JPS61215422A - Multi-intake valve engine - Google Patents

Multi-intake valve engine

Info

Publication number
JPS61215422A
JPS61215422A JP60056126A JP5612685A JPS61215422A JP S61215422 A JPS61215422 A JP S61215422A JP 60056126 A JP60056126 A JP 60056126A JP 5612685 A JP5612685 A JP 5612685A JP S61215422 A JPS61215422 A JP S61215422A
Authority
JP
Japan
Prior art keywords
intake
valve
intake valve
intake port
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60056126A
Other languages
Japanese (ja)
Other versions
JPH0635834B2 (en
Inventor
Taiyo Kawai
河合 大洋
Norihisa Nakagawa
徳久 中川
Hiroshi Nomura
啓 野村
Nobuaki Kashiwanuma
栢沼 信明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60056126A priority Critical patent/JPH0635834B2/en
Priority to US06/840,755 priority patent/US4667636A/en
Priority to DE19863609693 priority patent/DE3609693A1/en
Publication of JPS61215422A publication Critical patent/JPS61215422A/en
Publication of JPH0635834B2 publication Critical patent/JPH0635834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • F02F1/4221Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder particularly for three or more inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/26Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder
    • F01L1/265Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder peculiar to machines or engines with three or more intake valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/087Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having three or more inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/08Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the pneumatic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To improve both fuel consumption and power generation by providing a primary helical intake port, a secondary straight intake port and a third intake port including a fuel injection valve and devising the opening timing of the intake valve of each of these intake ports. CONSTITUTION:There are provided a primary intake port 1 which is helical port and enables generation of swirl in a combustion chamber 3, a secondary intake port 4 which is formed straight and includes an intake control valve 6 that is to be closed as the low-speed low-load time, and a third intake port 7 which is positioned between both the ports 1 and 4 and has a relatively small cross section. Said ports 1, 4, and 7 open to the combustion chamber 3 via intake valves 2, 6, and 8, respectively and a fuel injection valve 9 is disposed in the third intake port 7. The opening timing of the third intake valve 8 is set later than that of the primary intake valve 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸気弁を複数個備えた、いわゆる複吸気弁エ
ンジンにおける吸気制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to intake control in a so-called multiple intake valve engine, which includes a plurality of intake valves.

〔従来の技術〕[Conventional technology]

高出力化の傾向の中で種々のタイプの複吸気弁エンジン
が開発されてきている。そのような複吸気弁エンジンの
一つとして、燃焼室内でスワールを発生させることので
きるヘリカル型吸気ポートを改善したものがある。ヘリ
カル型吸気ポートはその名の通りに渦巻状に形成された
ものであり、燃焼室内にスワールを発生させることによ
り燃焼を改善するものである。しかしながら、高負荷時
にはその特殊形状により吸気抵抗が増大して充填効率が
低下する傾向が認められている。これを改善するために
第2の吸気ポート及び第2吸気弁を設け、この第2吸気
ポートにはさらに吸気制御弁を設けて、低負荷時にはこ
の吸気制御弁を閉じてヘリカル型吸気ポートの特徴を生
かし、高回転。
With the trend towards higher output, various types of dual intake valve engines have been developed. One such dual intake valve engine is one that has an improved helical intake port that can generate swirl within the combustion chamber. As the name suggests, a helical intake port is formed in a spiral shape, and improves combustion by generating swirl within the combustion chamber. However, it has been recognized that when the load is high, the special shape increases the intake resistance and tends to reduce the filling efficiency. In order to improve this, a second intake port and a second intake valve are provided, and this second intake port is further provided with an intake control valve, and when the load is low, this intake control valve is closed. Taking advantage of this, high rotation speed is achieved.

高負荷時にはこの吸気制御弁を開いて第1のヘリカル型
吸気ポート及び第2ポートの両方から空気を燃焼室に導
入することができるようにしている。
When the load is high, this intake control valve is opened so that air can be introduced into the combustion chamber from both the first helical intake port and the second port.

一方、燃焼を良好にし燃費を向上させるためには可燃空
燃比の最大値すなわち燃焼のリーン限界を拡大すること
が必要であり、そのためには燃焼室上部の点火栓周りの
燃料を濃くしピストン側を薄くする(以下これを成層化
という)とよいことが知られている。
On the other hand, in order to improve combustion and improve fuel efficiency, it is necessary to expand the maximum value of the combustible air-fuel ratio, that is, the lean limit of combustion. It is known that it is better to make the layer thinner (hereinafter referred to as stratification).

