WO2019163893A1 - Air intake device for internal combustion engine - Google Patents

Air intake device for internal combustion engine Download PDF

Info

Publication number
WO2019163893A1
WO2019163893A1 PCT/JP2019/006572 JP2019006572W WO2019163893A1 WO 2019163893 A1 WO2019163893 A1 WO 2019163893A1 JP 2019006572 W JP2019006572 W JP 2019006572W WO 2019163893 A1 WO2019163893 A1 WO 2019163893A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
control valve
valve
intake port
internal combustion
Prior art date
Application number
PCT/JP2019/006572
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺 聖彦
誠 大坪
真一 平岡
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019163893A1 publication Critical patent/WO2019163893A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to an intake device for an internal combustion engine.
  • the airflow in the combustion chamber is controlled to promote combustion.
  • a valve that partitions the intake port in the width direction is provided at the first intake port and the second intake port that intake air into the combustion chamber. And by opening and closing this valve, the swirl flow in the combustion chamber is controlled, and the EGR gas and the fresh air mixture are stratified.
  • the ignition status of the spark plug changes depending on the airflow in the combustion chamber. Specifically, if the airflow in the vicinity of the spark plug is too strong, the arc discharge may be interrupted and there is a risk of misfire. Further, if the airflow in the vicinity of the spark plug is too weak, the discharge distance of the arc discharge is shortened, and there is a possibility that poor ignition occurs. From such a viewpoint, it is required to control the airflow in the vicinity of the spark plug.
  • the present disclosure has been made in view of the above problems, and a main object thereof is to provide an intake device for an internal combustion engine that can generate an air flow that promotes stable ignition.
  • the first means is an intake device for an internal combustion engine comprising a combustion chamber provided in a cylinder that accommodates a piston, and an ignition plug provided in the center of the ceiling portion of the combustion chamber, through an intake port.
  • An intake port that communicates with the combustion chamber; a partition wall that is provided in the intake port and that forms a first flow path that is the center in the plan view of the cylinder and two second flow paths that are on both sides thereof;
  • a control valve provided in the first flow path, the opening area of the first flow path being variable, and an upper side when the axial direction of the cylinder in the first flow path is set as a vertical direction by the control valve;
  • An airflow control unit that partially closes at least one of the lower sides and reinforces the airflow flowing through the first flow path.
  • the intake port is provided with a partition wall that forms a central first flow path and second flow paths on both sides thereof, and a control valve is provided in the first flow path to change the opening area. Yes.
  • a control valve is provided in the central first flow path to change the opening area.
  • the control valve By providing the control valve in the central first flow path, the strength of the airflow flowing toward the spark plug can be controlled, and the airflow toward the spark plug can be set to an appropriate strength. Can be improved.
  • at least one of the upper side and the lower side in the first flow path is partially closed by the control valve, whereby the airflow flowing through the first flow path is strengthened. That is, one of the upper and lower sides or the central portion in the vertical direction is opened, and a vertical vortex in the combustion chamber is easily generated.
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine according to a first embodiment.
  • FIG. 2 is a diagram showing the relationship between the flow velocity in the vicinity of the spark plug and an index indicating ignitability
  • FIG. 3 is a plan sectional view of the intake port and the combustion chamber
  • FIG. 4 is a view for explaining the airflow in the intake port and the combustion chamber
  • FIG. 5 is a view for explaining the airflow in the intake port and the combustion chamber
  • FIG. 6 is a plan view of the intake port and the combustion chamber according to the second embodiment
  • FIG. 7 is a view for explaining the airflow in the intake port and the combustion chamber
  • FIG. 8 is a plan view of an intake port and a combustion chamber according to another embodiment
  • FIG. 9 is a plan view of an intake port and a combustion chamber according to another embodiment.
  • an engine intake device is constructed for an on-vehicle multi-cylinder four-cycle gasoline engine that is an internal combustion engine.
  • a schematic diagram of this engine is shown in FIG.
  • only one cylinder among a plurality of cylinders provided in the engine 10 is illustrated.
  • the axial direction of the cylinder, that is, the reciprocating direction of the piston 11 is defined as the vertical direction.
  • the piston 11 is accommodated in each cylinder of the engine 10 so as to be able to reciprocate.
  • a combustion chamber 12 is provided on the top side (upper side) of the piston 11 of each cylinder.
  • the inner peripheral surface of the combustion chamber 12 has a circular shape (perfect circle or ellipse).
  • the combustion chamber 12 communicates with the intake port 30 via the two intake ports 31 and communicates with the exhaust port 14 via the two exhaust ports 13.
  • a spark plug 15 is provided at the center of the ceiling (cylinder head 21) of the combustion chamber 12.
  • the center part of the ceiling part where the spark plug 15 is provided is preferably within a predetermined range including the center point of the ceiling part.
  • the spark plug 15 has a central position on the intake side of the combustion chamber 12 (a central position of the two intake ports 31) and a central position on the exhaust side (the centers of the two exhaust ports 13) at the center of the ceiling. It is desirable to be provided at a position on a line connecting the position).
  • a high voltage is applied to the ignition plug 15 at a desired ignition timing through an ignition device including an ignition coil. By applying a high voltage to the spark plug 15, an arc discharge is generated between the counter electrodes, and the air-fuel mixture in the combustion chamber 12 is ignited.
  • a fuel injection valve 16 that directly supplies fuel into the combustion chamber 12 is provided at the upper portion of each cylinder of the engine 10 and on the intake port 30 side.
  • the fuel injection valve 16 is connected to a fuel tank via a fuel pipe (not shown).
  • the fuel in the fuel tank is supplied to the fuel injection valve 16 of each cylinder, and is injected from the fuel injection valve 16 toward the ignition plug 15 in the combustion chamber 12.
  • an EGR (Exhaust Gas Recirculation) system that connects the downstream of the exhaust port 14 and the upstream of the intake port 30 is provided. Part of the exhaust can be introduced into the intake air by the EGR system.
  • the EGR system has an EGR valve for adjusting the EGR rate.
  • the engine 10 is provided with a crank angle sensor 17 that outputs a rectangular crank angle signal for each predetermined crank (for example, 30 ° CA cycle) as the engine 10 rotates.
  • the engine 10 includes an ECU 18.
  • the ECU 18 is mainly composed of a microcomputer including a CPU, a ROM, a RAM, and the like.
  • the ECU 18 calculates the operating state of the engine 10 based on outputs from various sensors such as the crank angle sensor 17. And according to the driving
  • FIG. 2 is a diagram showing the relationship between the flow velocity V in the vicinity of the spark plug 15 and the index K indicating ignitability.
  • the index K is an index that is related to the ignitability from the spark plug 15 to the fuel, and the value increases as the ignitability improves.
  • the index K includes operating conditions of the engine 10 such as an EGR rate and fuel concentration.
  • the EGR rate is the ratio of the EGR gas in the intake gas, and the EGR rate can be increased as the ignitability increases.
  • the fuel concentration indicates the ratio of the fuel amount to the air amount (oxygen amount) in the combustion chamber 12, and the fuel concentration can be made thinner (lean state) as the ignitability is improved.
  • the ignition is delayed and misfire occurs. Specifically, if the flow velocity in the vicinity of the spark plug 15 is too fast, the discharge path becomes too long and the discharge is cut off. On the other hand, if the flow velocity in the vicinity of the spark plug 15 is too slow, the discharge path does not become long, so that the supply of energy to the air-fuel mixture deteriorates, resulting in a delay in ignition. Therefore, there is an appropriate flow velocity for each index value representing ignitability, and FIG. 2 shows the relationship. For example, in FIG. 2, when the index representing ignitability is K1, the appropriate flow rate is between V1 and V2. And it is calculated
  • FIG. 3 is a cross-sectional plan view of the intake port 30 and the combustion chamber 12, and is a view of the configuration of the periphery of the combustion chamber 12 as viewed from the cylinder head 21 side in the cylinder axial direction.
  • the axial direction of the intake port 30 (the direction in which the intake port 30 extends) is the L1 direction
  • the direction orthogonal to the L1 direction is the L2 direction.
  • the intake port 30 includes a head passage 30 a provided in the cylinder head 21 and an assembly passage 30 b provided in the valve body assembly 23 attached between the cylinder head 21 and the intake manifold 22.
  • the intake port 30 refers to an air passage between the connection portion with the intake manifold 22 and the intake port 31 of the combustion chamber 12.
  • the head passage 30 a is an air passage that forms a downstream region of the intake port 30, and the assembly passage 30 b is an air passage that forms an upstream region of the intake port 30.
  • a bifurcated passage 32 that is bifurcated on the combustion chamber 12 side is formed in the head passage 30 a of the intake port 30.
  • An intake port 31 is provided at each end of the bifurcated passage 32 (on the combustion chamber 12 side).
  • the intake ports 31 are provided so as to be adjacent along the L2 direction. At the position of the assembly passage 30b, the passage section of the intake port 30 has a rectangular shape, whereas at the position of the bifurcated passage 32, the passage section of each intake port 30 has a circular shape.
  • Two exhaust ports 13 are provided so as to be adjacent along the L2 direction, similarly to the intake port 31. Note that the number of exhaust ports may be one instead of two. In that case, it is preferable that one exhaust port is provided at the center position in the L2 direction.
  • the intake port 30 and the exhaust port 14 of the engine 10 are respectively provided with an intake valve 33 that closes the intake port 31 and an exhaust valve 19 that closes the exhaust port 13.
  • the intake valve 33 includes a valve head 33a for opening and closing the intake port 31, and a rod-shaped valve stem 33b connected to the valve head 33a.
  • the outer peripheral shape of the valve head 33 a is substantially the same circular shape as the inner peripheral shape of the intake port 31, and the outer diameter of the valve head 33 a is larger than the inner diameter of the intake port 31.
  • the valve stem 33b is provided at the center position of the valve head 33a.
  • the opening / closing timing (valve timing) of the intake valve 33 and the exhaust valve 19 is variably controlled by a variable valve timing device.
  • the intake port 30 is provided with two partition walls 34 that are divided into the center and both sides thereof in a plan view of the cylinder.
  • the partition wall 34 is provided over substantially the entire length of the intake port 30 in the L1 direction.
  • the leading end side (combustion chamber 12 side) of the partition wall 34 reaches the bifurcated passage 32 of the intake port 30, and the partition wall 34 extends toward the valve stem 33b.
  • the intake port 30 is partitioned by a partition wall 34 into a first flow path 35 that is the center in the plan view of the cylinder and two second flow paths 36 on both sides thereof. That is, the intake port 30 is divided into three in the L2 direction.
  • a first control valve 41 and a second control valve 42 are provided in the first flow path 35 and the second flow path 36, respectively.
  • the first control valve 41 and the second control valve 42 each have a valve body 43, a rotating shaft 44, and an actuator 45.
  • the control valves 41 and 42 partially close the lower side of the first flow path 35 and the second flow path 36 when the axial direction of the cylinder is the vertical direction, and the airflow flowing through the flow paths 35 and 36.
  • the air flow is adjusted by the rotation of the valve body 43 having the rotation shaft 44 as an axis.
  • the valve body 43 is rotatably supported by the rotation shaft 44 on the lower surface of the intake port 30, and the valve body 43 is rotated by the actuator 45, whereby each flow path 35, The underside of 36 is partially closed.
  • the rotation shafts 44 of the second control valve 42 are connected to each other, and the rotation shafts 44 are respectively attached to actuators 45 outside the flow path.
  • each 2nd control valve 42 may be controlled separately.
  • Each actuator 45 incorporates a sensor for detecting the opening degree of the first control valve 41 and the second control valve 42.
  • the ECU 18 controls the actuator 45 based on the operating state of the engine 10 and controls the opening degrees of the first control valve 41 and the second control valve 42.
  • the opening degree of each control valve 41, 42 detected by the actuator 45 is output to the ECU 18.
  • the function of detecting the driving situation and detecting and adjusting the opening corresponds to the “air flow control unit”.
  • the first control valve 41 provided in the center controls the airflow flowing through the first flow path 35 as shown in FIGS. 4 and 5, thereby adjusting the flow velocity in the vicinity of the spark plug 15.
  • the FIG. 4 is a view for explaining the airflow in the intake port 30 and the combustion chamber 12, and is a cross-sectional view at the position of the first flow path 35.
