WO2022176862A1 - Air intake structure for internal combustion engine - Google Patents

Air intake structure for internal combustion engine Download PDF

Info

Publication number
WO2022176862A1
WO2022176862A1 PCT/JP2022/006018 JP2022006018W WO2022176862A1 WO 2022176862 A1 WO2022176862 A1 WO 2022176862A1 JP 2022006018 W JP2022006018 W JP 2022006018W WO 2022176862 A1 WO2022176862 A1 WO 2022176862A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
intake passage
passage
tumble
internal combustion
Prior art date
Application number
PCT/JP2022/006018
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 中村
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2023500861A priority Critical patent/JP7403708B2/en
Publication of WO2022176862A1 publication Critical patent/WO2022176862A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an intake structure for an internal combustion engine provided with partitions for dividing an intake passage into a plurality of sections.
  • Various intake structures for internal combustion engines have been proposed in which the intake passage on the downstream side of the throttle valve is divided into a plurality of passages by partitions.
  • a tumble valve is provided downstream of the throttle valve, and a partition plate portion, which is a partition portion, is provided downstream of the tumble valve from the inlet pipe to the intake port,
  • the partition plate partitions the intake passage into a lower secondary passage and an upper main passage.
  • the lower secondary passage serves as a tumble passage, and the tumble valve substantially opens and closes the upper main passage.
  • an intake control valve is provided downstream of the throttle valve, and a horizontal plate-shaped member is disposed along the flow direction of the intake air in the intake passage downstream of the throttle valve.
  • An internal combustion engine with one horizontal plate member and two or more horizontal plate members are disclosed. According to the description of Patent Document 2, by forming a plurality of horizontal plate-shaped members and determining the opening degree of the intake control valve according to the operating conditions of the internal combustion engine, the amount of intake air is reduced even at intermediate opening degrees of the intake control valve. Generates a stable gas flow without disturbing the flow.
  • Patent Document 2 is mainly aimed at realizing an intake air amount according to the operating state, and has a problem in maintaining tumble performance even when the engine load fluctuates, for example.
  • An object of the present invention is to provide an internal combustion engine in which an intake passage is divided by a partition portion, and which is capable of ensuring both an intake air amount according to the operating state and tumble performance. It is in.
  • one aspect of the present invention is When defining the direction of the cylinder axis from the crankshaft side to the cylinder head side as the first direction, the intake passage leading to the combustion chamber of the internal combustion engine is called the first intake passage, and the first intake passage on the first direction side of the first intake passage.
  • the intake passage can be divided into the first intake passage including the third intake passage and the fourth intake passage that can be a tumble flow passage, and the second intake passage.
  • the confluence portion since the confluence portion is provided, it is possible to impart strong directivity to the intake air from the first intake passage having the third intake passage and the fourth intake passage, thereby ensuring tumble performance. can do. Therefore, according to the intake structure of the internal combustion engine, it is possible to secure both the intake air amount according to the operating state and the tumble performance in the internal combustion engine configured so that the intake passage is divided by the partition. becomes possible.
  • the confluence portion is connected to the second intake passage on the downstream side of the downstream end of the main partition portion.
  • the merging portion is defined so that the intake air from the first intake passage through the merging portion flows into the combustion chamber at a smaller entrance angle than the intake air from the second intake passage.
  • the intake air that has passed through the first intake passage can be introduced into the combustion chamber while maintaining strong directivity, so that a strong tumble flow can be generated in the combustion chamber.
  • the confluence section is formed so that the cross-sectional area of each of the third intake passage and the fourth intake passage is smaller than the cross-sectional area of the upstream end of the confluence section.
  • the intake air from the third intake passage and the intake air from the fourth intake passage preferably flow into the confluence portion, thereby ensuring a sufficient intake air flow rate.
  • the cross-sectional area of the merging portion in a cross section perpendicular to the flow direction on the downstream side of the upstream end of the merging portion is greater than the sum of the cross-sectional areas of the third intake passage and the fourth intake passage.
  • the confluence is partitioned so as to be small.
  • the first intake passage is sectioned to have a convex curved shape in the second direction.
  • the second intake passage is formed to have a curved shape convex in the first direction.
  • the intake structure for the internal combustion engine described above further includes an intake control valve provided upstream of the main partition.
  • the intake control valve is configured to be able to open and close the second intake passage and the fourth intake passage, and the first position to close the second intake passage and the fourth intake passage. It is preferable to have a second position in which the second intake passage is closed and the fourth intake passage is opened, and a fully open position. With this configuration, it is possible to more preferably secure an intake air amount according to the operating state while appropriately generating a tumble flow.
  • the intake control valve is provided with a single valve member that rotates about a valve shaft, and the concave portion that allows the movement of the valve member defines the first portion of the wall portion that partitions and forms the intake passage. It is provided on the wall on the one direction side.
  • the intake structure of the internal combustion engine described above may include a plurality of the sub-partitions.
  • the first intake passage may be divided into three or more intake passages including the third intake passage and the fourth intake passage by a plurality of sub-partitions.
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing a three-dimensional model of the portion of the intake passage on the downstream side of the throttle valve in the internal combustion engine of FIG.
  • FIG. 3 is a view of the three-dimensional model of FIG. 2, viewed from an angle different from that of FIG.
  • FIG. 4 is a diagram showing a valve body of a tumble valve in the internal combustion engine of FIG. 1.
  • FIG. FIG. 5 is a top view of a three-dimensional model including an intake passage portion and an exhaust port on the downstream side of the throttle valve and the downstream side of the tumble valve in the internal combustion engine of FIG.
  • FIG. 6 is a view of the three-dimensional model of FIG.
  • 7A is a cross-sectional view of the three-dimensional model of FIG. 6, and is a cross-sectional view along the line VIIA-VIIA of FIG. 6.
  • FIG. 7B is a cross-sectional view of the three-dimensional model of FIG. 6, and is a cross-sectional view along line VIIB-VIIB of FIG. 6.
  • FIG. 7C is a cross-sectional view of the three-dimensional model of FIG. 6, and is a cross-sectional view along line VIIC-VIIC of FIG. 6.
  • FIG. 7D is a cross-sectional view of the three-dimensional model of FIG. 6, and is a cross-sectional view along line VIID-VIID of FIG. 6.
  • FIG. 1 is a cross-sectional view of an internal combustion engine 10 along an axis (cylinder axis) C of a cylinder bore 12b of a cylinder block 12 of the internal combustion engine 10.
  • FIG. The internal combustion engine 10 is a single-cylinder engine, and has a single intake valve 46 and a single exhaust valve 50 for each cylinder.
  • a piston 15 that reciprocates in the cylinder bore 12b of the cylinder block 12 is connected to the crankpin of the crankshaft 17 of the crankcase portion 16 by a connecting rod 18.
  • a combustion chamber 20 is formed between the top surface 15a of the piston 15 slidably fitted in the cylinder bore 12b of the cylinder block 12 and the combustion chamber ceiling surface 14a of the cylinder head 14 facing the top surface 15a.
  • the internal combustion engine 10 employs a SOHC type two-valve system, and a valve mechanism 22 is provided in the cylinder head 14 .
  • a cylinder head cover 24 is overlaid on the cylinder head 14 so as to cover the valve mechanism 22 .
  • an endless cam chain (not shown) is provided on one side of the crankcase portion 16, the cylinder block 12, and the cylinder head 14 in the crankshaft direction.
  • a camshaft 26 and a crankshaft 17 are installed through a cam chain chamber, and the camshaft 26 rotates in synchronism with the crankshaft 17 at a rotation speed of 1/2.
  • An ignition plug is inserted into the combustion chamber 20 from the opposite side of the cam chain chamber (the other side in the crankshaft direction) of the cylinder head 14 .
  • an intake port 32 and an exhaust port 34 are formed so as to extend while curving in directions vertically separating from each other.
  • the upstream end of the intake port 32 opens toward the upper side of the cylinder head 14 and is connected to an inlet pipe 36 to form a continuous intake passage 38.
  • a throttle body 40 is connected to the upstream side of the inlet pipe 36. be.
  • the downstream end of the exhaust port 34 opens downward from the cylinder head 14 and is connected to the exhaust pipe 42 .
  • An exhaust purification device and a silencer may be provided downstream of the exhaust pipe 42 .
  • a cylindrical intake valve guide 44 is integrally fitted to the curved outer wall portion 32a of the intake port 32 in the cylinder head 14.
  • An intake valve 46 slidably supported by an intake valve guide 44 opens and closes an intake valve port 28 of the intake port 32 facing the combustion chamber 20 .
  • an exhaust valve 50 slidably supported by an exhaust valve guide 48 integrally fitted to the curved outer wall portion 34a of the exhaust port 34 in the cylinder head 14 is an exhaust valve opening facing the combustion chamber 20 of the exhaust port 34. Open and close 30.
  • the intake valve 46 and the exhaust valve 50 are biased upward by valve springs so that the head portions 46a and 50a thereof close the intake valve opening 28 and the exhaust valve opening 30 facing the combustion chamber 20, respectively.
  • Stem ends 46b and 50b of the intake valve 46 and the exhaust valve 50 are pushed down by an intake rocker arm 56 and an exhaust rocker arm 58 that contact and oscillate with the intake cam and the exhaust cam of the camshaft 26, and the intake valve 46 and the exhaust valve 50 are opened at a predetermined timing.
  • the exhaust valve 50 opens, the intake port 32 communicates with the combustion chamber 20, and the exhaust port 34 communicates with the combustion chamber 20, and intake and exhaust are performed at predetermined timings.
  • An inlet pipe 36 is connected to the upstream end of the intake port 32 of the internal combustion engine 10 via an insulator 60 to form a continuous intake passage 38.
  • a throttle body 40 is connected to the upstream side of the inlet pipe 36. be done.
  • the throttle body 40 has an intake passage 40a with a substantially circular cross section forming part of the intake passage 38 communicating with the combustion chamber 20 of the internal combustion engine 10, and the upstream side of the intake passage 40a is connected to an air cleaner device (not shown).
  • the throttle body 40 is rotatably supported in the throttle body 40 by a throttle valve shaft 40b that intersects the central axis of the intake passage 40a at right angles to the flow direction of intake air in the intake passage 40a. It has a throttle valve 40c that can variably control the flow passage area of the air intake passage 40a to open and close the intake passage 40a.
  • the throttle valve 40c is of the butterfly type, and has a throttle valve shaft 40b and a disk-shaped valve body 40d that is fixed to the throttle valve shaft 40b and rotates integrally with the throttle valve shaft 40b.
  • the throttle valve 40c is rotatable counterclockwise in FIG. 1 in the valve opening direction by the driver's operation or the like. It is biased clockwise in the valve closing direction so as to be positioned at the fully closed position in contact with the inner wall surface.
  • the intake structure S is configured to give a tumble swirl flow of the fuel-air mixture in the combustion chamber 20 in order to obtain more favorable combustion in the combustion chamber 20, i.e., vertical rotation. ing. That is, the intake passage 38 is divided along the direction of intake air flow by a partition portion 62 leading from the inlet pipe 36 to the intake port 32, and is configured such that the passing intake air generates a tumble flow within the combustion chamber 20. It is partitioned into a tumble passage 64 and a main passage 66 excluding the tumble passage 64. - ⁇ The tumble passage 64 corresponds to the first intake passage, and the main passage 66 corresponds to the second intake passage. Note that the tumble passage 64 may also be referred to as a secondary passage.
  • a partition portion 72 is provided in the tumble passage 64 so as to continue from the inlet pipe 36 to the intake port 32 .
  • the tumble passage 64 is partitioned into two intake passages 68 and 70.
  • One of the two intake passages 68 , 70 is the first tumble passage 68 and the other of them is the second tumble passage 70 .
  • the first tumble passage 68 corresponds to the third intake passage
  • the second tumble passage 70 corresponds to the fourth intake passage.
  • the partition 62 that separates the tumble passage 64 and the main passage 66 is called the main partition
  • the partition 72 that separates the first tumble passage 68 and the second tumble passage 70 of the tumble passage 64 is called the sub-partition.
  • the main partition 62 extends like a plate in the direction of flow of intake air
  • the sub-partition 72 also extends like a plate along the direction of the flow of intake air, for example, substantially parallel to the main partition 62 .
  • the main partition 62 is provided so as to substantially bisect the intake passage 38 in the vertical direction, here so as to extend substantially along the central axis extending in the flow direction, and the cross-sectional area of the tumble passage 64 is It is not much different from the channel cross-sectional area of the main passage 66 .
  • the main partition 62 may be provided such that the cross-sectional area of the tumble passage 64 is smaller than the cross-sectional area of the main passage 66, and this relationship can be reversed.
  • the sub-partition 72 is provided so as to substantially bisect the tumble passage 64 in the vertical direction, here, so as to extend substantially along the central axis of the tumble passage 64 extending in the flow direction. It may be provided so as to be biased in either direction.
  • the lower portion of the intake passage 38 partitioned by the main partition 62 is the tumble passage 64
  • the upper portion is the main passage 66
  • the lower portion partitioned by the secondary partition 72 of the tumble passage 64 is the first tumble passage 68.
  • the upper portion provides the secondary tumble passages 70, although they are not limited to their vertical arrangement herein.
  • the terms "top” and “bottom” of the intake passage 38 and the like refer to the direction from the crankshaft 17 to the cylinder head 14 or the cylinder head cover 24 in the direction of the cylinder axis C.
  • the direction opposite to this "upward” direction that is, the direction from the cylinder head 14 side to the crankshaft 17 side is called the “downward” or “downward” direction
  • the absolute “upward” or “downward” direction in space does not mean
  • the “up” or “up” direction corresponds to the first direction
  • the "down” or “down” direction corresponds to the second direction.
  • a tumble valve body 76 is connected to the upstream end of the inlet pipe 36 via an insulator 74 .
  • the tumble valve body 76 has an intake passage 76a with a substantially circular cross section forming part of the intake passage 38, and the throttle body 40 is connected to the upstream end thereof.
  • the tumble valve body 76 is rotatably supported in the tumble valve body 76 by a valve shaft 76b that intersects the central axis of the intake passage 76a perpendicularly to the flow direction of intake air in the intake passage 76a.
  • a tumble valve 76c that can variably control the flow area of the air intake passage 76a and open and close the upper region of the air intake passage 76a in cooperation with the partitions 62, 72 is provided.
  • the tumble valve 76c is of the butterfly type, and has a valve shaft 76b and a substantially disk-shaped valve body 76d that is fixed to the valve shaft 76b and rotates together.
  • the tumble valve 76c is configured with the valve element 76d, which is a single valve member that rotates integrally with the valve shaft 76b.
  • the tumble valve 76c may also be called a tumble control valve, TCV, or the like, and corresponds to the intake control valve of the present invention.
  • FIGs. 2 and 3 show a three-dimensional model M1 of the portion of the intake passage 38 on the downstream side of the throttle valve 40c.
  • 2 is a perspective view of the three-dimensional model M1 from the downstream side
  • FIG. 3 is a view of the three-dimensional model M1 from the horizontal direction (perpendicular to the vertical direction).
  • FIG. 3 is a view of the three-dimensional model M1 viewed from a direction perpendicular to the valve axis 46c of the intake valve 46 and perpendicular to the extending direction of the main partition 62.
