JP2005113694A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2005113694A
JP2005113694A JP2003344951A JP2003344951A JP2005113694A JP 2005113694 A JP2005113694 A JP 2005113694A JP 2003344951 A JP2003344951 A JP 2003344951A JP 2003344951 A JP2003344951 A JP 2003344951A JP 2005113694 A JP2005113694 A JP 2005113694A
Authority
JP
Japan
Prior art keywords
air
combustion chamber
intake
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003344951A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Abe
和佳 阿部
Shinya Wakabayashi
真也 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003344951A priority Critical patent/JP2005113694A/en
Publication of JP2005113694A publication Critical patent/JP2005113694A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/48Tumble motion in gas movement in cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine in which a tumble flow into a combustion chamber is strengthened, and an intake air quantity to the combustion chamber can fully obtained. <P>SOLUTION: An internal combustion engine 1 is comprised of at least two intake ports 3, which adjoin each other, and an inlet valve Vi to open and close each intake port 3. An air-fuel mixture of fuel and air is burned in the combustion chamber 2 to generate power. A rectifying projection 5 installed in an inner peripheral face 3a of each intake port 3, and guides and deflects the air flowing toward the region between two intake ports while separating from an exhaust side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃焼室内で燃料および空気の混合気を燃焼させて動力を発生する内燃機関に関する。   The present invention relates to an internal combustion engine that generates power by burning a fuel / air mixture in a combustion chamber.

一般に、燃焼室内に直接噴射された燃料と空気との混合気を燃焼させて動力を発生する直噴式の内燃機関では、燃焼効率やその出力を向上させる上で、燃焼室内にタンブル流(縦方向の渦流)を形成するのが好ましい。この場合、タンブル流は、例えば、燃料噴射弁から離れるように吸気ポートから流出した後、ピストン頂面に沿って燃料噴射弁側に戻るように形成されるが、燃焼室の内部には、このようなタンブル流(正タンブル流または順タンブル流)と逆向きの逆タンブル流が形成されてしまうことがある。そして、逆タンブル流が正タンブル流と衝突してしまうと、正タンブル流が弱められ、空気と燃料との混合が良好に行われなくなってしまう。   In general, in a direct injection internal combustion engine that generates power by burning a mixture of fuel and air directly injected into the combustion chamber, a tumble flow (longitudinal direction) is provided to improve combustion efficiency and output. Eddy current) is preferably formed. In this case, for example, the tumble flow is formed so as to return from the intake port away from the fuel injection valve and then return to the fuel injection valve side along the piston top surface. Such a tumble flow (forward tumble flow or forward tumble flow) and a reverse tumble flow in the opposite direction may be formed. When the reverse tumble flow collides with the normal tumble flow, the normal tumble flow is weakened, and air and fuel are not mixed well.

このため、従来から、吸気弁の着座部周囲に位置する開口部周壁の燃料噴射弁寄りの部位を反対側よりも吸気弁に近づけて形成することにより、燃焼室内における逆タンブル流の発生を抑制する技術が知られている(例えば、特許文献1参照。)。また、吸気弁のリフト量が小さいときに、燃焼室開口端部のシュラウド部側からの吸気流(逆タンブル流)をシュラウドにより制限する技術も知られている(例えば、特許文献2参照。)。更に、燃焼室内のタンブル流を強化するために、2つの吸気ポートのそれぞれに、燃焼室に臨んで開口する吸気開口部近傍に位置するように、2つの吸気開口部の中線とシリンダの壁面との交点に向けて吸気ポート内の吸入空気を整流して燃焼室内に導く整流突起が設けられた内燃機関も知られている(例えば、特許文献3参照。)。そして、燃焼室内のタンブル流を強化するための技術としては、更に、下記の特許文献4〜6が存在している。   For this reason, the formation of a reverse tumble flow in the combustion chamber has been conventionally suppressed by forming a portion near the fuel injection valve on the peripheral wall of the opening located around the seating portion of the intake valve closer to the intake valve than the opposite side. The technique which performs is known (for example, refer patent document 1). A technique is also known in which the intake flow (reverse tumble flow) from the shroud side of the combustion chamber opening end is restricted by the shroud when the lift amount of the intake valve is small (see, for example, Patent Document 2). . Further, in order to enhance the tumble flow in the combustion chamber, the midline of the two intake openings and the wall surface of the cylinder are positioned in the vicinity of the intake opening that faces each of the two intake ports and faces the combustion chamber. There is also known an internal combustion engine provided with a rectifying projection that rectifies intake air in an intake port and leads it into the combustion chamber toward the intersection with the engine (see, for example, Patent Document 3). And the following patent documents 4-6 exist as a technique for strengthening the tumble flow in a combustion chamber.