従来、複吸気弁エンジンにおいて成層化を行って燃焼を
良好にし燃費を向上させようとする提案が多くなされて
いる(特公昭47−24041号公報、特公昭52−1
6521号公報、実公昭57−52331号公報、特開
昭52−32406号公報、特開昭56−96118号
公報参照)。
In the past, many proposals have been made to improve fuel efficiency by stratifying engines with multiple intake valves (Japanese Patent Publication No. 47-24041, Japanese Patent Publication No. 52-1)
6521, Japanese Utility Model Publication No. 57-52331, Japanese Patent Application Laid-open No. 52-32406, and Japanese Patent Application Laid-open No. 56-96118).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来公知の装置は、複吸気弁エンジンにお
ける成層化燃焼の基本的条件を示唆しているが、実際に
エンジンを製作し、実用領域である低負荷低回転時には
成層化による稀薄混合気の燃焼を行なって低燃費、低エ
ミツションを達成し、高負荷高回転時には高出力を得る
という2つの目的を達成するには、上記公知の装置は未
だ十分とは云えないものである。
The conventionally known device as described above suggests the basic conditions for stratified combustion in a multiple intake valve engine, but when an engine is actually manufactured, it is possible to achieve a lean mixture by stratification at low load and low rotation speeds, which is the practical area. The above-mentioned known devices are still not sufficient to achieve the two objectives of achieving low fuel consumption and low emissions through combustion of air, and obtaining high output under high load and high rotation speeds.

本発明は低負荷低回転域での成層化による稀薄混合気の
燃焼と、高負荷高回転域での高出力とが両立でき、低燃
費、低エミツションの達成と高出力を得ることのできる
、実際的な複吸気弁エンジンを提供しようとするもので
ある。
The present invention is capable of achieving both the combustion of a lean air-fuel mixture through stratification in the low-load, low-speed range and high output in the high-load, high-speed range, achieving low fuel consumption, low emissions, and high output. It is an attempt to provide a practical dual intake valve engine.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の問題点を解決するため、その構成とし
て、燃焼室内へ供給する吸気にスワールを発生させる常
時開放の第1の吸気ポートと、エンジンの高負荷高速運
転域においてのみ開放する吸気制御弁を有しかつ燃焼室
内にストレートの吸気を供給する第2の吸気ポートと、
燃料噴射弁を設けた第3の吸気ポートとを具備し、これ
ら第1゜第2及び第3の各吸気ポートを、第1.第2及
び第3の吸気弁を介して燃焼室にそれぞれ接続し前記第
3の吸気弁の開弁時期を前記第1の吸気弁の開弁時期よ
り遅らせたことを特徴とするものである。
In order to solve the above-mentioned problems, the present invention includes a first intake port that is always open to generate a swirl in the intake air supplied into the combustion chamber, and an intake port that is opened only in the high-load, high-speed operating range of the engine. a second intake port having a control valve and supplying straight intake air into the combustion chamber;
and a third intake port provided with a fuel injection valve. The third intake valve is connected to the combustion chamber through second and third intake valves, and the opening timing of the third intake valve is delayed from the opening timing of the first intake valve.

〔実施例〕〔Example〕

本発明の実施例を図面に従って以下に説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図を参照すると、lは第1の吸気ポートであって第
1のき吸気弁2を介して燃焼室3に接続され、へりカル
ポートとして公知のように第1の吸気弁2近くで渦巻状
に形成され、このポート1を通って吸入された空気〃矢
印Aで示されるように燃焼室3内でスワールを生じるよ
うになっている。4は第2の吸気ポートであって第2の
吸気弁5を介して燃焼室3に接続され、ストレート状で
ある。この第2の吸気ポート4には吸気制御弁6が配置
され、エンジン回転数、負荷が小さい時には第2の吸気
ポート4を閉じ、エンジン回転数。
Referring to FIG. 1, l is a first intake port which is connected to the combustion chamber 3 through a first intake valve 2, and which is connected to the combustion chamber 3 through a first intake valve 2, and which is connected to a combustion chamber 3 near the first intake valve 2, known as a helical port. The air sucked through this port 1 causes a swirl within the combustion chamber 3 as shown by arrow A. A second intake port 4 is connected to the combustion chamber 3 via a second intake valve 5 and has a straight shape. An intake control valve 6 is disposed in the second intake port 4, and when the engine speed and load are low, the second intake port 4 is closed and the engine speed is reduced.