  • the three-dimensional model M1 represents the valve body 76d of the tumble valve 76c. 4 shows the valve body 76d of the tumble valve 76c.
  • valve body 76d which is the single valve member of the tumble valve 76c, is substantially disk-shaped as described above, but the distal end portion 76t swung around the valve shaft 76b on the downstream side is substantially linear. As a result, the valve body 76d can be in a closed state with respect to the main partitioning portion 62 or can be in a closed state with respect to the sub-partitioning portion 72. As shown in FIG.
  • the main partition 62 continuously extends from a position immediately downstream of the tumble valve 76c to the intake port 32.
  • the sub-partition 72 continuously extends to the intake port 32 from a position immediately downstream of the tumble valve 76c. 1
  • the valve stem 76b of the tumble valve 76c is positioned above the main compartment 62
  • the tumble valve 76c is a butterfly valve, so that the upstream edge of the main compartment 62 62a is located downstream of the upstream edge 72a of the sub-partition 72.
  • the downstream edge 62b of the main partition 62 is located downstream of the downstream edge 72b of the sub-partition 72.
  • the tumble valve body 76 is provided with a recess 77 that allows movement of the valve element 76d of the tumble valve 76c.
  • the concave portion 77 is provided in an upper wall portion 76u of a wall portion 76e of a tumble valve body 76, which is a wall portion defining and forming the intake passage 38. As shown in FIG. 1,
  • the tumble valve 76c configured as described above is configured to be able to open and close the main passage 66, which is the second intake passage, and the second tumble passage 70, which is the fourth intake passage.
  • the tumble valve 76c is provided so as not to affect the degree of opening of the first tumble passage 68. It is also possible to be provided in
  • the valve body 76d of the tumble valve 76c is positioned so as to be able to extend in the flow direction, and is in the fully open position PA as indicated by the solid line.
  • the tumble valve 76c has a first position P1 (one-dot chain line in FIG. and a second position P2 extending to the upstream edge 62a of the main partition 62 (a two-dot chain line in FIG. 1).
  • the tumble valve 76c With the tumble valve 76c at the fully open position PA, the tumble passage 64 and the main passage 66 are fully opened.
  • the tumble valve 76c in the first position P1 With the tumble valve 76c in the first position P1, the main passageway 66 and the second tumble passageway 70 are substantially closed, leaving the first tumble passageway 68 open.
  • the tumble valve 76c With the tumble valve 76c in the second position P2, the main passageway 66 is substantially closed, leaving the second tumble passageway 70 in addition to the first tumble passageway 68 open. In this way, the tumble valve 76c is used at a plurality of degrees of opening. can be closed such that there is substantially no gap between the Note that the tumble valve 76c can be positioned at any other position. These positions of the tumble valve 76c are controlled by an ECU 80 described later based on the operating state of the internal combustion engine 10 here.
  • a fuel injection valve 78 is provided in the internal combustion engine 10 .
  • the fuel injection valve 78 is provided downstream of the throttle valve 40c and the tumble valve 76c.
  • a fuel injection valve 78 is provided to inject fuel toward the intake valve 46 via the main passage 66 .
  • the fuel injection amount and the injection timing from the fuel injection valve 78 are controlled in association with the control of each of the throttle valve 40c and the tumble valve 76c.
  • the throttle valve 40c is not limited to being electronically controlled, and may be a valve mechanically controlled by a throttle cable, for example, and the same applies to the tumble valve 76c.
  • An ECU (electronic control unit) 80 that controls the internal combustion engine 10 has a configuration as a so-called computer, and includes an intake control section 82 and a fuel injection control section 84 . That is, the ECU 80 includes a processing unit or processor, for example a CPU, and a storage device or memory including, for example, ROM and RAM. The ECU 80 analyzes the operating state of the internal combustion engine 10 based on outputs from various sensors such as an engine rotation speed sensor and an engine load sensor, and controls the respective operations of the throttle valve 40c and the tumble valve 76c through the intake control unit 82. do. For example, the throttle valve 40c is controlled to an opening degree according to the operating state of the internal combustion engine 10.
  • the tumble valve 76c is controlled to have a larger opening degree, and similarly, the tumble valve 76c is controlled to an opening degree according to the operating state of the internal combustion engine 10.
  • the operating state of the internal combustion engine 10 is in the low load region.
  • the opening is controlled to be larger than when it is at .
  • the ECU 80 controls the operation of the fuel injection valve 78 by means of the fuel injection control section 84 based on the analyzed operating state of the internal combustion engine 10 .
  • the ECU 80 stores programs and various data for these controls.
  • the control of the tumble valve 76c will be explained in detail.
  • the ECU 80 controls the operation of the tumble valve 76c so that it is positioned at the first position P1 so that the intake air is drawn only from the first tumble passage 68. do.
  • the amount of intake air suitable for the low load region is ensured, and the intake air from the first tumble passage 68 forms a tumble flow in the combustion chamber 20 .
  • the first tumble passage 68 has a relatively small cross-sectional area, it is possible to increase the flow velocity even with an intake air amount suitable for a low load region, and to form a strong tumble flow.
  • the fuel injection from the fuel injection valve 78 is controlled so that the air-fuel ratio becomes lean, but by forming the tumble flow, effective combustion is achieved. can be generated.
  • the ECU 80 first turns the tumble valve 76c so that the intake air is taken in from the first tumble passage 68 and the second tumble passage 70, that is, from the tumble passage 64. 2 Control its operation so that it is located at position P2.
  • the amount of intake air suitable for the medium load range is ensured, and the intake air from the first and second tumble passages 68 and 70 forms a tumble flow in the combustion chamber 20 . Since a tumble flow is formed by intake air from the first and second tumble passages 68 and 70, strong tumble can be achieved while securing the necessary amount of intake air even in the medium load range where a larger amount of intake air is required than in the low load range. flow can be formed.
  • the fuel injection from the fuel injection valve 78 is controlled so that the air-fuel ratio becomes lean, but by forming the tumble flow, effective combustion is achieved. can be generated.
  • the ECU 80 controls the tumble passage so that the intake air is taken in from the tumble passage 64 including the first tumble passage 68 and the second tumble passage 70 and the main passage 66. It controls the operation of the valve 76c so that it is in the fully open position PA.
  • the amount of intake air suitable for the high load region is ensured, and the intake air from the first and second tumble passages 68 and 70 preferably creates a tumble flow in the combustion chamber 20, and even if not, a suitable cylinder flow is obtained. Realize flow velocity.
  • the fuel injection from the fuel injection valve 78 is controlled so that the air-fuel ratio becomes stoichiometric, and furthermore, by realizing a suitable flow velocity in the cylinder, the effect is further improved. combustion can occur.
  • the operation of the tumble valve 76c is controlled so that it is positioned at the fully open position PA, and intake air is taken in from the tumble passage 64 and the main passage 66.
  • the intake structure S of the internal combustion engine 10 is further modified so that the amount of intake air is increased by the intake air from the main passage 66 and the tumble performance by the intake air from the tumble passage 64 can be secured more favorably. It has a different configuration and shape. Further explanation is given below.
  • a confluence portion 86 is formed on the downstream side of the tumble passage 64 .
  • a confluence portion 86 is provided at a location where the first tumble passage 68 and the second tumble passage 70 merge on the downstream side thereof.
  • the tumble passage 64 merges with the main passage 66 via the junction 86 .
  • the confluence portion 86 is formed in the cylinder head 14 .
  • the confluence portion 86 is formed as part of the intake port 32 .
  • FIGS. 5 and 6 show a three-dimensional model M2 including the portion of the intake passage 38 on the downstream side of the throttle valve 40c and the tumble valve 76c and the exhaust passage of the exhaust port 34.
  • FIG. FIG. 5 is a view of the three-dimensional model M2 from above
  • FIG. 6 is a view of the three-dimensional model M2 from a direction orthogonal to the cylinder axis C and the direction of intake air flow.
  • 7A shows a cross-sectional view of the solid model M2 along the line VIIA-VIIA in FIG. 6
  • FIG. 7B shows a cross-sectional view of the solid model M2 along the line VIIB-VIIB in FIG.
  • FIG. 7C shows a cross-sectional view of the solid model M2 at a position along the VIIC-VIIC line in FIG. 6, and FIG. 7D shows a cross-sectional view of the solid model M2 at a position along the VIID-VIID line in FIG. show.
  • Line VIIA-VIIA in FIG. 6 passes near the upstream edge of the main partition 62
  • line VIIB-VIIB in FIG. 6 passes near the downstream edge 72b of the main partition 62
  • the line VIID--VIID in FIG. All of these lines VIIA-VIIA to VIID-VIID are parallel to the cylinder axis C in FIG. Note that the exhaust side is omitted in FIGS. 7A to 7D.
  • the first tumble passage 68 and the second tumble passage 70 have generally the same shape and size.
  • each of the first tumble passage 68 and the second tumble passage 70 smoothly extends from the upstream side to the downstream side without significantly changing its shape or size in the intake air flow direction.
  • the first tumble passage 68 and the second tumble passage 70 are connected to the confluence portion 86 .
  • the confluence portion 86 is connected to the main passage 66 on the downstream side of the downstream edge 62b of the downstream end of the main partition portion 62 (see FIGS. 1 and 6).
  • the first tumble passage 68 and the second tumble passage 70 are connected to the main passage 66 via the confluence portion 86 on the downstream side of the downstream edge 72b of the sub-partition portion 72.
  • the intake air passing through the first tumble passage 68 and the second tumble passage 70 of the tumble passage 64 can have strong directivity.
  • the line L1 defined to extend in the flow direction at the confluence portion 86 intersects the cylinder axis C at an angle ⁇ 1 close to a right angle, whereas the line L1 is defined to extend in the flow direction at the downstream end of the main passage 66.
  • a line L2 intersects the cylinder axis C at an angle .theta.2 smaller than the angle .theta.1.
  • the confluence portion 86 is defined so that the intake air from the tumble passage 64 via the confluence portion 86 flows into the combustion chamber 20 at a smaller entrance angle than the intake air from the main passage 66 .
  • the intake air passing through the tumble passage 64 can be introduced into the combustion chamber 20 while maintaining strong directivity, and a strong tumble flow can be generated in the combustion chamber 20, for example.
  • the term "advance angle" as used herein refers to the angle at which the intake air flowing into the combustion chamber 20 flows into the combustion chamber 20. For example, when viewed from a direction perpendicular to the cylinder axis C and the direction of intake air flow, as shown in FIG. , the larger the angle formed with the cylinder axis C, the smaller the approach angle.
  • the approach angle ⁇ is larger than 0° and smaller than 90° (0° ⁇ 90°).
  • the tumble passage 64 is defined to have a downwardly convex curved shape
  • the main passage 66 is defined to have an upwardly convex curved shape. It is partitioned into With this configuration, as described above, the intake air from the tumble passage 64 can be guided into the combustion chamber at a smaller entrance angle, and the intake air from the main passage 66 can be more effectively guided to the combustion chamber 20. becomes possible.
  • FIG. 7C shows that the first tumble passage 68 and the second tumble passage 70 communicate with the upstream end of the junction 86 .
  • FIG. 7C shows a cross section 68A of the first tumble passage 68, a cross section 70A of the second tumble passage 70, and a virtual plane defined at the upstream end 86u of the confluence portion 86, that is, this virtual plane. shows one side TA1 of the cross section at .
  • the side TA1 of the upstream end 86u of the merging portion 86 is clearer than the vertical length of the cross section 68A of the first tumble passage 68 and the vertical length of the cross section 70A of the second tumble passage 70. to long.
  • each of the first tumble passage 68 and the second tumble passage 70 (areas S1 and S2 in FIG. 7C) is equal to the cross-sectional area S3 of the upstream end 86u of the merging portion 86 (partially by side TA1). (S1 ⁇ S3, S2 ⁇ S3).
  • the cross-sectional area of the confluence portion 86 is Since the cross-sectional area is larger than that of each of the passages 70, the amount of intake air is less likely to be restricted at the junction 86, and an amount of intake air suitable for the operating range of the medium load range can be ensured.
  • side TA2 in FIG. 7D is shorter than side TA1 in FIG. 7C.
  • the cross-sectional area of the confluence portion 86 of the tumble passage 64 tends to be smaller at the cross-sectional area in FIG. 7D than at the side TA1 in FIG. 7C, for example, toward the downstream side.
  • the confluence portion 86 is sectioned so as to generally taper from the upstream end portion of the confluence portion 86 toward the downstream side.
  • the intake air from the first tumble passage 68 and the second tumble passage 70 is greater than the sum of the cross-sectional areas of the first tumble passage 68 and the second tumble passage 70 (for example, the sum of the area S1 of the cross section 68A and the area S2 of the cross section 70A) and the upstream end portion 86u of the confluence portion 86.
  • the area (cross-sectional area) of the cross section perpendicular to the flow direction on the downstream side becomes smaller.
  • the cross-sectional area of the merging portion 86 on the downstream side of the upstream end of the merging portion 86 perpendicular to the flow direction is smaller than the sum of the cross-sectional areas of the first tumble passage 68 and the second tumble passage 70.
  • the taper may be achieved by means other than taper.
  • the intake structure S of the internal combustion engine 10 described above includes a main partition 62 that separates the tumble passage 64 and the main passage 66, and a sub-partition 72 that separates the tumble passage 64 into first and second tumble passages 68 and 70. , and a junction 86 where the first and second tumble passages 68, 70 meet.
  • the tumble passage 64 merges with the main passage 66 via the confluence portion 86 configured as described above.
  • the main passage 66 and the tumble passage 64 are provided, and the tumble passage 64 can be divided into the first tumble passage 68 and the second tumble passage 70 . Therefore, it is possible to use one or two or all of them depending on the operating state of the internal combustion engine to secure the intake air amount according to the operating state.
  • the intake structure S since the confluence portion 86 is provided, the intake air from the tumble passage 64 having the first tumble passage 68 and the second tumble passage 70 can have strong directivity. Therefore, tumble performance can be ensured.
  • the number of sub-partitions is not limited to one, and may be plural.
  • the tumble passage 64 is divided into three sections including a third intake passage corresponding to the first tumble passage 68 and a fourth intake passage corresponding to the second tumble passage 70. It is possible to divide the intake passage into the above intake passage, that is, the intake passage portion.
  • the plurality of divided intake passage portions should preferably be connected to the main passage 66 via the confluence portion 86 and then to the combustion chamber 20 in the same manner as the first and second tumble passages 68 and 70 described above. In this case, the plurality of sub-partitions may be provided in the tumble passage 64 separately in the vertical direction.
  • the tumble valve 76c is not limited to having a single valve member, that is, a valve body. Also, a plurality of valves may be combined and applied so as to realize the above function of the tumble valve 76c.
  • various members that define the intake passage of the internal combustion engine 10, particularly the intake passage on the downstream side of the throttle valve 40c, are preferably manufactured mainly by casting.
  • various shapes such as a downwardly convex tumble passage 64 and an upwardly convex main passage 66 can be realized. It should be noted that the present disclosure does not exclude the production of the member that defines the intake passage by a method other than casting.
  • the internal combustion engine 10 is a single-cylinder engine and has one intake valve 46 and one exhaust valve 50 for one cylinder.
  • the number of cylinders of the internal combustion engine, the number of intake valves per cylinder, and/or the number of exhaust valves per cylinder can be arbitrarily determined within a range consistent with the above technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

