FIG. 1 is a cross-sectional view of the cylinder head 14 side of the internal combustion engine 10 along the axis (cylinder axis) C of the cylinder bores 12b of the cylinder block 12 of the internal combustion engine 10.
  • FIG. is a single-cylinder engine, the internal combustion engine to which the present invention is applied may
  • a piston 16 that reciprocates in the cylinder bore 12b of the cylinder block 12 is connected by a connecting rod 18 to a crankpin of a crankshaft (not shown) of a crankcase (not shown).
  • a combustion chamber 20 is formed between the top surface 16a of the piston 16 slidably fitted in the cylinder bore 12b of the cylinder block 12 and the combustion chamber ceiling surface 14a of the cylinder head 14 facing the top surface 16a.
  • the internal combustion engine 10 employs a SOHC type two-valve system, and a valve mechanism 22 is provided in the cylinder head 14 .
  • a cylinder head cover 24 is overlaid on the cylinder head 14 so as to cover the valve mechanism 22 .
  • an endless cam chain (not shown) is connected to a cam (not shown) provided on one side of the crankcase, cylinder block 12, and cylinder head 14 in the crankshaft direction. It is installed between the camshaft 26 and the crankshaft through the chain chamber, and the camshaft 26 rotates in synchronism with the crankshaft at half the rotation speed.
  • a spark plug 27 (see FIG. 7) is inserted into the combustion chamber 20 from the opposite side of the cam chain chamber (the other side in the crankshaft direction) of the cylinder head 14 .
  • an intake port 32 and an exhaust port 34 are formed so as to extend while curving in directions vertically separating from each other.
  • the upstream end of the intake port 32 opens toward the upper side of the cylinder head 14 and is connected to an inlet pipe 36 to form a continuous intake passage 38.
  • a throttle body 40 is connected to the upstream side of the inlet pipe 36. be.
  • the downstream end of the exhaust port 34 opens downward from the cylinder head 14 and is connected to the exhaust pipe 42 .
  • An exhaust purification device and a silencer may be provided downstream of the exhaust pipe 42 .
  • a cylindrical intake valve guide 44 is integrally fitted to the curved outer wall portion 32a of the intake port 32 in the cylinder head 14.
  • An intake valve 46 slidably supported by an intake valve guide 44 opens and closes an intake valve port 28 of the intake port 32 facing the combustion chamber 20 .
  • an exhaust valve 50 slidably supported by an exhaust valve guide 48 integrally fitted to the curved outer wall portion 34a of the exhaust port 34 in the cylinder head 14 is an exhaust valve opening facing the combustion chamber 20 of the exhaust port 34. Open and close 30.
  • the intake valve 46 and the exhaust valve 50 are biased upward by valve springs so that the head portions 46a and 50a thereof close the intake valve opening 28 and the exhaust valve opening 30 facing the combustion chamber 20, respectively.
  • Stem ends 46b and 50b of the intake valve 46 and the exhaust valve 50 are pushed down by an intake rocker arm 56 and an exhaust rocker arm 58 that contact and oscillate with the intake cam and the exhaust cam of the camshaft 26, and the intake valve 46 and the exhaust valve 50 are opened at a predetermined timing.
  • the exhaust valve 50 opens, the intake port 32 communicates with the combustion chamber 20, and the exhaust port 34 communicates with the combustion chamber 20, and intake and exhaust are performed at predetermined timings.
  • An inlet pipe 36 is connected to the upstream end of the intake port 32 of the internal combustion engine 10 via an insulator 60 to form a continuous intake passage 38.
  • a throttle body 40 is connected to the upstream side of the inlet pipe 36. be done.
  • the throttle body 40 has an intake passage 40a with a substantially circular cross section forming part of the intake passage 38 communicating with the combustion chamber 20 of the internal combustion engine 10, and the upstream side of the intake passage 40a is connected to an air cleaner device (not shown).
  • the throttle body 40 is rotatably supported in the throttle body 40 by a throttle valve shaft 40b that intersects the central axis of the intake passage 40a at right angles to the flow direction of intake air in the intake passage 40a. It has a throttle valve 40c that can variably control the flow passage area of the air intake passage 40a to open and close the intake passage 40a.
  • the throttle valve 40c is of the butterfly type, and has a throttle valve shaft 40b and a disk-shaped valve body 40d that is fixed to the throttle valve shaft 40b and rotates integrally with the throttle valve shaft 40b.
  • the throttle valve 40c is rotatable counterclockwise in FIG. 1 in the valve opening direction by the driver's operation or the like. It is biased clockwise in the valve closing direction so as to be positioned at the fully closed position in contact with the inner wall surface.
  • the intake structure S is configured to give a tumble swirl flow of the fuel-air mixture in the combustion chamber 20 in order to obtain more favorable combustion in the combustion chamber 20, i.e., vertical rotation. ing. That is, the intake passage 38 is divided along the direction of intake air flow by a partition portion 62 leading from the inlet pipe 36 to the intake port 32, and is configured such that the passing intake air generates a tumble flow within the combustion chamber 20. It is partitioned into a tumble passage 64 and a main passage 66 excluding the tumble passage 64. - ⁇ The tumble passage 64 corresponds to the first intake passage, and the main passage 66 corresponds to the second intake passage. Note that the tumble passage 64 may also be referred to as a secondary passage.
  • the lower part of the intake passage 38 partitioned by the partition part 62 is the tumble passage 64, and the upper part is the main passage 66, but in this specification they are not limited to their vertical arrangement.
  • the terms “top” and “bottom” with respect to the intake passage 38 and the like refer to the direction from the crankshaft side to the cylinder head 14 or the cylinder head cover 24 side in the direction of the cylinder axis C.
  • the direction opposite to this "up” direction that is, the direction from the cylinder head 14 side to the crankshaft side is called the “down” or “down” direction, and is the absolute “up” or “down” direction in space. Not meaning.
  • the “up” or “up” direction corresponds to the first direction
  • the "down” or “down” direction corresponds to the second direction.
  • an intake distribution valve 68 is provided downstream of the throttle valve 40c and upstream of the partition portion 62.
  • the intake air distribution valve 68 is a valve that can also be called a tumble valve or an intake control valve.
  • the intake air distribution valve 68 is a valve whose base end rotating shaft 68a is rotatably supported by the inlet pipe 36 in the vicinity of the upstream end edge of the partition part 62, and whose tip facing the intake upstream side is rotatable up and down. , is rotated about the rotation axis 68a.
  • the intake air distribution valve 68 rotates with its tip directed toward the upstream throttle valve 40c to divide the intake air downstream from the throttle valve 40c vertically and change the ratio of the intake air flowing through the tumble passage 64 and the main passage 66. can do.
  • the partition portion 62 continuously extends from a position immediately downstream of the intake distribution valve 68 to the intake port 32 .
  • the main passage 66 is substantially completely closed regardless of the opening degree of the throttle valve 40c, and intake air can be drawn only from the tumble passage 64. can. Further, by fully opening the throttle valve 40c and fully opening the intake air distribution valve 68, more intake air can be taken in through both the tumble passage 64 and the main passage 66.
  • two fuel injection valves 70 and 72 are provided.
  • the first fuel injection valve 70 is provided to inject fuel into a portion of the intake passage downstream of the throttle valve 40c and upstream of the intake distribution valve 68.
  • the second fuel injection valve 72 is provided so as to inject fuel into the main passage 66 on the downstream side of the intake distribution valve 68 .
  • the fuel injection amount and injection timing from each of these two fuel injection valves 70 and 72 are controlled in association with control of the throttle valve 40c and the intake distribution valve 68, respectively.
  • two fuel injection valves 70 and 72 are provided in the present embodiment, the present invention is not limited to this. only one fuel injection valve 72 may be provided.
  • the throttle valve 40c is not limited to being electronically controlled, and may be a valve mechanically controlled by a throttle cable, for example.
  • An ECU (electronic control unit) 76 that controls the internal combustion engine 10 has a configuration as a so-called computer, and includes an intake control section 78 and a fuel injection control section 80 . That is, the ECU 76 includes a processing unit or processor, for example a CPU, and a storage device or memory including, for example, ROM and RAM. The ECU 76 analyzes the operating state of the internal combustion engine 10 based on outputs from various sensors such as an engine rotation speed sensor and an engine load sensor, and controls each operation of the throttle valve 40c and the intake distribution valve 68 by the intake control unit 78. do. The ECU 76 also controls the operation of each of the fuel injection valves 70 and 72 based on the analyzed operating state of the internal combustion engine 10 .
  • the ECU 76 controls the operations of the throttle valve 40c and the intake air distribution valve 68 so that they are fully opened. Further, in this predetermined operating state, the ECU 76 calculates the fuel injection amount and/or the injection timing of the first fuel injection valve 70 based on pre-stored data, and based on these, the first fuel injection control the operation of the fuel injection valve 70. Similarly, in this predetermined operating state, the ECU 76 calculates the fuel injection amount and/or the injection timing of the second fuel injection valve 72 based on pre-stored data, and based on these, the first 2 fuel injection valve 72 is controlled.
  • a predetermined operating condition such as a high load
  • the ECU 76 controls the operations of the throttle valve 40c and the intake air distribution valve 68 so that they are fully opened. Further, in this predetermined operating state, the ECU 76 calculates the fuel injection amount and/or the injection timing of the first fuel injection valve 70 based on pre-stored data, and based on these, the first fuel injection control the operation of the fuel injection
  • the internal combustion engine 10 positively generates a tumble flow and increases the amount of intake air, as will be described later.
  • the amount is relatively reduced compared to the conventional method. That is, in a predetermined operating state, the internal combustion engine 10 performs lean combustion.
  • FIG. 2A through 2C show cross-sectional views of the internal combustion engine 10.
  • FIG. 2A is a cross-sectional view of the internal combustion engine 10 along line IIA-IIA in FIG. 1
  • FIG. 2B is a cross-sectional view of the internal combustion engine 10 along line IIB-IIB in FIG. 2 is a cross-sectional view of the internal combustion engine 10 taken along line IIC-IIC;
  • FIG. 1 the "left" direction and "right” direction of the intake passage 38 and the like used as shown in FIGS. It is the crossing direction.
  • the "left” direction and the "right” direction shown in FIG. 2 correspond to the directions when the internal combustion engine 10 is mounted on the vehicle.
  • the right direction is the direction extending toward the back side of the paper surface in FIG. 1
  • the left direction is the direction extending toward the front side of the paper surface.
  • the intake passage 38 is divided by a partition 62 such that the main passage 66 is positioned above and the tumble passage 64 is positioned below the main passage 66.
  • the partition portion 62 is provided so as to partition the tumble passage 64 into the intake passage 38, and extends in the intake passage 38 in the intake flow direction so as to separate it from the main passage 66 located above it. do. That is, the partition 62 extends into the intake passage 38 so as to define the tumble passage 64 below the main passage 66 .
  • the main passageway 66 is designed to have a cross-sectional area greater than that of the tumble passageway 64, as is evident from FIG. 2A, for example.
  • FIG. 2A is a cross-sectional view of the intake passage 38 at the intake port 32, taken along line IIA-IIA in FIG. It is a diagram.
  • the tumble passage 64 has a substantially circular cross section, and the main passage 66 is positioned above it. 2A, when defining a line L1 extending vertically through the central axis (flow direction axis) 64A of the tumble passage 64, the main passage 66 and the intake passage 38 are substantially symmetrical with respect to this line L1.
  • the main passage 66 extends downward on both sides of the tumble passage 64 so as to extend across the left and right sides of the tumble passage 64 in the intake air flow direction. That is, in FIG. 2A, the main passage 66 is provided with extension portions 66b on the left and right sides of the tumble passage 64, respectively, which extend downward.
  • FIG. 2B is a cross-sectional view of the intake passage 38 at the intake port 32 at a location downstream of the cross-sectional location of FIG.
  • FIG. 2 is a cross-sectional view in an imaginary plane along line IIB-IIB of FIG. 1 which intersects perpendicularly;
  • the tumble passage 64 has a substantially circular cross-section, and the main passage 66 is located above it.
  • the main passage 66 and the intake passage 38 are substantially symmetrical with respect to this line L2.
  • the enlarged portion 66b of the main passageway 66 extends further below the flow direction axis 64A on both sides of the tumble passageway 64 than in FIG. 2A.
  • the expanded portion 66b of the main passage 66 extends across both sides of the tumble passage 64 in the intake air flow direction, in other words, the width of the tumble passage 64 perpendicular to the intake air flow direction.
  • the partition part 62 is formed so as to extend on both left and right sides in the direction. At this time, the portion of the main passage 66 immediately above the tumble passage 64 becomes narrower than in FIG. 2A due to the intake valve 46 . Therefore, the intake air in the main passage 66 will easily flow to the expanded portions 66b on both sides of the tumble passage 64. As shown in FIG.
  • FIG. 2C is a cross-sectional view of the intake passage 38 at the intake port 32 at a position further downstream than the cross-sectional position of FIG. , and is a cross-sectional view on a virtual plane along line IIC-IIC in FIG. Since partition 62 does not extend to this point, there is no boundary between main passage 66 and tumble passage 64 here.
  • the intake passage 38 is also substantially symmetrical with respect to the line L3 extending vertically through the flow direction axis 64A of the upstream tumble passage 64 in FIG. 2C.
  • a wall portion 80 that defines the intake passage 38 is provided with a wall portion 82 whose curvature changes greatly when coming from the surroundings.
  • the wall portion 82 is provided on the downstream side of the partition portion 62 and is hereinafter referred to as the downstream side wall portion.
  • Downstream sidewall 82 is designed to alter, or deflect, the flow of intake air from main passageway 66 .
  • the downstream side wall portions 82 are provided on both left and right sides of an upper wall portion (hereinafter referred to as an upper side wall portion) 80u extending along an extension line of the main passage 66 among the wall portions 80 defining the air intake passage 38 in the flow direction of the intake air. 2C so as to face the flow direction axis 38A side of the intake passage 38.
  • the downstream side wall portion 82 directs the flow of intake air from, for example, the expanded portion 66b of the main passage 66 to the combustion chamber, from the side of the flow of intake air from the tumble passage 64 to the combustion chamber to the opening of the intake valve 64. It is designed to allow directing to the intake side opening side of the
  • the upper wall portion 80u includes the aforementioned curved outer wall portion 32a of the intake port 32 on which the intake valve 46 is supported via the intake valve guide 44. As shown in FIG.
  • the downstream side wall portion 82 is provided downstream of the partition portion 62 so as to direct the flow of intake air from the main passage 66 to the combustion chamber 20 in a direction that intersects the flow direction of the intake air from the tumble passage 64 to the combustion chamber 20.
  • This is the wall where the The downstream side wall portion 82 is also a wall portion provided on the upstream side of the umbrella portion 46a of the intake valve 46, and is located on the upper side in FIG. 2C. Therefore, the downstream side wall portion 82 is the wall portion on the first direction side, that is, the upper side wall portion of the wall portion 80 defining the intake passage 38 .
  • FIGS. 3 to 5 show a three-dimensional model M of the portion 38d of the intake port 32 (hereinafter referred to as the downstream portion) on the downstream side of the intake passage 38.
  • FIG. 3 is a perspective view from above of the downstream portion 38d of the intake passage 38.
  • FIG. 4 is a view of the downstream portion 38d of the intake passage 38 from the left-right direction of the three-dimensional model M, that is, from a direction orthogonal to the cylinder axis C and the direction extending from the intake side to the exhaust side.
  • FIG. 5 is a bottom view of the three-dimensional model M of the downstream portion 38d of the intake passage 38. As shown in FIG.
  • the tumble passage 64 divided by the partition 62 merges with the main passage 66 on the downstream side of the partition 62 to form a generally circular shape. , and is connected to the combustion chamber 20.
  • the internal combustion engine 10 has a single intake valve 46, and the downstream circle 38e in FIG. Here, a plurality of auxiliary lines are shown on the three-dimensional model M so as to facilitate understanding of its shape.
  • FIG. 6A shows a cross-sectional view of the three-dimensional model M at a position along line VIA-VIA in FIG. 4,
  • FIG. A cross-sectional view along the line VIC--VIC is shown in FIG. 6C.
  • the surface M1 becomes convex inside the intake passage 38 .
  • a face M1 having this shape conforms to the shape of the downstream sidewall 82 of FIG. 2C.
  • the surface M1 that is, the downstream side wall portion 82, is configured so that the wall portion 80 defining and forming the intake passage 38 mainly has an outwardly convex surface, so here the wall portion defining and forming the intake passage 38 is It has a curved shape in the opposite direction to 80 , in other words, it has a curvature smaller than the average curvature of the wall 80 defining the intake passage 38 .
  • valve axis 46c the axis of the intake valve 46 (hereinafter referred to as the valve axis) 46c, the midpoint between the valve axis 46c and the exhaust side end 46d of the intake valve port 28, which is the seat portion or opening of the intake valve 46.
  • An imaginary line L4 passing through 46e and parallel to valve axis 46c is shown. 4 shows the downstream side of the intake passage as seen from the direction in which the partition portion 62 extends, that is, the direction perpendicular to the extending direction of the partition valve 62 and the direction perpendicular to the valve axis 46c of the intake valve 46. corresponds to Fig. In FIG.
  • the surface M1 is partially provided on the exhaust side of the valve axis 46c of the intake valve 46, and positioned on the valve axis 46c side of the imaginary line L4. This is because, in the internal combustion engine 10, when the intake passage is viewed from a direction perpendicular to the valve axis 46c of the intake valve 46 (that is, in FIG. It corresponds to being positioned between the axis 46c and an imaginary line L4 passing through the midpoint 46e between the exhaust-side end 46d of the intake valve port 28 of the intake valve 46 and the valve axis 46c and parallel to the valve axis 46c.
  • At least a portion of the downstream side wall portion 82, preferably substantially all of it, is preferably provided along the valve axis 46c, specifically substantially parallel to the valve axis 46c, like the plane M1 shown in FIG. . This is to effectively direct the flow of intake air from the main passage in a direction that will be described later.
  • FIG. 7 shows a portion of the internal combustion engine 10 with the downstream side of the intake passage 38 enlarged.
  • FIG. 7 is a sectional view of an imaginary plane that roughly bisects the intake port 32 of the intake passage 38 and includes the cylinder axis C, viewed from a direction perpendicular to the imaginary plane.
  • 7 is a view of the downstream side of the intake passage 38 viewed from a direction orthogonal to the extending direction of the gate valve 62, and also a view viewed from a direction orthogonal to the valve axis 46c of the intake valve 46. be.
  • FIG. 8 Of the two downstream side wall portions 82, FIG.
  • FIG. 7 shows the downstream side wall portion 82 located on the far side of the intake valve 46 so as to be distinguishable from the surrounding wall surface defining the intake port 32.
  • the downstream side wall portion 82 is hatched.
  • the downstream side wall portion 82 configured as described above starts from the region where the partition portion 62 extends in the direction of intake air flow and extends to the vicinity of the intake valve port 28 of the intake valve 46 .
  • the intake air from the main passage 66 is directed to the intake side of the intake valve port 28 of the intake valve 46, that is, the intake side opening 28i.
  • downstream side wall portion 82 may be provided so as to start from a position on the downstream side of the downstream edge 62a of the partition portion 62 and extend downstream thereof. Further, the downstream side wall portion 82 is not limited to extending to the vicinity of the intake valve port 28 of the intake valve 46. It may be formed so as to extend to a point extending in the intake flow direction.
  • FIG. 7 shows the downstream end 64b of the tumble passage 64 at the downstream edge 62a of the partition 62, that is, the central axis 64c of the outlet in the flow direction.
  • the exhaust side opening range of the intake valve 46 when the valve is open that is, the exhaust side valve curtain 46f is indicated by a dashed line.
  • the valve curtain 46f is the trajectory of the umbrella portion 46a of the intake valve 46 that reciprocates along the valve axis 46a when the intake valve 46 is open.
  • the central axis 64c of the downstream end 64b of the tumble passage 64 extends through the exhaust side valve curtain 46f of the intake valve 46 on the exhaust side of the valve axis 46c. That is, the central axis 64c of the downstream end 64b of the tumble passage 64 extends through the exhaust side opening 28e of the intake valve port 28 in FIG.
  • FIGS. 8A and 8B A schematic diagram of a downstream portion 38d of the intake passage 38 is shown in FIGS. 8A and 8B.
  • FIG. 8A is a top view of the downstream portion 38d
  • FIG. 8B is a left-right view of the downstream portion 38d.
  • 9 shows a schematic cross-sectional view of the internal combustion engine 10 on a virtual plane that bisects the intake passage 38 into right and left and includes the cylinder axis C.
  • intake air from the tumble passage 64 is labeled "G1"
  • intake air from the main passage 66 is labeled "G2".
  • 8A, 8B, and 9 schematically show the flow of intake air in the above-described predetermined operating state in which the throttle valve 40c and the intake air distribution valve 68 are fully opened.
  • the intake air from the tumble passage 64 flows straight into the combustion chamber 20 through the opening of the intake valve 46, that is, the exhaust side opening 28e of the intake valve port 28.
  • the internal combustion engine 10 is arranged such that the flow direction axis 64c of the downstream end of the tumble passage 64 passes through the portion of the valve curtain of the intake valve 46 on the exhaust side of the valve axis 46c. is designed.
  • the intake air from the main passage 66 mainly flows from the upper side of the tumble passage 64 to the outside thereof, and then flows inward, as shown in FIG. 8A.
  • the intake air from the tumble passage 64 intersects with the flow of intake air and enters the combustion chamber 20 at the intake side opening 28i of the intake valve opening 28 of the intake valve 46. flow from This is because, as described above, the main passageway 66 is provided with an extension 66b extending downward on the side of the tumble passageway 64 as described, for example, with reference to FIGS. 2A and 2B, and the downstream wall portion 82 is provided. because it is
  • FIG. 10A shows the results of a computer simulation performed to verify the effects of the internal combustion engine 10.
  • FIG. 10B also shows a computer simulation result of an internal combustion engine having an intake structure different from the intake structure S of the internal combustion engine 10 (hereinafter referred to as a comparative internal combustion engine).
  • FIGS. 11A and 11B show schematic diagrams of the downstream portion of the intake passage of the comparative internal combustion engine.
  • FIG. 11A is a top view of the downstream portion of the intake passage of the comparative internal combustion engine
  • FIG. 11B is a lateral view of the downstream portion of the intake passage of the comparative internal combustion engine.
  • the intake air from the tumble passage is labeled "G1”
  • the intake air from the main passage is labeled "G2”.
  • the intake structure of the comparative internal combustion engine does not include the downstream side wall portion 82, and the expanded portion of the main passage is narrower and shallower than the expanded portion 66b of the internal combustion engine 10.
  • FIG. 11A show schematic diagrams of the downstream portion of the intake passage of the comparative internal combustion engine.
  • FIG. 11A is a top view of the downstream portion of the intake passage of the comparative internal combustion engine
  • FIG. 11B is a lateral view of the downstream portion of the intake passage of the comparative internal combustion engine.
  • each line represents a streamline, and the denser the streamline, the denser the flow of intake air, ie, the greater the inflow.
  • 10A and 10B for example, region XA in FIG. 10A and region XB in FIG. It has been found that there are more streamlines extending into the combustion chamber 20 . This is probably because the comparative internal combustion engine does not have the downstream side wall portion 82 and the flow G2 is easily affected by the flow G1, whereas in the internal combustion engine 10 the direction of the flow G2 is changed with respect to the flow G1 as described above.
  • the flow rate of intake air flowing through the intake port 32 was measured by computer simulation under the same conditions as the computer simulations of FIGS. 10A and 10B.
  • the results are shown in FIG.
  • FIG. 12 in the internal combustion engine 10 (example in FIG. 12), a larger intake flow rate could be obtained than in the comparative internal combustion engine (comparative example in FIG. 12).
  • the internal combustion engine 10 it is possible to generate the flow of intake air from the tumble passage 64 and the flow of intake air from the main passage 66 as described with reference to FIGS. 8A, 8B and 9. deaf. 10A, more intake air can be introduced into the combustion chamber 20 through the intake-side opening 28i of the intake valve port 28.
  • FIG. 10 since the internal combustion engine 10 is provided with the intake structure S, the intake air can be drawn into the combustion chamber more effectively.
  • FIG. 13 shows the result of measuring and averaging the flow velocity of intake air in the combustion chamber of the internal combustion engine, that is, in the cylinder, by computer simulation.
  • FIG. 13 is a graph plotting the crank angle when the intake valve 46 is open on the horizontal axis and the flow velocity of the intake air on the vertical axis. It should be noted that there is a relationship that the faster the flow velocity of the intake air, the faster the combustion velocity, so the vertical axis in FIG. 13 can be replaced with the combustion velocity. From FIG. 13, it was found that the internal combustion engine 10 (Example of FIG. 13) can obtain a higher flow velocity of intake air in the combustion chamber than the comparative internal combustion engine (Comparative example of FIG. 13).
  • the partition portion 62 is provided so as to divide the intake passage 38 into two passages, the tumble passage 64 and the main passage 66 .
  • the present disclosure does not exclude that the partition is configured to divide the intake passage into three or more.
  • the internal combustion engine 10 employs a SOHC type two-valve system, thus providing a single intake valve per cylinder.
  • the internal combustion engine 10 may be configured with two or more intake valves per cylinder.