  • FIG. 5 is a view for explaining the airflow in the intake port 30 and the combustion chamber 12, and is a view of the configuration of the periphery of the combustion chamber 12 as viewed from the cylinder head 21 side in the cylinder axial direction. 4 and 5, the alternate long and two short dashes line indicates the flow of airflow.
  • the opening of the first control valve 41 is adjusted so as to increase the opening area of the first flow path 35, while the second control valve 42 decreases the opening area of the second flow path 36. Adjust the opening so that That is, a large amount of gas flows into the first flow path 35 in which the flow path resistance is lower than that of the second flow path 36 so that the opening area of the first flow path 35 is larger than the opening area of the second flow path 36. Like that. At this time, the opening area of each flow path 35, 36 is easily adjusted by rotating the valve body 43 by the rotation shaft 44 and partially closing the lower side of each flow path 35, 36. Is done.
  • the gas that has flowed into the first flow path 35 flows down along the upper wall surface of the first flow path 35 because the lower portion of the first flow path 35 is closed by the first control valve 41.
  • the passage 32 it flows into two parts.
  • the gas that has flowed in flows through the center side of the valve stem 33b and strikes the valve head 33a so as to be concentrated on the center side. Flow into.
  • the airflow flowing through the first flow path 35 becomes a relatively strong airflow and flows into the center position of the combustion chamber 12.
  • the tumble flow which rotates in order of the ceiling surface of the combustion chamber 12, the cylinder inner wall surface by the side of the exhaust port 13, and the upper surface of the piston 11 is produced.
  • the gas slightly flowing into the second flow path 36 is closed below the second flow path 36 by the second control valve 42. Flows along. In the bifurcated passage 32, the gas that has flowed in passes through the outside, flows to the side of the valve stem 33 b and passes through the outside, hits the valve head 33 a, and faces the outside. Flow into. In this way, the airflow flowing through the second flow path 36 flows into the outside of the combustion chamber 12.
  • the intake port 30 is divided by a partition wall 34 into a first flow path 35 and two second flow paths 36 on both sides of the first flow path 35, and the airflow flowing through the intake port 30 is divided into two flow paths provided at the tip of the bifurcated passage 32. It flows into the combustion chamber 12 from the intake port 31. At this time, since the partition wall 34 extends toward the valve stem 33b, the airflow is divided into the central side and the outer side even after hitting the valve head 33a.
  • the amount of gas flowing into the first flow path 35 is adjusted by the difference in opening between the second flow path 36 and the first flow path 35, and the first flow path 35 through which the air flow flowing into the center of the combustion chamber 12 passes.
  • the first control valve 41 can control the flow velocity of the airflow flowing into the center of the combustion chamber 12 (near the spark plug 15). Further, the lower portions of the flow paths 35 and 36 are closed, and the airflow flows upward, so that a tumble flow is easily generated in the combustion chamber 12.
  • the control valves 41 and 42 are adjusted to open so that the opening areas of all the flow paths 35 and 36 are increased.
  • the opening area of each of the flow paths 35 and 36 is reduced, it becomes resistance when the airflow flows. Therefore, when the amount of gas flowing in is large, the opening area is increased.
  • the ratio of fuel in the combustion chamber 12 is relatively high, the required flow velocity range near the spark plug 15 is widened, so there is no problem even if the opening areas of all the flow paths 35 and 36 are increased. Absent.
  • the control valves 41 and 42 are closed and adjusted so as to reduce the open areas of all the flow paths 35 and 36. In such a case, even if the opening area of each of the flow paths 35 and 36 is reduced, there is no resistance when the airflow flows. Therefore, when the amount of gas flowing in is small, the opening area is reduced. .
  • the opening degree of the control valves 41 and 42 is adjusted based on the operating state of the engine 10, and the airflow flowing through the flow paths 35 and 36 can be made appropriate.
  • a partition wall 34 that partitions the inside of the intake port 30 is provided in the first first flow path 35 and the second flow paths 36 on both sides thereof, and the opening area is reduced by reducing the flow path in the first flow path 35.
  • a first control valve 41 is provided to make the variable. By providing the first control valve 41 in the central first flow path 35, the strength of the airflow flowing toward the spark plug 15 can be controlled, and the airflow toward the spark plug 15 is set to an appropriate strength. And ignitability can be improved. Further, the lower side of the first flow path 35 is partially closed by the first control valve 41, and the airflow flowing through the first flow path 35 is strengthened. That is, the upper part is opened, and a vertical vortex (tumble flow) in the combustion chamber 12 is easily generated.
  • the opening area reduced by the first control valve 41 is set based on the fuel ratio in the combustion chamber 12 and the operating conditions such as the rotational speed and load of the engine 10. For example, when the lean operation or the EGR rate is high, the conditions under which ignition can be performed are severe, so the opening area is set so that the flow rate is necessary for ignition. That is, when it is necessary to control the flow rate based on the operating conditions, it is possible to control the flow rate to a necessary level.
  • the second control valve 42 is provided in the second flow path 36, whereby the airflow flowing in the second flow path 36 can be controlled. Both the first control valve 41 and the second control valve 42 partially close the lower flow path, that is, the upper part is opened, so that the airflow easily flows along the wall surface of the intake port 30. It becomes easy to generate a tumble flow. Further, the airflow flowing from the second control valve 42 can also contribute to the generation of the tumble flow.
  • the first control valve 41 and the second control valve 42 are individually driven, and the air flow enhancement of the first flow path 35 and the air flow reinforcement of the second flow path 36 are performed, respectively, so that the air flow in the center and the combustion chamber The entire 12 airflows can be controlled. Moreover, the 1st control valve 41 and the 2nd control valve 42 can close the lower part partially by rotating with the rotating shaft 44, and can adjust an opening area.
  • the intake port 30 is bifurcated and an intake valve 33 is provided at each of two intake ports 31 connected to the combustion chamber 12.
  • the intake valve 33 has a valve head 33a for opening and closing the intake port 31, and a valve stem 33b connected to the valve head 33a.
  • a bifurcated intake port 30 (a bifurcated passage 32) is partitioned into a first flow path 35 and a second flow path 36.
  • the airflows flowing from the first flow path 35 are respectively concentrated on the central side of the two valve heads 33a, while the airflows flowing from the second flow path 36 and hitting the outer sides of the two valve heads 33a are respectively collected. It becomes easy to be gathered outside. As a result, even in the combustion chamber 12, the airflow at the center position becomes an airflow flowing from the first flow path 35, and the airflow controlled by the first control valve 41 can flow into the center position as it is. In addition, since the partition walls 34 extend toward the respective valve stems 33b, it becomes easier to regulate the direction of the airflow that hits the valve head 33a more reliably.
  • FIG. 6 is a plan sectional view of the intake port 30 and the combustion chamber 12 of the second embodiment, and is a view of the configuration of the periphery of the combustion chamber 12 as viewed from the cylinder head 21 side in the cylinder axial direction.
  • FIG. 7 is a view for explaining the airflow in the intake port 30 and the combustion chamber 12, and the two-dot chain line indicates the flow of the airflow.
  • the intake port 30 is provided with two partition walls 134 that partition the center and both sides thereof in a plan view of the cylinder.
  • the partition wall 134 is provided over substantially the entire length of the intake port 30 in the L1 direction.
  • the leading end side (combustion chamber 12 side) of the partition wall 134 reaches the bifurcated passage 32 of the intake port 30, and the partition wall 134 extends inward from the valve stem 33b.
  • a second control valve 142 is provided in the second flow path 36.
  • the second control valve 142 is provided with a valve body 143 and a rotating shaft 144, respectively.
  • the valve body 143 has a flat plate shape, and the dimension in the width direction (L2 direction) of the valve body 143 is about three-quarters of the inner dimension in the width direction (L2 direction) of the second flow path 36.
  • the vertical dimension of the valve body 143 is the same as the vertical dimension of the second flow path 36. That is, the valve body 143 (second control valve 142) closes the outside (the side opposite to the partition wall 134) of the second flow path 36, and the center side is always open.
  • the dimension in the width direction of the valve body 143 may be the same as the inner dimension of the second flow path 36.
  • a rotation shaft 144 is provided at one end of the valve body 143, specifically, at the base side (outside), and the rotation shaft 144 is in contact with the wall surface of the intake port 30 on the outer side in the width direction.
  • the opening degree in the width direction of the second flow path 36 is adjusted by the valve body 143 rotating around the rotation shaft 144. That is, the second control valve 142 partially closes the opposite side of the partition wall 134, and the closed state (the opening degree of the second flow path 36) rotates the valve body 143 around the rotation shaft 144. It is adjusted by doing.
  • the rotation shafts 144 are respectively attached to actuators 145 outside the flow path.
  • the opening degree of each second control valve 142 is adjusted by an actuator 145, and the actuator 145 includes a sensor for detecting the opening degree of the second control valve 142.
  • the gas flowing into the second flow path 36 is partitioned on the center side of the second flow path 36 because the second control valve 142 closes the outside of the second flow path 36. It flows along the wall surface of the wall 134.
  • the gas that has flowed in flows toward the center side, flows so as to pass from the center side of the valve stem 33b or the center of the outside, hits the valve head 33a, and approaches the center side. In this way, it flows into the combustion chamber 12. In this way, the airflow flowing through the second flow path 36 flows into the center side of the combustion chamber 12.
  • the amount of gas flowing into the first flow path 35 is adjusted by the difference in opening between the second flow path 36 and the first flow path 35.
  • the airflow in the first flow path 35 through which the airflow flowing into the center of the combustion chamber 12 is controlled by the first control valve 41, the flow velocity of the airflow flowing into the center of the combustion chamber 12 (near the spark plug 15) can be controlled. it can.
  • the airflow flowing in the central position can be strengthened by bringing the airflow of the second flow path 36 toward the center.
  • the second flow control valve 42 is provided in the second flow path 36.
  • the airflow flowing through 36 is controlled.
  • the 1st control valve 41 becomes easy to flow along the wall surface of intake port 30, and it becomes easy to generate a tumble flow because the lower channel is partially closed, that is, the upper part is opened.
  • the second control valve 42 the opposite side of the partition wall 134 is partially closed and the center side (first flow path 35 side) is opened, so that the airflow flowing to the center position can be strengthened. .
  • the airflow flowing into the first flow path 35 is adjusted by adjusting the opening of the first control valve 41 and the second control valves 42 and 142, but only the opening of the first control valve 41 is adjusted. And the speed of the airflow flowing into the first flow path 35 may be adjusted.
  • the first control valve 41 closes the lower part of the first flow path 35, but the upper part may be closed and the lower part may be opened. Further, both the upper and lower sides may be closed so that the center in the vertical direction opens.
  • valve shape as in the above embodiment, other configurations may be used as long as the flow path can be partially closed.
  • a slide valve that protrudes from the wall surface of the flow path may be used, or a rotary valve that has a rotating structure may be used.
  • the intake port 30 is bifurcated.
  • the intake port 31 may be a single one without being divided.
  • the partition wall 34 may be provided only in the assembly passage 30b on the valve body assembly 23 side.
  • the partition wall 34 is provided only in the valve body assembly 23
  • the airflow in the vicinity of the ignition plug 15 is adjusted in the combustion chamber 12 as compared with the case where the partition wall 34 and the first control valve 41 are not provided. be able to.
  • an existing cylinder head without a partition wall can be used. That is, by attaching the valve body assembly 23 provided with the partition wall 34 and the first control valve 41 (and the second control valve 42) to the existing cylinder head, the airflow in the vicinity of the spark plug 15 can be adjusted.
  • the partition wall 34 may be provided only on the upstream side in the head passage 30a of the intake port 30 as shown in FIG. That is, the partition wall 34 may not reach the bifurcated passage 32. As described above, even if the bifurcated passage 32 is not reached, the airflow in the vicinity of the spark plug 15 can be adjusted in the combustion chamber 12 as compared with the case where the partition wall 34 and the first control valve 41 are not provided.