特開2001−12247号公報JP 2001-12247 A 特開平07−166867号公報Japanese Patent Laid-Open No. 07-166867 特開平11−141397号公報JP 11-141397 A 特開2003−106151号公報JP 2003-106151 A 特表2001−526351号公報Special table 2001-526351 gazette 特開2002−54535号公報JP 2002-54535 A

しかしながら、上述したような従来の手法を採用しても、正タンブル流を弱めてしまう逆タンブル流の発生を十分に抑制することは困難であった。また、従来の手法によって燃焼室における逆タンブル流の発生を抑制すると、燃焼室への吸入空気量を十分に確保できなくなってしまうこともあった。   However, even if the conventional method as described above is employed, it is difficult to sufficiently suppress the generation of a reverse tumble flow that weakens the normal tumble flow. In addition, if the generation of the reverse tumble flow in the combustion chamber is suppressed by the conventional method, it may be impossible to secure a sufficient amount of intake air into the combustion chamber.

そこで、本発明は、燃焼室内のタンブル流を強化しつつ、燃焼室への吸入空気量を十分に確保することができる内燃機関の提供を目的とする。   Therefore, an object of the present invention is to provide an internal combustion engine that can secure a sufficient amount of intake air into the combustion chamber while enhancing the tumble flow in the combustion chamber.

本発明による内燃機関は、互いに隣り合う少なくとも2つの吸気ポートと、各吸気ポートを開閉する吸気弁とを有しており、燃焼室内で燃料および空気の混合気を燃焼させて動力を発生する内燃機関において、各吸気ポートの内周面に設けられており、排気側から遠ざかると共に2つの吸気ポート間の領域に向けて流れる空気を案内して変向させる整流突起を備えることを特徴とする。   An internal combustion engine according to the present invention has at least two intake ports adjacent to each other and an intake valve that opens and closes each intake port, and generates power by burning a mixture of fuel and air in a combustion chamber. The engine is characterized in that it is provided on an inner peripheral surface of each intake port, and includes a rectifying protrusion that guides and turns the air that flows away from the exhaust side and flows toward the region between the two intake ports.

一般に、内燃機関の吸気ポートから燃焼室内に流れ込む空気は、吸気ポートから排気側に向けて流出して正タンブル流を形成するものと、吸気ポートから排気側とは反対側に流出するものとに分けられるが、少なくとも2つの吸気ポートを有する内燃機関の場合、正タンブル流を弱めてしまう逆タンブル流は、主として、排気側から遠ざかると共に2つの吸気ポート間の領域に向けて流れる空気により形成される。   In general, the air flowing into the combustion chamber from the intake port of the internal combustion engine flows out from the intake port toward the exhaust side to form a normal tumble flow, and the air flows out from the intake port to the side opposite to the exhaust side. In the case of an internal combustion engine having at least two intake ports, the reverse tumble flow that weakens the normal tumble flow is mainly formed by air that moves away from the exhaust side and flows toward the region between the two intake ports. The