Abstract

The purpose of the present disclosure is to provide a configuration that makes it possible for a plurality of intakes that are split by a dividing section and flow into a combustion chamber of an internal combustion engine to be drawn into the combustion chamber more effectively. An intake structure S for an internal combustion engine according to one embodiment of the present invention comprises: a dividing section 62 that is configured so as to split an intake channel 38 into a plurality of channels and that separates a first intake channel 64 and a second intake channel 66 within the intake channel; and a downstream-side wall section 82 that is disposed downstream of the dividing section 62 so that the flow of intake from the second intake channel 66 into a combustion chamber 20 is directed in a direction that intersects the direction of flow of intake from the first intake channel 64 into the combustion chamber 20.

Description

内燃機関の吸気構造Intake structure of internal combustion engine
 本発明は、吸気通路を複数に分ける仕切部を備える内燃機関の吸気構造に関する。 The present invention relates to an intake structure for an internal combustion engine that includes partitions that divide an intake passage into a plurality of sections.
 スロットル弁の下流側の吸気通路が、仕切部により複数の通路に分けられる内燃機関の吸気構造が種々提案されている。例えば、特許文献1の内燃機関の吸気構造では、スロットル弁の下流側にタンブル弁を設け、そのタンブル弁の下流側にインレットパイプから吸気ポートへと続けて仕切部である仕切板部を設け、この仕切板部により吸気通路を上下の下側副通路と上側主通路とに仕切ることが行われる。下側副通路がタンブル通路となり、タンブル弁は上側主通路を実質的に開閉するものである。なお、上記タンブル弁は、吸気振分け弁または吸気制御弁とも称され得るバルブであり、上記仕切部が設けられた内燃機関において、設けられない場合もある(例えば特許文献2参照)。 Various intake structures for internal combustion engines have been proposed in which the intake passage on the downstream side of the throttle valve is divided into a plurality of passages by partitions. For example, in the intake structure for an internal combustion engine disclosed in Patent Document 1, a tumble valve is provided downstream of the throttle valve, and a partition plate portion, which is a partition portion, is provided downstream of the tumble valve from the inlet pipe to the intake port, The partition plate partitions the intake passage into a lower secondary passage and an upper main passage. The lower secondary passage serves as a tumble passage, and the tumble valve substantially opens and closes the upper main passage. Note that the tumble valve is a valve that can also be called an intake distribution valve or an intake control valve, and may not be provided in an internal combustion engine provided with the partition section (see, for example, Patent Document 2).
日本国特許第6714764号公報Japanese Patent No. 6714764 日本国特許第6439070号公報Japanese Patent No. 6439070
 ところで、例えば内燃機関の運転状態が高負荷時などの所定の運転状態のとき、燃焼室への吸気効率を高めるように、スロットル弁又は、スロットル弁及びタンブル弁の両方は全開又はそれに近い状態にされる。近年、燃費向上への要求が更に高まり、前述の所定の運転状態においても、希薄燃焼をより効果的に生じさせつつ、出力向上を図ることが望まれる。そこで、本発明の目的は、吸気通路が仕切部により分けられるように構成された内燃機関において、前述の仕切部により分けられた複数の通路を介して流れる吸気を、より効果的に燃焼室へ吸入することを可能にする構成を提供することにある。 By the way, when the operating state of the internal combustion engine is in a predetermined operating state such as a high load, for example, the throttle valve or both the throttle valve and the tumble valve are fully opened or nearly so so as to increase the efficiency of intake air into the combustion chamber. be done. In recent years, there has been a growing demand for improved fuel efficiency, and it is desired to improve output while more effectively producing lean combustion even in the above-described predetermined operating conditions. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to more effectively direct intake air flowing through a plurality of passages divided by the partitions into a combustion chamber in an internal combustion engine having an intake passage divided by the partitions. To provide a configuration that enables inhalation.
 上記目的を達成するために、本発明の一態様は、
 吸気通路を複数に分けるように構成された仕切部であって、前記吸気通路における第1吸気通路と第2吸気通路とを隔てる、仕切部と、
 前記第1吸気通路から燃焼室への吸気の流れ方向と交差する方向に、前記第2吸気通路から前記燃焼室への吸気の流れを向けるように、前記仕切部の下流側に設けられている下流側壁部と
を備えたことを特徴とする内燃機関の吸気構造
を提供する。
In order to achieve the above object, one aspect of the present invention is
a partition configured to divide an intake passage into a plurality of sections, the partition separating a first intake passage and a second intake passage in the intake passage;
It is provided on the downstream side of the partition so as to direct the flow of intake air from the second intake passage to the combustion chamber in a direction that intersects the flow direction of intake air from the first intake passage to the combustion chamber. and a downstream side wall portion.
 上記構成によれば、第2吸気通路から燃焼室へ流れる吸気が第1吸気通路から燃焼室へ流れる吸気に影響を受けにくくなる。よって、仕切部により分けられた複数の通路を介して流れる吸気を、より効果的に燃焼室へ吸入することが可能になる。 According to the above configuration, the intake air flowing from the second intake passage to the combustion chamber is less likely to be affected by the intake air flowing from the first intake passage to the combustion chamber. Therefore, it becomes possible to more effectively draw the intake air flowing through the plurality of passages divided by the partition into the combustion chamber.
 好ましくは、シリンダ軸線方向においてクランク軸側からシリンダヘッド側の方向を第1方向と定義するとともに、該第1方向と逆向きの方向を第2方向と定義するとき、前記第1吸気通路を前記第2吸気通路の前記第2方向側に区画形成するように、前記仕切部は前記吸気通路に延在し、前記下流側壁部は、前記吸気通路を区画形成する壁部のうち、前記第1方向側に延在する。この構成により、第2吸気通路からの吸気は第1吸気通路からの吸気に影響を受けにくくなり、第2吸気通路からの吸気を効果的に燃焼室側に促すことができる。 Preferably, when a direction from the crankshaft side to the cylinder head side in the cylinder axial direction is defined as a first direction, and a direction opposite to the first direction is defined as a second direction, the first intake passage is defined as the above-mentioned The partition extends into the intake passage so as to define a second intake passage on the second direction side, and the downstream side wall portion is the first direction side. With this configuration, the intake air from the second intake passage is less likely to be affected by the intake air from the first intake passage, and the intake air from the second intake passage can be effectively promoted to the combustion chamber side.
 好ましくは、前記下流側壁部の少なくとも一部は、吸気弁のバルブ軸線に沿って延在する。この構成により、第2吸気通路からの吸気を滑らかに燃焼室側に方向付けることが可能になる。 Preferably, at least part of the downstream side wall portion extends along the valve axis of the intake valve. With this configuration, it is possible to smoothly direct the intake air from the second intake passage toward the combustion chamber.
 好ましくは、前記仕切部の延在方向に対して直交する方向であって吸気弁のバルブ軸線に直交する方向からみたとき、前記下流側壁部の少なくとも一部は、吸気弁のバルブ軸線よりも排気側に設けられていて、かつ、前記吸気弁の開口部の排気側端部と前記バルブ軸線との中間点を通り前記バルブ軸線に平行である仮想線よりも前記バルブ軸線側に設けられている。この構成により、第2吸気通路からの吸気をより効果的に燃焼室に、より好ましくは燃焼室の吸気側に方向付けることが可能になる。 Preferably, when viewed from a direction perpendicular to the extending direction of the partition and perpendicular to the valve axis of the intake valve, at least a part of the downstream side wall is positioned closer to the exhaust than the valve axis of the intake valve. and is provided on the valve axis side of an imaginary line passing through an intermediate point between the exhaust side end of the opening of the intake valve and the valve axis and parallel to the valve axis. . This arrangement makes it possible to more effectively direct the intake air from the second intake passage into the combustion chamber, more preferably to the intake side of the combustion chamber.
 好ましくは、前記仕切部の下流側端縁に定められる前記第1吸気通路の出口部の流れ方向の中心軸線は、吸気弁の開弁時の該吸気弁の排気側開口範囲を貫くように延びる。この構成により、第1吸気通路からの吸気を、流動抵抗を抑えつつ、より効果的に直接的に燃焼室に導くことが可能になる。 Preferably, a central axis in the flow direction of the outlet portion of the first intake passage, which is defined at the downstream edge of the partition portion, extends so as to pass through an opening range of the intake valve on the exhaust side when the intake valve is opened. . With this configuration, the intake air from the first intake passage can be guided more effectively and directly to the combustion chamber while suppressing flow resistance.
 好ましくは、シリンダ軸線方向においてクランク軸側からシリンダヘッド側の方向を第1方向と定義するとともに、該第1方向と逆向きの方向を第2方向と定義するとき、前記下流側壁部は、前記第2吸気通路から前記燃焼室への吸気の流れを、前記第1吸気通路から前記燃焼室への吸気の流れの前記第1方向側から前記第2方向側に向けるように区画形成されている。この構成により、第2吸気通路からの吸気をより効果的に燃焼室に導入することが可能になる。 Preferably, when a direction from the crankshaft side to the cylinder head side in the cylinder axial direction is defined as a first direction and a direction opposite to the first direction is defined as a second direction, the downstream side wall portion A section is formed so that the flow of intake air from the second intake passage to the combustion chamber is directed from the first direction side to the second direction side of the flow of intake air from the first intake passage to the combustion chamber. . This configuration makes it possible to more effectively introduce the intake air from the second intake passage into the combustion chamber.
 好ましくは、前記内燃機関は単一の吸気弁を備え、前記第2吸気通路が前記第1吸気通路の吸気の流れ方向で両側にわたって延びるように、前記仕切部は形成され、前記下流側壁部は、前記第2吸気通路の下流側において前記吸気弁の吸気の流れ方向で両側に位置するように設けられている。この構成により、第2吸気通路からの吸気が第1吸気通路からの吸気に影響を受けることをより効果的に低減することが可能になる。 Preferably, the internal combustion engine includes a single intake valve, the partition is formed so that the second intake passage extends along both sides of the first intake passage in the intake air flow direction, and the downstream side wall portion is , are provided downstream of the second intake passage so as to be located on both sides in the flow direction of the intake air of the intake valve. This configuration makes it possible to more effectively reduce the influence of the intake air from the first intake passage on the intake air from the second intake passage.
 好ましくは、前記下流側壁部は、前記第2吸気通路から前記燃焼室への吸気の流れを、前記第1吸気通路から前記燃焼室への吸気の流れの側方から前記吸気弁の開口部のうちの吸気側開口部側に向けるように、設けられている。この構成により、第2吸気通路からの吸気が第1吸気通路からの吸気に影響を受けることをより一層効果的に低減することが可能になる。 Preferably, the downstream side wall portion directs the flow of intake air from the second intake passage to the combustion chamber from the side of the flow of intake air from the first intake passage to the combustion chamber of the opening of the intake valve. It is provided so as to face the opening on the intake side. With this configuration, it is possible to more effectively reduce the influence of the intake air from the first intake passage on the intake air from the second intake passage.
 好ましくは、前記下流側壁部は、前記吸気通路を区画形成する壁部の平均の曲率よりも小さな曲率を有している。この構成により、第2吸気通路からの吸気の流れの向きを上記下流側壁部でより効果的に変えることが可能になる。 Preferably, the downstream side wall portion has a curvature smaller than the average curvature of the wall portion defining the intake passage. With this configuration, the direction of flow of intake air from the second intake passage can be changed more effectively at the downstream side wall portion.
 本発明の上記態様によれば、上記構成を備えるので、吸気通路が仕切部により分けられるように構成された内燃機関において、前述の仕切部により分けられた複数の通路を介して流れる吸気を、より効果的に燃焼室へ吸入することが可能になる。 According to the above aspect of the present invention, since it has the above configuration, in an internal combustion engine configured such that the intake passage is divided by the partition, the intake air flowing through the plurality of passages divided by the partition is It becomes possible to inhale into the combustion chamber more effectively.