Abstract

An internal combustion engine (10) is provided with: a combustion chamber (12) provided within a cylinder which contains a piston (11); and an ignition plug (15) provided at the center of the ceiling of the combustion chamber. This air intake device for the internal combustion engine (10) is provided with: an air intake port (30) communicating with the combustion chamber (12) through an air intake opening (31); and partition walls (34) provided in the air intake port (30) and forming a first flow passage (35) which is located at the center in a plan view of the cylinder, and two second flow passages (36) which are located on both sides of the first flow passage (35). A control valve (41) which can change the area of opening of the first flow passage (35) is provided in the first flow passage (35). An air flow control unit (18) causes the control valve (41) to partially close the top side and/or the bottom side, with respect to the top-bottom direction, i.e., the axial direction of the cylinder, of the first flow passage (35) to thereby intensify the flow of air flowing through the first flow passage (35).

Description

内燃機関の吸気装置Intake device for internal combustion engine 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年2月23日に出願された日本出願番号2018-031322号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-031322 filed on February 23, 2018, the contents of which are incorporated herein by reference.
 本開示は、内燃機関の吸気装置に関するものである。 The present disclosure relates to an intake device for an internal combustion engine.
 内燃機関では、燃焼促進のために、燃焼室内の気流を制御することが行われている。例えば、特許文献1の構成では、燃焼室に吸気をする第1吸気ポートと第2吸気ポートに吸気ポートを幅方向に仕切る弁を設けている。そして、この弁を開閉することで、燃焼室内のスワール流をコントロールして、EGRガスと新気混合気との層状化を図っている。 In internal combustion engines, the airflow in the combustion chamber is controlled to promote combustion. For example, in the configuration of Patent Document 1, a valve that partitions the intake port in the width direction is provided at the first intake port and the second intake port that intake air into the combustion chamber. And by opening and closing this valve, the swirl flow in the combustion chamber is controlled, and the EGR gas and the fresh air mixture are stratified.
特開2008-255866号公報JP 2008-255866 A
 ところで、燃焼室内の気流によって、点火プラグの着火状況が変化する。具体的には、点火プラグ近傍の気流が強すぎると、アーク放電の途切れが生じて、失火するおそれがある。また、点火プラグ近傍の気流が弱すぎると、アーク放電の放電距離が短くなり、着火不良が発生するおそれがある。このような観点から、点火プラグ近傍の気流を制御することが求められている。 By the way, the ignition status of the spark plug changes depending on the airflow in the combustion chamber. Specifically, if the airflow in the vicinity of the spark plug is too strong, the arc discharge may be interrupted and there is a risk of misfire. Further, if the airflow in the vicinity of the spark plug is too weak, the discharge distance of the arc discharge is shortened, and there is a possibility that poor ignition occurs. From such a viewpoint, it is required to control the airflow in the vicinity of the spark plug.
 本開示は、上記課題に鑑みてなされたものであり、その主たる目的は、安定した着火を促進する気流を生じさせることができる内燃機関の吸気装置を提供することにある。 The present disclosure has been made in view of the above problems, and a main object thereof is to provide an intake device for an internal combustion engine that can generate an air flow that promotes stable ignition.
 第1の手段は、ピストンを収容する気筒内に設けられた燃焼室と、前記燃焼室の天井部の中央に設けられた点火プラグとを備える内燃機関の吸気装置であって、吸気口を介して前記燃焼室に連通する吸気ポートと、前記吸気ポートに設けられ、前記気筒の平面視において中央となる第1流路とその両側となる2つの第2流路とを形成する仕切り壁と、前記第1流路に設けられ、当該第1流路の開口面積を可変とする制御弁と、前記制御弁により、前記第1流路において前記気筒の軸方向を上下方向とした場合の上側及び下側のうち少なくとも一方を部分的に閉鎖して前記第1流路を流れる気流を強化する気流制御部と、を備える。 The first means is an intake device for an internal combustion engine comprising a combustion chamber provided in a cylinder that accommodates a piston, and an ignition plug provided in the center of the ceiling portion of the combustion chamber, through an intake port. An intake port that communicates with the combustion chamber; a partition wall that is provided in the intake port and that forms a first flow path that is the center in the plan view of the cylinder and two second flow paths that are on both sides thereof; A control valve provided in the first flow path, the opening area of the first flow path being variable, and an upper side when the axial direction of the cylinder in the first flow path is set as a vertical direction by the control valve; An airflow control unit that partially closes at least one of the lower sides and reinforces the airflow flowing through the first flow path.
 吸気ポートには、中央となる第1流路とその両側の第2流路とを形成する仕切り壁が設けられており、第1流路にその開口面積を可変とする制御弁が設けられている。中央の第1流路に制御弁が設けられることで、点火プラグに向かって流れ込む気流の強さを制御することができ、点火プラグに向かう気流を適切な強さにすることができ、着火性を向上させることができる。この場合特に、制御弁により第1流路において上側及び下側の少なくとも一方が部分的に閉鎖されることで、第1流路を流れる気流が強化されている。つまり、上下の一方もしくは上下方向の中央部分が開口されるようになっており、燃焼室内の縦渦が生成しやすくなる。 The intake port is provided with a partition wall that forms a central first flow path and second flow paths on both sides thereof, and a control valve is provided in the first flow path to change the opening area. Yes. By providing the control valve in the central first flow path, the strength of the airflow flowing toward the spark plug can be controlled, and the airflow toward the spark plug can be set to an appropriate strength. Can be improved. In this case, in particular, at least one of the upper side and the lower side in the first flow path is partially closed by the control valve, whereby the airflow flowing through the first flow path is strengthened. That is, one of the upper and lower sides or the central portion in the vertical direction is opened, and a vertical vortex in the combustion chamber is easily generated.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態にかかる内燃機関の概略構成図であり、 図2は、点火プラグ近傍の流速と着火性を示す指標との関係性を示す図であり、 図3は、吸気ポート及び燃焼室の平断面図であり、 図4は、吸気ポート及び燃焼室内の気流を説明するための図であり、 図5は、吸気ポート及び燃焼室内の気流を説明するための図であり、 図6は、第2実施形態にかかる吸気ポート及び燃焼室の平面図であり、 図7は、吸気ポート及び燃焼室内の気流を説明するための図であり、 図8は、他の実施形態にかかる吸気ポート及び燃焼室の平面図であり、 図9は、他の実施形態にかかる吸気ポート及び燃焼室の平面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a schematic configuration diagram of an internal combustion engine according to a first embodiment. FIG. 2 is a diagram showing the relationship between the flow velocity in the vicinity of the spark plug and an index indicating ignitability, FIG. 3 is a plan sectional view of the intake port and the combustion chamber, FIG. 4 is a view for explaining the airflow in the intake port and the combustion chamber, FIG. 5 is a view for explaining the airflow in the intake port and the combustion chamber, FIG. 6 is a plan view of the intake port and the combustion chamber according to the second embodiment, FIG. 7 is a view for explaining the airflow in the intake port and the combustion chamber, FIG. 8 is a plan view of an intake port and a combustion chamber according to another embodiment, FIG. 9 is a plan view of an intake port and a combustion chamber according to another embodiment.
 <第1実施形態>
 以下、第1実施形態について、図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
<First Embodiment>
Hereinafter, a first embodiment will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings, and the description of the same reference numerals is used.
 本実施形態は、内燃機関である車載多気筒4サイクルガソリンエンジンを対象にエンジンの吸気装置を構築するものとしている。このエンジンの概略構成図を図1に示す。なお、以下の図においては、エンジン10が備える複数気筒のうちの1気筒のみを例示している。また、以下の説明において、気筒の軸方向、つまりピストン11の往復方向を上下方向とする。 In the present embodiment, an engine intake device is constructed for an on-vehicle multi-cylinder four-cycle gasoline engine that is an internal combustion engine. A schematic diagram of this engine is shown in FIG. In the following drawings, only one cylinder among a plurality of cylinders provided in the engine 10 is illustrated. In the following description, the axial direction of the cylinder, that is, the reciprocating direction of the piston 11 is defined as the vertical direction.
 エンジン10の各気筒の内部には、ピストン11が往復移動可能なように収容されている。そして、各気筒のピストン11の頂部側(上側)には、燃焼室12が設けられている。燃焼室12の内周面は、円状(真円状もしくは楕円状)をなしている。燃焼室12は、2つの吸気口31を介して吸気ポート30に連通されるとともに、2つの排気口13を介して排気ポート14に連通される。 The piston 11 is accommodated in each cylinder of the engine 10 so as to be able to reciprocate. A combustion chamber 12 is provided on the top side (upper side) of the piston 11 of each cylinder. The inner peripheral surface of the combustion chamber 12 has a circular shape (perfect circle or ellipse). The combustion chamber 12 communicates with the intake port 30 via the two intake ports 31 and communicates with the exhaust port 14 via the two exhaust ports 13.
 燃焼室12の天井部(シリンダヘッド21)の中心部には、点火プラグ15が設けられている。点火プラグ15が設けられる天井部の中央部とは、その天井部の中心点を含む所定の範囲内であるとよい。具体的には、点火プラグ15は、天井部の中央部において、燃焼室12の吸気側の中心位置(2つの吸気口31の中心位置)と排気側の中心位置(2つの排気口13の中心位置)とを繋ぐ線上の位置に設けられていることが望ましい。そして、点火プラグ15は、点火コイル等よりなる点火装置を通じて、所望とする点火時期に高電圧が印加される。点火プラグ15に対する高電圧の印加により、対向電極間にアーク放電が発生し、燃焼室12内の混合気に着火する。 A spark plug 15 is provided at the center of the ceiling (cylinder head 21) of the combustion chamber 12. The center part of the ceiling part where the spark plug 15 is provided is preferably within a predetermined range including the center point of the ceiling part. Specifically, the spark plug 15 has a central position on the intake side of the combustion chamber 12 (a central position of the two intake ports 31) and a central position on the exhaust side (the centers of the two exhaust ports 13) at the center of the ceiling. It is desirable to be provided at a position on a line connecting the position). A high voltage is applied to the ignition plug 15 at a desired ignition timing through an ignition device including an ignition coil. By applying a high voltage to the spark plug 15, an arc discharge is generated between the counter electrodes, and the air-fuel mixture in the combustion chamber 12 is ignited.
 エンジン10の各気筒の上部であって、吸気ポート30側には、燃焼室12内に燃料を直接供給する燃料噴射弁16が設けられている。燃料噴射弁16は、図示しない燃料配管を介して燃料タンクに接続されている。燃料タンク内の燃料は、各気筒の燃料噴射弁16に供給され、燃料噴射弁16から燃焼室12の点火プラグ15方向に向かって噴射される。 A fuel injection valve 16 that directly supplies fuel into the combustion chamber 12 is provided at the upper portion of each cylinder of the engine 10 and on the intake port 30 side. The fuel injection valve 16 is connected to a fuel tank via a fuel pipe (not shown). The fuel in the fuel tank is supplied to the fuel injection valve 16 of each cylinder, and is injected from the fuel injection valve 16 toward the ignition plug 15 in the combustion chamber 12.
 なお、図示はしないが、排気ポート14の下流と吸気ポート30の上流を繋ぐEGR(Exhaust Gas Recirculation)システムを設けている。EGRシステムによって、排気の一部を吸気に導入可能となっている。また、EGRシステムは、EGR率を調整するためのEGRバルブを有している。 Although not shown, an EGR (Exhaust Gas Recirculation) system that connects the downstream of the exhaust port 14 and the upstream of the intake port 30 is provided. Part of the exhaust can be introduced into the intake air by the EGR system. The EGR system has an EGR valve for adjusting the EGR rate.
 エンジン10には、エンジン10の回転に伴い所定クランク各毎(例えば30°CA周期)で矩形状のクランク角信号を出力するクランク角度センサ17が設けられている。また、本エンジン10は、ECU18を備えている。ECU18は、周知のとおりCPU、ROM、RAM等からなるマイクロコンピュータを主体として構成されている。ECU18は、クランク角度センサ17等各種センサからの出力に基づいて、エンジン10の運転状況を算出する。そして、エンジン10の運転状況に応じて、各種装置を制御するための信号を出力する。 The engine 10 is provided with a crank angle sensor 17 that outputs a rectangular crank angle signal for each predetermined crank (for example, 30 ° CA cycle) as the engine 10 rotates. The engine 10 includes an ECU 18. As is well known, the ECU 18 is mainly composed of a microcomputer including a CPU, a ROM, a RAM, and the like. The ECU 18 calculates the operating state of the engine 10 based on outputs from various sensors such as the crank angle sensor 17. And according to the driving | running state of the engine 10, the signal for controlling various apparatuses is output.