負荷が大きいときには前記第2の吸気ポート4を開くこ
とができるようになっている。この吸気弁6は適宜のア
クチェータ(図示しない)により開閉駆動され、エンジ
ンを低速、低負荷で運転する時、この第2の吸気通路4
を閉じ、エンジンを高速、高負荷で運転する時、第2吸
気通路4を開くよう作動する。前記アクチェータとして
は例えばダイヤフラムにより大気圧と変圧室とに仕切ら
れたダイヤフラム室を有し、この変圧室にエンジンの上
記運転状態に応じて負圧(例えば第1の吸気通路1中の
負圧)又は大気圧を導入して副吸気制御弁6の開閉を制
御する負圧制御式アクチェータを用いる。
When the load is large, the second intake port 4 can be opened. This intake valve 6 is driven to open and close by an appropriate actuator (not shown), and when the engine is operated at low speed and low load, this second intake passage 4
When the engine is operated at high speed and high load, the second intake passage 4 is opened. The actuator has a diaphragm chamber partitioned by a diaphragm into an atmospheric pressure chamber and a variable pressure chamber, and a negative pressure (for example, negative pressure in the first intake passage 1) is applied to the variable pressure chamber depending on the operating state of the engine. Alternatively, a negative pressure control actuator that controls the opening and closing of the sub-intake control valve 6 by introducing atmospheric pressure is used.

そしてこのアクチェータは後述のECU (電子制御装
置)によって制御される。7は第3の吸気ポートであっ
て第3の吸気弁8を介して燃焼室3に接続されている。
This actuator is controlled by an ECU (electronic control unit), which will be described later. A third intake port 7 is connected to the combustion chamber 3 via a third intake valve 8.

この第3の吸気ポート7は前記両ポート1.4の間にあ
ってその通路断面積は比較的小さく、従って第3の吸気
弁8も他の吸気弁2,5と比較して小さい。
The third intake port 7 is located between the two ports 1.4 and has a relatively small passage cross-sectional area, and therefore the third intake valve 8 is also small compared to the other intake valves 2 and 5.

この第3の吸気ポート7には燃料噴射弁9が配設され、
この燃料噴射弁9はECU19によって制御される。
A fuel injection valve 9 is arranged in this third intake port 7,
This fuel injection valve 9 is controlled by an ECU 19.

前記第1.第2及び第3の吸気弁2.5及び8相互間の
位置関係は、第1図に示すように、平面視において、燃
焼室3の中心10に関し第3の吸気弁8が、第1及び第
2の吸気弁2及び5の各中心を結んだ直線C,Cより外
側に位置するように配置される。11は点火栓であって
、吸気弁2゜5.8及び2つの排気弁13.14に囲ま
れたほぼシリンダ中央に配設されている。また第3の吸
気弁8の周囲のシリンダヘッド下面にはそのシリンダ壁
側にスキツシユを兼ねたマスキング12が設けられ、噴
射された燃料が矢印B方向に導びかれ点火栓11の周囲
に漂うようにされている。15は排気ポートである。排
気ポート15からはEGRポート16が分岐されEGR
弁17を介して第3の吸気通路7に接続されている。
Said 1st. The positional relationship between the second and third intake valves 2.5 and 8 is as shown in FIG. The second intake valves 2 and 5 are arranged so as to be located outside the straight lines C and C connecting the respective centers of the second intake valves 2 and 5. Reference numeral 11 denotes an ignition plug, which is disposed approximately at the center of the cylinder surrounded by an intake valve 2.5.8 and two exhaust valves 13.14. Furthermore, a masking 12 that also serves as a squirrel is provided on the cylinder wall side of the lower surface of the cylinder head around the third intake valve 8, so that the injected fuel is guided in the direction of arrow B and floats around the ignition plug 11. It is being done. 15 is an exhaust port. EGR port 16 is branched from exhaust port 15 and EGR
It is connected to the third intake passage 7 via a valve 17.

第2図を参照すると、ピストン20にはその頂部にキャ
ビティ21が形成される。このキャビティ21の形状は
第3図、第4図に示すように、点火栓11がキャビティ
21の内接円22の内側の、第3の吸気弁8とは反対側
の端部に位置するような形状とし、同図の矢印Aで示す
スワールに沿って火炎の伝播がスムーズに行なわれるよ
うにしている。
Referring to FIG. 2, piston 20 has a cavity 21 formed in its top. The shape of the cavity 21 is such that the ignition plug 11 is located inside the inscribed circle 22 of the cavity 21 at the end opposite to the third intake valve 8, as shown in FIGS. The flame is shaped so that the flame propagates smoothly along the swirl shown by arrow A in the figure.