図1は、本発明の一実施形態に係る、内燃機関の要部の概略構成図である。FIG. 1 is a schematic configuration diagram of the essential parts of an internal combustion engine according to one embodiment of the present invention. 図2Aは、図1の内燃機関の断面図であり、図1のIIA-IIA線に沿った内燃機関の断面図である。2A is a cross-sectional view of the internal combustion engine of FIG. 1 and is a cross-sectional view of the internal combustion engine taken along line IIA-IIA of FIG. 1. FIG. 図2Bは、図1の内燃機関の断面図であり、図1のIIB-IIB線に沿った内燃機関の断面図である。2B is a cross-sectional view of the internal combustion engine of FIG. 1, and is a cross-sectional view of the internal combustion engine taken along line IIB-IIB of FIG. 図2Cは、図1の内燃機関の断面図であり、図1のIIC-IIC線に沿った内燃機関の断面図である。2C is a cross-sectional view of the internal combustion engine of FIG. 1, taken along line IIC-IIC of FIG. 1. FIG. 図3は、図1の内燃機関の吸気通路の下流側の部分の立体モデルを示す図であり、上側からみた斜視図である。FIG. 3 is a diagram showing a three-dimensional model of a downstream portion of an intake passage of the internal combustion engine of FIG. 1, and is a perspective view from above. 図4は、図3の立体モデルを左右方向から見た図である。FIG. 4 is a view of the three-dimensional model of FIG. 3 viewed from the left and right. 図5は、図3の立体モデルを下側からみた図である。FIG. 5 is a diagram of the three-dimensional model of FIG. 3 as seen from below. 図6Aは、図3の立体モデルの断面図であり、図4のVIA-VIA線に沿った位置での断面図である。6A is a cross-sectional view of the three-dimensional model of FIG. 3, and a cross-sectional view along line VIA-VIA of FIG. 4. FIG. 図6Bは、図3の立体モデルの断面図であり、図4のVIB-VIB線に沿った位置での断面図である。6B is a cross-sectional view of the three-dimensional model in FIG. 3, and a cross-sectional view along line VIB-VIB in FIG. 図6Cは、図3の立体モデルの断面図であり、図4のVIC-VIC線に沿った位置での断面図である。6C is a cross-sectional view of the three-dimensional model of FIG. 3, and is a cross-sectional view along line VIC-VIC of FIG. 4. FIG. 図7は、吸気通路の下流側を拡大した、図1の内燃機関の一部の拡大断面図である。FIG. 7 is an enlarged cross-sectional view of a portion of the internal combustion engine of FIG. 1, enlarging the downstream side of the intake passage. 図8Aは、図1の内燃機関の吸気通路の下流側の部分の模式図であり、上側からみた図である。8A is a schematic diagram of a downstream portion of an intake passage of the internal combustion engine of FIG. 1, viewed from above. FIG. 図8Bは、図1の内燃機関の吸気通路の下流側の部分の模式図であり、左右方向からみた図である。FIG. 8B is a schematic diagram of the downstream side portion of the intake passage of the internal combustion engine of FIG. 1, viewed from the left-right direction. 図9は、図1の内燃機関の断面模式図である。9 is a schematic cross-sectional view of the internal combustion engine of FIG. 1. FIG. 図10Aは、コンピュータシミュレーション結果であり、図1の内燃機関のものである。FIG. 10A is a computer simulation result for the internal combustion engine of FIG. 図10Bは、コンピュータシミュレーション結果であり、比較内燃機関のものである。FIG. 10B is a computer simulation result for a comparative internal combustion engine. 図11Aは、比較内燃機関の吸気通路の下流側の部分の模式図であり、上側からみた図である。FIG. 11A is a schematic diagram of the downstream portion of the intake passage of the comparative internal combustion engine, viewed from above. 図11Bは、比較内燃機関の吸気通路の下流側の部分の模式図であり、左右方向からみた図である。FIG. 11B is a schematic diagram of the downstream side portion of the intake passage of the comparative internal combustion engine, viewed from the left-right direction. コンピュータシミュレーションにより、吸気ポートを流れる吸気の流量を測定した結果を示すグラフである。4 is a graph showing the results of measuring the flow rate of intake air flowing through the intake port by computer simulation. コンピュータシミュレーションにより、内燃機関の筒内での吸気の流速を計測した結果を示すグラフである。4 is a graph showing the results of measuring the flow velocity of intake air in a cylinder of an internal combustion engine by computer simulation;
 以下、本発明に係る実施形態を添付図に基づいて説明する。同一の部品(又は構成)には同一の符号を付してあり、それらの名称及び機能も同じである。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, an embodiment according to the present invention will be described based on the accompanying drawings. The same parts (or configurations) are given the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 本発明の一実施形態に係る内燃機関10の概略構成を図1に示す。図1は、内燃機関10のシリンダブロック12のシリンダボア12bの軸線(シリンダ軸線)Cに沿った、内燃機関10のシリンダヘッド14側の断面図である。なお、内燃機関10は単気筒エンジンであるが、本発明が適用される内燃機関は複数気筒を有する所謂多気筒エンジンであってもよい。 A schematic configuration of an internal combustion engine 10 according to one embodiment of the present invention is shown in FIG. FIG. 1 is a cross-sectional view of the cylinder head 14 side of the internal combustion engine 10 along the axis (cylinder axis) C of the cylinder bores 12b of the cylinder block 12 of the internal combustion engine 10. FIG. Although the internal combustion engine 10 is a single-cylinder engine, the internal combustion engine to which the present invention is applied may be a so-called multi-cylinder engine having multiple cylinders.
 シリンダブロック12のシリンダボア12b内を往復動するピストン16は、クランクケース部(不図示)のクランク軸(不図示)のクランクピンと、コネクティングロッド18により連結されている。シリンダブロック12のシリンダボア12b内に摺動自在に嵌合されるピストン16の頂面16aと、頂面16aが対向するシリンダヘッド14の燃焼室天井面14aとの間には燃焼室20が構成される。 A piston 16 that reciprocates in the cylinder bore 12b of the cylinder block 12 is connected by a connecting rod 18 to a crankpin of a crankshaft (not shown) of a crankcase (not shown). A combustion chamber 20 is formed between the top surface 16a of the piston 16 slidably fitted in the cylinder bore 12b of the cylinder block 12 and the combustion chamber ceiling surface 14a of the cylinder head 14 facing the top surface 16a. be.
 内燃機関10は、SOHC型式の2バルブシステムを採用しており、シリンダヘッド14に動弁機構22が設けられている。動弁機構22を覆うように、シリンダヘッド14にはシリンダヘッドカバー24が重ねられて被せられる。シリンダヘッドカバー24内の動弁機構22に動力伝達を行うため、図示しない無端状のカムチェーンが、クランクケース部、シリンダブロック12、シリンダヘッド14のクランク軸方向の一方側に設けられた図示しないカムチェーン室を通って、カム軸26とクランク軸との間に架設され、カム軸26はクランク軸に同期して1/2の回転速度で回転する。なお、シリンダヘッド14においてカムチェーン室と反対側(クランク軸方向の他方側)から燃焼室20内に向かって点火プラグ27(図7参照)が嵌挿されている。 The internal combustion engine 10 employs a SOHC type two-valve system, and a valve mechanism 22 is provided in the cylinder head 14 . A cylinder head cover 24 is overlaid on the cylinder head 14 so as to cover the valve mechanism 22 . In order to transmit power to the valve mechanism 22 in the cylinder head cover 24, an endless cam chain (not shown) is connected to a cam (not shown) provided on one side of the crankcase, cylinder block 12, and cylinder head 14 in the crankshaft direction. It is installed between the camshaft 26 and the crankshaft through the chain chamber, and the camshaft 26 rotates in synchronism with the crankshaft at half the rotation speed. A spark plug 27 (see FIG. 7) is inserted into the combustion chamber 20 from the opposite side of the cam chain chamber (the other side in the crankshaft direction) of the cylinder head 14 .
 シリンダヘッド14において、燃焼室天井面14aに開口した吸気弁口28と排気弁口30からは、各々吸気ポート32と排気ポート34が互いに上下に離れる方向に湾曲しながら延出して形成される。吸気ポート32の上流端は、シリンダヘッド14の上方に向けて開口し、インレットパイプ36と接続して、連続した吸気通路38が構成され、インレットパイプ36の上流側に、スロットルボディ40が接続される。 In the cylinder head 14, from an intake valve port 28 and an exhaust valve port 30 that open to the ceiling surface 14a of the combustion chamber, an intake port 32 and an exhaust port 34 are formed so as to extend while curving in directions vertically separating from each other. The upstream end of the intake port 32 opens toward the upper side of the cylinder head 14 and is connected to an inlet pipe 36 to form a continuous intake passage 38. A throttle body 40 is connected to the upstream side of the inlet pipe 36. be.
 排気ポート34の下流端は、シリンダヘッド14の下方に向けて開口し、排気管42に連結される。排気管42の下流側には、排気浄化装置及び消音装置が設けられ得る。 The downstream end of the exhaust port 34 opens downward from the cylinder head 14 and is connected to the exhaust pipe 42 . An exhaust purification device and a silencer may be provided downstream of the exhaust pipe 42 .
 シリンダヘッド14における吸気ポート32の湾曲外壁部32aに一体に円筒状の吸気弁ガイド44が嵌着されている。吸気弁ガイド44に摺動可能に支持された吸気弁46が、吸気ポート32の燃焼室20に臨む吸気弁口28を開閉する。 A cylindrical intake valve guide 44 is integrally fitted to the curved outer wall portion 32a of the intake port 32 in the cylinder head 14. An intake valve 46 slidably supported by an intake valve guide 44 opens and closes an intake valve port 28 of the intake port 32 facing the combustion chamber 20 .
 また、シリンダヘッド14における排気ポート34の湾曲外壁部34aに一体に嵌着された排気弁ガイド48に摺動可能に支持された排気弁50が、排気ポート34の燃焼室20に臨む排気弁口30を開閉する。 Also, an exhaust valve 50 slidably supported by an exhaust valve guide 48 integrally fitted to the curved outer wall portion 34a of the exhaust port 34 in the cylinder head 14 is an exhaust valve opening facing the combustion chamber 20 of the exhaust port 34. Open and close 30.
 吸気弁46および排気弁50はその傘部46a、50aが、いずれも燃焼室20に臨む吸気弁口28、排気弁口30を閉じるように、弁ばねにより上方に付勢されている。カム軸26の吸気カム、排気カムに当接揺動する吸気ロッカアーム56、排気ロッカアーム58によって、吸気弁46、排気弁50のステムエンド46b、50bが押し下げられて、所定のタイミングで吸気弁46、排気弁50が開弁し、吸気ポート32と燃焼室20、また、排気ポート34と燃焼室20が連通し、所定のタイミングの吸気、排気がなされる。 The intake valve 46 and the exhaust valve 50 are biased upward by valve springs so that the head portions 46a and 50a thereof close the intake valve opening 28 and the exhaust valve opening 30 facing the combustion chamber 20, respectively. Stem ends 46b and 50b of the intake valve 46 and the exhaust valve 50 are pushed down by an intake rocker arm 56 and an exhaust rocker arm 58 that contact and oscillate with the intake cam and the exhaust cam of the camshaft 26, and the intake valve 46 and the exhaust valve 50 are opened at a predetermined timing. The exhaust valve 50 opens, the intake port 32 communicates with the combustion chamber 20, and the exhaust port 34 communicates with the combustion chamber 20, and intake and exhaust are performed at predetermined timings.
 内燃機関10の吸気ポート32の上流端には、インシュレ-タ60を介してインレットパイプ36が接続して、連続した吸気通路38が構成され、インレットパイプ36の上流側に、スロットルボディ40が接続される。スロットルボディ40は、内燃機関10の燃焼室20に連なる吸気通路38の一部を構成する断面略円形の吸気路40aを有し、その上流側は、図示しないエアクリーナ装置に接続している。 An inlet pipe 36 is connected to the upstream end of the intake port 32 of the internal combustion engine 10 via an insulator 60 to form a continuous intake passage 38. A throttle body 40 is connected to the upstream side of the inlet pipe 36. be done. The throttle body 40 has an intake passage 40a with a substantially circular cross section forming part of the intake passage 38 communicating with the combustion chamber 20 of the internal combustion engine 10, and the upstream side of the intake passage 40a is connected to an air cleaner device (not shown).
 スロットルボディ40は、その吸気路40aの吸気の流れ方向と垂直、すなわち吸気路40aの中心軸線と直角に交差するスロットル弁軸40bによってスロットルボディ40内に回転自在に軸支されて、吸気路40aの流路面積を可変制御し、吸気路40aを開閉し得るスロットル弁40cを備えている。スロットル弁40cはバタフライ式のもので、スロットル弁軸40bと、スロットル弁軸40bに固定される共に一体的に回転する円盤状の弁体40dとを有している。 The throttle body 40 is rotatably supported in the throttle body 40 by a throttle valve shaft 40b that intersects the central axis of the intake passage 40a at right angles to the flow direction of intake air in the intake passage 40a. It has a throttle valve 40c that can variably control the flow passage area of the air intake passage 40a to open and close the intake passage 40a. The throttle valve 40c is of the butterfly type, and has a throttle valve shaft 40b and a disk-shaped valve body 40d that is fixed to the throttle valve shaft 40b and rotates integrally with the throttle valve shaft 40b.
 スロットル弁40cは運転者の操作等により、図1において反時計回りに開弁方向に回動可能となっているとともに、図示しない復帰ばねにより、弁体40dはそれの縁部が吸気路40aの内壁面に当接する全閉位置に位置するように、閉弁方向に時計回りに付勢されている。 The throttle valve 40c is rotatable counterclockwise in FIG. 1 in the valve opening direction by the driver's operation or the like. It is biased clockwise in the valve closing direction so as to be positioned at the fully closed position in contact with the inner wall surface.
 以上のような内燃機関10において、燃焼室20でのより好ましい燃焼を得るために燃焼室20において燃料・空気混合気のタンブル渦流つまりタンブル流、すなわち縦回転を与えるための吸気構造Sが構成されている。すなわち、吸気通路38は、インレットパイプ36から吸気ポート32へと続く仕切部62によって、吸気流れ方向に沿って分割され、通った吸気が燃焼室20内でタンブル流を発生するように構成されたタンブル通路64と、タンブル通路64を除く主通路66とに仕切られている。タンブル通路64が第1吸気通路に相当し、主通路66が第2吸気通路に相当する。なお、タンブル通路64は副通路と称されてもよい。 In the internal combustion engine 10 as described above, the intake structure S is configured to give a tumble swirl flow of the fuel-air mixture in the combustion chamber 20 in order to obtain more favorable combustion in the combustion chamber 20, i.e., vertical rotation. ing. That is, the intake passage 38 is divided along the direction of intake air flow by a partition portion 62 leading from the inlet pipe 36 to the intake port 32, and is configured such that the passing intake air generates a tumble flow within the combustion chamber 20. It is partitioned into a tumble passage 64 and a main passage 66 excluding the tumble passage 64. - 特許庁The tumble passage 64 corresponds to the first intake passage, and the main passage 66 corresponds to the second intake passage. Note that the tumble passage 64 may also be referred to as a secondary passage.