The purpose of the present disclosure is to provide an internal combustion engine configured such that an air intake passage is divided by a partitioning part, and it is possible to ensure both an intake air volume and tumbling performance in accordance with an operation state. An air intake structure S of the internal combustion engine according to one embodiment comprises: a main partitioning part 62 for partitioning an air intake passage connected to a combustion chamber of the internal combustion engine into a first air intake passage 64 and a second air intake passage 66 on a first direction side of the first air intake passage, where the first direction is defined as being from a crankshaft side to a cylinder head side in the direction of a cylinder axis C; a secondary partitioning part 72 provided to the first air intake passage so as to form a third air intake passage 68 and a fourth air intake passage 70 on the first direction side of the third air intake passage; and a merging part 86 where the third air intake passage and the fourth air intake passage merge, and the first air intake passage merges into the second air intake passage via the merging part.

Description

内燃機関の吸気構造Intake structure of internal combustion engine
 本発明は、吸気通路を複数に分ける仕切部が設けられる内燃機関の吸気構造に関する。 The present invention relates to an intake structure for an internal combustion engine provided with partitions for dividing an intake passage into a plurality of sections.
 スロットル弁の下流側の吸気通路が、仕切部により複数の通路に分けられる内燃機関の吸気構造が種々提案されている。例えば、特許文献1の内燃機関の吸気構造では、スロットル弁の下流側にタンブル弁を設け、そのタンブル弁の下流側にインレットパイプから吸気ポートへと続けて仕切部である仕切板部を設け、この仕切板部により吸気通路を上下の下側副通路と上側主通路とに仕切ることが行われる。下側副通路がタンブル通路となり、タンブル弁は上側主通路を実質的に開閉するものである。 Various intake structures for internal combustion engines have been proposed in which the intake passage on the downstream side of the throttle valve is divided into a plurality of passages by partitions. For example, in the intake structure for an internal combustion engine disclosed in Patent Document 1, a tumble valve is provided downstream of the throttle valve, and a partition plate portion, which is a partition portion, is provided downstream of the tumble valve from the inlet pipe to the intake port, The partition plate partitions the intake passage into a lower secondary passage and an upper main passage. The lower secondary passage serves as a tumble passage, and the tumble valve substantially opens and closes the upper main passage.
 また、特許文献2が開示する内燃機関では、スロットル弁の下流側に吸気制御弁が設けられ、更にその下流側の吸気通路に、吸入空気の流れ方向に沿った横板状部材が配設されている。横板状部材の数が1つのときと、2つ以上のときの内燃機関が開示されている。特許文献2の記載によれば、横板状部材を複数形成し、内燃機関の運転条件に応じた吸気制御弁の開度を決定することで、吸気制御弁の中間開度においても吸入空気の流れを乱さず、安定したガス流動を生成させる。 Further, in the internal combustion engine disclosed in Patent Document 2, an intake control valve is provided downstream of the throttle valve, and a horizontal plate-shaped member is disposed along the flow direction of the intake air in the intake passage downstream of the throttle valve. ing. An internal combustion engine with one horizontal plate member and two or more horizontal plate members are disclosed. According to the description of Patent Document 2, by forming a plurality of horizontal plate-shaped members and determining the opening degree of the intake control valve according to the operating conditions of the internal combustion engine, the amount of intake air is reduced even at intermediate opening degrees of the intake control valve. Generates a stable gas flow without disturbing the flow.
日本国特許第6714764号公報Japanese Patent No. 6714764 日本国特開2006-77590号公報Japanese Patent Application Laid-Open No. 2006-77590
 ところで、内燃機関を好適に作動させるためには、その内燃機関の運転状態に応じた吸入空気量を確保することと、燃焼効率を高めるためにタンブル流などの渦流を燃焼室で好適に生じさせることとの両立が望まれる。しかし、例えば特許文献2の構成は、運転状態に応じた吸入空気量の実現に主に向けられていて、例えばエンジン負荷が変動したときにもタンブル性能を維持することについては課題を有する。本発明の目的は、吸気通路が仕切部により分けられるように構成された内燃機関において、運転状態に応じた吸入空気量の確保とタンブル性能の確保との両立を可能にする構成を提供することにある。 By the way, in order to operate the internal combustion engine properly, it is necessary to secure an intake air amount corresponding to the operating state of the internal combustion engine, and to suitably generate a swirling flow such as a tumble flow in the combustion chamber in order to increase the combustion efficiency. It is desirable to be compatible with However, for example, the configuration of Patent Document 2 is mainly aimed at realizing an intake air amount according to the operating state, and has a problem in maintaining tumble performance even when the engine load fluctuates, for example. SUMMARY OF THE INVENTION An object of the present invention is to provide an internal combustion engine in which an intake passage is divided by a partition portion, and which is capable of ensuring both an intake air amount according to the operating state and tumble performance. It is in.
 上記目的を達成するために、本発明の一態様は、
 シリンダ軸線の方向においてクランク軸側からシリンダヘッド側を第1方向と定義するとき、内燃機関の燃焼室に連なる吸気通路を第1吸気通路と、該第1吸気通路の前記第1方向側の第2吸気通路とに仕切る主仕切部と、
 前記第1吸気通路に、第3吸気通路と該第3吸気通路の前記第1方向側の第4吸気通路とを形成するように設けられる副仕切部と、
 前記第3吸気通路と前記第4吸気通路とが合流する合流部であって、該合流部を介して前記第1吸気通路は前記第2吸気通路に合流する、合流部と
を備えたことを特徴とする内燃機関の吸気構造
を提供する。
In order to achieve the above object, one aspect of the present invention is
When defining the direction of the cylinder axis from the crankshaft side to the cylinder head side as the first direction, the intake passage leading to the combustion chamber of the internal combustion engine is called the first intake passage, and the first intake passage on the first direction side of the first intake passage. a main partition partitioning into two intake passages;
a sub-partition provided in the first intake passage so as to form a third intake passage and a fourth intake passage on the first direction side of the third intake passage;
a confluence portion where the third intake passage and the fourth intake passage merge, and the merge portion through which the first intake passage merges with the second intake passage. An intake structure for an internal combustion engine characterized by:
 上記構成によれば、吸気通路を、タンブル流路となり得る第3吸気通路と第4吸気通路とを含む第1吸気通路と、第2吸気通路とに分けることができ、内燃機関の運転状態によってそれらのいずれか又は全てを使用して、運転状態に応じた吸気流量を確保することが可能になる。また、上記構成によれば、上記合流部が設けられるので、第3吸気通路と第4吸気通路とを備える第1吸気通路からの吸気に強い指向性を持たせることができ、タンブル性能を確保することができる。よって、上記内燃機関の吸気構造によれば、吸気通路が仕切部により分けられるように構成された内燃機関において、運転状態に応じた吸入空気量の確保とタンブル性能の確保との両立を図ることが可能になる。 According to the above configuration, the intake passage can be divided into the first intake passage including the third intake passage and the fourth intake passage that can be a tumble flow passage, and the second intake passage. By using any one or all of them, it becomes possible to secure the intake flow rate according to the operating state. Further, according to the above configuration, since the confluence portion is provided, it is possible to impart strong directivity to the intake air from the first intake passage having the third intake passage and the fourth intake passage, thereby ensuring tumble performance. can do. Therefore, according to the intake structure of the internal combustion engine, it is possible to secure both the intake air amount according to the operating state and the tumble performance in the internal combustion engine configured so that the intake passage is divided by the partition. becomes possible.
 好ましくは、前記合流部は前記主仕切部の下流端よりも下流側で前記第2吸気通路につながる。この構成により、第1吸気通路を通った吸気に指向性を強く持たせることができる。 Preferably, the confluence portion is connected to the second intake passage on the downstream side of the downstream end of the main partition portion. With this configuration, the intake air passing through the first intake passage can have strong directivity.
 好ましくは、前記第2吸気通路からの吸気よりも、前記合流部を介しての前記第1吸気通路からの吸気が小さい進入角で燃焼室に流入するように、前記合流部は区画形成されている。この構成により、第1吸気通路を通った吸気が強い指向性を持ったまま燃焼室に導入可能になるため、燃焼室で強いタンブル流を発生させることができる。 Preferably, the merging portion is defined so that the intake air from the first intake passage through the merging portion flows into the combustion chamber at a smaller entrance angle than the intake air from the second intake passage. there is With this configuration, the intake air that has passed through the first intake passage can be introduced into the combustion chamber while maintaining strong directivity, so that a strong tumble flow can be generated in the combustion chamber.
 好ましくは、前記第3吸気通路及び前記第4吸気通路の各々の断面積が、前記合流部の上流側端部の断面積より小さいように、前記合流部は区画形成されている。この構成により、第3吸気通路からの吸気と第4吸気通路からの吸気とが合流部に好適に流入し、よって十分な吸気流量を確保することが可能になる。 Preferably, the confluence section is formed so that the cross-sectional area of each of the third intake passage and the fourth intake passage is smaller than the cross-sectional area of the upstream end of the confluence section. With this configuration, the intake air from the third intake passage and the intake air from the fourth intake passage preferably flow into the confluence portion, thereby ensuring a sufficient intake air flow rate.
 好ましくは、前記第3吸気通路及び前記第4吸気通路の断面積の和よりも、前記合流部の上流側端部よりも下流側の流れ方向に直交する断面での前記合流部の断面積が小さくなるように、前記合流部は区画形成されている。この構成により、第3吸気通路からの吸気と第4吸気通路からの吸気とが合流部で合流して第2吸気通路に流れるとき、吸気の流速を速い状態に保つことが可能になる。 Preferably, the cross-sectional area of the merging portion in a cross section perpendicular to the flow direction on the downstream side of the upstream end of the merging portion is greater than the sum of the cross-sectional areas of the third intake passage and the fourth intake passage. The confluence is partitioned so as to be small. With this configuration, when the intake air from the third intake passage and the intake air from the fourth intake passage merge at the confluence portion and flow into the second intake passage, the flow velocity of the intake air can be kept high.
 好ましくは、前記シリンダ軸線の方向において前記第1方向と反対向きの方向を第2方向と定義するとき、前記第1吸気通路は、前記第2方向に凸の湾曲形状を有するように区画形成され、前記第2吸気通路は、前記第1方向に凸の湾曲形状を有するように区画形成されている。この構成により、第1吸気通路からの吸気をより小さな進入角で燃焼室に導くことが可能になり、また、第2吸気通路からの吸気をより効果的に燃焼室に導くことが可能になる。 Preferably, when the direction opposite to the first direction in the direction of the cylinder axis is defined as the second direction, the first intake passage is sectioned to have a convex curved shape in the second direction. , the second intake passage is formed to have a curved shape convex in the first direction. With this configuration, it becomes possible to guide the intake air from the first intake passage to the combustion chamber at a smaller entrance angle, and to more effectively guide the intake air from the second intake passage to the combustion chamber. .
 好ましくは、前述の内燃機関の吸気構造は、前記主仕切部の上流に設けられた吸気制御弁を更に備える。この場合、該吸気制御弁は、前記第2吸気通路及び前記第4吸気通路を開閉可能であるように構成されていて、前記第2吸気通路及び前記第4吸気通路を閉じる第1位置、前記第2吸気通路を閉じて前記第4吸気通路を開く第2位置、及び、全開位置を有するとよい。この構成により、タンブル流を好適に生じさせつつ、運転状態に応じた吸入空気量をより好適に確保することが可能になる。 Preferably, the intake structure for the internal combustion engine described above further includes an intake control valve provided upstream of the main partition. In this case, the intake control valve is configured to be able to open and close the second intake passage and the fourth intake passage, and the first position to close the second intake passage and the fourth intake passage. It is preferable to have a second position in which the second intake passage is closed and the fourth intake passage is opened, and a fully open position. With this configuration, it is possible to more preferably secure an intake air amount according to the operating state while appropriately generating a tumble flow.
 好ましくは、前記吸気制御弁は弁軸周りに回動する単一の弁部材を備えて構成され、前記弁部材の動きを許容する凹部が、前記吸気通路を区画形成する壁部のうち前記第1方向側の壁部に設けられている。この構成により、単一の弁部材の動きを制御することで吸入空気量をより容易に調整することができ、また、その凹部によって上記弁部材の開閉機能をより良好なものにすることができる。 Preferably, the intake control valve is provided with a single valve member that rotates about a valve shaft, and the concave portion that allows the movement of the valve member defines the first portion of the wall portion that partitions and forms the intake passage. It is provided on the wall on the one direction side. With this configuration, the amount of intake air can be more easily adjusted by controlling the movement of a single valve member, and the recess can improve the opening and closing function of the valve member. .
 前述の内燃機関の吸気構造は、前記副仕切部を複数備えてもよい。この場合、前記第1吸気通路は、複数の前記副仕切部により、前記第3吸気通路及び前記第4吸気通路を含む3つ以上の吸気通路に分けられてもよい。この構成により、運転状態に応じた吸入空気量をより細かく調整することが可能になる。 The intake structure of the internal combustion engine described above may include a plurality of the sub-partitions. In this case, the first intake passage may be divided into three or more intake passages including the third intake passage and the fourth intake passage by a plurality of sub-partitions. With this configuration, it becomes possible to finely adjust the amount of intake air according to the operating state.
 本発明の上記態様によれば、上記構成を備えるので、吸気通路が仕切部により分けられるように構成された内燃機関において、運転状態に応じた吸入空気量の確保とタンブル性能の確保との両立を好適に図ることが可能になる。 According to the above aspect of the present invention, since it has the above configuration, in an internal combustion engine configured such that the intake passage is divided by the partition portion, it is possible to ensure both the intake air amount according to the operating state and the tumble performance. can be preferably achieved.
図1は、本発明の一実施形態に係る、内燃機関の概略構成図である。FIG. 1 is a schematic configuration diagram of an internal combustion engine according to one embodiment of the present invention. 図2は、図1の内燃機関におけるスロットル弁よりも下流側の吸気通路の部分の立体モデルを示す図である。FIG. 2 is a diagram showing a three-dimensional model of the portion of the intake passage on the downstream side of the throttle valve in the internal combustion engine of FIG. 図3は、図2と異なる角度からみた、図2の立体モデルの図である。FIG. 3 is a view of the three-dimensional model of FIG. 2, viewed from an angle different from that of FIG. 図4は、図1の内燃機関におけるタンブル弁の弁体を示す図である。FIG. 4 is a diagram showing a valve body of a tumble valve in the internal combustion engine of FIG. 1. FIG. 図5は、図1の内燃機関における、スロットル弁下流側かつタンブル弁下流側の吸気通路の部分及び排気ポートを含む立体モデルを上側からみた図である。FIG. 5 is a top view of a three-dimensional model including an intake passage portion and an exhaust port on the downstream side of the throttle valve and the downstream side of the tumble valve in the internal combustion engine of FIG. 図6は、図5の立体モデルをシリンダ軸線Cに直交するとともに吸気流れ方向に直交する方向からみた図である。FIG. 6 is a view of the three-dimensional model of FIG. 5 viewed from a direction perpendicular to the cylinder axis C and the direction of the intake air flow. 図7Aは、図6の立体モデルの断面図であり、図6のVIIA-VIIA線に沿った位置での断面図である。7A is a cross-sectional view of the three-dimensional model of FIG. 6, and is a cross-sectional view along the line VIIA-VIIA of FIG. 6. FIG. 図7Bは、図6の立体モデルの断面図であり、図6のVIIB-VIIB線に沿った位置での断面図である。7B is a cross-sectional view of the three-dimensional model of FIG. 6, and is a cross-sectional view along line VIIB-VIIB of FIG. 6. FIG. 図7Cは、図6の立体モデルの断面図であり、図6のVIIC-VIIC線に沿った位置での断面図である。7C is a cross-sectional view of the three-dimensional model of FIG. 6, and is a cross-sectional view along line VIIC-VIIC of FIG. 6. FIG. 図7Dは、図6の立体モデルの断面図であり、図6のVIID-VIID線に沿った位置での断面図である。7D is a cross-sectional view of the three-dimensional model of FIG. 6, and is a cross-sectional view along line VIID-VIID of FIG. 6. FIG.