また、第1及び第2の吸気弁2及び5は、第2図の鎖線
で示すように、ロッカーアーム23を介して、ピボット
中心24を支点として駆動されるスイングアーム方式と
する。これは高出力を得るためにリフト量を大きくする
必要があるためで、その最大バルブリフト量C(第5図
)は最大カムリフト量のb/a倍(aはピボット中心2
4からロッカーアーム23のカム25との接触点までの
距離、bはピボット中心24とロッカーアーム23の先
端との間の距離、第2図参照)、すなわちロッカー化分
だけ大きく取ることができる。一方、第3の吸気弁8は
第2図の実線で示すようにバルブリフタ18とカム25
による直接駆動方式とする。これは第3の吸気弁8の最
大バルブリフトd(第5図)は濃混合気をシリンダヘッ
ド付近に滞留させるためには適当な小さい値(例えばd
=1〜3m)が良いためであるり、この直接駆動方式に
より第3の吸気弁8は小さなリフト曲線を安定して得ら
れるものとなる。26は冷却水路に取付けられた水温セ
ンサであって、その信号はECU19へ送られるように
なっている。
Further, the first and second intake valves 2 and 5 are of a swing arm type in which they are driven with a pivot center 24 as a fulcrum via a rocker arm 23, as shown by the chain line in FIG. This is because it is necessary to increase the lift amount in order to obtain high output, and the maximum valve lift amount C (Fig. 5) is b/a times the maximum cam lift amount (a is the pivot center 2
The distance b from 4 to the contact point of the rocker arm 23 with the cam 25 (b) can be increased by the distance between the pivot center 24 and the tip of the rocker arm 23 (see FIG. 2), that is, by the amount of the rocker. On the other hand, the third intake valve 8 has a valve lifter 18 and a cam 25, as shown by the solid line in FIG.
Direct drive system. This means that the maximum valve lift d (Fig. 5) of the third intake valve 8 is an appropriately small value (for example, d
This is because the direct drive method allows the third intake valve 8 to stably obtain a small lift curve. 26 is a water temperature sensor attached to the cooling waterway, and its signal is sent to the ECU 19.

前記第1.第2及び第3の吸気弁2.5及び8と燃料噴
射弁9の作動時期は第5図に示されている。第3の吸気
弁8の開弁時期はその動作曲線Yに示すように、Xでそ
の動作曲線が示される第1及び第2の吸気弁2及び5よ
りも遅く、吸気行程の中央付近Fで開弁し、第1及び第
2の吸気弁2及び5とほぼ同じ時期G(第1.第2吸気
弁はE)で閉弁するようにしている。また燃料噴射弁9
は同図のZに示すように噴射終了時期Hが、第3の吸気
弁8の開弁時期Fの前後となるように、回転数、負荷に
対して、噴射開始時期■が進退制御される。
Said 1st. The operating timing of the second and third intake valves 2.5 and 8 and the fuel injection valve 9 is shown in FIG. As shown in its operating curve Y, the opening timing of the third intake valve 8 is later than that of the first and second intake valves 2 and 5, whose operating curves are indicated by X, and at a timing F near the center of the intake stroke. The valve is opened and closed at approximately the same time G as the first and second intake valves 2 and 5 (E for the first and second intake valves). Also, the fuel injection valve 9
As shown in Z in the figure, the injection start timing (■) is controlled to advance or retreat with respect to the rotation speed and load so that the injection end timing H is before or after the opening timing F of the third intake valve 8. .

本実施例の作用を次に説明する。The operation of this embodiment will be explained next.

エンジンの低負荷低回転域においては、第5図に示すよ
うに、まず第1及び第2の吸気弁2及び5がDで開弁し
、第2の吸気ポート4は吸気制御弁6で閉じられている
ので、燃焼室3内には第1吸気弁2がら空気が吸入され
安定したスワールAが発生する。続いて吸気行程のほぼ
中央付近Fで第3の吸気弁8が開弁される。第3の吸気
ポート7にはECU19からの信号によって燃料噴射弁
9から燃料が、その燃料噴射終了時期Hが第3の吸気弁
8の開弁時期Fとほぼ同じになるような噴射時期で噴射
される。そのため第3の吸気弁8からは、吸気行程の後
半に濃混合気30(第1図)が燃焼室3内に流入し、こ
の第3の吸気弁8の周りに設けられているスキッシユを
兼ねたマスキング12の作用により、この濃混合気30
が点火栓13に向うとともにスワールAに乗って矢印B
方向へ吸入される。
In the low-load, low-speed range of the engine, as shown in FIG. 5, first and second intake valves 2 and 5 are opened at D, and second intake port 4 is closed by intake control valve 6. Therefore, air is sucked into the combustion chamber 3 through the first intake valve 2, and a stable swirl A is generated. Subsequently, the third intake valve 8 is opened approximately at the center F of the intake stroke. Fuel is injected into the third intake port 7 from the fuel injection valve 9 according to a signal from the ECU 19 at an injection timing such that the fuel injection end timing H is almost the same as the opening timing F of the third intake valve 8. be done. Therefore, the rich air-fuel mixture 30 (Fig. 1) flows into the combustion chamber 3 from the third intake valve 8 in the latter half of the intake stroke, and the squishy provided around the third intake valve 8 also functions as Due to the effect of masking 12, this rich mixture 30
goes towards the ignition plug 13, rides the swirl A, and moves towards the arrow B.
is inhaled in the direction.