 吸気通路38の仕切部62によって仕切られた下側部分がタンブル通路64、上側部分が主通路66となるが、本明細書においてはそれらはその上下配置に限定されない。なお、本明細書において、吸気通路38などについての「上」、「下」とは、シリンダ軸線C方向においてクランク軸側からシリンダヘッド14ないしシリンダヘッドカバー24側の方向を「上」又は「上」方向、この「上」方向とは逆向きの方向つまりシリンダヘッド14側からクランク軸側の方向を「下」又は「下」方向といい、空間上の絶対的な「上」、「下」の意味ではない。この「上」又は「上」方向は第1方向に相当し、「下」又は「下」方向は第2方向に相当する。 The lower part of the intake passage 38 partitioned by the partition part 62 is the tumble passage 64, and the upper part is the main passage 66, but in this specification they are not limited to their vertical arrangement. In this specification, the terms "top" and "bottom" with respect to the intake passage 38 and the like refer to the direction from the crankshaft side to the cylinder head 14 or the cylinder head cover 24 side in the direction of the cylinder axis C. The direction opposite to this "up" direction, that is, the direction from the cylinder head 14 side to the crankshaft side is called the "down" or "down" direction, and is the absolute "up" or "down" direction in space. Not meaning. The "up" or "up" direction corresponds to the first direction, and the "down" or "down" direction corresponds to the second direction.
 インレットパイプ36内において、スロットル弁40cよりも下流で仕切部62よりも上流に吸気振分け弁68が設けられている。吸気振分け弁68は、タンブル弁または吸気制御弁とも称され得るバルブである。吸気振分け弁68は、基端の回転軸68aがインレットパイプ36に仕切部62の上流端縁の近傍で回転支持されて、吸気上流側に向けた先端を上下に回動自在としたバルブであり、回転軸68a周りに回動させられる。吸気振分け弁68は、上流のスロットル弁40cに先端を向けて回動することで、スロットル弁40cより下流の吸気を上下に振り分け、タンブル通路64と、主通路66とを流れる吸気の割合を変更することができる。 In the inlet pipe 36, an intake distribution valve 68 is provided downstream of the throttle valve 40c and upstream of the partition portion 62. The intake air distribution valve 68 is a valve that can also be called a tumble valve or an intake control valve. The intake air distribution valve 68 is a valve whose base end rotating shaft 68a is rotatably supported by the inlet pipe 36 in the vicinity of the upstream end edge of the partition part 62, and whose tip facing the intake upstream side is rotatable up and down. , is rotated about the rotation axis 68a. The intake air distribution valve 68 rotates with its tip directed toward the upstream throttle valve 40c to divide the intake air downstream from the throttle valve 40c vertically and change the ratio of the intake air flowing through the tumble passage 64 and the main passage 66. can do.
 仕切部62は、吸気振分け弁68のすぐ下流側の位置から吸気ポート32にまで連続して延びている。吸気振分け弁68を図1に示すように閉じることで、スロットル弁40cの開度にかかわらず、主通路66を実質的に完全に閉じ、タンブル通路64のみからの吸気吸入を可能にすることができる。また、スロットル弁40cを全開にするとともに、吸気振分け弁68を全開にすることで、タンブル通路64と、主通路66との両方を介して、より多くの吸気の吸入を可能にする。 The partition portion 62 continuously extends from a position immediately downstream of the intake distribution valve 68 to the intake port 32 . By closing the intake air distribution valve 68 as shown in FIG. 1, the main passage 66 is substantially completely closed regardless of the opening degree of the throttle valve 40c, and intake air can be drawn only from the tumble passage 64. can. Further, by fully opening the throttle valve 40c and fully opening the intake air distribution valve 68, more intake air can be taken in through both the tumble passage 64 and the main passage 66.
 内燃機関10では、2つの燃料噴射弁70、72が設けられている。第1の燃料噴射弁70はスロットル弁40cの下流側かつ吸気振分け弁68の上流側の吸気通路の部分に燃料を噴射するように設けられている。また、第2の燃料噴射弁72は吸気振分け弁68の下流側の主通路66に燃料を噴射するように設けられている。これら2つの燃料噴射弁70、72の各々からの燃料噴射量及びその噴射タイミングは、スロットル弁40c及び吸気振分け弁68のそれぞれの制御と関連付けて制御される。なお、本実施形態では、2つの燃料噴射弁70、72が設けられるが、これに限定されず、例えばどちらか一方のみ、つまり、第1の燃料噴射弁70のみが設けられても、第2の燃料噴射弁72のみが設けられてもよい。また、スロットル弁40cは、電子制御されることに限定されず、例えばスロットルケーブルで機械的にコントロールされる弁であってもよく、これは吸気振分け弁68においても同様である。  In the internal combustion engine 10, two fuel injection valves 70 and 72 are provided. The first fuel injection valve 70 is provided to inject fuel into a portion of the intake passage downstream of the throttle valve 40c and upstream of the intake distribution valve 68. As shown in FIG. Also, the second fuel injection valve 72 is provided so as to inject fuel into the main passage 66 on the downstream side of the intake distribution valve 68 . The fuel injection amount and injection timing from each of these two fuel injection valves 70 and 72 are controlled in association with control of the throttle valve 40c and the intake distribution valve 68, respectively. Although two fuel injection valves 70 and 72 are provided in the present embodiment, the present invention is not limited to this. only one fuel injection valve 72 may be provided. Further, the throttle valve 40c is not limited to being electronically controlled, and may be a valve mechanically controlled by a throttle cable, for example.
 内燃機関10を制御するECU(電子制御ユニット)76は、所謂コンピュータとしての構成を備え、吸気制御部78及び燃料噴射制御部80を備えている。つまり、ECU76は、例えばCPUである処理装置つまりプロセッサと、例えばROM、RAMを含む記憶装置つまりメモリとを備える。ECU76は、エンジン回転速度センサ、エンジン負荷センサなどの各種センサからの出力に基づいて内燃機関10の運転状態を解析して、吸気制御部78によりスロットル弁40c及び吸気振分け弁68の各作動を制御する。また、ECU76は、解析した内燃機関10の運転状態に基づいて、燃料噴射弁70、72の各々の作動を制御する。例えば、高負荷時などの所定の運転状態のとき、ECU76は、スロットル弁40c及び吸気振分け弁68をそれぞれ全開状態にするように、それらの各作動を制御する。また、この所定の運転状態のとき、ECU76は、予め記憶しているデータに基づいて、第1の燃料噴射弁70の燃料噴射量及び/又はその噴射タイミングを算出し、それらに基づいて第1の燃料噴射弁70の作動を制御する。同様に、この所定の運転状態のとき、ECU76は、予め記憶しているデータに基づいて、第2の燃料噴射弁72の燃料噴射量及び/又はその噴射タイミングを算出し、それらに基づいて第2の燃料噴射弁72の作動を制御する。なお、高負荷時などの所定の運転状態のとき、後述するように内燃機関10ではタンブル流を積極的に生じさせるとともに、吸入空気量をより多くできるので、所望の出力を得るための燃料噴射量は従来に比べて相対的に少なくされる。つまり、所定の運転状態のとき、内燃機関10では、希薄燃焼が実行される。 An ECU (electronic control unit) 76 that controls the internal combustion engine 10 has a configuration as a so-called computer, and includes an intake control section 78 and a fuel injection control section 80 . That is, the ECU 76 includes a processing unit or processor, for example a CPU, and a storage device or memory including, for example, ROM and RAM. The ECU 76 analyzes the operating state of the internal combustion engine 10 based on outputs from various sensors such as an engine rotation speed sensor and an engine load sensor, and controls each operation of the throttle valve 40c and the intake distribution valve 68 by the intake control unit 78. do. The ECU 76 also controls the operation of each of the fuel injection valves 70 and 72 based on the analyzed operating state of the internal combustion engine 10 . For example, under a predetermined operating condition such as a high load, the ECU 76 controls the operations of the throttle valve 40c and the intake air distribution valve 68 so that they are fully opened. Further, in this predetermined operating state, the ECU 76 calculates the fuel injection amount and/or the injection timing of the first fuel injection valve 70 based on pre-stored data, and based on these, the first fuel injection control the operation of the fuel injection valve 70. Similarly, in this predetermined operating state, the ECU 76 calculates the fuel injection amount and/or the injection timing of the second fuel injection valve 72 based on pre-stored data, and based on these, the first 2 fuel injection valve 72 is controlled. In addition, in a predetermined operating state such as a high load, the internal combustion engine 10 positively generates a tumble flow and increases the amount of intake air, as will be described later. The amount is relatively reduced compared to the conventional method. That is, in a predetermined operating state, the internal combustion engine 10 performs lean combustion.
 さて、仕切部62が設けられた吸気通路38の構造について更に説明する。図2Aから図2Cに、内燃機関10の断面図を示す。図2Aは図1のIIA-IIA線に沿った内燃機関10の断面図であり、図2Bは図1のIIB-IIB線に沿った内燃機関10の断面図であり、図2Cは図1のIIC-IIC線に沿った内燃機関10の断面図である。なお、本明細書において、図2Aから図2Cに示すように用いられる吸気通路38などについての「左」方向、「右」方向とは、それぞれ、図1に示す前述の上方向、下方向に交差する方向である。ただし、図2に示す「左」方向及び「右」方向は、内燃機関10を車両に搭載したときの向きに相当する。右方向は図1では紙面奥側に延びる方向であり、左方向は図1では紙面手前側に延びる方向である。これら「左」方向及び「右」方向も、空間上の絶対的な方向を意味するものではない。 Now, the structure of the intake passage 38 provided with the partition portion 62 will be further described. 2A through 2C show cross-sectional views of the internal combustion engine 10. FIG. 2A is a cross-sectional view of the internal combustion engine 10 along line IIA-IIA in FIG. 1, FIG. 2B is a cross-sectional view of the internal combustion engine 10 along line IIB-IIB in FIG. 2 is a cross-sectional view of the internal combustion engine 10 taken along line IIC-IIC; FIG. In this specification, the "left" direction and "right" direction of the intake passage 38 and the like used as shown in FIGS. It is the crossing direction. However, the "left" direction and the "right" direction shown in FIG. 2 correspond to the directions when the internal combustion engine 10 is mounted on the vehicle. The right direction is the direction extending toward the back side of the paper surface in FIG. 1, and the left direction is the direction extending toward the front side of the paper surface. These "left" and "right" directions also do not imply absolute directions in space.
 図2A、図2B及び図2Cに示すように、吸気通路38は、上側に主通路66が位置し、主通路66の下側にタンブル通路64が位置するように、仕切部62により分けられる。仕切部62は、タンブル通路64を吸気通路38に区画形成するように設けられていて、その上方向に位置する主通路66との間を隔てるように吸気通路38においてその吸気流れ方向に延在する。つまりタンブル通路64を主通路66の下側に区画形成するように、仕切部62は吸気通路38に延在する。ここでは、例えば図2Aから明らかなように、主通路66は、タンブル通路64の断面積よりも大きな断面積を有するように設計されている。 As shown in FIGS. 2A, 2B and 2C, the intake passage 38 is divided by a partition 62 such that the main passage 66 is positioned above and the tumble passage 64 is positioned below the main passage 66. The partition portion 62 is provided so as to partition the tumble passage 64 into the intake passage 38, and extends in the intake passage 38 in the intake flow direction so as to separate it from the main passage 66 located above it. do. That is, the partition 62 extends into the intake passage 38 so as to define the tumble passage 64 below the main passage 66 . Here, the main passageway 66 is designed to have a cross-sectional area greater than that of the tumble passageway 64, as is evident from FIG. 2A, for example.
 図2Aは、吸気ポート32での吸気通路38の断面図であり、仕切部62が延在する領域での吸気流れ方向に略直交する図1のIIA-IIA線に沿った仮想面での断面図である。タンブル通路64は断面略円形であり、その上側に主通路66が位置している。図2Aにおいてタンブル通路64の流れ方向の中心軸線(流れ方向軸線)64Aを通り上下に延びる線L1を定めるとき、この線L1に関して主通路66及び吸気通路38は略左右対称である。そして、主通路66は図2Aの断面図において略長方形形状であり、タンブル通路64の吸気流れ方向で左右両側にわたって延びるように、タンブル通路64の両脇で下方向に拡張する。つまり、図2Aにおいて、主通路66は、タンブル通路64の左右のそれぞれに、下方向にそれを拡張する拡張部66bを備える。 FIG. 2A is a cross-sectional view of the intake passage 38 at the intake port 32, taken along line IIA-IIA in FIG. It is a diagram. The tumble passage 64 has a substantially circular cross section, and the main passage 66 is positioned above it. 2A, when defining a line L1 extending vertically through the central axis (flow direction axis) 64A of the tumble passage 64, the main passage 66 and the intake passage 38 are substantially symmetrical with respect to this line L1. 2A, the main passage 66 extends downward on both sides of the tumble passage 64 so as to extend across the left and right sides of the tumble passage 64 in the intake air flow direction. That is, in FIG. 2A, the main passage 66 is provided with extension portions 66b on the left and right sides of the tumble passage 64, respectively, which extend downward.
 図2Bは、吸気ポート32での吸気通路38の、図2Aの断面の位置よりも下流側の位置での断面図であり、仕切部62の下流端縁62aの位置での吸気流れ方向に略直交する図1のIIB-IIB線に沿った仮想面での断面図である。ここでも、タンブル通路64は断面略円形であり、その上側に主通路66が位置している。図2Bにおいてもタンブル通路64の流れ方向軸線64Aを通り上下に延びる線L2を定めるとき、この線L2に関して主通路66及び吸気通路38は略左右対称である。そして、図2Bの断面図において、主通路66の拡張部66bは、図2Aの場合よりも更にタンブル通路64の両脇でその流れ方向軸線64Aの下方にまで拡張する。つまり、図2Bの断面図において主通路66の拡張部66bが図2Aの場合よりも更にタンブル通路64の吸気流れ方向で両側にわたって延びるように、換言するとタンブル通路64の吸気流れ方向に直交する幅方向の左右両側において延びるように、仕切部62は形成されている。このとき、タンブル通路64の真上の主通路66の部分は吸気弁46により、図2Aのときよりも狭くなる。したがって、主通路66の吸気はタンブル通路64の両脇の拡張部66bに流れ易くなるであろう。 2B is a cross-sectional view of the intake passage 38 at the intake port 32 at a location downstream of the cross-sectional location of FIG. FIG. 2 is a cross-sectional view in an imaginary plane along line IIB-IIB of FIG. 1 which intersects perpendicularly; Again, the tumble passage 64 has a substantially circular cross-section, and the main passage 66 is located above it. Also in FIG. 2B, when defining a line L2 extending vertically through the flow direction axis 64A of the tumble passage 64, the main passage 66 and the intake passage 38 are substantially symmetrical with respect to this line L2. 2B, the enlarged portion 66b of the main passageway 66 extends further below the flow direction axis 64A on both sides of the tumble passageway 64 than in FIG. 2A. 2B, the expanded portion 66b of the main passage 66 extends across both sides of the tumble passage 64 in the intake air flow direction, in other words, the width of the tumble passage 64 perpendicular to the intake air flow direction. The partition part 62 is formed so as to extend on both left and right sides in the direction. At this time, the portion of the main passage 66 immediately above the tumble passage 64 becomes narrower than in FIG. 2A due to the intake valve 46 . Therefore, the intake air in the main passage 66 will easily flow to the expanded portions 66b on both sides of the tumble passage 64. As shown in FIG.