 次に、図2を用いて、点火プラグ15近傍の流速Vと着火性との関係について説明する。図2は、点火プラグ15近傍の流速Vと着火性を示す指標Kとの関係性を示す図である。指標Kは、点火プラグ15から燃料への着火性と関連性を有する指標であり、着火性が良くなるほど、値が大きくなる。指標Kには、例えば、EGR率や燃料濃度等のエンジン10の運転条件がある。EGR率は、吸気ガスの中に占めるEGRガスの割合であり、着火性がよいほど、EGR率が高くできる。燃料濃度とは、燃焼室12内の空気量(酸素量)に対する燃料量の割合を示しており、着火性が良くなるほど、燃料濃度を薄く(リーン状態に)できる。 Next, the relationship between the flow velocity V in the vicinity of the spark plug 15 and the ignitability will be described with reference to FIG. FIG. 2 is a diagram showing the relationship between the flow velocity V in the vicinity of the spark plug 15 and the index K indicating ignitability. The index K is an index that is related to the ignitability from the spark plug 15 to the fuel, and the value increases as the ignitability improves. The index K includes operating conditions of the engine 10 such as an EGR rate and fuel concentration. The EGR rate is the ratio of the EGR gas in the intake gas, and the EGR rate can be increased as the ignitability increases. The fuel concentration indicates the ratio of the fuel amount to the air amount (oxygen amount) in the combustion chamber 12, and the fuel concentration can be made thinner (lean state) as the ignitability is improved.
 また、点火プラグ15近傍の流速が適切な範囲になければ着火遅れ、失火が生じる。具体的には、点火プラグ15の近傍の流速が速すぎると、放電経路が長くなりすぎて、放電切れが生じる。一方、点火プラグ15近傍の流速が遅すぎると、放電経路が長くならないため、混合気へのエネルギー供給が悪化し、その結果として着火が遅れる。そのため、着火性を表す指標の値毎に、適切な流速があり、図2では、その関係性を示している。例えば、図2において、着火性を表す指標がK1の場合には、適切な流速は、V1からV2の間となる。そして、このような値となるように、点火プラグ15近傍の流速を制御することが求められる。 Also, if the flow velocity in the vicinity of the spark plug 15 is not within an appropriate range, the ignition is delayed and misfire occurs. Specifically, if the flow velocity in the vicinity of the spark plug 15 is too fast, the discharge path becomes too long and the discharge is cut off. On the other hand, if the flow velocity in the vicinity of the spark plug 15 is too slow, the discharge path does not become long, so that the supply of energy to the air-fuel mixture deteriorates, resulting in a delay in ignition. Therefore, there is an appropriate flow velocity for each index value representing ignitability, and FIG. 2 shows the relationship. For example, in FIG. 2, when the index representing ignitability is K1, the appropriate flow rate is between V1 and V2. And it is calculated | required to control the flow velocity of the ignition plug 15 vicinity so that it may become such a value.
 このような点火プラグ15近傍の流速を制御するための構成について、図1及び図3を用いて説明する。図3は、吸気ポート30と燃焼室12の平断面図であって、燃焼室12の周辺部の構成を気筒の軸線方向においてシリンダヘッド21側から見た図である。以下の説明において、図3に示すように、吸気ポート30の軸線方向(吸気ポート30の延びる方向)をL1方向とし、L1方向と直交する方向をL2方向とする。 A configuration for controlling the flow velocity in the vicinity of the spark plug 15 will be described with reference to FIGS. 1 and 3. FIG. 3 is a cross-sectional plan view of the intake port 30 and the combustion chamber 12, and is a view of the configuration of the periphery of the combustion chamber 12 as viewed from the cylinder head 21 side in the cylinder axial direction. In the following description, as shown in FIG. 3, the axial direction of the intake port 30 (the direction in which the intake port 30 extends) is the L1 direction, and the direction orthogonal to the L1 direction is the L2 direction.
 吸気ポート30は、シリンダヘッド21に設けられたヘッド通路30aと、シリンダヘッド21とインテークマニホールド22との間に取り付けられた弁体アセンブリ23に設けられたアセンブリ通路30bとからなりたっている。つまり、吸気ポート30とは、インテークマニホールド22との接続部分より下流側で、燃焼室12の吸気口31までの間の空気通路を指している。なお、ヘッド通路30aが吸気ポート30の下流側領域を形成する空気通路になり、アセンブリ通路30bが吸気ポート30の上流側領域を形成する空気通路となる。吸気ポート30のヘッド通路30aには、燃焼室12側で二股分岐された二股通路32が形成されている。二股通路32の先端(燃焼室12側)にそれぞれ吸気口31が設けられている。吸気口31は、L2方向に沿って隣り合うように設けられている。アセンブリ通路30bの位置では、吸気ポート30の通路断面は、矩形状となっている一方、二股通路32の位置では、各吸気ポート30通路断面は、円形状となっている。 The intake port 30 includes a head passage 30 a provided in the cylinder head 21 and an assembly passage 30 b provided in the valve body assembly 23 attached between the cylinder head 21 and the intake manifold 22. In other words, the intake port 30 refers to an air passage between the connection portion with the intake manifold 22 and the intake port 31 of the combustion chamber 12. The head passage 30 a is an air passage that forms a downstream region of the intake port 30, and the assembly passage 30 b is an air passage that forms an upstream region of the intake port 30. A bifurcated passage 32 that is bifurcated on the combustion chamber 12 side is formed in the head passage 30 a of the intake port 30. An intake port 31 is provided at each end of the bifurcated passage 32 (on the combustion chamber 12 side). The intake ports 31 are provided so as to be adjacent along the L2 direction. At the position of the assembly passage 30b, the passage section of the intake port 30 has a rectangular shape, whereas at the position of the bifurcated passage 32, the passage section of each intake port 30 has a circular shape.
 排気口13は、吸気口31と同様に、L2方向に沿って隣り合うように2つ設けられている。なお、排気口については、2つではなく1つであってもよい。その場合には、1つの排気口がL2方向の中央位置に設けられているとよい。 Two exhaust ports 13 are provided so as to be adjacent along the L2 direction, similarly to the intake port 31. Note that the number of exhaust ports may be one instead of two. In that case, it is preferable that one exhaust port is provided at the center position in the L2 direction.
 エンジン10の吸気ポート30と排気ポート14には、それぞれ吸気口31を塞ぐ吸気バルブ33と、排気口13を塞ぐ排気バルブ19とが設けられている。吸気バルブ33は、吸気口31を開閉するバルブヘッド33aと、バルブヘッド33aに連結された棒状のバルブステム33bとを備えている。バルブヘッド33aの外周形状は、吸気口31の内周形状とほぼ同じ円形状であり、バルブヘッド33aの外径は、吸気口31の内径よりも大きくなっている。バルブステム33bは、バルブヘッド33aの中心位置に設けられている。 The intake port 30 and the exhaust port 14 of the engine 10 are respectively provided with an intake valve 33 that closes the intake port 31 and an exhaust valve 19 that closes the exhaust port 13. The intake valve 33 includes a valve head 33a for opening and closing the intake port 31, and a rod-shaped valve stem 33b connected to the valve head 33a. The outer peripheral shape of the valve head 33 a is substantially the same circular shape as the inner peripheral shape of the intake port 31, and the outer diameter of the valve head 33 a is larger than the inner diameter of the intake port 31. The valve stem 33b is provided at the center position of the valve head 33a.
 そして、吸気バルブ33の開動作により吸気ポート30内の空気が燃焼室12内に流入し、排気バルブ19の開動作により燃焼室12内の排ガスが排気ポート14に排出される。吸気バルブ33及び排気バルブ19の開閉タイミング(バルブタイミング)は、可変バルブタイミング装置によりそれぞれ可変制御される。 Then, the air in the intake port 30 flows into the combustion chamber 12 by the opening operation of the intake valve 33, and the exhaust gas in the combustion chamber 12 is discharged to the exhaust port 14 by the opening operation of the exhaust valve 19. The opening / closing timing (valve timing) of the intake valve 33 and the exhaust valve 19 is variably controlled by a variable valve timing device.
 吸気ポート30には、気筒の平面視において、中央とその両側とに仕切る仕切り壁34が2つ設けられている。仕切り壁34は、吸気ポート30のL1方向のほぼ全長に亘って設けられている。仕切り壁34の先端側(燃焼室12側)は、吸気ポート30の二股通路32に至っており、仕切り壁34は、バルブステム33bに向けて延びている。 The intake port 30 is provided with two partition walls 34 that are divided into the center and both sides thereof in a plan view of the cylinder. The partition wall 34 is provided over substantially the entire length of the intake port 30 in the L1 direction. The leading end side (combustion chamber 12 side) of the partition wall 34 reaches the bifurcated passage 32 of the intake port 30, and the partition wall 34 extends toward the valve stem 33b.
 吸気ポート30は、気筒の平面視において、中央となる第1流路35と、その両側に2つの第2流路36とに仕切り壁34によって仕切られている。つまり、吸気ポート30は、L2方向に3つに区切られている。 The intake port 30 is partitioned by a partition wall 34 into a first flow path 35 that is the center in the plan view of the cylinder and two second flow paths 36 on both sides thereof. That is, the intake port 30 is divided into three in the L2 direction.
 第1流路35及び第2流路36には、それぞれ第1制御弁41及び第2制御弁42が設けられている。第1制御弁41及び第2制御弁42は、それぞれ弁体43と回動軸44とアクチュエータ45とを有している。各制御弁41,42は、第1流路35及び第2流路36において気筒の軸方向を上下方向とした場合の下側を部分的に閉鎖して、各流路35,36を流れる気流の流量及び速度を調整するものであり、回動軸44を軸心とする弁体43の回動により、当該気流が調整される。具体的には、弁体43は、吸気ポート30の下側面で回動軸44により回動可能に支持されており、アクチュエータ45により弁体43が回動されることで、各流路35,36の下側が部分的に閉鎖される。第2制御弁42の回動軸44は互いに連結しており、回動軸44は、それぞれ流路外にあるアクチュエータ45に取り付けられている。なお、第2制御弁42は、1つの回動軸44で1つのアクチュエータ45により制御されていたが、各第2制御弁42が別々に制御されていてもよい。 A first control valve 41 and a second control valve 42 are provided in the first flow path 35 and the second flow path 36, respectively. The first control valve 41 and the second control valve 42 each have a valve body 43, a rotating shaft 44, and an actuator 45. The control valves 41 and 42 partially close the lower side of the first flow path 35 and the second flow path 36 when the axial direction of the cylinder is the vertical direction, and the airflow flowing through the flow paths 35 and 36. The air flow is adjusted by the rotation of the valve body 43 having the rotation shaft 44 as an axis. Specifically, the valve body 43 is rotatably supported by the rotation shaft 44 on the lower surface of the intake port 30, and the valve body 43 is rotated by the actuator 45, whereby each flow path 35, The underside of 36 is partially closed. The rotation shafts 44 of the second control valve 42 are connected to each other, and the rotation shafts 44 are respectively attached to actuators 45 outside the flow path. In addition, although the 2nd control valve 42 was controlled by the one actuator 45 with the one rotating shaft 44, each 2nd control valve 42 may be controlled separately.
 各アクチュエータ45には、第1制御弁41及び第2制御弁42の開度を検出するためのセンサが内蔵されている。ECU18は、エンジン10の運転状況に基づいて、アクチュエータ45を制御し、第1制御弁41及び第2制御弁42の開度を制御する。アクチュエータ45で検知した各制御弁41,42の開度は、ECU18に出力されている。なお、ECU18において、運転状況を検出し、開度を検出し調整する機能が「気流制御部」に相当する。 Each actuator 45 incorporates a sensor for detecting the opening degree of the first control valve 41 and the second control valve 42. The ECU 18 controls the actuator 45 based on the operating state of the engine 10 and controls the opening degrees of the first control valve 41 and the second control valve 42. The opening degree of each control valve 41, 42 detected by the actuator 45 is output to the ECU 18. In the ECU 18, the function of detecting the driving situation and detecting and adjusting the opening corresponds to the “air flow control unit”.
 このように、中央に設けられた第1制御弁41によって、図4及び図5に示すように、第1流路35に流れる気流が制御されることで、点火プラグ15近傍の流速が調整される。図4は、吸気ポート30及び燃焼室12内の気流を説明するための図であって、第1流路35の位置での断面図である。図5は、吸気ポート30及び燃焼室12内の気流を説明するための図であって、燃焼室12の周辺部の構成を気筒の軸線方向においてシリンダヘッド21側から見た図である。図4及び図5において、二点鎖線は、気流の流れを示している。 As described above, the first control valve 41 provided in the center controls the airflow flowing through the first flow path 35 as shown in FIGS. 4 and 5, thereby adjusting the flow velocity in the vicinity of the spark plug 15. The FIG. 4 is a view for explaining the airflow in the intake port 30 and the combustion chamber 12, and is a cross-sectional view at the position of the first flow path 35. FIG. 5 is a view for explaining the airflow in the intake port 30 and the combustion chamber 12, and is a view of the configuration of the periphery of the combustion chamber 12 as viewed from the cylinder head 21 side in the cylinder axial direction. 4 and 5, the alternate long and two short dashes line indicates the flow of airflow.