 以下、本発明に係る実施形態を添付図に基づいて説明する。同一の部品(又は構成)には同一の符号を付してあり、それらの名称及び機能も同じである。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, an embodiment according to the present invention will be described based on the accompanying drawings. The same parts (or configurations) are given the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 本発明の一実施形態に係る内燃機関10の概略構成を図1に示す。図1は、内燃機関10のシリンダブロック12のシリンダボア12bの軸線(シリンダ軸線)Cに沿った、内燃機関10の断面図である。なお、内燃機関10は、単気筒エンジンであり、1つの気筒に対して、単一の吸気弁46および単一の排気弁50を備える。 A schematic configuration of an internal combustion engine 10 according to one embodiment of the present invention is shown in FIG. FIG. 1 is a cross-sectional view of an internal combustion engine 10 along an axis (cylinder axis) C of a cylinder bore 12b of a cylinder block 12 of the internal combustion engine 10. FIG. The internal combustion engine 10 is a single-cylinder engine, and has a single intake valve 46 and a single exhaust valve 50 for each cylinder.
 シリンダブロック12のシリンダボア12b内を往復動するピストン15は、クランクケース部16のクランク軸17のクランクピンと、コネクティングロッド18により連結されている。シリンダブロック12のシリンダボア12b内に摺動自在に嵌合されるピストン15の頂面15aと、頂面15aが対向するシリンダヘッド14の燃焼室天井面14aとの間には燃焼室20が構成される。 A piston 15 that reciprocates in the cylinder bore 12b of the cylinder block 12 is connected to the crankpin of the crankshaft 17 of the crankcase portion 16 by a connecting rod 18. A combustion chamber 20 is formed between the top surface 15a of the piston 15 slidably fitted in the cylinder bore 12b of the cylinder block 12 and the combustion chamber ceiling surface 14a of the cylinder head 14 facing the top surface 15a. be.
 内燃機関10は、SOHC型式の2バルブシステムを採用しており、シリンダヘッド14に動弁機構22が設けられている。動弁機構22を覆うように、シリンダヘッド14にはシリンダヘッドカバー24が重ねられて被せられる。シリンダヘッドカバー24内の動弁機構22に動力伝達を行うため、図示しない無端状のカムチェーンが、クランクケース部16、シリンダブロック12、シリンダヘッド14のクランク軸方向の一方側に設けられた図示しないカムチェーン室を通って、カム軸26とクランク軸17との間に架設され、カム軸26はクランク軸17に同期して1/2の回転速度で回転する。なお、シリンダヘッド14においてカムチェーン室と反対側(クランク軸方向の他方側)から燃焼室20内に向かって点火プラグが嵌挿されている。 The internal combustion engine 10 employs a SOHC type two-valve system, and a valve mechanism 22 is provided in the cylinder head 14 . A cylinder head cover 24 is overlaid on the cylinder head 14 so as to cover the valve mechanism 22 . In order to transmit power to the valve mechanism 22 in the cylinder head cover 24, an endless cam chain (not shown) is provided on one side of the crankcase portion 16, the cylinder block 12, and the cylinder head 14 in the crankshaft direction. A camshaft 26 and a crankshaft 17 are installed through a cam chain chamber, and the camshaft 26 rotates in synchronism with the crankshaft 17 at a rotation speed of 1/2. An ignition plug is inserted into the combustion chamber 20 from the opposite side of the cam chain chamber (the other side in the crankshaft direction) of the cylinder head 14 .
 シリンダヘッド14において、燃焼室天井面14aに開口した吸気弁口28と排気弁口30からは、各々吸気ポート32と排気ポート34が互いに上下に離れる方向に湾曲しながら延出して形成される。吸気ポート32の上流端は、シリンダヘッド14の上方に向けて開口し、インレットパイプ36と接続して、連続した吸気通路38が構成され、インレットパイプ36の上流側に、スロットルボディ40が接続される。 In the cylinder head 14, from an intake valve port 28 and an exhaust valve port 30 that open to the ceiling surface 14a of the combustion chamber, an intake port 32 and an exhaust port 34 are formed so as to extend while curving in directions vertically separating from each other. The upstream end of the intake port 32 opens toward the upper side of the cylinder head 14 and is connected to an inlet pipe 36 to form a continuous intake passage 38. A throttle body 40 is connected to the upstream side of the inlet pipe 36. be.
 排気ポート34の下流端は、シリンダヘッド14の下方に向けて開口し、排気管42に連結される。排気管42の下流側には、排気浄化装置及び消音装置が設けられ得る。 The downstream end of the exhaust port 34 opens downward from the cylinder head 14 and is connected to the exhaust pipe 42 . An exhaust purification device and a silencer may be provided downstream of the exhaust pipe 42 .
 シリンダヘッド14における吸気ポート32の湾曲外壁部32aに一体に円筒状の吸気弁ガイド44が嵌着されている。吸気弁ガイド44に摺動可能に支持された吸気弁46が、吸気ポート32の燃焼室20に臨む吸気弁口28を開閉する。 A cylindrical intake valve guide 44 is integrally fitted to the curved outer wall portion 32a of the intake port 32 in the cylinder head 14. An intake valve 46 slidably supported by an intake valve guide 44 opens and closes an intake valve port 28 of the intake port 32 facing the combustion chamber 20 .
 また、シリンダヘッド14における排気ポート34の湾曲外壁部34aに一体に嵌着された排気弁ガイド48に摺動可能に支持された排気弁50が、排気ポート34の燃焼室20に臨む排気弁口30を開閉する。 Also, an exhaust valve 50 slidably supported by an exhaust valve guide 48 integrally fitted to the curved outer wall portion 34a of the exhaust port 34 in the cylinder head 14 is an exhaust valve opening facing the combustion chamber 20 of the exhaust port 34. Open and close 30.
 吸気弁46および排気弁50はその傘部46a、50aが、いずれも燃焼室20に臨む吸気弁口28、排気弁口30を閉じるように、弁ばねにより上方に付勢されている。カム軸26の吸気カム、排気カムに当接揺動する吸気ロッカアーム56、排気ロッカアーム58によって、吸気弁46、排気弁50のステムエンド46b、50bが押し下げられて、所定のタイミングで吸気弁46、排気弁50が開弁し、吸気ポート32と燃焼室20、また、排気ポート34と燃焼室20が連通し、所定のタイミングの吸気、排気がなされる。 The intake valve 46 and the exhaust valve 50 are biased upward by valve springs so that the head portions 46a and 50a thereof close the intake valve opening 28 and the exhaust valve opening 30 facing the combustion chamber 20, respectively. Stem ends 46b and 50b of the intake valve 46 and the exhaust valve 50 are pushed down by an intake rocker arm 56 and an exhaust rocker arm 58 that contact and oscillate with the intake cam and the exhaust cam of the camshaft 26, and the intake valve 46 and the exhaust valve 50 are opened at a predetermined timing. The exhaust valve 50 opens, the intake port 32 communicates with the combustion chamber 20, and the exhaust port 34 communicates with the combustion chamber 20, and intake and exhaust are performed at predetermined timings.
 内燃機関10の吸気ポート32の上流端には、インシュレ-タ60を介してインレットパイプ36が接続して、連続した吸気通路38が構成され、インレットパイプ36の上流側に、スロットルボディ40が接続される。スロットルボディ40は、内燃機関10の燃焼室20に連なる吸気通路38の一部を構成する断面略円形の吸気路40aを有し、その上流側は、図示しないエアクリーナ装置に接続している。 An inlet pipe 36 is connected to the upstream end of the intake port 32 of the internal combustion engine 10 via an insulator 60 to form a continuous intake passage 38. A throttle body 40 is connected to the upstream side of the inlet pipe 36. be done. The throttle body 40 has an intake passage 40a with a substantially circular cross section forming part of the intake passage 38 communicating with the combustion chamber 20 of the internal combustion engine 10, and the upstream side of the intake passage 40a is connected to an air cleaner device (not shown).
 スロットルボディ40は、その吸気路40aの吸気の流れ方向と垂直、すなわち吸気路40aの中心軸線と直角に交差するスロットル弁軸40bによってスロットルボディ40内に回転自在に軸支されて、吸気路40aの流路面積を可変制御し、吸気路40aを開閉し得るスロットル弁40cを備えている。スロットル弁40cはバタフライ式のもので、スロットル弁軸40bと、スロットル弁軸40bに固定される共に一体的に回転する円盤状の弁体40dとを有している。 The throttle body 40 is rotatably supported in the throttle body 40 by a throttle valve shaft 40b that intersects the central axis of the intake passage 40a at right angles to the flow direction of intake air in the intake passage 40a. It has a throttle valve 40c that can variably control the flow passage area of the air intake passage 40a to open and close the intake passage 40a. The throttle valve 40c is of the butterfly type, and has a throttle valve shaft 40b and a disk-shaped valve body 40d that is fixed to the throttle valve shaft 40b and rotates integrally with the throttle valve shaft 40b.
 スロットル弁40cは運転者の操作等により、図1において反時計回りに開弁方向に回動可能となっているとともに、図示しない復帰ばねにより、弁体40dはそれの縁部が吸気路40aの内壁面に当接する全閉位置に位置するように、閉弁方向に時計回りに付勢されている。 The throttle valve 40c is rotatable counterclockwise in FIG. 1 in the valve opening direction by the driver's operation or the like. It is biased clockwise in the valve closing direction so as to be positioned at the fully closed position in contact with the inner wall surface.
 以上のような内燃機関10において、燃焼室20でのより好ましい燃焼を得るために燃焼室20において燃料・空気混合気のタンブル渦流つまりタンブル流、すなわち縦回転を与えるための吸気構造Sが構成されている。すなわち、吸気通路38は、インレットパイプ36から吸気ポート32へと続く仕切部62によって、吸気流れ方向に沿って分割され、通った吸気が燃焼室20内でタンブル流を発生するように構成されたタンブル通路64と、タンブル通路64を除く主通路66とに仕切られている。タンブル通路64が第1吸気通路に相当し、主通路66が第2吸気通路に相当する。なお、タンブル通路64は副通路と称されてもよい。 In the internal combustion engine 10 as described above, the intake structure S is configured to give a tumble swirl flow of the fuel-air mixture in the combustion chamber 20 in order to obtain more favorable combustion in the combustion chamber 20, i.e., vertical rotation. ing. That is, the intake passage 38 is divided along the direction of intake air flow by a partition portion 62 leading from the inlet pipe 36 to the intake port 32, and is configured such that the passing intake air generates a tumble flow within the combustion chamber 20. It is partitioned into a tumble passage 64 and a main passage 66 excluding the tumble passage 64. - 特許庁The tumble passage 64 corresponds to the first intake passage, and the main passage 66 corresponds to the second intake passage. Note that the tumble passage 64 may also be referred to as a secondary passage.
 更に、タンブル通路64に、仕切部72がインレットパイプ36から吸気ポート32へと続くように設けられている。仕切部72を設けることで、タンブル通路64に、2つの吸気通路68、70が区画形成される。2つの吸気通路68、70の一方は第1タンブル通路68であり、それらの他方は第2タンブル通路70である。第1タンブル通路68は第3吸気通路に相当し、第2タンブル通路70は第4吸気通路に相当する。 Furthermore, a partition portion 72 is provided in the tumble passage 64 so as to continue from the inlet pipe 36 to the intake port 32 . By providing the partition portion 72, the tumble passage 64 is partitioned into two intake passages 68 and 70. As shown in FIG. One of the two intake passages 68 , 70 is the first tumble passage 68 and the other of them is the second tumble passage 70 . The first tumble passage 68 corresponds to the third intake passage, and the second tumble passage 70 corresponds to the fourth intake passage.
 なお、タンブル通路64と主通路66とを仕切る仕切部62を主仕切部と称し、タンブル通路64の第1タンブル通路68と第2タンブル通路70とを仕切る仕切部72を副仕切部と称する。主仕切部62は吸気の流れ方向に板状に延在し、副仕切部72も主仕切部62に沿って、例えば略平行に、吸気の流れ方向に板状に延在する。主仕切部62は吸気通路38を実質的に上下方向において二分するように、ここでは流れ方向に延びる中心軸線上に実質的に延びるように設けられていて、タンブル通路64の流路断面積は主通路66の流路断面積と大きく違わない。しかし、タンブル通路64の流路断面積が主通路66の流路断面積よりも小さくなるように主仕切部62は設けられてもよく、この関係を逆にすることも可能である。また、副仕切部72はタンブル通路64を実質的に上下方向において二分するように、ここでは流れ方向に延びるタンブル通路64の中心軸線上に実質的に延びるように設けられているが、例えば上下方向のいずれかに偏るように設けられてもよい。 The partition 62 that separates the tumble passage 64 and the main passage 66 is called the main partition, and the partition 72 that separates the first tumble passage 68 and the second tumble passage 70 of the tumble passage 64 is called the sub-partition. The main partition 62 extends like a plate in the direction of flow of intake air, and the sub-partition 72 also extends like a plate along the direction of the flow of intake air, for example, substantially parallel to the main partition 62 . The main partition 62 is provided so as to substantially bisect the intake passage 38 in the vertical direction, here so as to extend substantially along the central axis extending in the flow direction, and the cross-sectional area of the tumble passage 64 is It is not much different from the channel cross-sectional area of the main passage 66 . However, the main partition 62 may be provided such that the cross-sectional area of the tumble passage 64 is smaller than the cross-sectional area of the main passage 66, and this relationship can be reversed. Further, the sub-partition 72 is provided so as to substantially bisect the tumble passage 64 in the vertical direction, here, so as to extend substantially along the central axis of the tumble passage 64 extending in the flow direction. It may be provided so as to be biased in either direction.
 吸気通路38の主仕切部62によって仕切られた下側部分がタンブル通路64、上側部分が主通路66となり、タンブル通路64の副仕切部72によって仕切られた下側部分が第1タンブル通路68、上側部分が第2タンブル通路70となるが、本明細書においてはそれらはその上下配置に限定されない。なお、本明細書において、吸気通路38などについての「上」、「下」とは、シリンダ軸線C方向においてクランク軸17側からシリンダヘッド14ないしシリンダヘッドカバー24側の方向を「上」又は「上」方向、この「上」方向とは逆向きの方向つまりシリンダヘッド14側からクランク軸17側の方向を「下」又は「下」方向といい、空間上の絶対的な「上」、「下」の意味ではない。この「上」又は「上」方向は第1方向に相当し、「下」又は「下」方向は第2方向に相当する。 The lower portion of the intake passage 38 partitioned by the main partition 62 is the tumble passage 64, the upper portion is the main passage 66, and the lower portion partitioned by the secondary partition 72 of the tumble passage 64 is the first tumble passage 68. The upper portion provides the secondary tumble passages 70, although they are not limited to their vertical arrangement herein. In this specification, the terms "top" and "bottom" of the intake passage 38 and the like refer to the direction from the crankshaft 17 to the cylinder head 14 or the cylinder head cover 24 in the direction of the cylinder axis C. , the direction opposite to this "upward" direction, that is, the direction from the cylinder head 14 side to the crankshaft 17 side is called the "downward" or "downward" direction, and the absolute "upward" or "downward" direction in space. does not mean The "up" or "up" direction corresponds to the first direction, and the "down" or "down" direction corresponds to the second direction.
 インレットパイプ36の上流端には、インシュレ-タ74を介してタンブル弁ボディ76が接続されている。このタンブル弁ボディ76は、吸気通路38の一部を構成する断面略円形の吸気路76aを有し、その上流端に前述のスロットルボディ40が接続されている。 A tumble valve body 76 is connected to the upstream end of the inlet pipe 36 via an insulator 74 . The tumble valve body 76 has an intake passage 76a with a substantially circular cross section forming part of the intake passage 38, and the throttle body 40 is connected to the upstream end thereof.
 タンブル弁ボディ76は、その吸気路76aの吸気の流れ方向と垂直、すなわち吸気路76aの中心軸線と直角に交差する弁軸76bによってタンブル弁ボディ76内に回転自在に軸支されて、吸気路76aの流路面積を可変制御し、吸気路76aの上側領域を上記仕切部62、72と協働して開閉し得るタンブル弁76cを備えている。タンブル弁76cはバタフライ式のもので、弁軸76bと、この弁軸76bに固定される共に一体的に回転する略円盤状の弁体76dとを有している。このように、タンブル弁76cは弁軸76bと一体的に回転する単一の弁部材である弁体76dを備えて構成されている。なお、タンブル弁76cは、タンブル制御弁、TCVなどとも称され得、本発明の吸気制御弁に相当する。 The tumble valve body 76 is rotatably supported in the tumble valve body 76 by a valve shaft 76b that intersects the central axis of the intake passage 76a perpendicularly to the flow direction of intake air in the intake passage 76a. A tumble valve 76c that can variably control the flow area of the air intake passage 76a and open and close the upper region of the air intake passage 76a in cooperation with the partitions 62, 72 is provided. The tumble valve 76c is of the butterfly type, and has a valve shaft 76b and a substantially disk-shaped valve body 76d that is fixed to the valve shaft 76b and rotates together. In this manner, the tumble valve 76c is configured with the valve element 76d, which is a single valve member that rotates integrally with the valve shaft 76b. The tumble valve 76c may also be called a tumble control valve, TCV, or the like, and corresponds to the intake control valve of the present invention.