吸気行程の前半は第1の吸気弁2がら空気のみが吸入さ
れピストン20上面付近に滞留し、吸気行程後半には第
3の吸気弁8から濃混合気が吸入され、シリンダヘッド
近傍に滞留することになる。
In the first half of the intake stroke, only air is taken in through the first intake valve 2 and remains near the top surface of the piston 20, and in the second half of the intake stroke, a rich air-fuel mixture is taken in through the third intake valve 8 and remains near the cylinder head. It turns out.

また第3の吸気弁8は吸気行程後半のみ開弁するので、
そこから吸入される流れは比較的弱く、第1の吸気弁2
で発生されたスワールAをほとんど乱すことなく、安定
したスワールが保たれる。この成層状態はスワールAに
よって、圧縮上死点まで安定して保持されるので、点火
時には点火栓9近傍に濃混合気が漂っており、全体の空
燃比が薄かったり、またEGRポート16から大量の 
EGRガスが燃焼室3内に導入される場合でも、安定し
た着火、火炎の伝播が達成される。
Also, the third intake valve 8 opens only in the latter half of the intake stroke, so
The flow sucked in from there is relatively weak and the first intake valve 2
A stable swirl is maintained without almost disturbing the swirl A generated in the above. This stratified state is stably maintained by swirl A until the compression top dead center, so at the time of ignition, a rich air-fuel mixture is floating near the ignition plug 9, causing the overall air-fuel ratio to be lean, or a large amount to be released from the EGR port 16. of
Even when EGR gas is introduced into the combustion chamber 3, stable ignition and flame propagation are achieved.

また燃料噴射時期は、その終了時期Hが第3吸気弁8の
開弁時期F近傍になるよう、エンジンの回転数、負荷に
応じてECU19により進退制御されるので、噴射燃料
のほとんどが、第3の吸気ポート7内で蒸発してから燃
焼室3内へ吸入されることになり、エミッシヨンの悪化
が防止できるとともに、最新の吸入空気量の信号に基づ
いて噴射時間2を決定できるので良好な加速応答が得ら
れる。
In addition, the fuel injection timing is controlled by the ECU 19 according to the engine speed and load so that the end timing H is close to the opening timing F of the third intake valve 8, so that most of the injected fuel is After being evaporated in the intake port 7 of No. 3, it is inhaled into the combustion chamber 3, which prevents deterioration of emissions and allows the injection time 2 to be determined based on the latest intake air amount signal. An accelerated response can be obtained.

さらに、第1.第2の吸気弁2.5はロッカーアーム2
2で駆動され、第3の吸気弁8はバルブリフタ18を介
してカム24で直接駆動されているので、各々の吸気弁
の最大バルブリフト量に適した開閉制御が可能になると
ともに、上記3つの吸気弁を全て直接駆動とした場合の
ようなバルブリフタ同志が干渉することが避けられ、ま
たこれら吸気弁を全てスイングアーム方式とした場合の
ようなビボフト23が相互にあるいは点火栓11と干渉
するという不具合をなくすことができる。
Furthermore, the first. The second intake valve 2.5 is the rocker arm 2
Since the third intake valve 8 is directly driven by the cam 24 via the valve lifter 18, opening/closing control suitable for the maximum valve lift amount of each intake valve is possible, and the above three This prevents the valve lifters from interfering with each other as would be the case if all the intake valves were directly driven, and the bivofts 23 would not interfere with each other or with the spark plug 11 as would be the case if all the intake valves were of the swing arm type. Problems can be eliminated.

またEGRガスは従来のようにサージタンクに供給せず
第3の吸気ポートに供給するためにNOxの低減がより
効果的となる。
Further, since the EGR gas is not supplied to the surge tank as in the conventional case but is supplied to the third intake port, NOx can be reduced more effectively.

