WO2024069940A1 - Air intake structure for internal combustion engine - Google Patents

Air intake structure for internal combustion engine Download PDF

Info

Publication number
WO2024069940A1
WO2024069940A1 PCT/JP2022/036727 JP2022036727W WO2024069940A1 WO 2024069940 A1 WO2024069940 A1 WO 2024069940A1 JP 2022036727 W JP2022036727 W JP 2022036727W WO 2024069940 A1 WO2024069940 A1 WO 2024069940A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
internal combustion
resonator
combustion engine
valve
Prior art date
Application number
PCT/JP2022/036727
Other languages
French (fr)
Japanese (ja)
Inventor
直道 香取
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2022/036727 priority Critical patent/WO2024069940A1/en
Publication of WO2024069940A1 publication Critical patent/WO2024069940A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds

Definitions

  • the present invention relates to an intake structure for an internal combustion engine having multiple cylinders, in which a resonator is provided in an intake passage that is connected to each cylinder and introduces intake air.
  • an intake structure for an internal combustion engine in which a resonator is provided branching off from the intake passage that connects to the cylinders of the internal combustion engine and introduces intake air, thereby reducing intake noise.
  • an internal combustion engine having a structure for generating a tumble flow requires a larger intake volume to generate the tumble flow, and therefore requires a resonator with a large volume.
  • a resonator is required for each intake port, which causes the internal combustion engine to become bulky.
  • the present application has an object to provide an internal combustion engine that can be downsized and at the same time reduce costs, thereby contributing to improved energy efficiency.
  • the present invention provides an intake passage for introducing air from an air cleaner to a combustion chamber, a fuel injection device for supplying fuel to the intake passage; a throttle valve for adjusting the flow rate of air introduced into the combustion chamber;
  • a plurality of intake passages for generating a tumble flow and a tumble valve downstream of the throttle valve; and a resonator downstream of the tumble valve for connecting a plurality of intake passages to each other.
  • the resonator that connects the multiple intake passages to each other is located downstream of the tumble valve, so the flow rate of the tumble flow can be increased.
  • This allows intake to be performed with the mixture stirred, making it possible to achieve a favorable combustion state in the internal combustion engine. This not only improves fuel efficiency and reduces unburned gas, but also reduces the cost of an exhaust gas catalytic device.
  • the resonator is located between the multiple intake passages, there is no need to provide a resonator downstream of the tumble valve for each cylinder, so it is possible to reduce the size of the internal combustion engine while reducing costs.
  • the resonator has a resonator chamber located at the center and a communication hole connecting the plurality of intake passages and the resonator chamber,
  • the volume of the resonator chamber may be larger than the volume of the communication hole.
  • the resonator chamber has a larger volume than the communication hole, so a tumble flow can be formed in good response to changes in the throttle valve opening, the tumble valve, and engine speed.
  • This allows the intake to be performed with the mixture more agitated, resulting in a more optimal combustion state.
  • This leads to improved fuel efficiency and reduced unburned gas, as well as reduced costs for the catalytic converter.
  • this results in an internal combustion engine with good response during acceleration.
  • the resonator has a resonator chamber located at the center and a communication hole connecting the plurality of intake passages and the resonator chamber,
  • the resonator chamber may include an inner wall (46a) that forms an arc along the plurality of intake passages.
  • the volume of the resonator chamber can be made as large as possible, so that a tumble flow can be formed in good response to changes in the throttle valve opening, the tumble valve, and engine speed.
  • This allows the intake to be performed with the mixture more agitated, resulting in a more optimal combustion state.
  • This leads to improved fuel efficiency and reduced unburned gas, while also reducing the cost of the catalytic device.
  • this results in an internal combustion engine with good response during acceleration.
  • the present invention can suppress the enlargement of an internal combustion engine that has multiple cylinders and generates a tumble flow by providing a resonator without providing a resonator for each intake port.
  • FIG. 1 is an enlarged side view of a motorcycle equipped with an intake structure for an internal combustion engine according to an embodiment of the present invention.
  • FIG. 1 is a vertical sectional view of a main portion of an internal combustion engine.
  • FIG. 2 is a bottom view of the cylinder head of the internal combustion engine.
  • FIG. 2 is a schematic diagram of an intake structure of an internal combustion engine.
  • FIG. 2 is an exploded perspective view of a main part of the intake structure.
  • FIG. 2 is a longitudinal cross-sectional view taken perpendicular to the intake air flow of the connecting pipe.
  • FIG. 8 is a cross-sectional view taken along the line VIII in FIG. 7 .
  • FIG. 1 shows a left side view of a motorcycle 100 to which an intake structure for an internal combustion engine according to an embodiment of the present invention is applied.
  • the motorcycle 100 is shown as an example of a vehicle equipped with an internal combustion engine 1 according to the present invention, and the vehicle does not have to be a motorcycle, but may be any vehicle equipped with an internal combustion engine, and is not limited to motorcycles.
  • the body frame 110 of the motorcycle 100 includes a head pipe 111 that steers the front fork 102 that pivots around the front wheel 101, a pair of left and right main frame members 112 that extend downward to the rear from the head pipe 111, a pair of left and right engine hangers 113 that are connected to the head pipe 111 and the front parts of the left and right main frame members 112 and extend downward to the rear below the main frame members 112, a pair of left and right pivot frame members 114 that are connected to the rear end of the main frame members 112 and extend downward, and a pair of left and right seat rails 115 that extend upward to the rear from the rear parts of the main frame members 112.
  • the internal combustion engine 1 is mounted on a vehicle body frame 110, suspended from the front and rear by an engine hanger 113 and a pivot frame member 114 below a main frame member 112.
  • a swing arm 103 whose front end is supported by the pivot frame member 114, extends rearward, and a rear wheel 104 is supported by its rear end.
  • An endless drive chain 66 is wound around a drive sprocket 65 fitted to the output shaft 64 of the internal combustion engine 1 and a driven sprocket 105 fitted to the rear axle.
  • An air cleaner 106 is disposed above the internal combustion engine 1, positioned behind the head pipe 111 of the body frame 110.
  • a fuel tank 107 of a fuel supply device 120 is mounted on both main frame members 112 of the body frame 110 so as to cover the rear and upper part of the air cleaner 106.
  • a main seat 108 is supported by seat rails 115.
  • FIG. 2 which is a left side view of the internal combustion engine 1
  • the internal combustion engine 1 is provided with a transmission 60 in a crankcase 2, constituting a so-called power unit.
  • the internal combustion engine 1 is a four-stroke internal combustion engine equipped with two cylinders 7.
  • two cylinders 7 are formed, but it is not limited to two, and it is sufficient that two or more cylinders are provided.
  • the internal combustion engine 1 is mounted on the vehicle body frame 110 with the crankshaft 20 oriented in the vehicle width direction (left-right direction).
  • the internal combustion engine 1 has a crankcase 2 divided into an upper crankcase 2A and a lower crankcase 2B.
  • a cylinder block 3 is integrally formed at the front upper portion of the upper crankcase 2A with the cylinder axes Lc of two cylinders 7 (only the left cylinder 7 is shown in Figure 1) tilted forward.
  • a cylinder head 4 is placed on and fastened to the cylinder block 3, and a cylinder head cover 5 is placed on top of the cylinder head 4.
  • An oil pan 6 is attached below the crankcase 2.
  • the crankshaft 20 is rotatably supported by the crankcase 2, and a transmission 60 is built in behind the crankshaft 20.
  • the main shaft 61 of the transmission 60 is equipped with a clutch device (not shown) at its right end and is axially mounted parallel to the crankshaft 20, and a countershaft 62 is supported slightly behind it and parallel to the crankshaft 20 at the upper and lower joining surfaces 2a of the crankcase 2.
  • the aforementioned drive sprocket 65 is fitted to the left end of the countershaft 62 that protrudes through the crankcase 2, and the countershaft 62 forms the output shaft 64 of the internal combustion engine 1.
  • a cylinder 7 is formed in the cylinder block 3 of the internal combustion engine 1, and a piston 8 that reciprocates within the cylinder 7 is fitted so as to be able to slide freely within the cylinder 7.
  • a combustion chamber 9 is formed by the cylinder 7, the top surface of the piston 8, and the underside of the cylinder head 4 that faces the top surface of the piston 8.
  • an ignition plug 19 is attached to the cylinder head 4 so that its tip faces the combustion chamber 9.
  • the cylinder head 4 is formed with an intake port 10 and an exhaust port 11 that are connected to the combustion chamber 9.