 エンジン10において、混合気の燃料濃度が低い(燃焼室12内の気体における燃料の割合が小さい)場合やEGR率が高い場合等には、特に点火プラグ15近傍の流速を速くすることが求められる。そこで、第1制御弁41は、第1流路35の開口面積を大きくするように、その開度が調整される一方で、第2制御弁42は、第2流路36の開口面積を小さくするように、その開度を調整する。つまり、第1流路35の開口面積が第2流路36の開口面積よりも大きくなるようにして、流路抵抗が第2流路36より低くなる第1流路35に多くの気体が流れ込むようにする。なお、この際に、弁体43を回動軸44によって回動させ、各流路35,36の下側が部分的に閉鎖されることで、簡単に各流路35,36の開口面積が調整される。 In the engine 10, when the fuel concentration of the air-fuel mixture is low (the ratio of fuel in the gas in the combustion chamber 12 is small) or the EGR rate is high, it is required to increase the flow velocity particularly near the spark plug 15. . Therefore, the opening of the first control valve 41 is adjusted so as to increase the opening area of the first flow path 35, while the second control valve 42 decreases the opening area of the second flow path 36. Adjust the opening so that That is, a large amount of gas flows into the first flow path 35 in which the flow path resistance is lower than that of the second flow path 36 so that the opening area of the first flow path 35 is larger than the opening area of the second flow path 36. Like that. At this time, the opening area of each flow path 35, 36 is easily adjusted by rotating the valve body 43 by the rotation shaft 44 and partially closing the lower side of each flow path 35, 36. Is done.
 第1流路35に流れ込んだ気体は、第1制御弁41によって、第1流路35の下方が閉鎖されていることから、第1流路35の上方を上方の壁面に沿って流れ込み、二股通路32で、2つに分かれて流れ込む。そして、二股通路32では、流れ込んだ気体は、バルブステム33bの側方であって中央側を通るように流れ、バルブヘッド33aに当って、中央側に集約されるようにして、燃焼室12内に流れ込む。このようにして、第1流路35を流れる気流は、比較的強い気流となって、燃焼室12の中央位置に流れ込む。そして、燃焼室12の天井面、排気口13側の筒内壁面、ピストン11の上面という順で回転するタンブル流を生じさせる。 The gas that has flowed into the first flow path 35 flows down along the upper wall surface of the first flow path 35 because the lower portion of the first flow path 35 is closed by the first control valve 41. In the passage 32, it flows into two parts. In the bifurcated passage 32, the gas that has flowed in flows through the center side of the valve stem 33b and strikes the valve head 33a so as to be concentrated on the center side. Flow into. Thus, the airflow flowing through the first flow path 35 becomes a relatively strong airflow and flows into the center position of the combustion chamber 12. And the tumble flow which rotates in order of the ceiling surface of the combustion chamber 12, the cylinder inner wall surface by the side of the exhaust port 13, and the upper surface of the piston 11 is produced.
 一方で、わずかに第2流路36に流れ込んだ気体は、第2制御弁42によって、第2流路36の下方が閉鎖されていることから、第2流路36の上方を上方の壁面に沿って流れ込む。そして、二股通路32では、流れ込んだ気体は、外側を通り、バルブステム33bの側方であって外側を通るように流れ、バルブヘッド33aに当って、外側に向くようにして、燃焼室12内に流れ込む。このようにして、第2流路36を流れる気流は、燃焼室12の外側に流れ込む。 On the other hand, the gas slightly flowing into the second flow path 36 is closed below the second flow path 36 by the second control valve 42. Flows along. In the bifurcated passage 32, the gas that has flowed in passes through the outside, flows to the side of the valve stem 33 b and passes through the outside, hits the valve head 33 a, and faces the outside. Flow into. In this way, the airflow flowing through the second flow path 36 flows into the outside of the combustion chamber 12.
 吸気ポート30は、第1流路35とその両側となる2つの第2流路36とに仕切り壁34によって分けられ、吸気ポート30を流れる気流は、二股通路32の先端に設けられた2つの吸気口31から燃焼室12内に流れ込む。この際に、仕切り壁34がバルブステム33bに向かって延びていることから、バルブヘッド33aに当った後も、中央側と外側に気流が分かれることになる。 The intake port 30 is divided by a partition wall 34 into a first flow path 35 and two second flow paths 36 on both sides of the first flow path 35, and the airflow flowing through the intake port 30 is divided into two flow paths provided at the tip of the bifurcated passage 32. It flows into the combustion chamber 12 from the intake port 31. At this time, since the partition wall 34 extends toward the valve stem 33b, the airflow is divided into the central side and the outer side even after hitting the valve head 33a.
 そして、第1流路35に流れ込む気体の量が、第2流路36と第1流路35の開度の差によって調整されつつ、燃焼室12の中央に流れ込む気流が通る第1流路35の気流が第1制御弁41によって制御されることで、燃焼室12の中央(点火プラグ15近傍)に流れ込む気流の流速を第1制御弁41によって制御することができる。また、流路35,36の下方が閉鎖されていて、上方を気流が流れるようにすることで、燃焼室12内にタンブル流を生成しやすくなる。 The amount of gas flowing into the first flow path 35 is adjusted by the difference in opening between the second flow path 36 and the first flow path 35, and the first flow path 35 through which the air flow flowing into the center of the combustion chamber 12 passes. The first control valve 41 can control the flow velocity of the airflow flowing into the center of the combustion chamber 12 (near the spark plug 15). Further, the lower portions of the flow paths 35 and 36 are closed, and the airflow flows upward, so that a tumble flow is easily generated in the combustion chamber 12.
 また、例えば、高負荷状態にある場合等、吸気ポート30に流れ込む気体の量が多い場合、全ての流路35,36の開口面積を大きくするように制御弁41,42が開き気味に調整される。このような場合には、各流路35,36の開口面積を小さくすると、気流が流れ込む際の抵抗になるため、流れ込む気体の量が多い場合には、開口面積が大きくなるようにする。また、燃焼室12内の燃料の割合も比較的高いことから、要求される点火プラグ15近傍の流速の範囲も広くなるため、全ての流路35,36の開口面積を大きくしても支障がない。 In addition, for example, when the amount of gas flowing into the intake port 30 is large, such as in a high load state, the control valves 41 and 42 are adjusted to open so that the opening areas of all the flow paths 35 and 36 are increased. The In such a case, if the opening area of each of the flow paths 35 and 36 is reduced, it becomes resistance when the airflow flows. Therefore, when the amount of gas flowing in is large, the opening area is increased. In addition, since the ratio of fuel in the combustion chamber 12 is relatively high, the required flow velocity range near the spark plug 15 is widened, so there is no problem even if the opening areas of all the flow paths 35 and 36 are increased. Absent.
 そして、吸気ポート30に吸気ポート30に流れ込む気体の量が少ない場合、全ての流路35,36の開口面積を小さくするように制御弁41,42が閉じ気味に調整される。このような場合には、各流路35,36の開口面積を小さくしても、気流が流れ込む際の抵抗とならないため、流れ込む気体の量が少ない場合には、開口面積が小さくなるようにする。このように、エンジン10の運転状況に基づいて、制御弁41,42の開度を調整し、各流路35,36に流れる気流を適切なものとすることができる。 When the amount of gas flowing into the intake port 30 is small, the control valves 41 and 42 are closed and adjusted so as to reduce the open areas of all the flow paths 35 and 36. In such a case, even if the opening area of each of the flow paths 35 and 36 is reduced, there is no resistance when the airflow flows. Therefore, when the amount of gas flowing in is small, the opening area is reduced. . As described above, the opening degree of the control valves 41 and 42 is adjusted based on the operating state of the engine 10, and the airflow flowing through the flow paths 35 and 36 can be made appropriate.
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。 According to the embodiment described above in detail, the following excellent effects can be obtained.
 中央となる第1流路35とその両側の第2流路36とに吸気ポート30内を仕切る仕切り壁34が設けられ、第1流路35に、その流路を縮小することで、開口面積を可変とする第1制御弁41が設けられている。中央の第1流路35に第1制御弁41が設けられることで、点火プラグ15に向かって流れ込む気流の強さを制御することができ、点火プラグ15に向かう気流を適切な強さにすることができ、着火性を向上させることができる。また、第1制御弁41により第1流路35において下側が部分的に閉鎖されて、第1流路35を流れる気流を強化している。つまり、上方が開口されるようになっており、燃焼室12内の縦渦(タンブル流)が生成しやすくなる。 A partition wall 34 that partitions the inside of the intake port 30 is provided in the first first flow path 35 and the second flow paths 36 on both sides thereof, and the opening area is reduced by reducing the flow path in the first flow path 35. A first control valve 41 is provided to make the variable. By providing the first control valve 41 in the central first flow path 35, the strength of the airflow flowing toward the spark plug 15 can be controlled, and the airflow toward the spark plug 15 is set to an appropriate strength. And ignitability can be improved. Further, the lower side of the first flow path 35 is partially closed by the first control valve 41, and the airflow flowing through the first flow path 35 is strengthened. That is, the upper part is opened, and a vertical vortex (tumble flow) in the combustion chamber 12 is easily generated.
 燃焼室12内の燃料割合やエンジン10の回転速度や負荷等の運転条件に基づいて、第1制御弁41により縮小される開口面積が設定される。例えば、リーン運転やEGR率が高い場合には、着火できる条件が厳しいため、着火に必要な流速になるように開口面積が設定される。つまり、運転条件に基づいて流速の制御が必要な場合に、必要な流速になるように制御することができる。 The opening area reduced by the first control valve 41 is set based on the fuel ratio in the combustion chamber 12 and the operating conditions such as the rotational speed and load of the engine 10. For example, when the lean operation or the EGR rate is high, the conditions under which ignition can be performed are severe, so the opening area is set so that the flow rate is necessary for ignition. That is, when it is necessary to control the flow rate based on the operating conditions, it is possible to control the flow rate to a necessary level.
 第1流路35に設けられた第1制御弁41とは別に、第2流路36に第2制御弁42が設けられることで、第2流路36に流れる気流を制御することができる。そして、第1制御弁41と第2制御弁42がともに、下側の流路を部分的に閉鎖する、つまり上方が開口されることで、吸気ポート30の壁面に沿って気流が流れ込みやすくなり、タンブル流を生成しやすくなる。また、第2制御弁42から流れ込む気流もタンブル流の生成に貢献することができる。 In addition to the first control valve 41 provided in the first flow path 35, the second control valve 42 is provided in the second flow path 36, whereby the airflow flowing in the second flow path 36 can be controlled. Both the first control valve 41 and the second control valve 42 partially close the lower flow path, that is, the upper part is opened, so that the airflow easily flows along the wall surface of the intake port 30. It becomes easy to generate a tumble flow. Further, the airflow flowing from the second control valve 42 can also contribute to the generation of the tumble flow.
 第1制御弁41と第2制御弁42とが個別に駆動されて、第1流路35の気流強化と第2流路36の気流強化が各々実施されることで、中央の気流と燃焼室12全体の気流とを制御することができる。また、第1制御弁41及び第2制御弁42は、回動軸44によって回動することで、下方を部分的に閉鎖し、開口面積を調整することができる。 The first control valve 41 and the second control valve 42 are individually driven, and the air flow enhancement of the first flow path 35 and the air flow reinforcement of the second flow path 36 are performed, respectively, so that the air flow in the center and the combustion chamber The entire 12 airflows can be controlled. Moreover, the 1st control valve 41 and the 2nd control valve 42 can close the lower part partially by rotating with the rotating shaft 44, and can adjust an opening area.
 吸気ポート30が二股に分岐されており、燃焼室12に繋がる2つの吸気口31にそれぞれ吸気バルブ33が設けられている。吸気バルブ33は、吸気口31を開閉するバルブヘッド33aと、バルブヘッド33aに連結されたバルブステム33bとを有している。バルブヘッド33aを押し下げて、吸気口31が開くと、吸気ポート30からの気流は、バルブステム33bとバルブヘッド33aに当って、バルブヘッド33aを回り込むようにして燃焼室12内に流れ込む。また、二股の吸気ポート30(二股通路32)が第1流路35と第2流路36とに仕切られている。第1流路35から流れ込み2つのバルブヘッド33aの中央側にそれぞれ当った気流が中央側に集約される一方で、第2流路36から流れ込み2つのバルブヘッド33aの外側にそれぞれ当った気流が外側に集約されやすくなる。その結果、燃焼室12内でも中央位置の気流は第1流路35から流れ込んだ気流となり、第1制御弁41で制御された気流がそのまま中央位置に流し込むことができる。また、仕切り壁34が、それぞれのバルブステム33bに向けて延びることで、より確実にバルブヘッド33aに当って回り込む気流の方向を規制しやすくなる。 The intake port 30 is bifurcated and an intake valve 33 is provided at each of two intake ports 31 connected to the combustion chamber 12. The intake valve 33 has a valve head 33a for opening and closing the intake port 31, and a valve stem 33b connected to the valve head 33a. When the valve head 33a is pushed down to open the intake port 31, the airflow from the intake port 30 strikes the valve stem 33b and the valve head 33a and flows into the combustion chamber 12 so as to go around the valve head 33a. A bifurcated intake port 30 (a bifurcated passage 32) is partitioned into a first flow path 35 and a second flow path 36. The airflows flowing from the first flow path 35 are respectively concentrated on the central side of the two valve heads 33a, while the airflows flowing from the second flow path 36 and hitting the outer sides of the two valve heads 33a are respectively collected. It becomes easy to be gathered outside. As a result, even in the combustion chamber 12, the airflow at the center position becomes an airflow flowing from the first flow path 35, and the airflow controlled by the first control valve 41 can flow into the center position as it is. In addition, since the partition walls 34 extend toward the respective valve stems 33b, it becomes easier to regulate the direction of the airflow that hits the valve head 33a more reliably.