 ここで、スロットル弁40cよりも下流側の吸気通路38の部分の立体モデルM1を図2及び図3に示す。図2は立体モデルM1の下流側からの斜視図であり、図3は立体モデルM1の(上下方向に直交する)左右方向からの図である。図3は、吸気弁46のバルブ軸線46cに直交する方向であって主仕切部62の延在方向に対して直交する方向から立体モデルM1をみた図である。立体モデルM1では、タンブル弁76cの弁体76dが表されている。また、図4にタンブル弁76cの弁体76dを示す。タンブル弁76cの単一の弁部材である弁体76dは上述のように略円盤状であるが、下流側において弁軸76bまわりに振られる先端部76tは略直線状にされている。これにより、弁体76dは主仕切部62との間で閉状態になったり、副仕切部72との間で閉状態になったりすることができる。  Here, Figs. 2 and 3 show a three-dimensional model M1 of the portion of the intake passage 38 on the downstream side of the throttle valve 40c. 2 is a perspective view of the three-dimensional model M1 from the downstream side, and FIG. 3 is a view of the three-dimensional model M1 from the horizontal direction (perpendicular to the vertical direction). FIG. 3 is a view of the three-dimensional model M1 viewed from a direction perpendicular to the valve axis 46c of the intake valve 46 and perpendicular to the extending direction of the main partition 62. As shown in FIG. The three-dimensional model M1 represents the valve body 76d of the tumble valve 76c. 4 shows the valve body 76d of the tumble valve 76c. The valve body 76d, which is the single valve member of the tumble valve 76c, is substantially disk-shaped as described above, but the distal end portion 76t swung around the valve shaft 76b on the downstream side is substantially linear. As a result, the valve body 76d can be in a closed state with respect to the main partitioning portion 62 or can be in a closed state with respect to the sub-partitioning portion 72. As shown in FIG.
 主仕切部62は、タンブル弁76cのすぐ下流側の位置から吸気ポート32にまで連続して延びている。同様に、副仕切部72は、タンブル弁76cのすぐ下流側の位置から吸気ポート32にまで連続して延びている。図1から明らかなように、タンブル弁76cの弁軸76bは主仕切部62の上側に位置付けられていて、かつ、タンブル弁76cはバタフライ式のバルブであるので、主仕切部62の上流端縁62aの方が、副仕切部72の上流端縁72aよりも下流側に位置する。なお、主仕切部62の下流端縁62bは、副仕切部72の下流端縁72bよりも下流側に位置する。 The main partition 62 continuously extends from a position immediately downstream of the tumble valve 76c to the intake port 32. Similarly, the sub-partition 72 continuously extends to the intake port 32 from a position immediately downstream of the tumble valve 76c. 1, the valve stem 76b of the tumble valve 76c is positioned above the main compartment 62, and the tumble valve 76c is a butterfly valve, so that the upstream edge of the main compartment 62 62a is located downstream of the upstream edge 72a of the sub-partition 72. As shown in FIG. Note that the downstream edge 62b of the main partition 62 is located downstream of the downstream edge 72b of the sub-partition 72. As shown in FIG.
 タンブル弁ボディ76には、図1に示すように、タンブル弁76cの弁体76dの動きを許容する凹部77が設けられている。凹部77は、吸気通路38を区画形成する壁部であるタンブル弁ボディ76の壁部76eのうち上側の壁部76uに設けられている。 As shown in FIG. 1, the tumble valve body 76 is provided with a recess 77 that allows movement of the valve element 76d of the tumble valve 76c. The concave portion 77 is provided in an upper wall portion 76u of a wall portion 76e of a tumble valve body 76, which is a wall portion defining and forming the intake passage 38. As shown in FIG.
 上記構成のタンブル弁76cは、第2吸気通路である主通路66及び第4吸気通路である第2タンブル通路70を開閉可能であるように構成されている。ここでは、タンブル弁76cは、第1タンブル通路68の開度に影響しないように設けられているが、第1タンブル通路68の開度にも影響するように、例えばその一部にも延びるように設けられることも可能である。 The tumble valve 76c configured as described above is configured to be able to open and close the main passage 66, which is the second intake passage, and the second tumble passage 70, which is the fourth intake passage. Here, the tumble valve 76c is provided so as not to affect the degree of opening of the first tumble passage 68. It is also possible to be provided in
 図1では、タンブル弁76cの弁体76dは、流れ方向に延びることができるように位置付けられていて、実線で示すように全開位置PAにある。タンブル弁76cは、この全開位置PAの他、その弁体76dの下流側が副仕切部72の上流端縁72aに延びる第1位置P1(図1の一点鎖線)と、その弁体76dの下流側が主仕切部62の上流端縁62aに延びる第2位置P2(図1の二点鎖線)とを有する。タンブル弁76cが全開位置PAにあることで、タンブル通路64及び主通路66が全開状態になる。タンブル弁76cが第1位置P1にあることで、主通路66と第2タンブル通路70は実質的に閉じられ、当然に第1タンブル通路68は開いたままになる。タンブル弁76cが第2位置P2にあることで、主通路66は実質的に閉じられ、第1タンブル通路68に加えて第2タンブル通路70は開いた状態になる。このように、タンブル弁76cは複数の開度で用いられることになるが、凹部77が設けられていることにより第1位置P1と第2位置P2のどちらの場合でも壁部76uと弁体76dとの間の隙間が実質的に無くなるように閉じることができる。なお、タンブル弁76cはこれら以外の任意の位置に位置付けられることができる。タンブル弁76cのこれらの位置は、ここでは内燃機関10の運転状態に基づいて後述するECU80により制御される。 In FIG. 1, the valve body 76d of the tumble valve 76c is positioned so as to be able to extend in the flow direction, and is in the fully open position PA as indicated by the solid line. In addition to the fully open position PA, the tumble valve 76c has a first position P1 (one-dot chain line in FIG. and a second position P2 extending to the upstream edge 62a of the main partition 62 (a two-dot chain line in FIG. 1). With the tumble valve 76c at the fully open position PA, the tumble passage 64 and the main passage 66 are fully opened. With the tumble valve 76c in the first position P1, the main passageway 66 and the second tumble passageway 70 are substantially closed, leaving the first tumble passageway 68 open. With the tumble valve 76c in the second position P2, the main passageway 66 is substantially closed, leaving the second tumble passageway 70 in addition to the first tumble passageway 68 open. In this way, the tumble valve 76c is used at a plurality of degrees of opening. can be closed such that there is substantially no gap between the Note that the tumble valve 76c can be positioned at any other position. These positions of the tumble valve 76c are controlled by an ECU 80 described later based on the operating state of the internal combustion engine 10 here.
 内燃機関10では、燃料噴射弁78が設けられている。燃料噴射弁78は、スロットル弁40c及びタンブル弁76cの下流側に設けられている。燃料噴射弁78は主通路66を介して吸気弁46に向けて燃料を噴射するように設けられている。この燃料噴射弁78からの燃料噴射量及びその噴射タイミングは、スロットル弁40c及びタンブル弁76cのそれぞれの制御と関連付けて制御される。なお、スロットル弁40cは、電子制御されることに限定されず、例えばスロットルケーブルで機械的にコントロールされる弁であってもよく、これはタンブル弁76cにおいても同様である。 A fuel injection valve 78 is provided in the internal combustion engine 10 . The fuel injection valve 78 is provided downstream of the throttle valve 40c and the tumble valve 76c. A fuel injection valve 78 is provided to inject fuel toward the intake valve 46 via the main passage 66 . The fuel injection amount and the injection timing from the fuel injection valve 78 are controlled in association with the control of each of the throttle valve 40c and the tumble valve 76c. Note that the throttle valve 40c is not limited to being electronically controlled, and may be a valve mechanically controlled by a throttle cable, for example, and the same applies to the tumble valve 76c.
 内燃機関10を制御するECU(電子制御ユニット)80は、所謂コンピュータとしての構成を備え、吸気制御部82及び燃料噴射制御部84を備えている。つまり、ECU80は、例えばCPUである処理装置つまりプロセッサと、例えばROM、RAMを含む記憶装置つまりメモリとを備える。ECU80は、エンジン回転速度センサ、エンジン負荷センサなどの各種センサからの出力に基づいて内燃機関10の運転状態を解析して、吸気制御部82により、スロットル弁40c及びタンブル弁76cの各作動を制御する。例えば、スロットル弁40cは、内燃機関10の運転状態に応じた開度に制御され、例えば内燃機関10の運転状態が低負荷領域にあるときよりも、内燃機関10の運転状態が高負荷領域にあるとき、より大きく開いた開度になるように制御され、同様に、タンブル弁76cは、内燃機関10の運転状態に応じた開度に制御され、例えば内燃機関10の運転状態が低負荷領域にあるときよりも、内燃機関10の運転状態が高負荷領域にあるとき、より大きく開いた開度になるように制御される。また、ECU80は、解析した内燃機関10の運転状態に基づいて、燃料噴射制御部84により、燃料噴射弁78の作動を制御する。なお、ECU80には、これらの制御のためのプログラム及び各種データが記憶されている。 An ECU (electronic control unit) 80 that controls the internal combustion engine 10 has a configuration as a so-called computer, and includes an intake control section 82 and a fuel injection control section 84 . That is, the ECU 80 includes a processing unit or processor, for example a CPU, and a storage device or memory including, for example, ROM and RAM. The ECU 80 analyzes the operating state of the internal combustion engine 10 based on outputs from various sensors such as an engine rotation speed sensor and an engine load sensor, and controls the respective operations of the throttle valve 40c and the tumble valve 76c through the intake control unit 82. do. For example, the throttle valve 40c is controlled to an opening degree according to the operating state of the internal combustion engine 10. For example, when the operating state of the internal combustion engine 10 is in the low load region, the operating state of the internal combustion engine 10 is in the high load region. At some point, the tumble valve 76c is controlled to have a larger opening degree, and similarly, the tumble valve 76c is controlled to an opening degree according to the operating state of the internal combustion engine 10. For example, the operating state of the internal combustion engine 10 is in the low load region. When the operating state of the internal combustion engine 10 is in the high-load region, the opening is controlled to be larger than when it is at . Further, the ECU 80 controls the operation of the fuel injection valve 78 by means of the fuel injection control section 84 based on the analyzed operating state of the internal combustion engine 10 . The ECU 80 stores programs and various data for these controls.
 ここで、タンブル弁76cの制御について詳しく説明する。例えば、内燃機関10の運転状態が低負荷領域にあるとき、ECU80は、第1タンブル通路68のみから吸気を吸入させるように、タンブル弁76cを第1位置P1に位置するようにその作動を制御する。これにより、低負荷領域に即した吸入空気量を確保するとともに、第1タンブル通路68からの吸気で燃焼室20にタンブル流を形成させる。第1タンブル通路68は比較的断面積が小さいため、低負荷領域に即した吸入空気量でも流速を早くすることができ、強いタンブル流を形成することができる。ここでは、内燃機関10の運転状態が低負荷領域にあるとき、燃料噴射弁78からの燃料噴射は空燃比がリーンになるように制御されるが、タンブル流を形成することで効果的に燃焼を生じさせることができる。 Here, the control of the tumble valve 76c will be explained in detail. For example, when the operating state of the internal combustion engine 10 is in the low load region, the ECU 80 controls the operation of the tumble valve 76c so that it is positioned at the first position P1 so that the intake air is drawn only from the first tumble passage 68. do. As a result, the amount of intake air suitable for the low load region is ensured, and the intake air from the first tumble passage 68 forms a tumble flow in the combustion chamber 20 . Since the first tumble passage 68 has a relatively small cross-sectional area, it is possible to increase the flow velocity even with an intake air amount suitable for a low load region, and to form a strong tumble flow. Here, when the operating state of the internal combustion engine 10 is in the low load region, the fuel injection from the fuel injection valve 78 is controlled so that the air-fuel ratio becomes lean, but by forming the tumble flow, effective combustion is achieved. can be generated.
 また、例えば、内燃機関10の運転状態が中負荷領域にあるとき、ECU80は、第1タンブル通路68及び第2タンブル通路70からつまりタンブル通路64から吸気を吸入させるように、タンブル弁76cを第2位置P2に位置するようにその作動を制御する。これにより、中負荷領域に即した吸入空気量を確保するとともに、第1及び第2タンブル通路68、70からの吸気で燃焼室20にタンブル流を形成させる。第1及び第2タンブル通路68、70からの吸気でタンブル流を形成するため、低負荷領域より多くの吸入空気量が必要な中負荷領域においても必要な吸入空気量を確保しつつ、強いタンブル流を形成することができる。ここでは、内燃機関10の運転状態が中負荷領域にあるとき、燃料噴射弁78からの燃料噴射は空燃比がリーンになるように制御されるが、タンブル流を形成することで効果的に燃焼を生じさせることができる。 Further, for example, when the operating state of the internal combustion engine 10 is in the medium load range, the ECU 80 first turns the tumble valve 76c so that the intake air is taken in from the first tumble passage 68 and the second tumble passage 70, that is, from the tumble passage 64. 2 Control its operation so that it is located at position P2. As a result, the amount of intake air suitable for the medium load range is ensured, and the intake air from the first and second tumble passages 68 and 70 forms a tumble flow in the combustion chamber 20 . Since a tumble flow is formed by intake air from the first and second tumble passages 68 and 70, strong tumble can be achieved while securing the necessary amount of intake air even in the medium load range where a larger amount of intake air is required than in the low load range. flow can be formed. Here, when the operating state of the internal combustion engine 10 is in the medium load range, the fuel injection from the fuel injection valve 78 is controlled so that the air-fuel ratio becomes lean, but by forming the tumble flow, effective combustion is achieved. can be generated.
 更に、例えば、内燃機関10の運転状態が高負荷領域にあるとき、ECU80は、第1タンブル通路68及び第2タンブル通路70を含むタンブル通路64並びに主通路66から吸気を吸入させるように、タンブル弁76cを全開位置PAに位置するようにその作動を制御する。これにより、高負荷領域に即した吸入空気量を確保するとともに、第1及び第2タンブル通路68、70からの吸気で燃焼室20に好ましくはタンブル流を、そうでなくても好適な筒内流速を実現させる。ここでは、内燃機関10の運転状態が高負荷領域にあるとき、燃料噴射弁78からの燃料噴射は空燃比がストイキになるように制御され、更に好適な筒内流速を実現することでより効果的に燃焼を生じさせることができる。 Furthermore, for example, when the operating state of the internal combustion engine 10 is in the high load region, the ECU 80 controls the tumble passage so that the intake air is taken in from the tumble passage 64 including the first tumble passage 68 and the second tumble passage 70 and the main passage 66. It controls the operation of the valve 76c so that it is in the fully open position PA. As a result, the amount of intake air suitable for the high load region is ensured, and the intake air from the first and second tumble passages 68 and 70 preferably creates a tumble flow in the combustion chamber 20, and even if not, a suitable cylinder flow is obtained. Realize flow velocity. Here, when the operating state of the internal combustion engine 10 is in the high load region, the fuel injection from the fuel injection valve 78 is controlled so that the air-fuel ratio becomes stoichiometric, and furthermore, by realizing a suitable flow velocity in the cylinder, the effect is further improved. combustion can occur.
 例えば、内燃機関10の運転状態が高負荷領域にあるとき、タンブル弁76cは全開位置PAに位置するようにその作動が制御され、タンブル通路64及び主通路66から吸気を吸入させる。このときに、主通路66からの吸気により吸入空気量をより多くし、かつ、タンブル通路64からの吸気によるタンブル性能をより好適に確保可能にするように、内燃機関10の吸気構造Sは更なる構成及び形状を有する。以下、更に説明する。 For example, when the operating state of the internal combustion engine 10 is in the high load region, the operation of the tumble valve 76c is controlled so that it is positioned at the fully open position PA, and intake air is taken in from the tumble passage 64 and the main passage 66. At this time, the intake structure S of the internal combustion engine 10 is further modified so that the amount of intake air is increased by the intake air from the main passage 66 and the tumble performance by the intake air from the tumble passage 64 can be secured more favorably. It has a different configuration and shape. Further explanation is given below.
 タンブル通路64の下流側には合流部86が区画形成されている。合流部86は、第1タンブル通路68及び第2タンブル通路70がその下流側で合流する個所に設けられている。そして、合流部86を介してタンブル通路64は主通路66に合流する。合流部86は、シリンダヘッド14に形成されている。ここでは、合流部86は吸気ポート32の一部として形成されている。 A confluence portion 86 is formed on the downstream side of the tumble passage 64 . A confluence portion 86 is provided at a location where the first tumble passage 68 and the second tumble passage 70 merge on the downstream side thereof. The tumble passage 64 merges with the main passage 66 via the junction 86 . The confluence portion 86 is formed in the cylinder head 14 . Here, the confluence portion 86 is formed as part of the intake port 32 .