  • the internal combustion engine 1 is a four-valve internal combustion engine with two intake valves 17 and two exhaust valves 18 per cylinder 7.
  • the cylinder head 4 is provided with the intake valves 17 and exhaust valves 18, which respectively control the amount of intake air flowing from the intake port 10 to the combustion chamber 9 and the amount of exhaust air discharged from the combustion chamber 9 to the exhaust port 11.
  • Figure 4 is a bottom view of the cylinder head 4 as seen from the mating surface 4a side with the cylinder block 3.
  • the combustion chamber ceiling surface 9a facing the piston top surface of the cylinder head 4
  • the combustion chamber ceiling surface 9a is a dome-shaped concave curved surface, with the intake valve ports 9b opening side by side on roughly the rear half of the combustion chamber ceiling surface 9a, and the exhaust valve ports 9c opening side by side on roughly the front half of the combustion chamber ceiling surface 9a.
  • the inner diameter of the exhaust valve ports 9c is smaller than the inner diameter of the intake valve ports 9b.
  • the cylinder head 4 has an intake port 10 that curves rearward and extends from the intake valve port 9b, and an exhaust port 11 that curves forward and extends from the exhaust valve port 9c.
  • the intake ports 10, 10 extending rearward from the intake valve openings 9b, 9b arranged to the left and right are gathered on the upstream side.
  • a connecting pipe 40 is connected to the upstream end of the intake port 10.
  • exhaust ports 11, 11 extending forward from exhaust valve ports 9c, 9c arranged side by side are gathered on the downstream side.
  • an exhaust pipe 13 is connected to the downstream end of the exhaust port 11.
  • a spark plug hole 4b into which an ignition plug 19 is screwed is provided in the center of the combustion chamber ceiling surface 9a of each combustion chamber 9 in the cylinder head 4 near the cylinder axis Lc, and intake valve ports 9b, 9b and exhaust valve ports 9c, 9c are opened widely around the spark plug hole 4b.
  • the spark plug 19 screwed into the spark plug hole 4b in the center of the combustion chamber ceiling surface 9a has its tip electrode portion facing the combustion chamber 9.
  • the intake valve 17 has a valve stem 17s slidably supported by a valve guide 23 fitted to the upper wall of the intake port 10, and the umbrella portion 17u at the tip of the valve stem 17s opens and closes the intake valve port 9b.
  • the exhaust valve 18 is similarly supported so that the valve stem 18s can slide freely on a valve guide 23 that is fitted into the upper wall of the exhaust port 11, and the head portion 18u at the tip of the valve stem 18s opens and closes the exhaust valve port 9c.
  • the valve mechanism that drives the intake valve 17 and exhaust valve 18 is of the DOHC type. As the parallel intake camshaft 71 and exhaust camshaft 72 rotate, the intake cam 73 on the intake camshaft 71 and the exhaust cam 74 on the exhaust camshaft 72 push the valve lifters 75, 75 that are placed on the upper ends of the intake valve 17 and exhaust valve 18, respectively, causing the intake valve 17 and exhaust valve 18 to reciprocate at a predetermined timing according to the rotational position of the crankshaft 20, opening and closing the intake valve port 9b and exhaust valve port 9c.
  • the upstream end of the intake port 10 is connected to a connecting pipe 40 that draws in outside air.
  • the upstream end of the connecting pipe 40 is connected to an intake pipe 56 with a tumble valve 57 inside, and a throttle body 54 with a throttle valve 55.
  • an air funnel 35 is attached upstream of the throttle body 54.
  • the air funnel 35 is fitted and opened inside the clean side of an air cleaner 106 that purifies outside air, and the purified intake air is sent to the internal combustion engine 1.
  • the intake port 10, connecting pipe 40, intake pipe 56, throttle body 54, and air funnel 35 form the intake passage 30.
  • the throttle valve 55 is rotatably supported within the throttle body 54 by a throttle valve shaft 55a that is oriented approximately horizontally and perpendicular to the flow direction of the intake passage 30, and variably controls the passage area of the intake passage 30 to adjust the amount of intake air from the upstream side.
  • An exhaust pipe 13 is connected to the exhaust port 11, and a catalytic device 26 containing a three-way catalyst or the like is arranged midway through the exhaust pipe 13 to purify the exhaust gas.
  • the downstream end of the exhaust pipe 13 is connected to a muffler 14, which reduces exhaust noise.
  • the exhaust port 11, exhaust pipe 13, catalytic device 26, and muffler 14 form an exhaust passage 16.
  • the intake passage 30 that runs from the intake pipe 56 to the intake port 10 via the connecting pipe 40 is divided by a partition wall 33 from the downstream part of the intake pipe 56 to the curved part of the intake port 10 into a main passage 30A and a tumble passage 30B, each of which is defined to have a roughly semicircular cross section.
  • the tumble passage 30B is rotatably supported by a tumble valve 57a that is parallel to the throttle valve shaft 55a, and the flow rate is changed by the tumble valve 57.
  • the intake pipe 56 is fitted with a fuel injection valve 22 that is positioned to penetrate the main passage 30A from the outside above and supply fuel by injecting it.
  • FIG. 5 is a schematic diagram showing the intake structure of the internal combustion engine of this embodiment.
  • the internal combustion engine of this embodiment is a two-cylinder internal combustion engine, and the intake passage 30 is composed of a first intake passage 31 and a second intake passage 32.
  • the first intake passage 31 and the second intake passage 32 each have a throttle valve 55 and a tumble valve 57 to control the intake.
  • the connecting pipe 40 is connected to the intake port 10 via a first gasket 51 and an O-ring 53, and to the intake pipe 56 via a second gasket 52 and an O-ring 53, respectively (see FIGS. 5 and 6).
  • the connecting pipe 40 has a first circular pipe section 41 that constitutes the first intake passage 31, and a second circular pipe section 42 that constitutes the second intake passage.
  • the first circular pipe section 41 and the second circular pipe section 42 are arranged so that the central axes of the circular pipes are approximately parallel, and the respective outer peripheral wall sections 41a, 42a of the first circular pipe section 41 and the second circular pipe section 42 are connected by a pair of connecting walls 43.
  • the first circular pipe section 41 is divided by a partition plate section 41b into a first main flow path 31A and a first tumble flow path 31B in the intake flow direction.
  • the second circular pipe section 42 is also divided by a partition plate section 42b into a second main flow path 32A and a second tumble flow path 32B in the intake flow direction.
  • the interior partitioned by the first circular tube portion 41, the second circular tube portion 42, and the pair of connecting walls 43 forms the resonator chamber 46.
  • the wall surface of the first circular tube portion 41 between the pair of connecting walls 43 forms the partition wall portion 41c that partitions the first intake passage 31 and the resonator chamber 46.
  • the wall surface of the second circular tube portion 42 between the pair of connecting walls 43 forms the partition wall portion 42c that partitions the second intake passage 32 and the resonator chamber 46.
  • these partition wall portions 41c, 42c form the inner wall 46a of the resonator chamber 46 that is in an arc shape that follows the first intake passage 31 and the second intake passage 32. Since the inner wall 46a is formed in an arc shape that follows the first intake passage 31 and the second intake passage 32, it is possible to arrange the resonator chamber 46 large.
  • the first gasket 51 and the second gasket 52 that contact the downstream end and the upstream end of the connecting pipe 40 are plate-shaped members.
  • the first gasket 51 has a first main flow passage opening 51aA, a first tumble flow passage opening 51aB, a second main flow passage opening 51bA, and a second tumble flow passage opening 51bB, which correspond to the first main flow passage 31A, the first tumble flow passage 31B, and the second main flow passage 32A, the second tumble flow passage 32B.
  • the second gasket 52 is provided with a first main flow passage opening 52aA, a first tumble flow passage opening 52aB, a second main flow passage opening 52bA, and a second tumble flow passage opening 52bB corresponding to the first main flow passage 31A, the first tumble flow passage 31B, and the second main flow passage 32A, the second tumble flow passage 32B.
  • the central parts of the first gasket 51 and the second gasket 52 form blocking parts 51c, 52c that close both ends of the resonator chamber 46 of the connecting tube, and the resonator chamber 46 is formed by the partition wall parts 41c, 42c and the blocking parts 51c, 52c that cover both ends.
  • the partition walls 41c and 42c have communication holes 47 that connect the resonator chamber 46 to the first tumble flow path 31B and the second tumble flow path 32B, respectively, and the resonator chamber 46 and the communication hole 47c form the resonator 45.