このような点に鑑みて、この内燃機関では、各吸気ポートの内周面に、排気側から遠ざかると共に2つの吸気ポート間の領域に向けて流れる空気を案内して変向させる整流突起が設けられている。これにより、この内燃機関では、整流突起によって、正タンブル流を弱めてしまう逆タンブル流の発生が抑制される。そして、本来であれば逆タンブル流を形成したであろう空気は、整流突起によって変向された上で燃焼室へと流れ込むので、燃焼室への吸入空気量は十分に確保される。この結果、この内燃機関によれば、燃焼室内のタンブル流を強化しつつ、燃焼室への吸入空気量を十分に確保することが可能となり、燃料と空気とを良好に混合させて燃料効率や出力特性を向上させることができる。   In view of such a point, in this internal combustion engine, a rectifying protrusion is provided on the inner peripheral surface of each intake port to guide and change the air flowing away from the exhaust side and flowing toward the region between the two intake ports. It has been. Thereby, in this internal combustion engine, the occurrence of the reverse tumble flow that weakens the normal tumble flow is suppressed by the rectifying protrusion. Then, air that would normally have formed a reverse tumble flow is diverted by the rectifying protrusion and then flows into the combustion chamber, so that the amount of intake air to the combustion chamber is sufficiently secured. As a result, according to this internal combustion engine, it becomes possible to secure a sufficient amount of intake air into the combustion chamber while strengthening the tumble flow in the combustion chamber, and fuel and air are mixed well to improve fuel efficiency and Output characteristics can be improved.

この場合、整流突起は、2つの吸気ポート間の領域から遠ざかるように空気を案内すると好ましく、排気側に空気を案内するものであってもよい。   In this case, it is preferable to guide the air so that the rectifying protrusion is away from the region between the two intake ports, and the air may be guided to the exhaust side.

本発明によれば、燃焼室内のタンブル流を強化しつつ、燃焼室への吸入空気量を十分に確保することができる内燃機関の実現が可能となる。   According to the present invention, it is possible to realize an internal combustion engine that can sufficiently secure the amount of intake air into the combustion chamber while enhancing the tumble flow in the combustion chamber.

以下、図面を参照しながら、本発明を実施するための最良の形態について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は、本発明による内燃機関を示す概略構成図である。同図に示される内燃機関1は、燃焼室2の内部でガソリン等の燃料および空気の混合気を燃焼させ、燃焼室2内でピストン(図示省略)を往復移動させることにより動力を発生するものである。なお、図1には1気筒のみが示されるが、内燃機関1は多気筒エンジンとして構成されると好ましく、本実施形態の内燃機関1は、例えば4気筒エンジンとして構成される。   FIG. 1 is a schematic configuration diagram showing an internal combustion engine according to the present invention. An internal combustion engine 1 shown in FIG. 1 generates power by burning a mixture of fuel such as gasoline and air in a combustion chamber 2 and reciprocating a piston (not shown) in the combustion chamber 2. It is. Although only one cylinder is shown in FIG. 1, the internal combustion engine 1 is preferably configured as a multi-cylinder engine, and the internal combustion engine 1 of the present embodiment is configured as a four-cylinder engine, for example.

また、本実施形態の内燃機関1は、いわゆる4バルブエンジンとして構成されており、各燃焼室2には、吸気ポート3および排気ポート4がそれぞれ2つずつ設けられている。各燃焼室2の2つの吸気ポート3は、それぞれ図示されない吸気通路に接続され、各燃焼室2の2つの排気ポート4は、それぞれ図示されない排気通路に接続されている。そして、内燃機関1のシリンダヘッドには、吸気ポート3を開閉する吸気弁Viと、排気ポート4を開閉する排気弁(図示省略)とが燃焼室2ごとに2体ずつ配設されている。各吸気弁Viおよび各排気弁は、例えば、可変バルブタイミング機能を有する動弁機構(図示省略)によって開閉させられる。   The internal combustion engine 1 of the present embodiment is configured as a so-called four-valve engine, and each combustion chamber 2 is provided with two intake ports 3 and two exhaust ports 4 respectively. The two intake ports 3 of each combustion chamber 2 are connected to an intake passage (not shown), and the two exhaust ports 4 of each combustion chamber 2 are connected to an exhaust passage (not shown). The cylinder head of the internal combustion engine 1 is provided with two intake valves Vi for opening and closing the intake port 3 and two exhaust valves (not shown) for opening and closing the exhaust port 4 for each combustion chamber 2. Each intake valve Vi and each exhaust valve are opened and closed by, for example, a valve operating mechanism (not shown) having a variable valve timing function.