 <第2実施形態>
 第1実施形態では、第2制御弁42も下側の流路を部分的に閉鎖していたが、第2実施形態においては、第2制御弁142は仕切り壁134の反対側をそれぞれ閉鎖している。以下、図6及び図7を参照して、詳しく説明する。図6は、第2実施形態の吸気ポート30と燃焼室12の平断面図であって、燃焼室12の周辺部の構成を気筒の軸線方向においてシリンダヘッド21側から見た図である。図7は、吸気ポート30及び燃焼室12内の気流を説明するための図であって、二点鎖線は、気流の流れを示している。
Second Embodiment
In the first embodiment, the second control valve 42 also partially closes the lower flow path. However, in the second embodiment, the second control valve 142 closes the opposite side of the partition wall 134. ing. Hereinafter, a detailed description will be given with reference to FIGS. 6 and 7. FIG. 6 is a plan sectional view of the intake port 30 and the combustion chamber 12 of the second embodiment, and is a view of the configuration of the periphery of the combustion chamber 12 as viewed from the cylinder head 21 side in the cylinder axial direction. FIG. 7 is a view for explaining the airflow in the intake port 30 and the combustion chamber 12, and the two-dot chain line indicates the flow of the airflow.
 吸気ポート30には、気筒の平面視において、中央とその両側とに仕切る仕切り壁134が2つ設けられている。仕切り壁134は、吸気ポート30のL1方向のほぼ全長に亘って設けられている。仕切り壁134の先端側(燃焼室12側)は、吸気ポート30の二股通路32に至っており、仕切り壁134は、バルブステム33bよりも内側に向けて延びている。 The intake port 30 is provided with two partition walls 134 that partition the center and both sides thereof in a plan view of the cylinder. The partition wall 134 is provided over substantially the entire length of the intake port 30 in the L1 direction. The leading end side (combustion chamber 12 side) of the partition wall 134 reaches the bifurcated passage 32 of the intake port 30, and the partition wall 134 extends inward from the valve stem 33b.
 第2流路36には、第2制御弁142が設けられている。第2制御弁142には、それぞれ弁体143と、回動軸144とが設けられている。弁体143は、平板状であって、弁体143の幅方向(L2方向)の寸法は、第2流路36の幅方向(L2方向)の内寸4分の3程度となっており、弁体143の上下方向の寸法は、第2流路36の上下方向の内寸と同じとなっている。つまり、弁体143(第2制御弁142)は、第2流路36の外側(仕切り壁134と反対側)を閉鎖し、中央側が常に開いた状態となっている。なお、弁体143の幅方向の寸法は、第2流路36の内寸と同じになっていてもよい。 A second control valve 142 is provided in the second flow path 36. The second control valve 142 is provided with a valve body 143 and a rotating shaft 144, respectively. The valve body 143 has a flat plate shape, and the dimension in the width direction (L2 direction) of the valve body 143 is about three-quarters of the inner dimension in the width direction (L2 direction) of the second flow path 36. The vertical dimension of the valve body 143 is the same as the vertical dimension of the second flow path 36. That is, the valve body 143 (second control valve 142) closes the outside (the side opposite to the partition wall 134) of the second flow path 36, and the center side is always open. The dimension in the width direction of the valve body 143 may be the same as the inner dimension of the second flow path 36.
 また、弁体143の一端、具体的には根元側(外側)に回動軸144が設けられており、回動軸144は、吸気ポート30の幅方向外側の壁面に接触している。第2制御弁142は、回動軸144を中心に弁体143が回動することで、第2流路36の幅方向の開度が調節されている。つまり、第2制御弁142は、仕切り壁134の反対側を部分的に閉鎖しており、その閉鎖状況(第2流路36の開度)が回動軸144を中心に弁体143が回転することで調整される。回動軸144は、それぞれ流路外にあるアクチュエータ145に取り付けられている。第2制御弁142は、それぞれアクチュエータ145によって開度調節されており、アクチュエータ145には、第2制御弁142の開度を検出するためのセンサが内蔵されている。 Further, a rotation shaft 144 is provided at one end of the valve body 143, specifically, at the base side (outside), and the rotation shaft 144 is in contact with the wall surface of the intake port 30 on the outer side in the width direction. In the second control valve 142, the opening degree in the width direction of the second flow path 36 is adjusted by the valve body 143 rotating around the rotation shaft 144. That is, the second control valve 142 partially closes the opposite side of the partition wall 134, and the closed state (the opening degree of the second flow path 36) rotates the valve body 143 around the rotation shaft 144. It is adjusted by doing. The rotation shafts 144 are respectively attached to actuators 145 outside the flow path. The opening degree of each second control valve 142 is adjusted by an actuator 145, and the actuator 145 includes a sensor for detecting the opening degree of the second control valve 142.
 図7に示すように、第2流路36に流れ込んだ気体は、第2制御弁142によって、第2流路36の外側が閉鎖されていることから、第2流路36の中央側を仕切り壁134の壁面に沿って流れ込む。そして、二股通路32では、流れ込んだ気体は、中央側に寄せられるようにして流れ込み、バルブステム33bの中央側もしくは外側の中央よりを通るように流れ、バルブヘッド33aに当って、中央側に寄るようにして、燃焼室12内に流れ込む。このようにして、第2流路36を流れる気流は、燃焼室12の中央側に流れ込む。 As shown in FIG. 7, the gas flowing into the second flow path 36 is partitioned on the center side of the second flow path 36 because the second control valve 142 closes the outside of the second flow path 36. It flows along the wall surface of the wall 134. In the bifurcated passage 32, the gas that has flowed in flows toward the center side, flows so as to pass from the center side of the valve stem 33b or the center of the outside, hits the valve head 33a, and approaches the center side. In this way, it flows into the combustion chamber 12. In this way, the airflow flowing through the second flow path 36 flows into the center side of the combustion chamber 12.
 第1流路35に流れ込む気体の量を、第2流路36と第1流路35の開度の差によって調整する。燃焼室12の中央に流れ込む気流が通る第1流路35の気流を第1制御弁41によって制御することで、燃焼室12の中央(点火プラグ15近傍)に流れ込む気流の流速を制御することができる。また、第1流路35の下方を閉鎖して、上方を気流が流れるようにすることで、燃焼室12内にタンブル流を生成しやすくなる。一方で、第2流路36の気流を中央側に寄せることで、中央位置に流れる気流を強くすることができる。 The amount of gas flowing into the first flow path 35 is adjusted by the difference in opening between the second flow path 36 and the first flow path 35. By controlling the airflow in the first flow path 35 through which the airflow flowing into the center of the combustion chamber 12 is controlled by the first control valve 41, the flow velocity of the airflow flowing into the center of the combustion chamber 12 (near the spark plug 15) can be controlled. it can. In addition, by closing the lower portion of the first flow path 35 and allowing the air flow to flow upward, a tumble flow can be easily generated in the combustion chamber 12. On the other hand, the airflow flowing in the central position can be strengthened by bringing the airflow of the second flow path 36 toward the center.
 以上のように、第2実施形態では、第1流路35に設けられた第1制御弁41とは別に、第2流路36に第2制御弁42が設けられることで、第2流路36に流れる気流が制御される。そして、第1制御弁41は、下側の流路が部分的に閉鎖される、つまり上方が開口されることで、吸気ポート30の壁面に沿って流れ込みやすくなり、タンブル流を生成しやすくなる。一方、第2制御弁42では、仕切り壁134の反対側が部分的に閉鎖されて、中央側(第1流路35側)が開口されているため、中央位置に流れる気流を強くすることができる。 As described above, in the second embodiment, in addition to the first control valve 41 provided in the first flow path 35, the second flow control valve 42 is provided in the second flow path 36. The airflow flowing through 36 is controlled. And the 1st control valve 41 becomes easy to flow along the wall surface of intake port 30, and it becomes easy to generate a tumble flow because the lower channel is partially closed, that is, the upper part is opened. . On the other hand, in the second control valve 42, the opposite side of the partition wall 134 is partially closed and the center side (first flow path 35 side) is opened, so that the airflow flowing to the center position can be strengthened. .
 <他の実施形態>
 本開示は、上記実施形態に限定されず、例えば以下のように実施してもよい。ちなみに、以下の別例の構成を、上記実施形態の構成に対して、個別に適用してもよく、また、任意に組み合わせて適用してもよい。
<Other embodiments>
This indication is not limited to the above-mentioned embodiment, for example, may be carried out as follows. Incidentally, the configuration of another example below may be applied individually to the configuration of the above embodiment, or may be applied in any combination.
 ・上記実施形態では、第1制御弁41と第2制御弁42,142の開度を調整することで、第1流路35に流れ込む気流を調整したが、第1制御弁41の開度のみを調整し、第1流路35に流れ込む気流の速度を調整するようにしてもよい。 In the above embodiment, the airflow flowing into the first flow path 35 is adjusted by adjusting the opening of the first control valve 41 and the second control valves 42 and 142, but only the opening of the first control valve 41 is adjusted. And the speed of the airflow flowing into the first flow path 35 may be adjusted.
 ・上記実施形態では、第1制御弁41は、第1流路35の下方を閉鎖していたが、上方を閉鎖して下方が開口するようにしてもよい。また、上下両方を閉鎖して、上下方向の中央が開口するようにしてもよい。 In the above embodiment, the first control valve 41 closes the lower part of the first flow path 35, but the upper part may be closed and the lower part may be opened. Further, both the upper and lower sides may be closed so that the center in the vertical direction opens.
 ・上記実施形態のような弁形状の他、流路を部分的に閉鎖できれば、他の構成であってもよい。例えば、流路の壁面から突出するスライド弁であってもよいし、回動構造を備えたロータリ弁であってもよい。 Other than the valve shape as in the above embodiment, other configurations may be used as long as the flow path can be partially closed. For example, a slide valve that protrudes from the wall surface of the flow path may be used, or a rotary valve that has a rotating structure may be used.
 ・上記実施形態では、吸気ポート30は二股状になっていたが、分流せず、吸気口31が一つになっていてもよい。 In the above embodiment, the intake port 30 is bifurcated. However, the intake port 31 may be a single one without being divided.
 ・仕切り壁34は、図8に示すように、弁体アセンブリ23側のアセンブリ通路30bにのみ設けてもよい。このように、弁体アセンブリ23内のみに仕切り壁34を設けても、仕切り壁34及び第1制御弁41を設けない場合に比べて、燃焼室12内で点火プラグ15近傍の気流を調整することができる。また、シリンダヘッドは仕切り壁のない既存のものを用いることができる。つまり、既存のシリンダヘッドに仕切り壁34及び第1制御弁41(及び第2制御弁42)を設けた弁体アセンブリ23を取り付けることで、点火プラグ15近傍の気流を調整することができる。 As shown in FIG. 8, the partition wall 34 may be provided only in the assembly passage 30b on the valve body assembly 23 side. Thus, even if the partition wall 34 is provided only in the valve body assembly 23, the airflow in the vicinity of the ignition plug 15 is adjusted in the combustion chamber 12 as compared with the case where the partition wall 34 and the first control valve 41 are not provided. be able to. Further, an existing cylinder head without a partition wall can be used. That is, by attaching the valve body assembly 23 provided with the partition wall 34 and the first control valve 41 (and the second control valve 42) to the existing cylinder head, the airflow in the vicinity of the spark plug 15 can be adjusted.
 ・仕切り壁34は、図9に示すように、吸気ポート30のヘッド通路30a内の上流側のみに設けてもよい。つまり、仕切り壁34は、二股通路32に至っていなくてもよい。このように、二股通路32に至っていなくても、仕切り壁34及び第1制御弁41を設けない場合に比べて、燃焼室12内で点火プラグ15近傍の気流を調整することができる。 The partition wall 34 may be provided only on the upstream side in the head passage 30a of the intake port 30 as shown in FIG. That is, the partition wall 34 may not reach the bifurcated passage 32. As described above, even if the bifurcated passage 32 is not reached, the airflow in the vicinity of the spark plug 15 can be adjusted in the combustion chamber 12 as compared with the case where the partition wall 34 and the first control valve 41 are not provided.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (9)