  • the volume of the communication hole 47 is set to be smaller than the volume of the resonator chamber 46.
  • the intake structure of the internal combustion engine of this embodiment is configured as described above, and therefore provides the following effects.
  • the intake structure of the internal combustion engine of this embodiment is a multiple cylinder internal combustion engine equipped with an intake passage 30 that introduces air from an air cleaner 106 to a combustion chamber 9, a fuel injection device 22 that supplies fuel to the intake passage 30, and a throttle valve 55 that adjusts the air flow rate introduced into the combustion chamber 9.
  • the intake structure of the internal combustion engine of this embodiment is equipped with a first intake passage 31 and a second intake passage 32 for generating a tumble flow downstream of the throttle valve 55, a resonator 45 having a tumble valve 57 and connecting the first intake passage 31 and the second intake passage 32 to each other downstream of the tumble valve 57.
  • the resonator 45 that connects the multiple intake passages to each other is arranged downstream of the tumble valve 57, the flow rate of the tumble flow can be increased. Therefore, the intake can be performed in a state where the mixture is stirred, and the combustion of the internal combustion engine 1 can be made into a suitable combustion state. Therefore, it is possible to improve fuel efficiency and reduce unburned gas, and it is possible to suppress the cost of the exhaust gas catalytic device 26.
  • the resonator 45 is located between the first intake passage 31 and the second intake passage 32, there is no need to provide a resonator 45 downstream of the tumble valve 57 for each cylinder, which allows for a smaller internal combustion engine 1 while reducing costs.
  • the resonator 45 has a resonator chamber 46 located in the center and a communication hole 47 that connects the first intake passage 31, the second intake passage 32, and the resonator chamber 46. Since the volume of the resonator chamber 46 is larger than the volume of the communication hole 47, a tumble flow can be formed in good response to changes in the opening of the throttle valve 55, the tumble valve 57, and the engine speed. This makes it possible to perform intake with a more agitated mixture, resulting in a more optimal combustion state. This leads to improved fuel efficiency and reduced unburned gas, as well as reduced costs for the catalytic device 26. Furthermore, the internal combustion engine 1 has good responsiveness during acceleration.
  • the resonator 45 has a resonator chamber 46 located in the center and a communication hole 47 that connects the first intake passage 31 and the second intake passage 32.
  • the resonator chamber 46 has an inner wall 46a that is arc-shaped and follows the first intake passage 31 and the second intake passage 32. This allows the volume of the resonator chamber 46 to be as large as possible, so that a tumble flow can be formed in good response to changes in the opening of the throttle valve 55, the tumble valve 57, and the engine speed. This allows the intake to be performed with the mixture more agitated, resulting in a more optimal combustion state. This leads to improved fuel efficiency and reduced unburned gas, as well as reduced costs for the catalytic converter. Furthermore, the internal combustion engine has good response during acceleration.
  • the present invention is not limited to the above embodiment, and various design changes are possible without departing from the gist of the invention.
  • the gist of the present invention includes vehicles, internal combustion engines, etc. implemented in various forms.
  • the embodiment of the present invention employs a DOHC type valve train, but is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Disclosed is an air intake structure for an internal combustion engine having a plurality of cylinders 7, the air intake structure comprising an air intake passage 30 through which air is introduced from an air cleaner 106 into a combustion chamber 9, a fuel injection device 22 that supplies a fuel to the air intake passage 30, and a throttle valve 55 that adjusts the flow rate of the air introduced into the combustion chamber 9, wherein: the air intake structure has, downstream of the throttle valve 55, a tumble valve 57 and a plurality of air intake passages 31, 32 for generating a tumble flow; the air intake structure is provided with a resonator 45 by which the plurality of air intake passages 31, 32 communicate with one another, the resonator 45 being provided downstream of the tumble valve 57; and even when the resonator is provided to the internal combustion engine, which has a plurality of cylinders and in which a tumble flow is generated, the air intake structure makes it possible to suppress any increase in the size of the internal combustion engine without providing a resonator to each air intake port.

Description

内燃機関の吸気構造Intake structure of an internal combustion engine
 本発明は、多気筒を有する内燃機関において、それぞれの気筒に連通して吸気を導入する吸気通路にレゾネータが設けられた内燃機関の吸気構造に関する。 The present invention relates to an intake structure for an internal combustion engine having multiple cylinders, in which a resonator is provided in an intake passage that is connected to each cylinder and introduces intake air.
 近年、より多くの人々が手ごろで信頼でき、持続可能かつ先進的なエネルギーへのアクセスを確保できるようにするため、エネルギーの効率化に貢献する燃費向上に関する研究開発が行われている。従来、内燃機関の気筒に連通して吸気を導入する吸気通路に、吸気通路から分岐してレゾネータを設け、吸気音の低減させる内燃機関の吸気構造が知られている。 In recent years, research and development has been conducted into improving fuel efficiency, which contributes to energy efficiency, in order to ensure that more people have access to affordable, reliable, sustainable and advanced energy. Conventionally, an intake structure for an internal combustion engine is known in which a resonator is provided branching off from the intake passage that connects to the cylinders of the internal combustion engine and introduces intake air, thereby reducing intake noise.
日本国 特開2011-94633号公報Japan Patent Publication No. 2011-94633
 ところで、燃費向上に関する本技術においては、タンブル流を発生させるための構造を具備した内燃機関では、タンブル流を発生させるためにより多くの吸気量が必要であり、そのためレゾネータの容積が大きなものが必要となる。特に複数の気筒を具備して吸気ポートの数が複数となる内燃機関においては、吸気ポートごとにレゾネータを要し、そのため内燃機関が肥大化してしまうという課題がある。
 本願は上記課題の解決のため、内燃機関の小型化を達成しつつ、コストの低減を図ることのできる内燃機関を提供することを目的としたものである。そして、延いてはエネルギーの効率化に寄与するものである。
In the present technology for improving fuel efficiency, an internal combustion engine having a structure for generating a tumble flow requires a larger intake volume to generate the tumble flow, and therefore requires a resonator with a large volume. In particular, in an internal combustion engine having multiple cylinders and multiple intake ports, a resonator is required for each intake port, which causes the internal combustion engine to become bulky.
In order to solve the above problems, the present application has an object to provide an internal combustion engine that can be downsized and at the same time reduce costs, thereby contributing to improved energy efficiency.
 そこで、本発明は上記課題に鑑みて、エアクリーナから燃焼室へ空気を導入する吸気通路と、
 前記吸気通路に燃料を供給する燃料噴射装置と、
 前記燃焼室へ導入する空気流量を調整するスロットル弁と、
 を備えた複数気筒の内燃機関の吸気構造において、
 前記スロットル弁の下流に、タンブル流を生じさせるための複数の吸気通路と、タンブル弁を有し、
 前記タンブル弁の下流において、複数の吸気通路を互いに連通するレゾネータと、を備えることを特徴とする内燃機関の吸気構造である。
In view of the above problems, the present invention provides an intake passage for introducing air from an air cleaner to a combustion chamber,
a fuel injection device for supplying fuel to the intake passage;
a throttle valve for adjusting the flow rate of air introduced into the combustion chamber;
In an intake structure of a multiple cylinder internal combustion engine,
a plurality of intake passages for generating a tumble flow and a tumble valve downstream of the throttle valve;
and a resonator downstream of the tumble valve for connecting a plurality of intake passages to each other.
 前記構成によれば、複数の吸気通路を互いに連通するレゾネータをタンブル弁の下流に配置しているので、タンブル流の流量を増大させることができる。そのため混合気が攪拌された状態で吸気を行うことができるので、内燃機関の燃焼を好適な燃焼状態とさせることができる。よって、燃費向上と未燃ガス削減ができるとともに、排気ガスの触媒装置にかかるコストを抑制することができる。また、複数の吸気通路の間に位置してレゾネータが設けられているので、気筒毎にタンブル弁の下流に位置してレゾネータを設ける必要がないので、内燃機関の小型化を達成しつつ、コストの低減を図ることができる。 With the above configuration, the resonator that connects the multiple intake passages to each other is located downstream of the tumble valve, so the flow rate of the tumble flow can be increased. This allows intake to be performed with the mixture stirred, making it possible to achieve a favorable combustion state in the internal combustion engine. This not only improves fuel efficiency and reduces unburned gas, but also reduces the cost of an exhaust gas catalytic device. In addition, since the resonator is located between the multiple intake passages, there is no need to provide a resonator downstream of the tumble valve for each cylinder, so it is possible to reduce the size of the internal combustion engine while reducing costs.