更に、内燃機関1は、何れも図示されない点火プラグおよびインジェクタをそれぞれ複数有しており、点火プラグとインジェクタとは、燃焼室2ごとに少なくとも1体ずつ備えられている。本実施形態では、いわゆるサイドインジェクション方式が採用され、インジェクタは、燃焼室2に連なる吸気ポート3の下方に位置するようにシリンダヘッドに装着されている。そして、各インジェクタは、対応する燃焼室2の内部に側方から燃料を直接噴射する。   Further, the internal combustion engine 1 has a plurality of ignition plugs and injectors, both of which are not shown, and at least one ignition plug and one injector are provided for each combustion chamber 2. In this embodiment, a so-called side injection method is employed, and the injector is mounted on the cylinder head so as to be positioned below the intake port 3 connected to the combustion chamber 2. Each injector directly injects fuel from the side into the corresponding combustion chamber 2.

ここで、内燃機関の吸気ポートから燃焼室内に流れ込む空気は、基本的に、吸気ポートから排気側に向けて流出して正タンブル流を形成するものと、吸気ポートから排気側とは反対側に流出するものとに分けられる。すなわち、2つの吸気ポート3を有する内燃機関1の場合、何ら対策を施さなければ、吸気ポート3から燃焼室2に吸入される空気の流量分布は、一般に図2に示されるようなものとなり、吸気ポート3から排気側すなわち同図中AまたはB方向に流出する空気により、燃焼室2内で正タンブル流が形成される。   Here, the air flowing into the combustion chamber from the intake port of the internal combustion engine basically flows out from the intake port toward the exhaust side to form a normal tumble flow, and from the intake port to the side opposite to the exhaust side. Divided into spills. That is, in the case of the internal combustion engine 1 having the two intake ports 3, unless any countermeasure is taken, the flow rate distribution of the air drawn into the combustion chamber 2 from the intake port 3 is generally as shown in FIG. A positive tumble flow is formed in the combustion chamber 2 by the air flowing out from the intake port 3 on the exhaust side, that is, in the direction A or B in FIG.

一方、吸気ポート3から排気側とは反対側に流出する空気の流れに着目すると、燃焼室2の内周面2aとの距離が短いことに起因して、吸気ポート3の燃焼室2の内周面2aに近い領域から図2におけるD方向へと流れる空気の量は少ない。このため、正タンブル流を弱めてしまう逆タンブル流は、主として、排気側から遠ざかると共に2つの吸気ポート3同士間の領域に向けて流れる空気(同図中C方向に流れる空気)により形成されることになる。   On the other hand, paying attention to the flow of air flowing out from the intake port 3 to the side opposite to the exhaust side, due to the short distance from the inner peripheral surface 2a of the combustion chamber 2, the inside of the combustion chamber 2 of the intake port 3 is reduced. The amount of air flowing from the region close to the peripheral surface 2a in the direction D in FIG. 2 is small. For this reason, the reverse tumble flow that weakens the normal tumble flow is formed mainly by air that moves away from the exhaust side and flows toward the region between the two intake ports 3 (air that flows in the direction C in the figure). It will be.

このような点に鑑みて、内燃機関1では、図1および図3に示されるように、各吸気ポート3の内周面3aに、排気側から遠ざかると共に2つの吸気ポート3同士の間の領域に向けて流れる空気を案内して変向させる整流突起5が設けられている。すなわち、整流突起5は、図1、図3および図4に示されるように、各吸気ポート3の内周面3aを四等分した際に、排気側から遠く、かつ、2つの吸気ポート3同士間の領域の近くに位置する領域内に形成されている。本実施形態では、各整流突起5は、概ね三角形の平面形状を有しており、吸気ポート3の内周面3aから突出している。そして、三角形状の整流突起5の斜辺部は、吸気ポート3の内周面3aに沿って、2つの吸気ポート3同士の間の領域から遠ざかり、かつ、燃焼室2に向けて(下方に)延在する。   In view of such a point, in the internal combustion engine 1, as shown in FIGS. 1 and 3, the region between the two intake ports 3 and the inner peripheral surface 3a of each intake port 3 is moved away from the exhaust side. A rectifying protrusion 5 is provided for guiding and turning the air flowing toward the head. That is, as shown in FIGS. 1, 3, and 4, the rectifying protrusion 5 is far from the exhaust side when the inner peripheral surface 3 a of each intake port 3 is divided into four equal parts, and the two intake ports 3. It is formed in a region located near the region between them. In the present embodiment, each rectifying protrusion 5 has a generally triangular planar shape and protrudes from the inner peripheral surface 3 a of the intake port 3. The oblique side of the triangular rectifying protrusion 5 is away from the region between the two intake ports 3 along the inner peripheral surface 3a of the intake port 3 and toward the combustion chamber 2 (downward). Extend.