第6図は第3の吸気弁8の開弁時期Fと低負荷低回転域
でのリーン限界空燃比(A/F)との関係を示すグラフ
である。同図に示すように、リーン限界は第3の吸気弁
3の開弁時期に大きく影響され、その開弁時期がほぼ吸
気行程中央〔吸気上死点(TDC)後90°〕前後で最
良となる。したがって第3の吸気弁8の開弁時期はその
最良時期がエンジン回転数、負荷で若干変化することを
考慮して、吸気行程中央±20°CA(クランク角)〔
吸気上死点(T D C)後70’〜110 @)付近
に設定することが好ましい、さらに最適制御とするには
第3の吸気弁8のみ可変バルブタイミング機構を持たせ
て、エンジン回転数、負荷によって可変制御することも
できる。
FIG. 6 is a graph showing the relationship between the opening timing F of the third intake valve 8 and the lean limit air-fuel ratio (A/F) in a low-load, low-speed range. As shown in the figure, the lean limit is greatly influenced by the opening timing of the third intake valve 3, and the best timing is when the opening timing is approximately in the middle of the intake stroke [90° after intake top dead center (TDC)]. Become. Therefore, considering that the best timing for opening the third intake valve 8 varies slightly depending on the engine speed and load, the opening timing of the third intake valve 8 is set at ±20° CA (crank angle) at the center of the intake stroke.
It is preferable to set the valve timing at around 70' to 110 @) after intake top dead center (TDC).For more optimal control, only the third intake valve 8 is provided with a variable valve timing mechanism, and the engine speed is , it can also be variably controlled depending on the load.

第7図は、第3の吸気弁8の閉弁時期Gと、低速トルク
、高速トルクとの関係を示したもので、第1又は第2の
吸気弁と同一の閉弁時期とした時の軸トルクを1.0と
した場合の比で示している。
Figure 7 shows the relationship between the closing timing G of the third intake valve 8, low-speed torque, and high-speed torque, when the closing timing is the same as that of the first or second intake valve. It is shown as a ratio when the shaft torque is 1.0.

同図によれば、第3の吸気弁8の閉弁時期Gを早くする
と第3の吸気弁の作用角が小さくなって十分なリフトが
取れず、遅(なると低速ばかりでなく高速トルクも低下
してしまう、そこで第3吸気弁3の閉弁時期Gは第1.
第2吸気弁2,5の閉弁時期Eとほぼ同じか、それより
遅れても40″クランク角程度以内とすることが好まし
い。
According to the figure, when the closing timing G of the third intake valve 8 is advanced, the operating angle of the third intake valve becomes smaller, making it impossible to obtain sufficient lift, and slowing down (which results in a decrease in not only low speed but also high-speed torque). Therefore, the closing timing G of the third intake valve 3 is set to the first.
It is preferable that the timing is approximately the same as the closing timing E of the second intake valves 2 and 5, or within about 40'' crank angle even if it is delayed.

なお、エンジン冷間時には水温センサ26の信号を用い
て燃料噴射時期を吸気行程以外に設定すれば、エミッシ
ョン悪化を防ぐこともできる。
Incidentally, when the engine is cold, if the fuel injection timing is set to a time other than the intake stroke using the signal from the water temperature sensor 26, deterioration of emissions can also be prevented.

また第1の吸気弁2がら空気の代わりに稀薄混合気を吸
入しても同様な効果を得ることができる。
Further, the same effect can be obtained by inhaling a lean mixture instead of air through the first intake valve 2.

第8図及び第9図は本発明の他の実施例を示す。8 and 9 show other embodiments of the invention.

本実施例では、ピストン20の上部に設けたキャビティ
21の形状として、点火栓11がキャビティ21に内接
する円22の外側21aに接ししかもキャビティ21内
に配置されるような形成したものである。このようにキ
ャビティ21を形成することにより点火栓13はスワー
ルAの直撃を避けることができるので着火性が向上する
ものとなる。
In this embodiment, the shape of the cavity 21 provided in the upper part of the piston 20 is such that the ignition plug 11 is in contact with the outside 21a of a circle 22 inscribed in the cavity 21 and is disposed within the cavity 21. By forming the cavity 21 in this manner, the ignition plug 13 can avoid being hit directly by the swirl A, thereby improving ignition performance.