 前記構成において、前記レゾネータは、中央に位置するレゾネータ室と、前記複数の吸気通路と前記レゾネータ室とを接続する連通孔を有し、
 前記レゾネータ室の容積は、前記連通孔の容積よりも大きくしてもよい。
In the above configuration, the resonator has a resonator chamber located at the center and a communication hole connecting the plurality of intake passages and the resonator chamber,
The volume of the resonator chamber may be larger than the volume of the communication hole.
 前記構成によれば、レゾネータ室が連通孔よりも容積が大きいので、スロットル弁開度やタンブル弁、エンジン回転数の変化に対して、応答よくタンブル流を形成することができる。そのため、混合気がより攪拌された状態で吸気を行うことが可能となり、より好適な燃焼状態とすることができる。よって、より燃費向上と未燃焼ガスの削減ができるとともに、触媒装置にかかるコストを低減することができる。さらに、加速時において応答性の良い内燃機関とすることができる。 With the above configuration, the resonator chamber has a larger volume than the communication hole, so a tumble flow can be formed in good response to changes in the throttle valve opening, the tumble valve, and engine speed. This allows the intake to be performed with the mixture more agitated, resulting in a more optimal combustion state. This leads to improved fuel efficiency and reduced unburned gas, as well as reduced costs for the catalytic converter. Furthermore, this results in an internal combustion engine with good response during acceleration.
 前記構成において、前記レゾネータは、中央に位置するレゾネータ室と、前記複数の吸気通路と前記レゾネータ室とを接続する連通孔を有し、
 前記レゾネータ室は、前記複数の複数の吸気通路に沿うような円弧となる内壁(46a)を備えてもよい。
In the above configuration, the resonator has a resonator chamber located at the center and a communication hole connecting the plurality of intake passages and the resonator chamber,
The resonator chamber may include an inner wall (46a) that forms an arc along the plurality of intake passages.
 前記構成によれば、レゾネータ室の容積をできるだけ大きくすることができるので、スロットル弁開度やタンブル弁、エンジン回転数の変化に対して、応答よくタンブル流を形成することができる。そのため、混合気がより攪拌された状態で吸気を行うことが可能となり、より好適な燃焼状態とすることができる。よって、より燃費向上と未燃焼ガスの削減ができるとともに、触媒装置にかかるコストを低減することができる。さらに、加速時において応答性の良い内燃機関とすることができる。 With this configuration, the volume of the resonator chamber can be made as large as possible, so that a tumble flow can be formed in good response to changes in the throttle valve opening, the tumble valve, and engine speed. This allows the intake to be performed with the mixture more agitated, resulting in a more optimal combustion state. This leads to improved fuel efficiency and reduced unburned gas, while also reducing the cost of the catalytic device. Furthermore, this results in an internal combustion engine with good response during acceleration.
 本発明は、複数の気筒を有しタンブル流を発生させる内燃機関においてレゾネータを設けても、吸気ポート毎にレゾネータを設けることなく内燃機関の肥大化を抑制することができる。 The present invention can suppress the enlargement of an internal combustion engine that has multiple cylinders and generates a tumble flow by providing a resonator without providing a resonator for each intake port.
本発明の実施の形態の内燃機関の吸気構造が搭載された自動二輪車の肥大側面図である。1 is an enlarged side view of a motorcycle equipped with an intake structure for an internal combustion engine according to an embodiment of the present invention. 内燃機関の左側面図である。FIG. 内燃機関の要部縦断面図である。1 is a vertical sectional view of a main portion of an internal combustion engine. 内燃機関のシリンダヘッドの底面図である。FIG. 2 is a bottom view of the cylinder head of the internal combustion engine. 内燃機関の吸気構造の模式図である。FIG. 2 is a schematic diagram of an intake structure of an internal combustion engine. 吸気構造の要部の分解斜視図である。FIG. 2 is an exploded perspective view of a main part of the intake structure. 接続管の吸気流れに対して直角な向きで切断した縦断面図である。FIG. 2 is a longitudinal cross-sectional view taken perpendicular to the intake air flow of the connecting pipe. 図7のVIII矢視断面図である。FIG. 8 is a cross-sectional view taken along the line VIII in FIG. 7 .
 図1は、本発明の実施の形態の内燃機関の吸気構造が適用された自動二輪車100の左側面図を示している。自動二輪車100は、本発明の内燃機関1が搭載された車両の一例として示されており、車両は自動二輪車でなくとも内燃機関を搭載する車両であればよく、自動二輪車に限定されない。 FIG. 1 shows a left side view of a motorcycle 100 to which an intake structure for an internal combustion engine according to an embodiment of the present invention is applied. The motorcycle 100 is shown as an example of a vehicle equipped with an internal combustion engine 1 according to the present invention, and the vehicle does not have to be a motorcycle, but may be any vehicle equipped with an internal combustion engine, and is not limited to motorcycles.
 自動二輪車100の車体フレーム110は、前輪101を軸支するフロントフォーク102を操向可能に支承するヘッドパイプ111と、ヘッドパイプ111から後下がりに延びる左右一対のメインフレーム部材112と、ヘッドパイプ111と左右のメインフレーム部材112の前部に連接されるとともにメインフレーム部材112の下方で後下がりに延びる左右一対のエンジンハンガ113と、メインフレーム部材112の後端部に連設されて下方に延びる左右一対のピボットフレーム部材114と、両メインフレーム部材112後部から後上がりに延びる左右一対のシートレール115と、を備える。 The body frame 110 of the motorcycle 100 includes a head pipe 111 that steers the front fork 102 that pivots around the front wheel 101, a pair of left and right main frame members 112 that extend downward to the rear from the head pipe 111, a pair of left and right engine hangers 113 that are connected to the head pipe 111 and the front parts of the left and right main frame members 112 and extend downward to the rear below the main frame members 112, a pair of left and right pivot frame members 114 that are connected to the rear end of the main frame members 112 and extend downward, and a pair of left and right seat rails 115 that extend upward to the rear from the rear parts of the main frame members 112.
 内燃機関1は、車体フレーム110に、メインフレーム部材112の下方にエンジンハンガ113とピボットフレーム部材114により前後を懸架されて搭載されている。ピボットフレーム部材114に前端を軸支されたスイングアーム103が後方に延び、その後端部に後輪104が軸支され、内燃機関1の出力軸64に嵌着される駆動スプロケット65と後車軸に嵌着される従動スプロケット105とに無端状の駆動チェーン66が巻き掛けられる。 The internal combustion engine 1 is mounted on a vehicle body frame 110, suspended from the front and rear by an engine hanger 113 and a pivot frame member 114 below a main frame member 112. A swing arm 103, whose front end is supported by the pivot frame member 114, extends rearward, and a rear wheel 104 is supported by its rear end. An endless drive chain 66 is wound around a drive sprocket 65 fitted to the output shaft 64 of the internal combustion engine 1 and a driven sprocket 105 fitted to the rear axle.
 内燃機関1の上方には、車体フレーム110におけるヘッドパイプ111の後方に位置するようにしてエアクリーナ106が配置されている。エアクリーナ106の後部および上部を覆うように、燃料供給装置120の燃料タンク107が、車体フレーム110における両メインフレーム部材112上に搭載されている。燃料タンク107の後方には、メインシート108がシートレール115に支持されて設けられている。 An air cleaner 106 is disposed above the internal combustion engine 1, positioned behind the head pipe 111 of the body frame 110. A fuel tank 107 of a fuel supply device 120 is mounted on both main frame members 112 of the body frame 110 so as to cover the rear and upper part of the air cleaner 106. Behind the fuel tank 107, a main seat 108 is supported by seat rails 115.
 内燃機関1の左側面図である図2に示されるように、内燃機関1は、クランクケース2内に変速機60を備えた、いわゆるパワーユニットを構成している。内燃機関1は、2つの気筒(シリンダ)7を具備している4サイクル内燃機関である。本実施の形態では気筒7は2つ形成されているが、2つでなくとも2つ以上の複数設けられていればよい。 As shown in FIG. 2, which is a left side view of the internal combustion engine 1, the internal combustion engine 1 is provided with a transmission 60 in a crankcase 2, constituting a so-called power unit. The internal combustion engine 1 is a four-stroke internal combustion engine equipped with two cylinders 7. In this embodiment, two cylinders 7 are formed, but it is not limited to two, and it is sufficient that two or more cylinders are provided.