これにより、排気側から遠ざかると共に2つの吸気ポート3同士の間の領域に向けて流れる空気、すなわち、図中C方向への空気は、内周面3aに達すると、整流突起5に衝突し、整流突起5の斜辺部により、2つの吸気ポート3同士の間の領域から遠ざかり、かつ、燃焼室2の内周面2aに近づくように(図中D方向に)案内されることになる。そして、本来であれば逆タンブル流を形成したであろう空気、すなわち、図中C方向の空気流の大部分は、整流突起5によって図中D方向に変向された上で燃焼室2へと流れ込む。従って、内燃機関1では、燃焼室2内で正タンブル流を弱めてしまう逆タンブル流の発生が抑制されると共に、燃焼室2への吸入空気量が十分に確保されることになる。この結果、内燃機関1によれば、燃焼室2内のタンブル流を強化しつつ、燃焼室2への吸入空気量を十分に確保することが可能となり、燃料と空気とを良好に混合させて燃料効率や出力特性を向上させることができる。   Thereby, the air that moves away from the exhaust side and flows toward the region between the two intake ports 3, that is, the air in the direction C in the drawing, collides with the rectifying protrusion 5 when reaching the inner peripheral surface 3 a, The inclined side portion of the rectifying protrusion 5 is guided away from the region between the two intake ports 3 and close to the inner peripheral surface 2a of the combustion chamber 2 (in the direction D in the figure). Then, the air that would otherwise have formed a reverse tumble flow, that is, most of the air flow in the direction C in the figure is redirected by the rectifying protrusion 5 in the direction D to the combustion chamber 2. And flow into. Therefore, in the internal combustion engine 1, the generation of the reverse tumble flow that weakens the normal tumble flow in the combustion chamber 2 is suppressed, and the intake air amount to the combustion chamber 2 is sufficiently secured. As a result, according to the internal combustion engine 1, it is possible to sufficiently secure the amount of intake air into the combustion chamber 2 while strengthening the tumble flow in the combustion chamber 2, and to mix fuel and air well. Fuel efficiency and output characteristics can be improved.

図5は、本発明による内燃機関の他の実施形態を示す概略構成図である。同図に示される内燃機関1Aの整流突起5Aも、図5および図6に示されるように、各吸気ポート3の内周面3aを四等分した際に、排気側から遠く、かつ、2つの吸気ポート3同士間の領域の近くに位置する領域内に形成されている。そして、本実施形態においても、各整流突起5Aは、概ね三角形の平面形状を有しており、吸気ポート3の内周面3aから突出している。そして、本実施形態の整流突起5Aは、吸気ポート3の内周面3aに沿って、2つの吸気ポート3同士の間の領域に近づくと共に、排気側かつ燃焼室2に向けて(下方に)延在する斜辺部を有する。   FIG. 5 is a schematic configuration diagram showing another embodiment of the internal combustion engine according to the present invention. As shown in FIGS. 5 and 6, the rectifying protrusion 5A of the internal combustion engine 1A shown in the figure is also far from the exhaust side when the inner peripheral surface 3a of each intake port 3 is divided into four equal parts, and 2 It is formed in a region located near the region between the two intake ports 3. Also in the present embodiment, each rectifying protrusion 5 </ b> A has a generally triangular planar shape and protrudes from the inner peripheral surface 3 a of the intake port 3. The rectifying protrusion 5A of the present embodiment approaches the area between the two intake ports 3 along the inner peripheral surface 3a of the intake port 3 and faces the exhaust side and the combustion chamber 2 (downward). It has a hypotenuse that extends.