  1.  ピストン(11)を収容する気筒内に設けられた燃焼室(12)と、前記燃焼室の天井部の中央に設けられた点火プラグ(15)とを備える内燃機関(10)の吸気装置であって、
     吸気口(31)を介して前記燃焼室に連通する吸気ポート(30)と、
     前記吸気ポートに設けられ、前記気筒の平面視において中央となる第1流路(35)とその両側となる2つの第2流路(36)とを形成する仕切り壁(34)と、
     前記第1流路に設けられ、当該第1流路の開口面積を可変とする制御弁(41)と、
     前記制御弁により、前記第1流路において前記気筒の軸方向を上下方向とした場合の上側及び下側のうち少なくとも一方を部分的に閉鎖して前記第1流路を流れる気流を強化する気流制御部(18)と、
    を備える内燃機関の吸気装置。
    An intake device for an internal combustion engine (10) comprising a combustion chamber (12) provided in a cylinder that houses a piston (11) and a spark plug (15) provided in the center of the ceiling of the combustion chamber. And
    An intake port (30) communicating with the combustion chamber via an intake port (31);
    A partition wall (34) provided in the intake port and forming a first flow path (35) that is the center in a plan view of the cylinder and two second flow paths (36) that are on both sides thereof;
    A control valve (41) provided in the first flow path, wherein the opening area of the first flow path is variable;
    Airflow that reinforces the airflow flowing through the first flow path by partially closing at least one of the upper side and the lower side when the axial direction of the cylinder is the vertical direction in the first flow path by the control valve A control unit (18);
    An intake device for an internal combustion engine comprising:
  2.  前記気流制御部は、前記内燃機関の運転状況に基づいて、前記第1流路において前記制御弁による流路縮小状態での開口面積を設定する請求項1に記載の内燃機関の吸気装置。 2. The intake device for an internal combustion engine according to claim 1, wherein the air flow control unit sets an opening area of the first flow path when the flow path is reduced by the control valve based on an operating state of the internal combustion engine.
  3.  前記制御弁を第1制御弁(41)として備えるとともに、前記第2流路に設けられ当該第2流路の開口面積を可変とする第2制御弁(42)を備え、
     前記気流制御部は、前記第1制御弁及び前記第2制御弁により、前記第1流路及び前記第2流路において前記上下方向の上側及び下側のうち一方を部分的に閉鎖して前記第1流路及び前記第2流路を流れる気流を強化する請求項1又は請求項2に記載の内燃機関の吸気装置。
    The control valve is provided as a first control valve (41), and is provided with a second control valve (42) provided in the second flow path and having a variable opening area of the second flow path,
    The air flow control unit is configured to partially close one of the upper and lower sides in the vertical direction in the first flow path and the second flow path by the first control valve and the second control valve. The intake device for an internal combustion engine according to claim 1 or 2, wherein the airflow flowing through the first flow path and the second flow path is strengthened.
  4.  前記制御弁を第1制御弁(41)として備えるとともに、前記第2流路に設けられ当該第2流路の開口面積を可変とする第2制御弁(42)を備え、
     前記気流制御部は、
     前記第1制御弁により、前記第1流路において前記上下方向の上側及び下側のうち一方を部分的に閉鎖して前記第1流路を流れる気流を強化するとともに、
     前記第2制御弁により、前記第2流路において前記仕切り壁の反対側を部分的に閉鎖して前記第2流路を流れる気流を強化する請求項1又は請求項2に記載の内燃機関の吸気装置。
    The control valve is provided as a first control valve (41), and is provided with a second control valve (42) provided in the second flow path and having a variable opening area of the second flow path,
    The airflow control unit
    The first control valve enhances the airflow flowing in the first flow path by partially closing one of the upper and lower sides in the vertical direction in the first flow path,
    3. The internal combustion engine according to claim 1, wherein the second control valve partially closes the opposite side of the partition wall in the second flow path to reinforce the airflow flowing through the second flow path. Intake device.
  5.  前記第1制御弁及び前記第2制御弁は個別に駆動可能であり、
     前記気流制御部は、前記第1制御弁の駆動による前記第1流路の気流強化と、前記第2制御弁の駆動による前記第2流路の気流強化とを各々実施する請求項3又請求項4に記載の内燃機関の吸気装置。
    The first control valve and the second control valve can be individually driven,
    The airflow control unit performs airflow enhancement in the first flow path by driving the first control valve and airflow reinforcement in the second flow path by driving the second control valve, respectively. Item 5. An intake device for an internal combustion engine according to Item 4.
  6.  前記第1制御弁及び前記第2制御弁は、回動又はスライドにより前記各流路を部分的に閉鎖するものである請求項3~請求項5のいずれか1項に記載の内燃機関の吸気装置。 The intake air of the internal combustion engine according to any one of claims 3 to 5, wherein the first control valve and the second control valve partially close the flow paths by turning or sliding. apparatus.
  7.  前記吸気ポートの上流側領域を形成する空気流路(30b)を有し、その空気流路に、前記仕切り壁と前記制御弁とが設けられている弁体アセンブリ(23)を備え、
     前記弁体アセンブリが、前記内燃機関のシリンダヘッド(21)に取り付けられている請求項1~請求項6のいずれか1項に記載の内燃機関の吸気装置。
    A valve body assembly (23) having an air flow path (30b) forming an upstream region of the intake port, the air flow path being provided with the partition wall and the control valve;
    The intake device for an internal combustion engine according to any one of claims 1 to 6, wherein the valve body assembly is attached to a cylinder head (21) of the internal combustion engine.
  8.  前記吸気ポートが、二股に分岐されており、前記燃焼室に通じる2つの前記吸気口にそれぞれ吸気バルブ(33)が設けられており、
     前記吸気バルブは、前記吸気口を開閉するバルブヘッド(33a)と、そのバルブヘッドに連結されたバルブステム(33b)とを有しており、
     前記仕切り壁は、二股の前記吸気ポートを前記第1流路と前記2つの第2流路とに仕切るものとなっている請求項1~請求項7のいずれか1項に記載の内燃機関の吸気装置。
    The intake port is bifurcated, and intake valves (33) are respectively provided at the two intake ports leading to the combustion chamber;
    The intake valve has a valve head (33a) for opening and closing the intake port, and a valve stem (33b) connected to the valve head,
    The internal combustion engine according to any one of claims 1 to 7, wherein the partition wall partitions the bifurcated intake port into the first flow path and the two second flow paths. Intake device.
  9.  前記仕切り壁は、前記吸気ポート内において前記バルブステムに向けて延びるように設けられている請求項8に記載の内燃機関の吸気装置。 The intake device for an internal combustion engine according to claim 8, wherein the partition wall is provided so as to extend toward the valve stem in the intake port.
PCT/JP2019/006572 2018-02-23 2019-02-21 Air intake device for internal combustion engine WO2019163893A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-031322 2018-02-23
JP2018031322A JP2019143612A (en) 2018-02-23 2018-02-23 Intake device of internal combustion engine