 本内燃機関1は、クランク軸20を車幅方向(左右方向)に指向させて車体フレーム110に搭載されている。 The internal combustion engine 1 is mounted on the vehicle body frame 110 with the crankshaft 20 oriented in the vehicle width direction (left-right direction).
 図3に示されるように、内燃機関1は、上クランクケース2Aおよび下クランクケース2Bからなる上下二つ割りのクランクケース2を備えている。上クランクケース2Aの前方上部には、シリンダブロック3が、2つのシリンダ7(図1には左側のシリンダ7のみ示される)のシリンダ軸線Lcを前傾させて一体に形成されている。 As shown in Figure 3, the internal combustion engine 1 has a crankcase 2 divided into an upper crankcase 2A and a lower crankcase 2B. A cylinder block 3 is integrally formed at the front upper portion of the upper crankcase 2A with the cylinder axes Lc of two cylinders 7 (only the left cylinder 7 is shown in Figure 1) tilted forward.
 シリンダブロック3には、シリンダヘッド4が重ね合わされて締結され、シリンダヘッド4の上にはシリンダヘッドカバー5が被せられている。クランクケース2の下にはオイルパン6が取り付けられている。 A cylinder head 4 is placed on and fastened to the cylinder block 3, and a cylinder head cover 5 is placed on top of the cylinder head 4. An oil pan 6 is attached below the crankcase 2.
 クランクケース2にクランク軸20が回転自在に軸支されるとともに、クランク軸20の後方には変速機60が内蔵されている。変速機60のメイン軸61が、右端部にクラッチ装置(不図示)を備えてクランク軸20と平行に軸支配置され、そのやや後方で、クランクケース2の上下結合面2aにおいてクランク軸20と平行にカウンタ軸62が軸支配置されている。図1に示されるように、カウンタ軸62のクランクケース2を貫通突出した左軸端には前述の駆動スプロケット65が嵌着され、カウンタ軸62は内燃機関1の出力軸64をなす。 The crankshaft 20 is rotatably supported by the crankcase 2, and a transmission 60 is built in behind the crankshaft 20. The main shaft 61 of the transmission 60 is equipped with a clutch device (not shown) at its right end and is axially mounted parallel to the crankshaft 20, and a countershaft 62 is supported slightly behind it and parallel to the crankshaft 20 at the upper and lower joining surfaces 2a of the crankcase 2. As shown in FIG. 1, the aforementioned drive sprocket 65 is fitted to the left end of the countershaft 62 that protrudes through the crankcase 2, and the countershaft 62 forms the output shaft 64 of the internal combustion engine 1.
 図2に示されるように、内燃機関1のシリンダブロック3にはシリンダ7が形成されており、シリンダ7内にはシリンダ7内を往復動するピストン8が摺動自在に嵌合されている。シリンダ7と、ピストン8の頂面と、ピストン8の頂面が対向するシリンダヘッド4の下面とにより、燃焼室9が構成される。図3に示されるように、シリンダヘッド4に、点火プラグ19が、その先端が燃焼室9に臨むように取り付けられている。 As shown in FIG. 2, a cylinder 7 is formed in the cylinder block 3 of the internal combustion engine 1, and a piston 8 that reciprocates within the cylinder 7 is fitted so as to be able to slide freely within the cylinder 7. A combustion chamber 9 is formed by the cylinder 7, the top surface of the piston 8, and the underside of the cylinder head 4 that faces the top surface of the piston 8. As shown in FIG. 3, an ignition plug 19 is attached to the cylinder head 4 so that its tip faces the combustion chamber 9.
 図3に示されるように、シリンダヘッド4には、燃焼室9に連なる吸気ポート10および排気ポート11が形成されている。内燃機関1は、1つの気筒7につき吸気弁17と排気弁18を2本ずつ備える4弁方式の内燃機関である。シリンダヘッド4には、吸気弁17および排気弁18が配設されており、それぞれが、吸気ポート10から燃焼室9に流れる吸量と、燃焼室9から排気ポート11に排出される排気量を制御している。 As shown in FIG. 3, the cylinder head 4 is formed with an intake port 10 and an exhaust port 11 that are connected to the combustion chamber 9. The internal combustion engine 1 is a four-valve internal combustion engine with two intake valves 17 and two exhaust valves 18 per cylinder 7. The cylinder head 4 is provided with the intake valves 17 and exhaust valves 18, which respectively control the amount of intake air flowing from the intake port 10 to the combustion chamber 9 and the amount of exhaust air discharged from the combustion chamber 9 to the exhaust port 11.
 図4は、シリンダヘッド4をシリンダブロック3との合わせ面4a側から視た底面図である。シリンダヘッド4のピストン頂面が対向する燃焼室天井面9aには、吸気弁17が開閉する吸気弁口9bと排気弁18が開閉する排気弁口9cが2つずつ並んで開口している。 Figure 4 is a bottom view of the cylinder head 4 as seen from the mating surface 4a side with the cylinder block 3. In the combustion chamber ceiling surface 9a facing the piston top surface of the cylinder head 4, there are two intake valve ports 9b through which the intake valve 17 opens and closes, and two exhaust valve ports 9c through which the exhaust valve 18 opens and closes, lined up side by side.
 燃焼室天井面9aはドーム状に凹んだ曲面をなし、その燃焼室天井面9aのほぼ後半面に吸気弁口9bが左右に並んで開口し、燃焼室天井面9aのほぼ前半面に排気弁口9cが左右に並んで開口している。排気弁口9cの内径は、吸気弁口9bの内径より小さい。 The combustion chamber ceiling surface 9a is a dome-shaped concave curved surface, with the intake valve ports 9b opening side by side on roughly the rear half of the combustion chamber ceiling surface 9a, and the exhaust valve ports 9c opening side by side on roughly the front half of the combustion chamber ceiling surface 9a. The inner diameter of the exhaust valve ports 9c is smaller than the inner diameter of the intake valve ports 9b.
 図3に示されるように、シリンダヘッド4には、吸気弁口9bから後方に湾曲して吸気ポート10が延出し、排気弁口9cから前方に湾曲して排気ポート11が延出している。 As shown in FIG. 3, the cylinder head 4 has an intake port 10 that curves rearward and extends from the intake valve port 9b, and an exhaust port 11 that curves forward and extends from the exhaust valve port 9c.
 図4を参照して、左右に並んだ吸気弁口9b,9bからそれぞれ後方に延出した吸気ポート10,10は上流側で集合している。図3に示されるように、吸気ポート10の上流端には、 接続管40が接続される。 Referring to Figure 4, the intake ports 10, 10 extending rearward from the intake valve openings 9b, 9b arranged to the left and right are gathered on the upstream side. As shown in Figure 3, a connecting pipe 40 is connected to the upstream end of the intake port 10.
 図4に示されるように、左右に並んだ排気弁口9c,9cからそれぞれ前方に延出した排気ポート11,11は、下流側で集合している。図3に示されるように、排気ポート11の下流端には排気管13が接続される。 As shown in FIG. 4, exhaust ports 11, 11 extending forward from exhaust valve ports 9c, 9c arranged side by side are gathered on the downstream side. As shown in FIG. 3, an exhaust pipe 13 is connected to the downstream end of the exhaust port 11.
 図4に示されるように、シリンダヘッド4における各燃焼室9の燃焼室天井面9aには、中央部のシリンダ軸線Lc付近に点火プラグ19が螺合される点火プラグ孔4bが設けられており、点火プラグ孔4bの周りに吸気弁口9b,9bと排気弁口9c,9cが大きく開口している。燃焼室天井面9aの中央部の点火プラグ孔4bに螺合された点火プラグ19は、先端の電極部を燃焼室9に臨ませている。 As shown in FIG. 4, a spark plug hole 4b into which an ignition plug 19 is screwed is provided in the center of the combustion chamber ceiling surface 9a of each combustion chamber 9 in the cylinder head 4 near the cylinder axis Lc, and intake valve ports 9b, 9b and exhaust valve ports 9c, 9c are opened widely around the spark plug hole 4b. The spark plug 19 screwed into the spark plug hole 4b in the center of the combustion chamber ceiling surface 9a has its tip electrode portion facing the combustion chamber 9.