 ここで、図5及び図6に、スロットル弁40c及びタンブル弁76cの下流側の吸気通路38の部分及び排気ポート34の排気通路を含む立体モデルM2を示す。図5は立体モデルM2の上側からの図であり、図6はシリンダ軸線Cに直交するとともに吸気流れ方向に直交する方向からの立体モデルM2の図である。更に、図6のVIIA-VIIA線に沿った位置での立体モデルM2の断面図を図7Aに示し、図6のVIIB-VIIB線に沿った位置での立体モデルM2の断面図を図7Bに示し、図6のVIIC-VIIC線に沿った位置での立体モデルM2の断面図を図7Cに示し、図6のVIID-VIID線に沿った位置での立体モデルM2の断面図を図7Dに示す。図6のVIIA-VIIA線は主仕切部62の上流端縁近傍を通り、図6のVIIB-VIIB線は吸気ポート32の上流端近傍を通り、図6のVIIC-VIIC線は副仕切部72の下流端縁72b近傍を通り、図6のVIID-VIID線は主仕切部62の下流端縁62bの近傍を通る。これらのVIIA-VIIA線からVIID-VIID線は、いずれも、図6においてシリンダ軸線Cに平行である。なお、図7Aから図7Dでは、排気側を省略している。 Here, FIGS. 5 and 6 show a three-dimensional model M2 including the portion of the intake passage 38 on the downstream side of the throttle valve 40c and the tumble valve 76c and the exhaust passage of the exhaust port 34. FIG. FIG. 5 is a view of the three-dimensional model M2 from above, and FIG. 6 is a view of the three-dimensional model M2 from a direction orthogonal to the cylinder axis C and the direction of intake air flow. 7A shows a cross-sectional view of the solid model M2 along the line VIIA-VIIA in FIG. 6, and FIG. 7B shows a cross-sectional view of the solid model M2 along the line VIIB-VIIB in FIG. 7C shows a cross-sectional view of the solid model M2 at a position along the VIIC-VIIC line in FIG. 6, and FIG. 7D shows a cross-sectional view of the solid model M2 at a position along the VIID-VIID line in FIG. show. Line VIIA-VIIA in FIG. 6 passes near the upstream edge of the main partition 62, line VIIB-VIIB in FIG. 6 passes near the downstream edge 72b of the main partition 62, and the line VIID--VIID in FIG. All of these lines VIIA-VIIA to VIID-VIID are parallel to the cylinder axis C in FIG. Note that the exhaust side is omitted in FIGS. 7A to 7D.
 図7A、図7B及び図7Cにおいて、第1タンブル通路68と第2タンブル通路70とは概ね同じ形状及びサイズを有する。このように、第1タンブル通路68と第2タンブル通路70とのそれぞれは、その吸気流れ方向においてその形状又はサイズが大きく変わることなく、滑らかに上流側から下流側に至る。そして、第1タンブル通路68と第2タンブル通路70とは合流部86につながる。合流部86は、主仕切部62の下流端の下流端縁62bよりも下流側で主通路66につながる(図1及び図6参照)。この構成により、第1タンブル通路68と第2タンブル通路70とは副仕切部72の下流端縁72bよりも下流側の合流部86を経て、主通路66につながることになる。よって、タンブル通路64の第1タンブル通路68と第2タンブル通路70を通った吸気に指向性を強く持たせることができる。 7A, 7B and 7C, the first tumble passage 68 and the second tumble passage 70 have generally the same shape and size. Thus, each of the first tumble passage 68 and the second tumble passage 70 smoothly extends from the upstream side to the downstream side without significantly changing its shape or size in the intake air flow direction. The first tumble passage 68 and the second tumble passage 70 are connected to the confluence portion 86 . The confluence portion 86 is connected to the main passage 66 on the downstream side of the downstream edge 62b of the downstream end of the main partition portion 62 (see FIGS. 1 and 6). With this configuration, the first tumble passage 68 and the second tumble passage 70 are connected to the main passage 66 via the confluence portion 86 on the downstream side of the downstream edge 72b of the sub-partition portion 72. As shown in FIG. Therefore, the intake air passing through the first tumble passage 68 and the second tumble passage 70 of the tumble passage 64 can have strong directivity.
 図6において、合流部86において流れ方向に延びるように定められる線L1が直角に近い角度θ1でシリンダ軸線Cに交わるのに対して、主通路66の下流端において流れ方向に延びるように定められる線L2が角度θ1よりも小さな角度θ2でシリンダ軸線Cに交わる。このように、主通路66からの吸気よりも、合流部86を介してのタンブル通路64からの吸気が小さい進入角で燃焼室20に流入するように、合流部86は区画形成されている。この構成により、タンブル通路64を通った吸気が強い指向性を持ったまま燃焼室20に導入可能になり、例えば燃焼室20で強いタンブル流を発生させることができる。なお、ここでいう進入角とは、燃焼室20に向けて流入する吸気の燃焼室20への流入の角度であり、例えばシリンダ軸線Cに直交するとともに吸気流れ方向に直交する方向からみた図6においてシリンダ軸線Cとの間でなす角度が大きいほど進入角は小さいということになる。なお、ここでは、進入角θは、0°よりも大きく、90°よりも小さい角度である(0°<θ<90°)。 In FIG. 6, the line L1 defined to extend in the flow direction at the confluence portion 86 intersects the cylinder axis C at an angle θ1 close to a right angle, whereas the line L1 is defined to extend in the flow direction at the downstream end of the main passage 66. A line L2 intersects the cylinder axis C at an angle .theta.2 smaller than the angle .theta.1. In this manner, the confluence portion 86 is defined so that the intake air from the tumble passage 64 via the confluence portion 86 flows into the combustion chamber 20 at a smaller entrance angle than the intake air from the main passage 66 . With this configuration, the intake air passing through the tumble passage 64 can be introduced into the combustion chamber 20 while maintaining strong directivity, and a strong tumble flow can be generated in the combustion chamber 20, for example. The term "advance angle" as used herein refers to the angle at which the intake air flowing into the combustion chamber 20 flows into the combustion chamber 20. For example, when viewed from a direction perpendicular to the cylinder axis C and the direction of intake air flow, as shown in FIG. , the larger the angle formed with the cylinder axis C, the smaller the approach angle. Here, the approach angle θ is larger than 0° and smaller than 90° (0°<θ<90°).
 更に、図1、図3及び図6から明らかなように、タンブル通路64は、下側に凸の湾曲形状を有するように区画形成され、主通路66は、上側に凸の湾曲形状を有するように区画形成されている。この構成により、上述のように、タンブル通路64からの吸気をより小さな進入角で燃焼室に導くことが可能になり、また、主通路66からの吸気をより効果的に燃焼室20に導くことが可能になる。 1, 3 and 6, the tumble passage 64 is defined to have a downwardly convex curved shape, and the main passage 66 is defined to have an upwardly convex curved shape. It is partitioned into With this configuration, as described above, the intake air from the tumble passage 64 can be guided into the combustion chamber at a smaller entrance angle, and the intake air from the main passage 66 can be more effectively guided to the combustion chamber 20. becomes possible.
 図7Cに、合流部86の上流側端部に第1タンブル通路68及び第2タンブル通路70が連通するところが示されている。ここで、参考までに、図7Cに、第1タンブル通路68の断面68A、第2タンブル通路70の断面70A、及び、合流部86の上流側端部86uに定められる仮想面のつまりこの仮想面での断面の1つの辺TA1を示す。第1タンブル通路68の断面68Aの上下方向の長さ及び第2タンブル通路70の断面70Aの上下方向の長さのそれぞれよりも、合流部86の上流側端部86uの辺TA1の方が明らかに長い。このように、第1タンブル通路68及び第2タンブル通路70の各々の断面積(図7Cの面積S1、S2)が、合流部86の上流側端部86uの断面積S3(辺TA1により一部が区画形成される断面の面積)より小さいように、合流部86は区画形成されている(S1<S3、S2<S3)。この構成により、第1タンブル通路68からの吸気と第2タンブル通路70からの吸気とが合流部86に好適に流入可能である。より詳細には、タンブル弁76cが第2位置P2にあり第1タンブル通路68及び第2タンブル通路70に吸気が流れている場合、合流部86の断面積が第1タンブル通路68及び第2タンブル通路70それぞれの断面積より大きいため、合流部86で吸入空気量が制限されにくく、中負荷領域の運転領域に即した吸入空気量を確保することができる。 FIG. 7C shows that the first tumble passage 68 and the second tumble passage 70 communicate with the upstream end of the junction 86 . Here, for reference, FIG. 7C shows a cross section 68A of the first tumble passage 68, a cross section 70A of the second tumble passage 70, and a virtual plane defined at the upstream end 86u of the confluence portion 86, that is, this virtual plane. shows one side TA1 of the cross section at . The side TA1 of the upstream end 86u of the merging portion 86 is clearer than the vertical length of the cross section 68A of the first tumble passage 68 and the vertical length of the cross section 70A of the second tumble passage 70. to long. Thus, the cross-sectional area of each of the first tumble passage 68 and the second tumble passage 70 (areas S1 and S2 in FIG. 7C) is equal to the cross-sectional area S3 of the upstream end 86u of the merging portion 86 (partially by side TA1). (S1<S3, S2<S3). With this configuration, the intake air from the first tumble passage 68 and the intake air from the second tumble passage 70 can preferably flow into the confluence portion 86 . More specifically, when the tumble valve 76c is at the second position P2 and intake air flows through the first tumble passage 68 and the second tumble passage 70, the cross-sectional area of the confluence portion 86 is Since the cross-sectional area is larger than that of each of the passages 70, the amount of intake air is less likely to be restricted at the junction 86, and an amount of intake air suitable for the operating range of the medium load range can be ensured.
 また、例えば、図7Dの辺TA2の方が図7Cの辺TA1よりも短い。つまり、下流側に至るに従い、例えば図7Cの辺TA1の箇所よりも図7Dの断面箇所で、タンブル通路64の合流部86の断面積が小さくなる傾向にある。このように、内燃機関10では、合流部86は、該合流部86の上流側端部から下流側に向けて概ね先細りするように区画形成されている。この構成により、第1タンブル通路68および第2タンブル通路70の断面積の和(例えば断面68Aの面積S1と断面70Aの面積S2の和)よりも、合流部86の上流側端部86uよりも下流側の流れ方向に直交する断面での面積(断面積)が小さくなる。これにより、第1タンブル通路68からの吸気と第2タンブル通路70からの吸気とが合流部86で合流して主通路66に流れ込むとき、吸気の流速を速い状態に保つことが可能になる。したがって、タンブル通路64からの吸気は、速い流速で燃焼室20内に流入し、好ましくはタンブル流を形成することができる。なお、第1タンブル通路68および第2タンブル通路70の断面積の和よりも、合流部86の上流側端部よりも下流側の流れ方向に直交する断面での合流部86の断面積を小さくすることは、先細り以外の手段により実現されてもよい。 Also, for example, side TA2 in FIG. 7D is shorter than side TA1 in FIG. 7C. In other words, the cross-sectional area of the confluence portion 86 of the tumble passage 64 tends to be smaller at the cross-sectional area in FIG. 7D than at the side TA1 in FIG. 7C, for example, toward the downstream side. Thus, in the internal combustion engine 10, the confluence portion 86 is sectioned so as to generally taper from the upstream end portion of the confluence portion 86 toward the downstream side. With this configuration, it is greater than the sum of the cross-sectional areas of the first tumble passage 68 and the second tumble passage 70 (for example, the sum of the area S1 of the cross section 68A and the area S2 of the cross section 70A) and the upstream end portion 86u of the confluence portion 86. The area (cross-sectional area) of the cross section perpendicular to the flow direction on the downstream side becomes smaller. As a result, when the intake air from the first tumble passage 68 and the intake air from the second tumble passage 70 join at the junction 86 and flow into the main passage 66, the flow velocity of the intake air can be kept high. Therefore, the intake air from the tumble passage 64 can flow into the combustion chamber 20 at a high flow velocity and preferably form a tumble flow. The cross-sectional area of the merging portion 86 on the downstream side of the upstream end of the merging portion 86 perpendicular to the flow direction is smaller than the sum of the cross-sectional areas of the first tumble passage 68 and the second tumble passage 70. The taper may be achieved by means other than taper.
 以上説明した内燃機関10の吸気構造Sは、タンブル通路64と主通路66とを仕切る主仕切部62と、タンブル通路64を第1及び第2タンブル通路68、70とに仕切る副仕切部72と、第1及び第2タンブル通路68、70とが合流する合流部86とを備える。そして、上記構成の合流部86を介してタンブル通路64は主通路66に合流する。 The intake structure S of the internal combustion engine 10 described above includes a main partition 62 that separates the tumble passage 64 and the main passage 66, and a sub-partition 72 that separates the tumble passage 64 into first and second tumble passages 68 and 70. , and a junction 86 where the first and second tumble passages 68, 70 meet. The tumble passage 64 merges with the main passage 66 via the confluence portion 86 configured as described above.
 この吸気構造Sによれば、主通路66と、タンブル通路64とを備え、タンブル通路64を第1タンブル通路68と第2タンブル通路70とに分けることができる。よって内燃機関の運転状態によってそれらのいずれか1つ又は2つ又は全てを使用して、運転状態に応じた吸入空気量を確保することが可能になる。 According to this intake structure S, the main passage 66 and the tumble passage 64 are provided, and the tumble passage 64 can be divided into the first tumble passage 68 and the second tumble passage 70 . Therefore, it is possible to use one or two or all of them depending on the operating state of the internal combustion engine to secure the intake air amount according to the operating state.
 また、上記吸気構造Sによれば、上記合流部86が設けられるので、第1タンブル通路68と第2タンブル通路70とを備えるタンブル通路64からの吸気に強い指向性を持たせることができる。よって、タンブル性能を確保することができる。 Further, according to the intake structure S, since the confluence portion 86 is provided, the intake air from the tumble passage 64 having the first tumble passage 68 and the second tumble passage 70 can have strong directivity. Therefore, tumble performance can be ensured.
 したがって、内燃機関10の吸気構造Sによれば、運転状態に応じた吸入空気量の確保とタンブル性能の確保との両立を図ることが可能になる。 Therefore, according to the intake structure S of the internal combustion engine 10, it is possible to ensure both the amount of intake air according to the operating state and the tumble performance.
 なお、副仕切部は1つに限定されず、複数であってもよい。複数の副仕切部をタンブル通路64に設けることで、タンブル通路64を、上記第1タンブル通路68に対応する第3吸気通路及び上記第2タンブル通路70に対応する第4吸気通路を含む3つ以上の吸気通路つまり吸気通路部分に分けることが可能になる。この分けられた複数の吸気通路部分は、上述の第1及び第2タンブル通路68、70と同様に合流部86を介して主通路66につながり、燃焼室20につながるとよい。なお、この場合、複数の副仕切部は上下方向に離してタンブル通路64に設けられ得る。 The number of sub-partitions is not limited to one, and may be plural. By providing a plurality of sub-partitions in the tumble passage 64, the tumble passage 64 is divided into three sections including a third intake passage corresponding to the first tumble passage 68 and a fourth intake passage corresponding to the second tumble passage 70. It is possible to divide the intake passage into the above intake passage, that is, the intake passage portion. The plurality of divided intake passage portions should preferably be connected to the main passage 66 via the confluence portion 86 and then to the combustion chamber 20 in the same manner as the first and second tumble passages 68 and 70 described above. In this case, the plurality of sub-partitions may be provided in the tumble passage 64 separately in the vertical direction.
 なお、上記タンブル弁76cは、単一の弁部材つまり弁体を備えることに限定されない。また、タンブル弁76cの上記機能を実現するように、複数のバルブが組み合わせて適用されてもよい。 It should be noted that the tumble valve 76c is not limited to having a single valve member, that is, a valve body. Also, a plurality of valves may be combined and applied so as to realize the above function of the tumble valve 76c.
 また、上記内燃機関10の吸気通路を、特にスロットル弁40cの下流側の吸気通路を区画形成する各種部材は主に鋳造により作製されるとよい。これにより、下側に凸のタンブル通路64及び上側に凸の主通路66など種々の形状を実現することが可能である。なお、鋳造以外の方法により、吸気通路を区画形成する部材が作製されることを本開示は排除するものではない。 Also, various members that define the intake passage of the internal combustion engine 10, particularly the intake passage on the downstream side of the throttle valve 40c, are preferably manufactured mainly by casting. As a result, various shapes such as a downwardly convex tumble passage 64 and an upwardly convex main passage 66 can be realized. It should be noted that the present disclosure does not exclude the production of the member that defines the intake passage by a method other than casting.
 以上、本発明に係る実施形態及びその変形例について説明したが、本発明はそれらに限定されない。本願の請求の範囲によって定義される本発明の精神及び範囲から逸脱しない限り、種々の置換、変更が可能である。 Although the embodiments and modifications of the present invention have been described above, the present invention is not limited to them. Various substitutions and changes can be made without departing from the spirit and scope of the invention as defined by the claims of this application.
 例えば、内燃機関10は、単気筒エンジンであり、1つの気筒に対して、1つの吸気弁46および1つの排気弁50を備えた。しかし、内燃機関の気筒数、1つの気筒あたりの吸気弁の数および/又は1つの気筒あたりの排気弁の数は、上記技術と矛盾しない範囲で、任意に定めることができる。 For example, the internal combustion engine 10 is a single-cylinder engine and has one intake valve 46 and one exhaust valve 50 for one cylinder. However, the number of cylinders of the internal combustion engine, the number of intake valves per cylinder, and/or the number of exhaust valves per cylinder can be arbitrarily determined within a range consistent with the above technology.
 10…内燃機関、12…シリンダブロック、14…シリンダヘッド、15…ピストン、
 20…燃焼室、28…吸気弁口、
 30…排気弁口、32…吸気ポート、34…排気ポート、38…吸気通路
 40…スロットルボディ、46…吸気弁、
 50…排気弁、
 62…仕切部(主仕切部)、64…タンブル通路(第1吸気通路)、66…主通路(第2吸気通路)、68…第1タンブル通路、
 70…第2タンブル通路、72…仕切部(副仕切部)、76…タンブル弁ボディ、76c…タンブル弁(吸気制御弁)、
 86…合流部、
 S…吸気構造。
10... internal combustion engine, 12... cylinder block, 14... cylinder head, 15... piston,
20... combustion chamber, 28... intake valve port,
30...Exhaust valve port, 32...Intake port, 34...Exhaust port, 38...Intake passage 40...Throttle body, 46...Intake valve,
50 ... Exhaust valve,
62... Partition (main partition), 64... Tumble passage (first intake passage), 66... Main passage (second intake passage), 68... First tumble passage,
70...second tumble passage, 72...partition (secondary partition), 76...tumble valve body, 76c...tumble valve (intake control valve),
86 ... confluence,
S: Intake structure.