Publications (1)

Publication Number Publication Date
WO2019163893A1 true WO2019163893A1 (en) 2019-08-29

Family

ID=67686920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006572 WO2019163893A1 (en) 2018-02-23 2019-02-21 Air intake device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2019143612A (en)
WO (1) WO2019163893A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053377A1 (en) * 2021-09-30 2023-04-06 本田技研工業株式会社 Air intake structure for internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371423U (en) * 1986-10-30 1988-05-13
JPH0738665U (en) * 1993-12-16 1995-07-14 富士重工業株式会社 Engine intake system
JPH0861072A (en) * 1994-08-26 1996-03-05 Fuji Heavy Ind Ltd Intake controller for engine
GB2298896A (en) * 1995-03-17 1996-09-18 Ford Motor Co I.c.engine cylinder charge stratification
JP2000080965A (en) * 1998-09-04 2000-03-21 Suzuki Motor Corp Intake system for internal combustion engine
WO2002038924A1 (en) * 2000-10-30 2002-05-16 Hitachi, Ltd. Cylinder injection engine and method of controlling the engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371423U (en) * 1986-10-30 1988-05-13
JPH0738665U (en) * 1993-12-16 1995-07-14 富士重工業株式会社 Engine intake system
JPH0861072A (en) * 1994-08-26 1996-03-05 Fuji Heavy Ind Ltd Intake controller for engine
GB2298896A (en) * 1995-03-17 1996-09-18 Ford Motor Co I.c.engine cylinder charge stratification
JP2000080965A (en) * 1998-09-04 2000-03-21 Suzuki Motor Corp Intake system for internal combustion engine
WO2002038924A1 (en) * 2000-10-30 2002-05-16 Hitachi, Ltd. Cylinder injection engine and method of controlling the engine

Also Published As

Publication number Publication date
JP2019143612A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
US7455044B2 (en) Intake device of internal combustion engine
US4667636A (en) Fuel injection type internal combustion engine
KR100237534B1 (en) Control apparatus for an in-cylinder injection type internal combustion engine
JP3644249B2 (en) In-cylinder internal combustion engine
US20140165960A1 (en) Variable intake manifold for internal combustion engine and variable air intake device using the same
JPH02176116A (en) Combustion chamber for internal combustion engine
US20160273475A1 (en) Control system for spark-ignition internal combustion engine
US5823160A (en) Control apparatus for an in-cylinder injection type internal combustion engine
WO2019163893A1 (en) Air intake device for internal combustion engine
US10018106B2 (en) Engine system with rotatable intake port
US20120304950A1 (en) Port of internal combustion engine
US10267213B2 (en) Combustion chamber structure of spark-ignition internal combustion engine
JP2013072390A (en) Internal combustion engine
JP2004245204A (en) Fuel injection apparatus for internal combustion engine
JP2013007270A (en) Port for internal combustion engine
US20100037840A1 (en) Internal combustion engine
JPH10231729A (en) Intake device for internal combustion engine
JP2010084698A (en) Engine with variable valve train and intake valve for engine
JPS61215422A (en) Multi-intake valve engine
US10060384B2 (en) System and method for air-fuel mixture formation in an internal combustion engine
JP4412119B2 (en) Intake device for internal combustion engine
JP5765535B2 (en) Fuel injection engine in the intake passage
JP2008057463A (en) Intake control device and control method for engine
WO2022176860A1 (en) Intake structure for internal combustion engine
US10711685B2 (en) Internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19756599

Country of ref document: EP

Kind code of ref document: A1