 図3に示されるように、吸気弁17は、弁軸部17sが吸気ポート10の上壁に嵌着されたバルブガイド23に摺動自在に支持され、弁軸部17sの先端の傘部17uが吸気弁口9bを開閉する。 As shown in FIG. 3, the intake valve 17 has a valve stem 17s slidably supported by a valve guide 23 fitted to the upper wall of the intake port 10, and the umbrella portion 17u at the tip of the valve stem 17s opens and closes the intake valve port 9b.
 排気弁18も、同様で弁軸部18sが排気ポート11の上壁に嵌着されたバルブガイド23に摺動自在に支持され、弁軸部18sの先端の傘部18uが排気弁口9cを開閉する。 The exhaust valve 18 is similarly supported so that the valve stem 18s can slide freely on a valve guide 23 that is fitted into the upper wall of the exhaust port 11, and the head portion 18u at the tip of the valve stem 18s opens and closes the exhaust valve port 9c.
 吸気弁17と排気弁18を駆動する動弁機構は、DOHC型であり、互いに平行な吸気カム軸71と排気カム軸72が回転することにより、吸気カム軸71に設けられた吸気カム73と排気カム軸72に設けられた排気カム74が、吸気弁17と排気弁18のそれぞれ上端部に被せられたバルブリフタ75,75を押して、吸気弁17および排気弁18をクランク軸20の回転位置に応じて所定のタイミングで往復動して吸気弁口9bと排気弁口9cを開閉する。 The valve mechanism that drives the intake valve 17 and exhaust valve 18 is of the DOHC type. As the parallel intake camshaft 71 and exhaust camshaft 72 rotate, the intake cam 73 on the intake camshaft 71 and the exhaust cam 74 on the exhaust camshaft 72 push the valve lifters 75, 75 that are placed on the upper ends of the intake valve 17 and exhaust valve 18, respectively, causing the intake valve 17 and exhaust valve 18 to reciprocate at a predetermined timing according to the rotational position of the crankshaft 20, opening and closing the intake valve port 9b and exhaust valve port 9c.
 吸気ポート10の上流端には、外気を吸入する 接続管40が接続されている。 接続管40上流端には、内部にタンブル弁57が配された吸気管56と、スロットル弁55が配されたスロットルボディ54が接続されている。 The upstream end of the intake port 10 is connected to a connecting pipe 40 that draws in outside air. The upstream end of the connecting pipe 40 is connected to an intake pipe 56 with a tumble valve 57 inside, and a throttle body 54 with a throttle valve 55.
 図1に示されるように、スロットルボディ54の上流側には、エアファンネル35が取り付けられている。エアファンネル35は、外気を浄化するエアクリーナ106のクリーンサイド側の内部に嵌入されて開口しており、浄化された吸気が内燃機関1に送られる。吸気ポート10、接続管40、吸気管56、スロットルボディ54およびエアファンネル35で吸気通路30を構成している。 As shown in FIG. 1, an air funnel 35 is attached upstream of the throttle body 54. The air funnel 35 is fitted and opened inside the clean side of an air cleaner 106 that purifies outside air, and the purified intake air is sent to the internal combustion engine 1. The intake port 10, connecting pipe 40, intake pipe 56, throttle body 54, and air funnel 35 form the intake passage 30.
 スロットル弁55は、吸気通路30の流れ方向と垂直で略水平に配向するスロットル弁軸55aによってスロットルボディ54内に回転自在に軸支されて、吸気通路30の通路面積を可変制御し、上流側からの吸気量を調節している。 The throttle valve 55 is rotatably supported within the throttle body 54 by a throttle valve shaft 55a that is oriented approximately horizontally and perpendicular to the flow direction of the intake passage 30, and variably controls the passage area of the intake passage 30 to adjust the amount of intake air from the upstream side.
 排気ポート11には、排気管13が接続されており、排気管13の途中には、三元触媒等が内蔵された触媒装置26が配設され、排気ガスを浄化する。排気管13の下流端はマフラー14に接続されており、マフラー14により排気音が低減される。排気ポート11,排気管13,触媒装置26およびマフラー14により排気通路16が構成されている。 An exhaust pipe 13 is connected to the exhaust port 11, and a catalytic device 26 containing a three-way catalyst or the like is arranged midway through the exhaust pipe 13 to purify the exhaust gas. The downstream end of the exhaust pipe 13 is connected to a muffler 14, which reduces exhaust noise. The exhaust port 11, exhaust pipe 13, catalytic device 26, and muffler 14 form an exhaust passage 16.
 そして、吸気通路30において、吸気管56から接続管40を介して吸気ポート10に至る吸気通路が、吸気管56の下流部から吸気ポート10の湾曲部まで、仕切壁33により主通路30Aとタンブル通路30Bに仕切られ、各々横断面略半円状に画成される。 Then, in the intake passage 30, the intake passage that runs from the intake pipe 56 to the intake port 10 via the connecting pipe 40 is divided by a partition wall 33 from the downstream part of the intake pipe 56 to the curved part of the intake port 10 into a main passage 30A and a tumble passage 30B, each of which is defined to have a roughly semicircular cross section.
 タンブル通路30Bは、スロットル弁軸55aと平行なタンブル弁57aによって回転自在に軸支されタンブル弁57により、流量が変更される。 The tumble passage 30B is rotatably supported by a tumble valve 57a that is parallel to the throttle valve shaft 55a, and the flow rate is changed by the tumble valve 57.
 吸気管56には、主通路30Aに上方外部から貫通して、燃料を噴射供給するように配置された燃料噴射弁22が取り付けられる。 The intake pipe 56 is fitted with a fuel injection valve 22 that is positioned to penetrate the main passage 30A from the outside above and supply fuel by injecting it.
 図5は本実施の形態の内燃機関の吸気構造を示した模式図である。本実施の形態の内燃機関は2気筒を具備した内燃機関であって、吸気通路30は、第1吸気通路31と第2吸気通路32とで構成されている。第1吸気通路31および第2吸気通路32のそれぞれは、スロットル弁55およびタンブル弁57を具備して、吸気が制御される。接続管40は、吸気ポート10と第1ガスケット51とOリング53を介して、吸気管56と第2ガスケット52とOリング53を介してそれぞれ接続されている(図5、図6参照)。 FIG. 5 is a schematic diagram showing the intake structure of the internal combustion engine of this embodiment. The internal combustion engine of this embodiment is a two-cylinder internal combustion engine, and the intake passage 30 is composed of a first intake passage 31 and a second intake passage 32. The first intake passage 31 and the second intake passage 32 each have a throttle valve 55 and a tumble valve 57 to control the intake. The connecting pipe 40 is connected to the intake port 10 via a first gasket 51 and an O-ring 53, and to the intake pipe 56 via a second gasket 52 and an O-ring 53, respectively (see FIGS. 5 and 6).
 図6に示されるように、接続管40は、第1吸気通路31を構成する第1円管部41と、第2吸気通路を構成する第2円管部42を備えている。第1円管部41と第2円管部42とは、円管の中心軸が略平行になるように配置され、第1円管部41と第2円管部42のそれぞれの外周壁部41a、42aは、一対の連結壁部43により連結されている。 As shown in FIG. 6, the connecting pipe 40 has a first circular pipe section 41 that constitutes the first intake passage 31, and a second circular pipe section 42 that constitutes the second intake passage. The first circular pipe section 41 and the second circular pipe section 42 are arranged so that the central axes of the circular pipes are approximately parallel, and the respective outer peripheral wall sections 41a, 42a of the first circular pipe section 41 and the second circular pipe section 42 are connected by a pair of connecting walls 43.
 第1円管部41は、仕切板部41bにより吸気流れ方向に、第1主流路31Aと第1タンブル流路31Bとに仕切られている。第2円管部42も、仕切板部42bにより吸気流れ方向に、第2主流路32Aと第2タンブル流路32Bとに仕切られている。 The first circular pipe section 41 is divided by a partition plate section 41b into a first main flow path 31A and a first tumble flow path 31B in the intake flow direction. The second circular pipe section 42 is also divided by a partition plate section 42b into a second main flow path 32A and a second tumble flow path 32B in the intake flow direction.