 図2Cは、吸気ポート32での吸気通路38の、図2Bの断面の位置よりも更に下流側の位置での、つまり仕切部62の下流端縁62aよりも更に下流側の位置での断面図であり、吸気流れ方向に略直交する図1のIIC-IIC線に沿った仮想面での断面図である。ここまでは仕切部62は延びていないので、ここでは、主通路66とタンブル通路64との境界はない。吸気通路38は、図2Cにおいても、上流側のタンブル通路64の流れ方向軸線64Aを通り上下に延びる線L3を定めるとき、この線L3に関して略左右対称である。 FIG. 2C is a cross-sectional view of the intake passage 38 at the intake port 32 at a position further downstream than the cross-sectional position of FIG. , and is a cross-sectional view on a virtual plane along line IIC-IIC in FIG. Since partition 62 does not extend to this point, there is no boundary between main passage 66 and tumble passage 64 here. The intake passage 38 is also substantially symmetrical with respect to the line L3 extending vertically through the flow direction axis 64A of the upstream tumble passage 64 in FIG. 2C.
 図2Cに示すように、吸気通路38を区画形成する壁部80には、周囲から至るときに曲率が大きく変化する壁部82が設けられている。壁部82は、仕切部62の下流側に設けられていて、以下では下流側壁部と称する。下流側壁部82は主通路66からの吸気の流れを変えるように、換言すると偏向させるように設計されている。下流側壁部82は、吸気通路38を区画形成する壁部80のうち主通路66の延長線上に延びる上側の壁部(以下、上側壁部)80uの吸気の流れ方向で左右両側のそれぞれに設けられ、吸気通路38の流れ方向軸線38A側を向くように図2Cにおいて概ね斜めに傾いて設計されている。具体的には、下流側壁部82は、主通路66の例えば拡張部66bから燃焼室への吸気の流れを、タンブル通路64から燃焼室への吸気の流れの側方から吸気弁64の開口部のうちの吸気側開口部側に向けることを可能にするように設計されている。なお、上側壁部80uは、吸気弁ガイド44を介して吸気弁46が支持されている吸気ポート32の前述の湾曲外壁部32aを含む。 As shown in FIG. 2C, a wall portion 80 that defines the intake passage 38 is provided with a wall portion 82 whose curvature changes greatly when coming from the surroundings. The wall portion 82 is provided on the downstream side of the partition portion 62 and is hereinafter referred to as the downstream side wall portion. Downstream sidewall 82 is designed to alter, or deflect, the flow of intake air from main passageway 66 . The downstream side wall portions 82 are provided on both left and right sides of an upper wall portion (hereinafter referred to as an upper side wall portion) 80u extending along an extension line of the main passage 66 among the wall portions 80 defining the air intake passage 38 in the flow direction of the intake air. 2C so as to face the flow direction axis 38A side of the intake passage 38. As shown in FIG. Specifically, the downstream side wall portion 82 directs the flow of intake air from, for example, the expanded portion 66b of the main passage 66 to the combustion chamber, from the side of the flow of intake air from the tumble passage 64 to the combustion chamber to the opening of the intake valve 64. It is designed to allow directing to the intake side opening side of the The upper wall portion 80u includes the aforementioned curved outer wall portion 32a of the intake port 32 on which the intake valve 46 is supported via the intake valve guide 44. As shown in FIG.
 下流側壁部82は、タンブル通路64から燃焼室20への吸気の流れ方向と交差する方向に、主通路66から燃焼室20への吸気の流れを向けるように、仕切部62の下流側に設けられている壁部である。この下流側壁部82は、吸気弁46の傘部46aの上流側に設けられている壁部でもあり、図2Cにおいては上側に位置する。したがって、下流側壁部82は、吸気通路38を区画形成する壁部80のうち、第1方向側のつまり上側の壁部である。 The downstream side wall portion 82 is provided downstream of the partition portion 62 so as to direct the flow of intake air from the main passage 66 to the combustion chamber 20 in a direction that intersects the flow direction of the intake air from the tumble passage 64 to the combustion chamber 20. This is the wall where the The downstream side wall portion 82 is also a wall portion provided on the upstream side of the umbrella portion 46a of the intake valve 46, and is located on the upper side in FIG. 2C. Therefore, the downstream side wall portion 82 is the wall portion on the first direction side, that is, the upper side wall portion of the wall portion 80 defining the intake passage 38 .
 ここで、吸気通路38の下流側の、具体的には吸気ポート32の部分(以下、下流部分)38dの立体モデルMを図3から図5に示す。図3は吸気通路38の下流部分38dの上側からの斜視図である。図4は吸気通路38の下流部分38dの立体モデルMの左右方向からの、つまりシリンダ軸線Cに直交するとともに吸気側から排気側に延びる方向に直交する方向からの図である。図5は、吸気通路38の下流部分38dの立体モデルMを下側からみた図である。 Here, FIGS. 3 to 5 show a three-dimensional model M of the portion 38d of the intake port 32 (hereinafter referred to as the downstream portion) on the downstream side of the intake passage 38. FIG. 3 is a perspective view from above of the downstream portion 38d of the intake passage 38. FIG. FIG. 4 is a view of the downstream portion 38d of the intake passage 38 from the left-right direction of the three-dimensional model M, that is, from a direction orthogonal to the cylinder axis C and the direction extending from the intake side to the exhaust side. FIG. 5 is a bottom view of the three-dimensional model M of the downstream portion 38d of the intake passage 38. As shown in FIG.
 図3、図4及び図5から明らかなように、吸気通路38の下流部分38dでは、仕切部62により分けられたタンブル通路64が仕切部62の下流側で主通路66と合流し、略円形の流路となり、燃焼室20につながる。内燃機関10は単一の吸気弁46を備えていて、図5において下流部分の円38eは吸気弁46の開口つまり上記吸気弁口28に相当する。ここで、立体モデルMにはその形状を理解しやすくするように複数の補助線が表されている。 3, 4 and 5, in the downstream portion 38d of the intake passage 38, the tumble passage 64 divided by the partition 62 merges with the main passage 66 on the downstream side of the partition 62 to form a generally circular shape. , and is connected to the combustion chamber 20. The internal combustion engine 10 has a single intake valve 46, and the downstream circle 38e in FIG. Here, a plurality of auxiliary lines are shown on the three-dimensional model M so as to facilitate understanding of its shape.
 立体モデルMにおける、図4のVIA-VIA線に沿った位置での断面図を図6Aに示し、図4のVIB-VIB線に沿った位置での断面図を図6Bに示し、図4のVIC-VIC線に沿った位置での断面図を図6Cに示す。図6Aから図6Cに下流側に移るしたがい、面M1が吸気通路38の内側に凸になる。この形状を有する面M1は、図2Cの下流側壁部82の形状に一致する。したがって、面M1つまり下流側壁部82は、吸気通路38を区画形成する壁部80は主に外側に凸の面を有して構成されているので、ここでは吸気通路38を区画形成する壁部80とは逆方向の湾曲形状を有していて、換言すると、吸気通路38を区画形成する壁部80の平均の曲率よりも小さな曲率を有している。 FIG. 6A shows a cross-sectional view of the three-dimensional model M at a position along line VIA-VIA in FIG. 4, FIG. A cross-sectional view along the line VIC--VIC is shown in FIG. 6C. As it moves downstream from FIG. 6A to FIG. 6C, the surface M1 becomes convex inside the intake passage 38 . A face M1 having this shape conforms to the shape of the downstream sidewall 82 of FIG. 2C. Therefore, the surface M1, that is, the downstream side wall portion 82, is configured so that the wall portion 80 defining and forming the intake passage 38 mainly has an outwardly convex surface, so here the wall portion defining and forming the intake passage 38 is It has a curved shape in the opposite direction to 80 , in other words, it has a curvature smaller than the average curvature of the wall 80 defining the intake passage 38 .
 ここで、図4に、吸気弁46の軸線(以下、バルブ軸線)46cと、吸気弁46のシート部つまり開口部である吸気弁口28の排気側端部46dとバルブ軸線46cとの中間点46eを通りバルブ軸線46cに平行な仮想線L4を示す。なお、図4は、仕切部62が延在する方向つまり仕切弁62の延在方向に対して直交する方向であって吸気弁46のバルブ軸線46cに直交する方向からみた吸気通路の下流側の図に相当する。図4において、面M1は、部分的に、吸気弁46のバルブ軸線46cよりも排気側に設けられていて、かつ、仮想線L4よりもバルブ軸線46c側に位置付けられている。これは、内燃機関10では、吸気弁46のバルブ軸線46cに直交する方向から吸気通路をみたとき(つまり図4において)、下流側壁部82の少なくとも一部は、好ましくはその概ね全部が、バルブ軸線46cと、吸気弁46の吸気弁口28の排気側端部46dとバルブ軸線46cとの中間点46eを通りバルブ軸線46cに平行な仮想線L4との間に位置することに対応する。なお、下流側壁部82の少なくとも一部は、好ましくはその概ね全部は、図4に示す面M1と同じく、バルブ軸線46cに沿って、具体的にはバルブ軸線46cに略平行に設けられるとよい。これは、後述する方向に、主通路からの吸気の流れを効果的に向けるためである。 Here, in FIG. 4, the axis of the intake valve 46 (hereinafter referred to as the valve axis) 46c, the midpoint between the valve axis 46c and the exhaust side end 46d of the intake valve port 28, which is the seat portion or opening of the intake valve 46. An imaginary line L4 passing through 46e and parallel to valve axis 46c is shown. 4 shows the downstream side of the intake passage as seen from the direction in which the partition portion 62 extends, that is, the direction perpendicular to the extending direction of the partition valve 62 and the direction perpendicular to the valve axis 46c of the intake valve 46. corresponds to Fig. In FIG. 4, the surface M1 is partially provided on the exhaust side of the valve axis 46c of the intake valve 46, and positioned on the valve axis 46c side of the imaginary line L4. This is because, in the internal combustion engine 10, when the intake passage is viewed from a direction perpendicular to the valve axis 46c of the intake valve 46 (that is, in FIG. It corresponds to being positioned between the axis 46c and an imaginary line L4 passing through the midpoint 46e between the exhaust-side end 46d of the intake valve port 28 of the intake valve 46 and the valve axis 46c and parallel to the valve axis 46c. At least a portion of the downstream side wall portion 82, preferably substantially all of it, is preferably provided along the valve axis 46c, specifically substantially parallel to the valve axis 46c, like the plane M1 shown in FIG. . This is to effectively direct the flow of intake air from the main passage in a direction that will be described later.
 図7に、吸気通路38の下流側を拡大した内燃機関10の一部を示す。図7は、吸気通路38の吸気ポート32を左右で略二分するとともにシリンダ軸線Cを含む仮想平面での断面図であり、その仮想平面に直交する方向からみた図である。なお、図7は、吸気通路38の下流側を、仕切弁62の延在方向に対して直交する方向からみた図であるとともに、また吸気弁46のバルブ軸線46cに直交する方向からみた図でもある。図7に、2つの下流側壁部82のうちの、吸気弁46の奥側に位置する下流側壁部82をその周囲の吸気ポート32を区画形成する壁面と区別できるように示す。より具体的には、図7では、下流側壁部82をハッチングで示している。ここでは、上記のように構成された下流側壁部82は、吸気流れ方向において仕切部62が延在する領域から始まり、吸気弁46の吸気弁口28近傍にまで延在する。これにより、主通路66からの吸気を吸気弁46の吸気弁口28の吸気側つまり吸気側開口部28iに向けようとする。なお、下流側壁部82は、仕切部62の下流側端縁62aの下流側の位置から始まり、その下流側に延びるように設けられてもよい。また、下流側壁部82は、吸気弁46の吸気弁口28近傍にまで延びることに限定されず、例えば仕切部62の下流側端縁62aの位置における主通路66の出口部を主通路66の吸気流れ方向に延長した箇所まで延びるように形成されてもよい。 FIG. 7 shows a portion of the internal combustion engine 10 with the downstream side of the intake passage 38 enlarged. FIG. 7 is a sectional view of an imaginary plane that roughly bisects the intake port 32 of the intake passage 38 and includes the cylinder axis C, viewed from a direction perpendicular to the imaginary plane. 7 is a view of the downstream side of the intake passage 38 viewed from a direction orthogonal to the extending direction of the gate valve 62, and also a view viewed from a direction orthogonal to the valve axis 46c of the intake valve 46. be. Of the two downstream side wall portions 82, FIG. 7 shows the downstream side wall portion 82 located on the far side of the intake valve 46 so as to be distinguishable from the surrounding wall surface defining the intake port 32. As shown in FIG. More specifically, in FIG. 7, the downstream side wall portion 82 is hatched. Here, the downstream side wall portion 82 configured as described above starts from the region where the partition portion 62 extends in the direction of intake air flow and extends to the vicinity of the intake valve port 28 of the intake valve 46 . As a result, the intake air from the main passage 66 is directed to the intake side of the intake valve port 28 of the intake valve 46, that is, the intake side opening 28i. Note that the downstream side wall portion 82 may be provided so as to start from a position on the downstream side of the downstream edge 62a of the partition portion 62 and extend downstream thereof. Further, the downstream side wall portion 82 is not limited to extending to the vicinity of the intake valve port 28 of the intake valve 46. It may be formed so as to extend to a point extending in the intake flow direction.