Claims (9)

  1.  シリンダ軸線(C)の方向においてクランク軸(17)側からシリンダヘッド(14)側を第1方向と定義するとき、内燃機関(10)の燃焼室(20)に連なる吸気通路(38)を第1吸気通路(64)と、該第1吸気通路(64)の前記第1方向側の第2吸気通路(66)とに仕切る主仕切部(62)と、
     前記第1吸気通路(64)に、第3吸気通路(68)と該第3吸気通路(68)の前記第1方向側の第4吸気通路(70)とを形成するように設けられる副仕切部(72)と、
     前記第3吸気通路(68)と前記第4吸気通路(70)とが合流する合流部(86)であって、該合流部(86)を介して前記第1吸気通路(64)は前記第2吸気通路(66)に合流する、合流部(86)と
    を備えたことを特徴とする内燃機関(10)の吸気構造(S)。
    When defining the first direction from the crankshaft (17) side to the cylinder head (14) side in the direction of the cylinder axis (C), the intake passage (38) communicating with the combustion chamber (20) of the internal combustion engine (10) is designated as the first direction. a main partition (62) that separates a first intake passage (64) from a second intake passage (66) on the first direction side of the first intake passage (64);
    A secondary partition provided in the first intake passage (64) to form a third intake passage (68) and a fourth intake passage (70) on the first direction side of the third intake passage (68). a part (72);
    A confluence portion (86) where the third intake passageway (68) and the fourth intake passageway (70) merge, and the first intake passageway (64) is connected to the first intake passageway (64) via the confluence portion (86). 2. An intake structure (S) for an internal combustion engine (10), comprising a junction (86) that merges with two intake passages (66).
  2.  前記合流部(86)は前記主仕切部(62)の下流端よりも下流側で前記第2吸気通路(66)につながる
    ことを特徴とする請求項1に記載の内燃機関(10)の吸気構造(S)。
    2. The intake of the internal combustion engine (10) according to claim 1, wherein the junction (86) is connected to the second intake passage (66) downstream of the downstream end of the main partition (62). Structure (S).
  3.  前記第2吸気通路(66)からの吸気よりも、前記合流部(86)を介しての前記第1吸気通路(64)からの吸気が小さい進入角で燃焼室(20)に流入するように、前記合流部(86)は区画形成されている
    ことを特徴とする請求項2に記載の内燃機関(10)の吸気構造(S)。
    The intake air from the first intake passage (64) through the junction (86) flows into the combustion chamber (20) at a smaller entrance angle than the intake air from the second intake passage (66). 3. An intake structure (S) for an internal combustion engine (10) according to claim 2, wherein said merging portion (86) is partitioned.
  4.  前記第3吸気通路(68)及び前記第4吸気通路(70)の各々の断面積(S1、S2)が、前記合流部(86)の上流側端部(86u)の断面積(S3)より小さいように、前記合流部(86)は区画形成されている
    ことを特徴とする請求項1から3のいずれか一項に記載の内燃機関(10)の吸気構造(S)。
    The cross-sectional areas (S1, S2) of each of the third intake passage (68) and the fourth intake passage (70) are greater than the cross-sectional area (S3) of the upstream end (86u) of the junction (86). 4. An intake structure (S) for an internal combustion engine (10) according to any one of claims 1 to 3, characterized in that the confluence (86) is formed so as to be small.
  5.  前記第3吸気通路(68)及び前記第4吸気通路(70)の断面積(S1、S2)の和よりも、前記合流部(86)の上流側端部(86u)よりも下流側の流れ方向に直交する断面での前記合流部(86)の断面積が小さくなるように、前記合流部(86)は区画形成されている
    ことを特徴とする請求項1から4のいずれか一項に記載の内燃機関(10)の吸気構造(S)。
    Flow downstream of the upstream end (86u) of the junction (86) relative to the sum of the cross-sectional areas (S1, S2) of the third intake passage (68) and the fourth intake passage (70) 5. The merging portion (86) is partitioned so that the cross-sectional area of the merging portion (86) in a cross section orthogonal to the direction is small. An intake structure (S) for the described internal combustion engine (10).
  6.  前記シリンダ軸線(C)の方向において前記第1方向と反対向きの方向を第2方向と定義するとき、
     前記第1吸気通路(64)は、前記第2方向に凸の湾曲形状を有するように区画形成され、
     前記第2吸気通路(66)は、前記第1方向に凸の湾曲形状を有するように区画形成されている
    ことを特徴とする請求項1から5のいずれか一項に記載の内燃機関(10)の吸気構造(S)。
    When the direction opposite to the first direction in the direction of the cylinder axis (C) is defined as the second direction,
    The first intake passage (64) is sectioned to have a curved shape convex in the second direction,
    The internal combustion engine (10) according to any one of claims 1 to 5, wherein the second intake passage (66) is sectioned to have a curved shape convex in the first direction. ) intake structure (S).
  7.  前記主仕切部(62)の上流に設けられた吸気制御弁(76c)を更に備え、
     該吸気制御弁(76c)は、前記第2吸気通路(66)及び前記第4吸気通路(70)を開閉可能であるように構成されていて、前記第2吸気通路(66)及び前記第4吸気通路(70)を閉じる第1位置(P1)、前記第2吸気通路(66)を閉じて前記第4吸気通路(70)を開く第2位置(P2)、及び、全開位置(PA)を有する
    ことを特徴とする請求項1から6のいずれか一項に記載の内燃機関(10)の吸気構造(S)。
    Further comprising an intake control valve (76c) provided upstream of the main partition (62),
    The intake control valve (76c) is configured to be able to open and close the second intake passage (66) and the fourth intake passage (70). A first position (P1) that closes the intake passage (70), a second position (P2) that closes the second intake passage (66) and opens the fourth intake passage (70), and a fully open position (PA). An intake structure (S) for an internal combustion engine (10) according to any one of claims 1 to 6, characterized in that it comprises:
  8.  前記吸気制御弁(76c)は弁軸(76b)と一体的に回転する単一の弁部材(76d)を備えて構成され、
     前記弁部材(76d)の動きを許容する凹部(77)が、前記吸気通路(38)を区画形成する壁部のうち前記第1方向側の壁部(76u)に設けられている
    ことを特徴とする請求項7に記載の内燃機関の吸気構造(S)。
    The intake control valve (76c) includes a single valve member (76d) that rotates integrally with the valve shaft (76b),
    A concave portion (77) for allowing movement of the valve member (76d) is provided in a wall portion (76u) on the first direction side of walls defining the intake passageway (38). 8. The intake structure (S) for an internal combustion engine according to claim 7.
  9.  前記副仕切部(72)を複数備え、
     前記第1吸気通路(64)は、複数の前記副仕切部(72)により、前記第3吸気通路(68)及び前記第4吸気通路(70)を含む3つ以上の吸気通路に分けられている
    ことを特徴とする請求項1から8のいずれか一項に記載の内燃機関の吸気構造(S)。
    A plurality of sub-partitions (72) are provided,
    The first intake passage (64) is divided into three or more intake passages including the third intake passage (68) and the fourth intake passage (70) by a plurality of sub-partitions (72). An intake structure (S) for an internal combustion engine according to any one of claims 1 to 8, characterized in that:
PCT/JP2022/006018 2021-02-19 2022-02-15 Air intake structure for internal combustion engine WO2022176862A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023500861A JP7403708B2 (en) 2021-02-19 2022-02-15 Internal combustion engine intake structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021025721 2021-02-19
JP2021-025721 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022176862A1 true WO2022176862A1 (en) 2022-08-25