 第1円管部41と、第2円管部42および一対の連結壁部43とで区画された内部は、レゾネータ室46となる。第1円管部41のうち一対の連結壁部43が接続された間の壁面は、第1吸気通路31とレゾネータ室46を仕切る仕切壁部41cとなる。第2円管部42のうち一対の連結壁部43が接続された間の壁面は、第2吸気通路32とレゾネータ室46を仕切る仕切壁部42cとなる。図7に示されるように、この仕切壁部41c、42cは、第1吸気通路31および第2吸気通路32に沿うような円弧状のレゾネータ室46の内壁46aとなっておいる。内壁46aが第1吸気通路31および第2吸気通路32に沿うような円弧状に形成されているので、レゾネータ室46を大きく配設することが可能である。 The interior partitioned by the first circular tube portion 41, the second circular tube portion 42, and the pair of connecting walls 43 forms the resonator chamber 46. The wall surface of the first circular tube portion 41 between the pair of connecting walls 43 forms the partition wall portion 41c that partitions the first intake passage 31 and the resonator chamber 46. The wall surface of the second circular tube portion 42 between the pair of connecting walls 43 forms the partition wall portion 42c that partitions the second intake passage 32 and the resonator chamber 46. As shown in FIG. 7, these partition wall portions 41c, 42c form the inner wall 46a of the resonator chamber 46 that is in an arc shape that follows the first intake passage 31 and the second intake passage 32. Since the inner wall 46a is formed in an arc shape that follows the first intake passage 31 and the second intake passage 32, it is possible to arrange the resonator chamber 46 large.
 接続管40の下流端と上流端に当接される第1ガスケット51と第2ガスケット52は板状部材である。 The first gasket 51 and the second gasket 52 that contact the downstream end and the upstream end of the connecting pipe 40 are plate-shaped members.
 第1ガスケット51には、第1主流路31A、第1タンブル流路31Bと、第2主流路32A、第2タンブル流路32Bとに対応する第1主流路開口部51aA、第1タンブル流路開口部51aB、第2主流路開口部51bA、第2タンブル流路開口部51bBが開口されている。 The first gasket 51 has a first main flow passage opening 51aA, a first tumble flow passage opening 51aB, a second main flow passage opening 51bA, and a second tumble flow passage opening 51bB, which correspond to the first main flow passage 31A, the first tumble flow passage 31B, and the second main flow passage 32A, the second tumble flow passage 32B.
 第2ガスケット52にも同様に、第1主流路31A、第1タンブル流路31Bと、第2主流路32A、第2タンブル流路32Bとに対応する第1主流路開口部52aA、第1タンブル流路開口部52aB、第2主流路開口部52bA、第2タンブル流路開口部52bBが設けられている。 Similarly, the second gasket 52 is provided with a first main flow passage opening 52aA, a first tumble flow passage opening 52aB, a second main flow passage opening 52bA, and a second tumble flow passage opening 52bB corresponding to the first main flow passage 31A, the first tumble flow passage 31B, and the second main flow passage 32A, the second tumble flow passage 32B.
 第1ガスケット51と第2ガスケット52の中央部は、接続管のレゾネータ室46の両端を塞ぐ閉塞部51c、52cとなっており、仕切壁部41c、42cと、この両端を覆う閉塞部51c、52cとによって、レゾネータ室46が構成される。 The central parts of the first gasket 51 and the second gasket 52 form blocking parts 51c, 52c that close both ends of the resonator chamber 46 of the connecting tube, and the resonator chamber 46 is formed by the partition wall parts 41c, 42c and the blocking parts 51c, 52c that cover both ends.
 図7および図8に示されるように、仕切壁部41cと42cには、レゾネータ室46と、第1タンブル流路31B、第2タンブル流路32Bとをそれぞれ連通する連通部としての連通孔47が開口されており、レゾネータ室46と連通孔47cとでレゾネータ45とされる。連通孔47の容積は、レゾネータ室46の容積よりも小さく設定されている。 As shown in Figures 7 and 8, the partition walls 41c and 42c have communication holes 47 that connect the resonator chamber 46 to the first tumble flow path 31B and the second tumble flow path 32B, respectively, and the resonator chamber 46 and the communication hole 47c form the resonator 45. The volume of the communication hole 47 is set to be smaller than the volume of the resonator chamber 46.
 本実施の形態の内燃機関の吸気構造は、上記したように構成されていうので、以下のような効果を奏する。 The intake structure of the internal combustion engine of this embodiment is configured as described above, and therefore provides the following effects.
 本実施の形態の内燃機関の吸気構造は、エアクリーナ106から燃焼室9へ空気を導入する吸気通路30と、吸気通路30に燃料を供給する燃料噴射装置22と、燃焼室9へ導入する空気流量を調整するスロットル弁55と、を備えた複数気筒の内燃機関において、スロットル弁55の下流に、タンブル流を生じさせるための第1吸気通路31と第2吸気通路32と、タンブル弁57を有し、タンブル弁57の下流において、第1吸気通路31と第2吸気通路32とを互いに連通するレゾネータ45と、を備えるので、複数の吸気通路を互いに連通するレゾネータ45をタンブル弁57の下流に配置しているので、タンブル流の流量を増大させることができる。そのため混合気が攪拌された状態で吸気を行うことができるので、内燃機関1の燃焼を好適な燃焼状態とさせることができる。よって、燃費向上と未燃ガス削減ができるとともに、排気ガスの触媒装置26にかかるコストを抑制することができる。また、第1吸気通路31と第2吸気通路32との間に位置してレゾネータ45が設けられているので、気筒毎にタンブル弁57の下流に位置してレゾネータ45を設ける必要がないので、内燃機関1の小型化を達成しつつ、コストの低減を図ることができる。 The intake structure of the internal combustion engine of this embodiment is a multiple cylinder internal combustion engine equipped with an intake passage 30 that introduces air from an air cleaner 106 to a combustion chamber 9, a fuel injection device 22 that supplies fuel to the intake passage 30, and a throttle valve 55 that adjusts the air flow rate introduced into the combustion chamber 9. The intake structure of the internal combustion engine of this embodiment is equipped with a first intake passage 31 and a second intake passage 32 for generating a tumble flow downstream of the throttle valve 55, a resonator 45 having a tumble valve 57 and connecting the first intake passage 31 and the second intake passage 32 to each other downstream of the tumble valve 57. Since the resonator 45 that connects the multiple intake passages to each other is arranged downstream of the tumble valve 57, the flow rate of the tumble flow can be increased. Therefore, the intake can be performed in a state where the mixture is stirred, and the combustion of the internal combustion engine 1 can be made into a suitable combustion state. Therefore, it is possible to improve fuel efficiency and reduce unburned gas, and it is possible to suppress the cost of the exhaust gas catalytic device 26. In addition, since the resonator 45 is located between the first intake passage 31 and the second intake passage 32, there is no need to provide a resonator 45 downstream of the tumble valve 57 for each cylinder, which allows for a smaller internal combustion engine 1 while reducing costs.
 さらに、レゾネータ45は、中央に位置するレゾネータ室46と、第1吸気通路31と第2吸気通路32とレゾネータ室46とを接続する連通孔47を有し、レゾネータ室46の容積は、連通孔47の容積よりも大きいので、スロットル弁55の開度やタンブル弁57、エンジン回転数の変化に対して、応答よくタンブル流を形成することができる。そのため、混合気がより攪拌された状態で吸気を行うことが可能となり、より好適な燃焼状態とすることができる。よって、より燃費向上と未燃焼ガスの削減ができるとともに、触媒装置26にかかるコストを低減することができる。さらに、加速時において応答性の良い内燃機関1とすることができる。 Furthermore, the resonator 45 has a resonator chamber 46 located in the center and a communication hole 47 that connects the first intake passage 31, the second intake passage 32, and the resonator chamber 46. Since the volume of the resonator chamber 46 is larger than the volume of the communication hole 47, a tumble flow can be formed in good response to changes in the opening of the throttle valve 55, the tumble valve 57, and the engine speed. This makes it possible to perform intake with a more agitated mixture, resulting in a more optimal combustion state. This leads to improved fuel efficiency and reduced unburned gas, as well as reduced costs for the catalytic device 26. Furthermore, the internal combustion engine 1 has good responsiveness during acceleration.