 更に、この図7に、仕切部62の下流側端縁62aにおけるタンブル通路64の下流端部64bつまり出口部の流れ方向の中心軸線64cを示す。また、図7に、吸気弁46の開弁時のそれの排気側開口範囲つまり排気側バルブカーテン46fを破線で示す。なお、バルブカーテン46fは、吸気弁46の開弁時に、バルブ軸線46aに沿って往復動する吸気弁46の傘部46aによる軌跡である。図7から明らかなように、タンブル通路64の下流端部64bの中心軸線64cは、バルブ軸線46cよりも排気側において、吸気弁46の排気側バルブカーテン46fを貫くように延びる。すなわち、タンブル通路64の下流端部64bの中心軸線64cは、図7において、吸気弁口28のうち排気側開口部28eを貫くように延びる。 Further, FIG. 7 shows the downstream end 64b of the tumble passage 64 at the downstream edge 62a of the partition 62, that is, the central axis 64c of the outlet in the flow direction. In FIG. 7, the exhaust side opening range of the intake valve 46 when the valve is open, that is, the exhaust side valve curtain 46f is indicated by a dashed line. The valve curtain 46f is the trajectory of the umbrella portion 46a of the intake valve 46 that reciprocates along the valve axis 46a when the intake valve 46 is open. 7, the central axis 64c of the downstream end 64b of the tumble passage 64 extends through the exhaust side valve curtain 46f of the intake valve 46 on the exhaust side of the valve axis 46c. That is, the central axis 64c of the downstream end 64b of the tumble passage 64 extends through the exhaust side opening 28e of the intake valve port 28 in FIG.
 以下、上記構成を備える内燃機関10の吸気構造Sにおける作用及び効果を説明する。 The operation and effect of the intake structure S of the internal combustion engine 10 having the above configuration will be described below.
 図8A及び図8Bに、吸気通路38の下流部分38dの模式図を示す。図8Aは下流部分38dを上側からみた図であり、図8Bは下流部分38dを左右方向からみた図である。また、図9に、吸気通路38を左右に略二分するとともにシリンダ軸線Cを含む仮想平面での内燃機関10の断面模式図を示す。図8A、図8B及び図9では、タンブル通路64からの吸気に符号「G1」を付し、主通路66からの吸気に符号「G2」を付す。なお、図8A、図8B及び図9は、スロットル弁40c及び吸気振分け弁68のそれぞれを全開状態にする上記所定の運転状態での吸気の流れを模式的に示すものである。 A schematic diagram of a downstream portion 38d of the intake passage 38 is shown in FIGS. 8A and 8B. FIG. 8A is a top view of the downstream portion 38d, and FIG. 8B is a left-right view of the downstream portion 38d. 9 shows a schematic cross-sectional view of the internal combustion engine 10 on a virtual plane that bisects the intake passage 38 into right and left and includes the cylinder axis C. As shown in FIG. 8A, 8B and 9, intake air from the tumble passage 64 is labeled "G1" and intake air from the main passage 66 is labeled "G2". 8A, 8B, and 9 schematically show the flow of intake air in the above-described predetermined operating state in which the throttle valve 40c and the intake air distribution valve 68 are fully opened.
 図8及び図9に示すように、タンブル通路64からの吸気は、吸気弁46の開弁時、真っすぐに燃焼室20内に吸気弁46の開口部つまり吸気弁口28の排気側開口部28eから流入する。これは、図7に基づいて説明したように、タンブル通路64の下流端の流れ方向軸線64cが吸気弁46のバルブカーテンのバルブ軸線46cよりも排気側の部分を通過するように、内燃機関10が設計されているからである。 As shown in FIGS. 8 and 9, when the intake valve 46 is open, the intake air from the tumble passage 64 flows straight into the combustion chamber 20 through the opening of the intake valve 46, that is, the exhaust side opening 28e of the intake valve port 28. flow from As described with reference to FIG. 7, the internal combustion engine 10 is arranged such that the flow direction axis 64c of the downstream end of the tumble passage 64 passes through the portion of the valve curtain of the intake valve 46 on the exhaust side of the valve axis 46c. is designed.
 また、上記所定の運転状態に吸気弁46が開弁したとき、主通路66からの吸気は、主に、図8Aに示すように、タンブル通路64の上側からその外側に流れ、内側に方向を変えられつつ、図8B及び図9に示すようにタンブル通路64からの吸気の流れに交差するように流れ、燃焼室20内に吸気弁46の吸気弁口28の吸気側つまり吸気側開口部28iから流入する。これは、上記のごとく、例えば図2A及び図2Bに基づいて説明したようにタンブル通路64の側方で下方向に拡張する拡張部66bを主通路66が備えるとともに、上記下流側壁部82が設けられているからである。 Further, when the intake valve 46 is opened in the above-described predetermined operating state, the intake air from the main passage 66 mainly flows from the upper side of the tumble passage 64 to the outside thereof, and then flows inward, as shown in FIG. 8A. As shown in FIGS. 8B and 9, the intake air from the tumble passage 64 intersects with the flow of intake air and enters the combustion chamber 20 at the intake side opening 28i of the intake valve opening 28 of the intake valve 46. flow from This is because, as described above, the main passageway 66 is provided with an extension 66b extending downward on the side of the tumble passageway 64 as described, for example, with reference to FIGS. 2A and 2B, and the downstream wall portion 82 is provided. because it is
 ここで、上記内燃機関10における効果を検証するべく行ったコンピュータシミュレーション結果を図10Aに示す。ただし、このコンピュータシミュレーションの各種条件は、吸気通路の各種バルブ40c、68を全開とする上記所定の運転状態を模したものとした。また、上記内燃機関10の吸気構造Sと異なる吸気構造を備える内燃機関(以下、比較内燃機関)におけるコンピュータシミュレーション結果を図10Bに併せて示す。 FIG. 10A shows the results of a computer simulation performed to verify the effects of the internal combustion engine 10. FIG. However, the various conditions of this computer simulation imitated the above-described predetermined operating state in which the various valves 40c and 68 of the intake passage are fully opened. FIG. 10B also shows a computer simulation result of an internal combustion engine having an intake structure different from the intake structure S of the internal combustion engine 10 (hereinafter referred to as a comparative internal combustion engine).
 ここで、比較内燃機関の吸気構造を図11A及び図11Bに基づいて説明する。図11A及び図11Bに、比較内燃機関の吸気通路の下流側の部分の模式図を示す。図11Aは比較内燃機関の吸気通路の下流側の部分を上側からみた図であり、図11Bは比較内燃機関の吸気通路の下流側の部分を左右方向から見た図である。図11A及び図11Bでも、タンブル通路からの吸気に符号「G1」を付し、主通路からの吸気に符号「G2」を付す。比較内燃機関の吸気構造は、上記内燃機関10の吸気構造Sと異なり、上記下流側壁部82を備えず、主通路の拡張部を内燃機関10における拡張部66bよりも狭くかつ浅くしている。 Here, the intake structure of the comparative internal combustion engine will be explained based on FIGS. 11A and 11B. 11A and 11B show schematic diagrams of the downstream portion of the intake passage of the comparative internal combustion engine. FIG. 11A is a top view of the downstream portion of the intake passage of the comparative internal combustion engine, and FIG. 11B is a lateral view of the downstream portion of the intake passage of the comparative internal combustion engine. 11A and 11B, the intake air from the tumble passage is labeled "G1", and the intake air from the main passage is labeled "G2". Unlike the intake structure S of the internal combustion engine 10, the intake structure of the comparative internal combustion engine does not include the downstream side wall portion 82, and the expanded portion of the main passage is narrower and shallower than the expanded portion 66b of the internal combustion engine 10. FIG.
 図10A及び図10Bに戻り、コンピュータシミュレーション結果の説明を続ける。なお、図10A及び図10Bにおいて、各線は流線を示し、その流線が密な所ほど、吸気の流れが密つまり流入量が多いことを意味する。図10A及び図10Bの比較により、例えば図10Aの領域XA及び図10Bの領域XBの比較により、上記内燃機関10では、比較内燃機関と比べて、吸気弁口28のうち吸気側開口部28iから燃焼室20に延びる流線がより多いことが分かった。これは、比較内燃機関では下流側壁部82を備えず流れG2が流れG1に影響を受けやすいところ、内燃機関10では上述のごとく流れG1に対して流れG2の方向が変えられるためであろう。 Returning to FIGS. 10A and 10B, the explanation of the computer simulation results continues. In FIGS. 10A and 10B, each line represents a streamline, and the denser the streamline, the denser the flow of intake air, ie, the greater the inflow. 10A and 10B, for example, region XA in FIG. 10A and region XB in FIG. It has been found that there are more streamlines extending into the combustion chamber 20 . This is probably because the comparative internal combustion engine does not have the downstream side wall portion 82 and the flow G2 is easily affected by the flow G1, whereas in the internal combustion engine 10 the direction of the flow G2 is changed with respect to the flow G1 as described above.
 また、図10A及び図10Bのコンピュータシミュレーションと同条件下でのコンピュータシミュレーションにより、吸気ポート32を流れる吸気の流量を測定した。その結果を図12に示す。図12に示すように、上記内燃機関10(図12の実施例)では、比較内燃機関(図12の比較例)と比べて、より多くの吸気流量を得ることができた。これは、内燃機関10において、図8A、図8B及び図9に基づいて説明したようにタンブル通路64からの吸気の流れと主通路66からの吸気の流れとを生じさせることができるためであろう。また、図10Aに基づいて説明したように、吸気弁口28のうち吸気側開口部28iから燃焼室20により多くの吸気を導入できるためであろう。このように、内燃機関10では、上記吸気構造Sを備えるので、燃焼室に吸気をより効果的に吸入することができる。 In addition, the flow rate of intake air flowing through the intake port 32 was measured by computer simulation under the same conditions as the computer simulations of FIGS. 10A and 10B. The results are shown in FIG. As shown in FIG. 12, in the internal combustion engine 10 (example in FIG. 12), a larger intake flow rate could be obtained than in the comparative internal combustion engine (comparative example in FIG. 12). This is because in the internal combustion engine 10, it is possible to generate the flow of intake air from the tumble passage 64 and the flow of intake air from the main passage 66 as described with reference to FIGS. 8A, 8B and 9. deaf. 10A, more intake air can be introduced into the combustion chamber 20 through the intake-side opening 28i of the intake valve port 28. As shown in FIG. As described above, since the internal combustion engine 10 is provided with the intake structure S, the intake air can be drawn into the combustion chamber more effectively.
 更に、内燃機関の燃焼室つまり筒内での吸気の流速をコンピュータシミュレーションにより計測して平均化した結果を図13に示す。図13は、横軸に吸気弁46の開弁時のクランク角度をとり、縦軸に吸気の流速をとってその結果をプロットしたグラフである。なお、吸気の流速が速いと燃焼速度が速くなる関係があるので、図13の縦軸は燃焼速度に置き換えることができる。図13から、上記内燃機関10(図13の実施例)では、比較内燃機関(図13の比較例)と比べて、燃焼室で、より速い吸気の流速を得られることが分かった。これは、上記のごとく主通路66からの吸気の流れがタンブル通路64からの吸気の流れに影響を受けることを改善でき、タンブル通路64からの吸気の流れで燃焼室20においてタンブル流をより効果的に生じさせることができるためであろう(例えば図9の流れG1参照)。 Furthermore, FIG. 13 shows the result of measuring and averaging the flow velocity of intake air in the combustion chamber of the internal combustion engine, that is, in the cylinder, by computer simulation. FIG. 13 is a graph plotting the crank angle when the intake valve 46 is open on the horizontal axis and the flow velocity of the intake air on the vertical axis. It should be noted that there is a relationship that the faster the flow velocity of the intake air, the faster the combustion velocity, so the vertical axis in FIG. 13 can be replaced with the combustion velocity. From FIG. 13, it was found that the internal combustion engine 10 (Example of FIG. 13) can obtain a higher flow velocity of intake air in the combustion chamber than the comparative internal combustion engine (Comparative example of FIG. 13). This can improve the intake air flow from the main passage 66 from being affected by the intake air flow from the tumble passage 64 as described above, and the tumble flow in the combustion chamber 20 can be made more effective with the intake air flow from the tumble passage 64. This is probably because it can be generated dynamically (see flow G1 in FIG. 9, for example).
 以上、本発明に係る実施形態及びその変形例について説明したが、本発明はそれらに限定されない。本願の請求の範囲によって定義される本発明の精神及び範囲から逸脱しない限り、種々の置換、変更が可能である。 Although the embodiments and modifications of the present invention have been described above, the present invention is not limited to them. Various substitutions and changes can be made without departing from the spirit and scope of the invention as defined by the claims of this application.
 例えば、上記内燃機関では、仕切部62は吸気通路38をタンブル通路64と主通路66との2つの流路に分けるように設けられた。しかし、本開示は、仕切部が吸気通路を3つ以上に分けるように構成されることを排除するものではない。また、上記内燃機関10は、SOHC型式の2バルブシステムを採用し、よって1つの気筒に単一の吸気弁を備えた。しかし、内燃機関10は、1つの気筒につき2つ以上の吸気弁を備えるように構成されてもよい。 For example, in the internal combustion engine, the partition portion 62 is provided so as to divide the intake passage 38 into two passages, the tumble passage 64 and the main passage 66 . However, the present disclosure does not exclude that the partition is configured to divide the intake passage into three or more. Also, the internal combustion engine 10 employs a SOHC type two-valve system, thus providing a single intake valve per cylinder. However, the internal combustion engine 10 may be configured with two or more intake valves per cylinder.
 10…内燃機関、12…シリンダブロック、14…シリンダヘッド、16…ピストン、
 20…燃焼室、28…吸気弁口、
 30…排気弁口、32…吸気ポート、34…排気ポート、38…吸気通路、
 40…スロットルボディ、46…吸気弁、
 50…排気弁、
 62…仕切部、64…タンブル通路、66…主通路、68…吸気振分け弁、
 70、72…燃料噴射弁、76…ECU、
 82…壁部(下流側壁部)、
 S…吸気構造。
10... internal combustion engine, 12... cylinder block, 14... cylinder head, 16... piston,
20... combustion chamber, 28... intake valve port,
30...Exhaust valve opening, 32...Intake port, 34...Exhaust port, 38...Intake passage,
40... throttle body, 46... intake valve,
50 ... Exhaust valve,
62... partition, 64... tumble passage, 66... main passage, 68... intake diverting valve,
70, 72...fuel injection valve, 76...ECU,
82 ... wall portion (downstream side wall portion),
S: Intake structure.