一方、エンジンの高回転、高負荷域では吸気制御弁6が
開弁されるので、第1.第2.第3の吸気弁2.5.8
から大量の新気を燃焼室内に吸入することが可能となり
、良好な軸トルク、出力が得られる。また成層化により
燃焼が改善され、ノンキングの発生も抑えることができ
る。
On the other hand, since the intake control valve 6 is opened in the high speed and high load range of the engine, the first. Second. Third intake valve 2.5.8
This makes it possible to draw a large amount of fresh air into the combustion chamber, resulting in good shaft torque and output. Furthermore, stratification improves combustion and suppresses the occurrence of non-king.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のような構成1作用を有するものであるか
ら、エンジンの低負荷、低回転域では、混合気が点火栓
周りで濃く、ピストン側で稀薄となる、いわゆる成層化
が良好かつ安定した状態で得られ、そのため大量のEG
R燃焼も可能となり、低燃費、低エミフシロンを達成で
きるものとなる。
Since the present invention has the above-mentioned configuration 1, the so-called stratification, in which the air-fuel mixture is rich around the spark plug and lean on the piston side, is good and stable in the low-load and low-speed range of the engine. Therefore, a large amount of EG
R combustion is also possible, making it possible to achieve low fuel consumption and low emissions.

またエンジンの高負荷高回転域では良好な軸トルク、軸
出力が効果的に得られるものとなる。
In addition, good shaft torque and shaft output can be effectively obtained in the high load, high rotation range of the engine.

このようにして、低負荷低回転域から高負荷高回転域に
至る全運転域において所期の燃焼状態、高出力が得られ
る、実際的な複吸気弁エンジンを提供することができる
In this way, it is possible to provide a practical dual-intake valve engine that can obtain the desired combustion state and high output in the entire operating range from the low-load, low-speed range to the high-load, high-speed range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の平面図、第2図は同上実
施例の要部の縦断正面図、第3図は同上実施例のキャビ
ティの形状を示す平面図、第4図は第3図のキャビティ
の縦断面、第5図は各吸気弁の動作時期及びり゛フトと
、燃料噴射弁の噴射時期を示すグラフ。第6図は第3の
吸気弁の開弁時期とリーン限界との関係を示すグラフ、
第7図は第3の吸気弁の閉弁時期と軸トルクとの関係を
示すグラフ、第8図は本発明の第2実施例のキャビティ
の形状を示す平面図、第9図は第8図の縦断面図である
。 1・・・第1吸気ポート、 2・・・第1吸気弁、3・
・・燃焼室、      4・・・第2吸気ポート、5
・・・第2吸気弁、   6・・・吸気制御弁、7・・
・第3吸気ポート、 8・・・第3吸気弁、9・・・燃
料噴射弁、  11・・・点火栓、12・・・マスキン
グ、   15・・・排気ポート、16・・・EGRポ
ート、  18・・・バルブリフタ、19・・・ECU
、      21・・・キャビティ、23・・・ロッ
カーアーム、25・・・カム、26・・・水温センサ。
FIG. 1 is a plan view of the first embodiment of the present invention, FIG. 2 is a longitudinal sectional front view of the main part of the same embodiment, FIG. 3 is a plan view showing the shape of the cavity of the above embodiment, and FIG. FIG. 3 is a longitudinal section of the cavity, and FIG. 5 is a graph showing the operating timing and drift of each intake valve and the injection timing of the fuel injection valve. FIG. 6 is a graph showing the relationship between the opening timing of the third intake valve and the lean limit;
FIG. 7 is a graph showing the relationship between the closing timing of the third intake valve and the shaft torque, FIG. 8 is a plan view showing the shape of the cavity of the second embodiment of the present invention, and FIG. 9 is the graph shown in FIG. FIG. 1... First intake port, 2... First intake valve, 3...
...Combustion chamber, 4...Second intake port, 5
...Second intake valve, 6...Intake control valve, 7...
・Third intake port, 8...Third intake valve, 9...Fuel injection valve, 11...Ignition plug, 12...Masking, 15...Exhaust port, 16...EGR port, 18... Valve lifter, 19... ECU
, 21... Cavity, 23... Rocker arm, 25... Cam, 26... Water temperature sensor.