Family

ID=82931728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006018 WO2022176862A1 (en) 2021-02-19 2022-02-15 Air intake structure for internal combustion engine

Country Status (2)

Country Link
JP (1) JP7403708B2 (en)
WO (1) WO2022176862A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069940A1 (en) * 2022-09-30 2024-04-04 本田技研工業株式会社 Air intake structure for internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011442A (en) * 2002-06-04 2004-01-15 Nissan Motor Co Ltd Inlet device for internal combustion engine
JP2004293299A (en) * 2003-03-25 2004-10-21 Osaka Gas Co Ltd Spark ignition engine and its operation control method
JP2006077760A (en) * 2005-07-21 2006-03-23 Nissan Motor Co Ltd Intake method and intake structure of internal combustion engine
JP2006283697A (en) * 2005-04-01 2006-10-19 Toyota Motor Corp Intake device of internal combustion engine
JP2011179427A (en) * 2010-03-02 2011-09-15 Toyota Motor Corp Combustion control device of internal combustion engine
JP2015155684A (en) * 2014-02-21 2015-08-27 トヨタ紡織株式会社 Intake duct

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011442A (en) * 2002-06-04 2004-01-15 Nissan Motor Co Ltd Inlet device for internal combustion engine
JP2004293299A (en) * 2003-03-25 2004-10-21 Osaka Gas Co Ltd Spark ignition engine and its operation control method
JP2006283697A (en) * 2005-04-01 2006-10-19 Toyota Motor Corp Intake device of internal combustion engine
JP2006077760A (en) * 2005-07-21 2006-03-23 Nissan Motor Co Ltd Intake method and intake structure of internal combustion engine
JP2011179427A (en) * 2010-03-02 2011-09-15 Toyota Motor Corp Combustion control device of internal combustion engine
JP2015155684A (en) * 2014-02-21 2015-08-27 トヨタ紡織株式会社 Intake duct

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069940A1 (en) * 2022-09-30 2024-04-04 本田技研工業株式会社 Air intake structure for internal combustion engine

Also Published As

Publication number Publication date
JPWO2022176862A1 (en) 2022-08-25
JP7403708B2 (en) 2023-12-22

Similar Documents

Publication Publication Date Title
US5852994A (en) Induction control system for multi-valve engine
JP4595726B2 (en) Intake device
JP4755034B2 (en) Spark ignition multi-cylinder engine
US20090235890A1 (en) Intake control device for an engine
JPH02176116A (en) Combustion chamber for internal combustion engine
WO2022176862A1 (en) Air intake structure for internal combustion engine
JP5369045B2 (en) Intake device for internal combustion engine
EP2101055B1 (en) Engine with intake control device
US20100037853A1 (en) Intake system for an internal combustion engine
JP2006077760A (en) Intake method and intake structure of internal combustion engine
US11225930B2 (en) Engine
EP3650671B1 (en) Internal combustion engine intake structure
JP6446085B2 (en) Bulkhead plate
WO2023053377A1 (en) Air intake structure for internal combustion engine
JP3971010B2 (en) Engine intake system
JP2000257533A (en) Internal combustion engine
WO2023053378A1 (en) Air intake structure for internal combustion engine
WO2022176860A1 (en) Intake structure for internal combustion engine
JP4044196B2 (en) Engine intake system
WO2022210120A1 (en) Air intake structure for internal combustion engine
JP6623701B2 (en) Intake device for internal combustion engine
WO2023188249A1 (en) Air intake structure for internal combustion engine
WO2024070901A1 (en) Intake structure for internal combustion engine
WO2023053308A1 (en) Air intake device for internal combustion engine
JP7411142B2 (en) internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500861

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756180

Country of ref document: EP

Kind code of ref document: A1