 さらにまた、レゾネータ45は、中央に位置するレゾネータ室46と、第1吸気通路31と第2吸気通路32とを接続する連通孔47を有し、レゾネータ室46は、第1吸気通路31と第2吸気通路32とに沿うような円弧状となる内壁46aを備えているので、レゾネータ室46の容積をできるだけ大きくすることができるので、スロットル弁55の開度やタンブル弁57、エンジン回転数の変化に対して、応答よくタンブル流を形成することができる。そのため、混合気がより攪拌された状態で吸気を行うことが可能となり、より好適な燃焼状態とすることができる。よって、より燃費向上と未燃焼ガスの削減ができるとともに、触媒装置にかかるコストを低減することができる。さらに、加速時において応答性の良い内燃機関とすることができる。 Furthermore, the resonator 45 has a resonator chamber 46 located in the center and a communication hole 47 that connects the first intake passage 31 and the second intake passage 32. The resonator chamber 46 has an inner wall 46a that is arc-shaped and follows the first intake passage 31 and the second intake passage 32. This allows the volume of the resonator chamber 46 to be as large as possible, so that a tumble flow can be formed in good response to changes in the opening of the throttle valve 55, the tumble valve 57, and the engine speed. This allows the intake to be performed with the mixture more agitated, resulting in a more optimal combustion state. This leads to improved fuel efficiency and reduced unburned gas, as well as reduced costs for the catalytic converter. Furthermore, the internal combustion engine has good response during acceleration.
 以上、本発明の実施形態につき説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能であり、本発明の要旨の範囲で、車両、内燃機関等が、多様な態様で実施されるものを含むことは勿論である。例えば、本発明の実施の形態では、動弁機構としてDOHC型が採用されているが、これに限らない。 The above describes an embodiment of the present invention, but the present invention is not limited to the above embodiment, and various design changes are possible without departing from the gist of the invention. Of course, the gist of the present invention includes vehicles, internal combustion engines, etc. implemented in various forms. For example, the embodiment of the present invention employs a DOHC type valve train, but is not limited to this.
 1…内燃機関、7…気筒(シリンダ)、9…燃焼室、
 22…燃料噴射装置、
 30…吸気通路、31…第1吸気通路、32…第2吸気通路、
 45…レゾネータ、46…レゾネータ室、46a…内壁、47…連通孔、
 55…スロットル弁、57…タンブル弁、
 106…エアクリーナ。
1 ... internal combustion engine, 7 ... cylinder, 9 ... combustion chamber,
22...Fuel injection device,
30: intake passage; 31: first intake passage; 32: second intake passage;
45... resonator, 46... resonator chamber, 46a... inner wall, 47... communication hole,
55: throttle valve, 57: tumble valve,
106...Air cleaner.

Claims (3)

  1.  エアクリーナ(106)から燃焼室(9)へ空気を導入する吸気通路(30)と、
     前記吸気通路(30)に燃料を供給する燃料噴射装置(22)と、
     前記燃焼室(9)へ導入する空気流量を調整するスロットル弁(55)と、
     を備えた複数気筒(7)の内燃機関の吸気構造において、
     前記スロットル弁(55)の下流に、タンブル流を生じさせるための複数の吸気通路(31,32)と、タンブル弁(57)を有し、
     前記タンブル弁(57)の下流において、複数の吸気通路(31,32)を互いに連通するレゾネータ(45)と、を備えることを特徴とする内燃機関の吸気構造。
    an intake passage (30) for introducing air from an air cleaner (106) into a combustion chamber (9);
    a fuel injection device (22) that supplies fuel to the intake passage (30);
    a throttle valve (55) for adjusting the flow rate of air introduced into the combustion chamber (9);
    In an intake structure of an internal combustion engine having a plurality of cylinders (7),
    a plurality of intake passages (31, 32) for generating a tumble flow and a tumble valve (57) are provided downstream of the throttle valve (55);
    and a resonator (45) downstream of the tumble valve (57) for connecting the plurality of intake passages (31, 32) to each other.
  2.  前記レゾネータ(45)は、中央に位置するレゾネータ室(46)と、前記複数の吸気通路(31,32)と前記レゾネータ室(46)とを接続する連通孔(47)を有し、
     前記レゾネータ室(46)の容積は、前記連通孔(47)の容積よりも大きいことを特徴とする請求項1に記載の内燃機関の吸気構造。
    The resonator (45) has a resonator chamber (46) located at the center, and a communication hole (47) connecting the plurality of intake passages (31, 32) to the resonator chamber (46),
    2. The intake structure of an internal combustion engine according to claim 1, wherein a volume of the resonator chamber (46) is larger than a volume of the communication hole (47).
  3.  前記レゾネータ(45)は、中央に位置するレゾネータ室(46)と、前記複数の吸気通路(31,32)と前記レゾネータ室(46)とを接続する連通孔(47)を有し、
     前記レゾネータ室(46)は、前記複数の複数の吸気通路(31,32)に沿うような円弧状の内壁(46a)を備えることを特徴とする請求項1に記載の内燃機関の吸気構造。
    The resonator (45) has a resonator chamber (46) located at the center, and a communication hole (47) connecting the plurality of intake passages (31, 32) to the resonator chamber (46),
    2. The intake structure of an internal combustion engine according to claim 1, wherein the resonator chamber (46) has an arc-shaped inner wall (46a) that fits along the plurality of intake passages (31, 32).
PCT/JP2022/036727 2022-09-30 2022-09-30 Air intake structure for internal combustion engine WO2024069940A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036727 WO2024069940A1 (en) 2022-09-30 2022-09-30 Air intake structure for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036727 WO2024069940A1 (en) 2022-09-30 2022-09-30 Air intake structure for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2024069940A1 true WO2024069940A1 (en) 2024-04-04

Family

ID=90477003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036727 WO2024069940A1 (en) 2022-09-30 2022-09-30 Air intake structure for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2024069940A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431623A (en) * 1990-05-28 1992-02-03 Mazda Motor Corp Air intake device of engine
JP2001317363A (en) * 2000-05-10 2001-11-16 Honda Motor Co Ltd Variable intake device for series four-cylinder internal combustion engine
JP2011094633A (en) * 2011-02-14 2011-05-12 Honda Motor Co Ltd Multi-cylinder internal combustion engine with resonator
JP2013241834A (en) * 2012-05-17 2013-12-05 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2018150817A (en) * 2017-03-10 2018-09-27 本田技研工業株式会社 Suction structure for internal combustion engine
JP2019206941A (en) * 2018-05-29 2019-12-05 株式会社Subaru Intake device of internal combustion engine
WO2022176862A1 (en) * 2021-02-19 2022-08-25 本田技研工業株式会社 Air intake structure for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431623A (en) * 1990-05-28 1992-02-03 Mazda Motor Corp Air intake device of engine
JP2001317363A (en) * 2000-05-10 2001-11-16 Honda Motor Co Ltd Variable intake device for series four-cylinder internal combustion engine
JP2011094633A (en) * 2011-02-14 2011-05-12 Honda Motor Co Ltd Multi-cylinder internal combustion engine with resonator
JP2013241834A (en) * 2012-05-17 2013-12-05 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2018150817A (en) * 2017-03-10 2018-09-27 本田技研工業株式会社 Suction structure for internal combustion engine
JP2019206941A (en) * 2018-05-29 2019-12-05 株式会社Subaru Intake device of internal combustion engine
WO2022176862A1 (en) * 2021-02-19 2022-08-25 本田技研工業株式会社 Air intake structure for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4414329B2 (en) Oil strainer support structure for engine
JP2000161041A (en) Breather in engine
WO2018163912A1 (en) Air intake structure for internal combustion engine
WO2017154782A1 (en) Internal combustion engine intake structure
JP4344724B2 (en) Internal combustion engine
JP2009068465A (en) Internal combustion engine provided with breather chamber
WO2024069940A1 (en) Air intake structure for internal combustion engine
JP4271362B2 (en) Exhaust system for 4-cycle engine for outboard motor
JP6741362B2 (en) Intake structure of internal combustion engine
JP6116107B2 (en) Mounting structure of exhaust gas sensor for internal combustion engine
JP2004285979A (en) Engine
JP6691564B2 (en) Intake passage of internal combustion engine
US7565897B2 (en) Internal combustion engine
US10364755B2 (en) Exhaust control device for engine
JP4574521B2 (en) Twin cam engine
JP2018150817A (en) Suction structure for internal combustion engine
JP7095437B2 (en) Motorcycle exhaust system
JP2007120480A (en) Internal combustion engine equipped with secondary air supply device and breather device
JP2007231793A (en) Internal combustion engine
JP3156276B2 (en) 4-cycle parallel 4-cylinder engine
JP6062337B2 (en) Secondary air supply device for multi-cylinder internal combustion engine
WO2022209880A1 (en) Air suction device for internal combustion engine
WO2023053308A1 (en) Air intake device for internal combustion engine
JP2007231794A (en) Internal combustion engine
JP6714647B2 (en) Secondary air introduction device for internal combustion engine for saddle type vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960999

Country of ref document: EP

Kind code of ref document: A1