Claims (1)

【特許請求の範囲】[Claims] 1、燃焼室内へ供給する吸気にスワールを発生させる常
時開放の第1の吸気ポートと、エンジンの高負荷高回転
運転域においてのみ開放する吸気制御弁を有しかつ燃焼
室内にストレートの吸気を供給する第2の吸気ポートと
、燃料噴射弁を設けた第3の吸気ポートとを具備し、こ
れら第1、第2及び第3の各吸気ポートを、第1、第2
及び第3の吸気弁を介して燃焼室にそれぞれ接続し前記
第3の吸気弁の開弁時期を前記第1の吸気弁の開弁時期
より遅らせたことを特徴とする複吸気弁エンジン。
1. It has a first intake port that is always open to create a swirl in the intake air supplied into the combustion chamber, and an intake control valve that opens only in the engine's high-load, high-speed operating range, and supplies straight intake air into the combustion chamber. a second intake port provided with a fuel injection valve; and a third intake port provided with a fuel injection valve;
and a multiple intake valve engine, wherein the third intake valve is connected to a combustion chamber via a third intake valve, and the opening timing of the third intake valve is delayed from the opening timing of the first intake valve.
JP60056126A 1985-03-22 1985-03-22 Double intake valve engine Expired - Lifetime JPH0635834B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60056126A JPH0635834B2 (en) 1985-03-22 1985-03-22 Double intake valve engine
US06/840,755 US4667636A (en) 1985-03-22 1986-03-18 Fuel injection type internal combustion engine
DE19863609693 DE3609693A1 (en) 1985-03-22 1986-03-21 INTERNAL COMBUSTION ENGINE WITH FUEL INJECTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056126A JPH0635834B2 (en) 1985-03-22 1985-03-22 Double intake valve engine

Publications (2)

Publication Number Publication Date
JPS61215422A true JPS61215422A (en) 1986-09-25
JPH0635834B2 JPH0635834B2 (en) 1994-05-11

Family

ID=13018376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056126A Expired - Lifetime JPH0635834B2 (en) 1985-03-22 1985-03-22 Double intake valve engine

Country Status (1)

Country Link
JP (1) JPH0635834B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230920A (en) * 1988-07-19 1990-02-01 Mazda Motor Corp Fuel supply device for multiple valve engine
JPH0230921A (en) * 1988-07-20 1990-02-01 Mazda Motor Corp Air intake device for multiple valve engine
US5119785A (en) * 1990-03-15 1992-06-09 Mazda Motor Corporation Intake apparatus for multi-valve engine
US5119784A (en) * 1990-03-27 1992-06-09 Mazda Motor Corporation Engine control system for multi-valve engine
US5143036A (en) * 1990-03-29 1992-09-01 Mazda Motor Corporation Multi-valve internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428715B2 (en) 2016-07-06 2018-11-28 トヨタ自動車株式会社 Control device for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247239U (en) * 1988-09-26 1990-03-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247239U (en) * 1988-09-26 1990-03-30

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230920A (en) * 1988-07-19 1990-02-01 Mazda Motor Corp Fuel supply device for multiple valve engine
JPH0230921A (en) * 1988-07-20 1990-02-01 Mazda Motor Corp Air intake device for multiple valve engine
US5119785A (en) * 1990-03-15 1992-06-09 Mazda Motor Corporation Intake apparatus for multi-valve engine
US5119784A (en) * 1990-03-27 1992-06-09 Mazda Motor Corporation Engine control system for multi-valve engine
US5143036A (en) * 1990-03-29 1992-09-01 Mazda Motor Corporation Multi-valve internal combustion engine

Also Published As

Publication number Publication date
JPH0635834B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US5305720A (en) Internal combustion engine
US4667636A (en) Fuel injection type internal combustion engine
US5950582A (en) Internal combustion engine with variable camshaft timing and intake valve masking
US6173690B1 (en) In-cylinder direct-injection spark-ignition engine
JP2002048035A (en) Cylinder fuel injection engine with supercharger
JP2002129962A (en) Piston for in-cylinder injection engine
JP4702249B2 (en) Spark ignition direct injection gasoline engine
JPS61215422A (en) Multi-intake valve engine
JP2662799B2 (en) Engine intake control device
JP4316719B2 (en) In-cylinder injection control device
JP3384579B2 (en) Engine with turbocharger
JPH0429054Y2 (en)
JPS59231120A (en) Three-valve head type internal-combustion engine
JP3617419B2 (en) Exhaust gas purification device for internal combustion engine
JPH0636276Y2 (en) Double intake valve engine
JP4036021B2 (en) Engine control device
JPH07102982A (en) Engine having supercharger
JPS6131145Y2 (en)
JPH0634580Y2 (en) Double intake valve engine
JPH0433379Y2 (en)
JPS61164037A (en) Fuel supply device of internal-combustion engine
JP3727357B2 (en) 4-cycle engine fuel injection control system
JPH084599A (en) Combustion control method for engine
JPS6020574B2 (en) Exhaust gas recirculation device for multi-cylinder internal combustion engines
JPH0634579Y2 (en) Double intake valve engine