Claims (9)

  1.  吸気通路(38)を複数に分けるように構成された仕切部(62)であって、前記吸気通路(38)における第1吸気通路(64)と第2吸気通路(66)とを隔てる、仕切部(62)と、
     前記第1吸気通路(64)から燃焼室(20)への吸気の流れ方向と交差する方向に、前記第2吸気通路(66)から前記燃焼室(20)への吸気の流れを向けるように、前記仕切部(62)の下流側に設けられている下流側壁部(82)と
    を備えたことを特徴とする内燃機関(10)の吸気構造(S)。
    A partition (62) configured to divide the intake passage (38) into a plurality of sections, the partition separating a first intake passage (64) and a second intake passage (66) in the intake passage (38). a part (62);
    The flow of intake air from the second intake passage (66) to the combustion chamber (20) is directed in a direction that intersects the flow direction of intake air from the first intake passage (64) to the combustion chamber (20). and a downstream side wall portion (82) provided downstream of the partition portion (62).
  2.  シリンダ軸線(c)方向においてクランク軸側からシリンダヘッド(14)側の方向を第1方向と定義するとともに、該第1方向と逆向きの方向を第2方向と定義するとき、
     前記第1吸気通路(64)を前記第2吸気通路(66)の前記第2方向側に区画形成するように、前記仕切部(62)は前記吸気通路(38)に延在し、
     前記下流側壁部(82)は、前記吸気通路(38)を区画形成する壁部(80)のうち、前記第1方向側に延在する
    ことを特徴とする請求項1に記載の内燃機関(10)の吸気構造(S)。
    When the direction from the crankshaft side to the cylinder head (14) side in the direction of the cylinder axis (c) is defined as the first direction, and the direction opposite to the first direction is defined as the second direction,
    The partition (62) extends into the intake passage (38) so as to define the first intake passage (64) on the second direction side of the second intake passage (66),
    2. The internal combustion engine according to claim 1, wherein the downstream side wall portion (82) extends in the first direction of a wall portion (80) defining the intake passageway (38). 10) Intake structure (S).
  3.  前記下流側壁部(82)の少なくとも一部は、吸気弁(46)のバルブ軸線(46c)に沿って延在する
    ことを特徴とする請求項2に記載の内燃機関(10)の吸気構造(S)。
    3. The intake structure for an internal combustion engine (10) according to claim 2, wherein at least part of the downstream side wall portion (82) extends along the valve axis (46c) of the intake valve (46). S).
  4.  前記仕切部(62)の延在方向に対して直交する方向であって吸気弁(46)のバルブ軸線(46c)に直交する方向からみたとき、
     前記下流側壁部(82)の少なくとも一部は、吸気弁(46)のバルブ軸線(46c)よりも排気側に設けられていて、かつ、前記吸気弁(46)の開口部(28)の排気側端部(46d)と前記バルブ軸線(46c)との中間点(46e)を通り前記バルブ軸線(46c)に平行である仮想線(L4)よりも前記バルブ軸線(46c)側に設けられている
    ことを特徴する請求項2又は3に記載の内燃機関(10)の吸気構造(S)。
    When viewed from a direction orthogonal to the extending direction of the partition (62) and orthogonal to the valve axis (46c) of the intake valve (46),
    At least part of the downstream side wall portion (82) is provided closer to the exhaust side than the valve axis (46c) of the intake valve (46), and is located on the exhaust side of the opening (28) of the intake valve (46). It is provided closer to the valve axis (46c) than an imaginary line (L4) passing through the middle point (46e) between the side end (46d) and the valve axis (46c) and parallel to the valve axis (46c). 4. An intake structure (S) for an internal combustion engine (10) according to claim 2 or 3, characterized in that:
  5.  前記仕切部(62)の下流側端縁(62a)に定められる前記第1吸気通路(64)の出口部の流れ方向の中心軸線(64c)は、吸気弁(46)の開弁時の該吸気弁の排気側開口範囲(46f)を貫くように延びる
    ことを特徴する請求項2から4のいずれか一項に記載の内燃機関(10)の吸気構造(S)。
    The central axis (64c) in the flow direction of the outlet of the first intake passage (64), which is defined at the downstream edge (62a) of the partition (62), corresponds to the center axis (64c) when the intake valve (46) is open. 5. The intake structure (S) for an internal combustion engine (10) according to any one of claims 2 to 4, wherein the intake structure (S) extends so as to penetrate the exhaust side opening range (46f) of the intake valve.
  6.  シリンダ軸線(c)方向においてクランク軸側からシリンダヘッド(14)側の方向を第1方向と定義するとともに、該第1方向と逆向きの方向を第2方向と定義するとき、
     前記下流側壁部(82)は、前記第2吸気通路(66)から前記燃焼室(20)への吸気の流れを、前記第1吸気通路(64)から前記燃焼室(20)への吸気の流れの前記第1方向側から前記第2方向側に向けるように区画形成されている
    ことを特徴とする請求項1から5のいずれか一項に記載の内燃機関(10)の吸気構造(S)。
    When the direction from the crankshaft side to the cylinder head (14) side in the direction of the cylinder axis (c) is defined as the first direction, and the direction opposite to the first direction is defined as the second direction,
    The downstream side wall portion (82) regulates the flow of intake air from the second intake passage (66) to the combustion chamber (20) and the flow of intake air from the first intake passage (64) to the combustion chamber (20). 6. The intake structure (S) for an internal combustion engine (10) according to any one of claims 1 to 5, characterized in that the intake structure (S ).
  7.  前記内燃機関(10)は単一の吸気弁(46)を備え、
     前記第2吸気通路(66)が前記第1吸気通路(64)の吸気の流れ方向で両側にわたって延びるように、前記仕切部(62)は形成され、
     前記下流側壁部(82)は、前記第2吸気通路(66)の下流側において前記吸気弁(46)の吸気の流れ方向で両側に位置するように設けられている
    ことを特徴とする請求項6に記載の内燃機関(10)の吸気構造(S)。
    The internal combustion engine (10) has a single intake valve (46),
    The partition (62) is formed so that the second intake passage (66) extends across both sides of the first intake passage (64) in the direction of flow of intake air,
    The downstream side wall portion (82) is provided on the downstream side of the second intake passage (66) so as to be located on both sides in the intake flow direction of the intake valve (46). 7. An intake structure (S) for an internal combustion engine (10) according to 6 above.
  8.  前記下流側壁部(82)は、前記第2吸気通路(66)から前記燃焼室(20)への吸気の流れを、前記第1吸気通路(64)から前記燃焼室(20)への吸気の流れの側方から前記吸気弁(46)の開口部(28)のうちの吸気側開口部(28i)側に向けるように、設けられている
    ことを特徴とする請求項7に記載の内燃機関(10)の吸気構造(S)。
    The downstream side wall portion (82) regulates the flow of intake air from the second intake passage (66) to the combustion chamber (20) and the flow of intake air from the first intake passage (64) to the combustion chamber (20). 8. The internal combustion engine according to claim 7, characterized in that it is provided so as to face from the flow side toward the intake side opening (28i) of the openings (28) of the intake valve (46). (10) intake structure (S).
  9.  前記下流側壁部(82)は、前記吸気通路(38)を区画形成する壁部(80)の平均の曲率よりも小さな曲率を有している、
    ことを特徴とする請求項1から8のいずれか一項に記載の内燃機関(10)の吸気構造(S)。
    The downstream side wall portion (82) has a curvature smaller than the average curvature of the wall portion (80) defining the intake passageway (38),
    An intake structure (S) for an internal combustion engine (10) according to any one of claims 1 to 8, characterized in that:
PCT/JP2022/006004 2021-02-18 2022-02-15 Intake structure for internal combustion engine WO2022176860A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023500859A JP7403707B2 (en) 2021-02-18 2022-02-15 Internal combustion engine intake structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021024051 2021-02-18
JP2021-024051 2021-02-18