このように構成される内燃機関1Aでは、図6に示されるように、排気側から遠ざかると共に2つの吸気ポート3同士の間の領域に向けて流れる空気、すなわち、図中C方向への空気は、内周面3aに達すると、整流突起5Aに衝突し、整流突起5Aの一方の斜辺部により、排気側に(図中A方向に)案内されることになる。そして、本来であれば逆タンブル流を形成したであろう空気、すなわち、図中C方向の空気流の大部分は、整流突起5Aによって図中A方向に変向された上で燃焼室2へと流れ込む。従って、内燃機関1Aでは、燃焼室2内で正タンブル流を弱めてしまう逆タンブル流の発生が抑制されると共に、燃焼室2への吸入空気量が十分に確保されることになる。この結果、内燃機関1Aによっても、燃焼室2内のタンブル流を強化しつつ、燃焼室2への吸入空気量を十分に確保することが可能となり、燃料と空気とを良好に混合させて燃料効率や出力特性を向上させることができる。   In the internal combustion engine 1A configured as described above, as shown in FIG. 6, the air that moves away from the exhaust side and flows toward the region between the two intake ports 3, that is, the air in the direction C in FIG. When the inner peripheral surface 3a is reached, it collides with the rectifying protrusion 5A and is guided to the exhaust side (in the direction A in the figure) by one oblique side portion of the rectifying protrusion 5A. Then, the air that would otherwise have formed a reverse tumble flow, that is, most of the air flow in the direction C in the figure is redirected to the direction A in the figure by the rectifying protrusion 5A and then to the combustion chamber 2. And flow into. Therefore, in the internal combustion engine 1A, the generation of the reverse tumble flow that weakens the normal tumble flow in the combustion chamber 2 is suppressed, and the intake air amount to the combustion chamber 2 is sufficiently secured. As a result, even with the internal combustion engine 1A, it is possible to secure a sufficient amount of intake air into the combustion chamber 2 while strengthening the tumble flow in the combustion chamber 2, and the fuel and air are mixed well to achieve the fuel. Efficiency and output characteristics can be improved.

本発明による内燃機関を示す概略構成図である。1 is a schematic configuration diagram showing an internal combustion engine according to the present invention. 吸気ポートから燃焼室に吸入される空気の流量分布を説明するための模式図である。It is a schematic diagram for demonstrating the flow volume distribution of the air inhaled from an intake port to a combustion chamber. 本発明による内燃機関を示す概略構成図である。1 is a schematic configuration diagram showing an internal combustion engine according to the present invention. 図1および図3の内燃機関において吸気ポートから燃焼室に吸入される空気の流量分布を説明するための模式図である。FIG. 4 is a schematic diagram for explaining a flow rate distribution of air sucked from an intake port into a combustion chamber in the internal combustion engine of FIGS. 1 and 3. 本発明による内燃機関の他の実施形態を示す概略構成図である。It is a schematic block diagram which shows other embodiment of the internal combustion engine by this invention. 図5の内燃機関において吸気ポートから燃焼室に吸入される空気の流量分布を説明するための模式図である。FIG. 6 is a schematic diagram for explaining a flow rate distribution of air sucked from an intake port into a combustion chamber in the internal combustion engine of FIG.

符号の説明Explanation of symbols

1,1A 内燃機関
2 燃焼室
3 吸気ポート
3a 内周面
4 排気ポート
5,5A 整流突起
Vi 吸気弁
1, 1A Internal combustion engine 2 Combustion chamber 3 Intake port 3a Inner peripheral surface 4 Exhaust port 5, 5A Rectification projection Vi Intake valve

Claims (3)

互いに隣り合う少なくとも2つの吸気ポートと、各吸気ポートを開閉する吸気弁とを有しており、燃焼室内で燃料および空気の混合気を燃焼させて動力を発生する内燃機関において、
前記各吸気ポートの内周面に設けられており、排気側から遠ざかると共に前記2つの吸気ポート間の領域に向けて流れる空気を案内して変向させる整流突起を備えることを特徴とする内燃機関。
In an internal combustion engine that has at least two intake ports adjacent to each other and an intake valve that opens and closes each intake port, and generates power by burning a mixture of fuel and air in a combustion chamber,
An internal combustion engine comprising a rectifying protrusion provided on an inner peripheral surface of each of the intake ports, which guides and changes the direction of air flowing away from the exhaust side and flowing toward a region between the two intake ports. .
前記整流突起は、前記2つの吸気ポート間の領域から遠ざかるように前記空気を案内することを特徴とする請求項1に記載の内燃機関。   2. The internal combustion engine according to claim 1, wherein the rectifying protrusion guides the air away from a region between the two intake ports. 前記整流突起は、前記排気側に前記空気を案内することを特徴とする請求項1に記載の内燃機関。
The internal combustion engine according to claim 1, wherein the rectifying protrusion guides the air to the exhaust side.
JP2003344951A 2003-10-02 2003-10-02 Internal combustion engine Pending JP2005113694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003344951A JP2005113694A (en) 2003-10-02 2003-10-02 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003344951A JP2005113694A (en) 2003-10-02 2003-10-02 Internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005113694A true JP2005113694A (en) 2005-04-28