Publications (1)

Publication Number Publication Date
WO2022176860A1 true WO2022176860A1 (en) 2022-08-25

Family

ID=82931762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006004 WO2022176860A1 (en) 2021-02-18 2022-02-15 Intake structure for internal combustion engine

Country Status (2)

Country Link
JP (1) JP7403707B2 (en)
WO (1) WO2022176860A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256062A (en) * 1978-01-27 1981-03-17 Volkswagenwerk Aktiengesellschaft Internal combustion diesel engine
JPS59122725A (en) * 1982-12-29 1984-07-16 Mazda Motor Corp Suction device of engine
JP2005113694A (en) * 2003-10-02 2005-04-28 Toyota Motor Corp Internal combustion engine
JP2006070810A (en) * 2004-09-02 2006-03-16 Nissan Motor Co Ltd Intake port for internal combustion engine
US20130247859A1 (en) * 2012-03-14 2013-09-26 GM Global Technology Operations LLC Air intake device for an internal combustion engine of a vehicle
JP2018150815A (en) * 2017-03-10 2018-09-27 本田技研工業株式会社 Intake system of internal combustion engine
JP6439070B1 (en) * 2017-07-05 2018-12-19 本田技研工業株式会社 Intake structure of internal combustion engine
JP6714764B2 (en) * 2017-03-10 2020-06-24 本田技研工業株式会社 Intake structure of internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256062A (en) * 1978-01-27 1981-03-17 Volkswagenwerk Aktiengesellschaft Internal combustion diesel engine
JPS59122725A (en) * 1982-12-29 1984-07-16 Mazda Motor Corp Suction device of engine
JP2005113694A (en) * 2003-10-02 2005-04-28 Toyota Motor Corp Internal combustion engine
JP2006070810A (en) * 2004-09-02 2006-03-16 Nissan Motor Co Ltd Intake port for internal combustion engine
US20130247859A1 (en) * 2012-03-14 2013-09-26 GM Global Technology Operations LLC Air intake device for an internal combustion engine of a vehicle
JP2018150815A (en) * 2017-03-10 2018-09-27 本田技研工業株式会社 Intake system of internal combustion engine
JP6714764B2 (en) * 2017-03-10 2020-06-24 本田技研工業株式会社 Intake structure of internal combustion engine
JP6439070B1 (en) * 2017-07-05 2018-12-19 本田技研工業株式会社 Intake structure of internal combustion engine

Also Published As

Publication number Publication date
JPWO2022176860A1 (en) 2022-08-25
JP7403707B2 (en) 2023-12-22

Similar Documents

Publication Publication Date Title
US7849683B2 (en) Multiple-cylinder internal combustion engine having cylinder head provided with centralized exhaust passageway
JP4728195B2 (en) Engine intake control device
US7802555B2 (en) Intake control device for an engine
JP5925878B2 (en) Intake device for internal combustion engine
CN111065800A (en) Intake structure for internal combustion engine
WO2022176860A1 (en) Intake structure for internal combustion engine
WO2022176862A1 (en) Air intake structure for internal combustion engine
US7270109B2 (en) Internal combustion engine
JP6369993B2 (en) Intake structure in internal combustion engines
JP2021188588A (en) engine
WO2023053346A1 (en) Air intake device for internal combustion engine
US20100037840A1 (en) Internal combustion engine
WO2023188249A1 (en) Air intake structure for internal combustion engine
JPH08189366A (en) Intake port structure for internal combustion engine
WO2019163893A1 (en) Air intake device for internal combustion engine
WO2022210120A1 (en) Air intake structure for internal combustion engine
WO2023053377A1 (en) Air intake structure for internal combustion engine
WO2024070901A1 (en) Intake structure for internal combustion engine
WO2023188310A1 (en) Intake structure of internal combustion engine
WO2023053378A1 (en) Air intake structure for internal combustion engine
JP6428475B2 (en) engine
JP7411142B2 (en) internal combustion engine
JP3329405B2 (en) Intake control structure for two-valve engine
JP6824218B2 (en) Sub-combustion chamber of internal combustion engine
JP3320775B2 (en) Engine intake control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500859

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756178

Country of ref document: EP

Kind code of ref document: A1