Family

ID=34538409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003344951A Pending JP2005113694A (en) 2003-10-02 2003-10-02 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005113694A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007989A (en) * 2007-06-27 2009-01-15 Nippon Soken Inc Intake controller of internal combustion engine
JP2009013915A (en) * 2007-07-06 2009-01-22 Fuji Heavy Ind Ltd Combustion chamber structure for engine
WO2015194383A1 (en) * 2014-06-18 2015-12-23 ヤンマー株式会社 Cylinder head, cylinder head assembly, engine, core that molds intake port for cylinder head, and die for molding said core
WO2022176860A1 (en) * 2021-02-18 2022-08-25 本田技研工業株式会社 Intake structure for internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007989A (en) * 2007-06-27 2009-01-15 Nippon Soken Inc Intake controller of internal combustion engine
JP4738386B2 (en) * 2007-06-27 2011-08-03 株式会社日本自動車部品総合研究所 Intake control device for internal combustion engine
JP2009013915A (en) * 2007-07-06 2009-01-22 Fuji Heavy Ind Ltd Combustion chamber structure for engine
WO2015194383A1 (en) * 2014-06-18 2015-12-23 ヤンマー株式会社 Cylinder head, cylinder head assembly, engine, core that molds intake port for cylinder head, and die for molding said core
JP2016003633A (en) * 2014-06-18 2016-01-12 ヤンマー株式会社 Cylinder head, cylinder head assembly, engine, core forming intake port of cylinder head, and mold for forming the core
CN106460720A (en) * 2014-06-18 2017-02-22 洋马株式会社 Cylinder head, cylinder head assembly, engine, core that molds intake port for cylinder head, and die for molding said core
WO2022176860A1 (en) * 2021-02-18 2022-08-25 本田技研工業株式会社 Intake structure for internal combustion engine
JPWO2022176860A1 (en) * 2021-02-18 2022-08-25
JP7403707B2 (en) 2021-02-18 2023-12-22 本田技研工業株式会社 Internal combustion engine intake structure

Similar Documents

Publication Publication Date Title
JP6072284B2 (en) Sub-chamber gas engine
JP4601401B2 (en) Direct injection engine
US6443122B1 (en) Internal combustion engine
US20100037853A1 (en) Intake system for an internal combustion engine
JP6747573B2 (en) Intake port structure of internal combustion engine
JP6327180B2 (en) Internal combustion engine
JP2005113694A (en) Internal combustion engine
JP4692459B2 (en) Intake port shape of internal combustion engine
US6701883B2 (en) Cylinder head for use on a spark-ignition internal combustion engine and such spark-ignition internal combustion engine
US6394056B1 (en) Internal combustion engine
JPS6232328B2 (en)
JP5782978B2 (en) Cylinder head and internal combustion engine
JP7226065B2 (en) Airflow control device for spark ignition type internal combustion engine
JPS5853628A (en) Internal-combustion engine
JP4826578B2 (en) Internal combustion engine
JP2008255860A (en) Intake port for internal combustion engine
CN109973206B (en) Internal combustion engine
JP5765535B2 (en) Fuel injection engine in the intake passage
JP2008019803A (en) Intake device for internal combustion engine
JP3860371B2 (en) Manufacturing method of rectifying member for internal combustion engine
JP2009144535A (en) Combustion chamber structure of spark ignition type internal combustion engine
JPH077544Y2 (en) Engine combustion chamber structure
JPH0972221A (en) Air-intake structure for internal combustion engine
JP2016188624A (en) Internal combustion engine
JP2006009660A (en) Two-point ignition internal combustion engine