WO2022176741A1 - 生分解性不織布及び成型体の製造方法 - Google Patents

生分解性不織布及び成型体の製造方法 Download PDF

Info

Publication number
WO2022176741A1
WO2022176741A1 PCT/JP2022/005162 JP2022005162W WO2022176741A1 WO 2022176741 A1 WO2022176741 A1 WO 2022176741A1 JP 2022005162 W JP2022005162 W JP 2022005162W WO 2022176741 A1 WO2022176741 A1 WO 2022176741A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
biodegradable
less
temperature
molding
Prior art date
Application number
PCT/JP2022/005162
Other languages
English (en)
French (fr)
Inventor
裕也 藤本
隆志 小松
英治 塩田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to US18/276,525 priority Critical patent/US20240102217A1/en
Priority to JP2023500778A priority patent/JP7475535B2/ja
Priority to CA3204737A priority patent/CA3204737A1/en
Priority to KR1020237026092A priority patent/KR20230127321A/ko
Priority to CN202280014862.2A priority patent/CN116867938A/zh
Priority to EP22756062.0A priority patent/EP4296417A4/en
Publication of WO2022176741A1 publication Critical patent/WO2022176741A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/153Mixed yarns or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/4383Composite fibres sea-island
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/558Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/36Matrix structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/041Heat-responsive characteristics thermoplastic; thermosetting
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/12Physical properties biodegradable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to biodegradable nonwoven fabrics.
  • thermoforming biodegradable nonwoven fabrics Conventionally, molded bodies obtained by thermoforming biodegradable nonwoven fabrics are known, and are used in various fields and have a wide range of applications.
  • thermoforming of biodegradable nonwoven fabrics it is difficult to obtain a molded article that does not tear, has little stretching unevenness, and has a beautiful shape that conforms to the shape of the molding die, and furthermore, obtains good dimensional stability as a molded article. is difficult.
  • Cited Documents 1 and 2 disclose a biodegradable molding nonwoven fabric made of polylactic acid or polybutylene succinate.
  • Patent Document 3 discloses a biodegradable long-fiber nonwoven fabric composed of a polylactic acid-based polymer and an aliphatic polyester copolymer.
  • a sea-island type composite continuous fiber in which a polylactic acid-based polymer forms a sea portion and an aliphatic polyester copolymer forms an island portion, and an aliphatic polyester copolymer forming the island portion is formed on the fiber surface.
  • the biodegradable molding nonwoven fabrics described in Patent Documents 1 and 2 are formed by partially thermocompression bonding the constituent fibers to each other.
  • the nonwoven fabric described in Patent Document 3 does not break in thermoforming, has less stretch unevenness, and can be obtained in a short time with a beautiful molded body that conforms to the shape of the mold. are required to have higher dimensional stability of molded products.
  • the problem to be solved by the present invention is to provide biodegradable, uniform moldability, and moldability (with less breakage, fluff, and stretching unevenness, and a beautiful molded body in shape.
  • the object is to provide a biodegradable nonwoven fabric which is excellent in that it can be obtained in a short time) and has good dimensional stability after molding, and to provide a method for producing a molded product.
  • the present inventors have made intensive studies and repeated experiments, focusing on the characteristics of the nonwoven fabric before molding. /m 2 or more and 450 g/m 2 or less, the difference between the main melting point and the crystallization start temperature of the nonwoven fabric is 91°C or more, and the cold crystal enthalpy heat quantity ⁇ H of the nonwoven fabric is 1.0 J/g or more.
  • the inventors have found that uniform moldability and moldability are excellent, and dimensional stability after molding is improved, and have completed the present invention.
  • the present invention is as follows.
  • a nonwoven fabric composed of fibers containing a biodegradable thermoplastic resin, having a basis weight of 10 g/m 2 or more and 450 g/m 2 or less, and a difference of 91 between the melting point and the crystallization initiation temperature of the nonwoven fabric. °C or higher, and the cold crystal enthalpy heat quantity ⁇ H of the nonwoven fabric is 1.0 J/g or higher.
  • the fiber containing the biodegradable thermoplastic resin contains the biodegradable thermoplastic resin as the main component at more than 70% by weight and less than 99.5% by weight, and has a different thermoplasticity from the main component
  • the subcomponent is selected from the group consisting of aliphatic esters, aromatic esters, or (meth)acrylic acid-based monomers, olefins, caprolactones, hydroxyalkanoates, alkylene glycols, dibasic acids, and dialcohols.
  • the biodegradable nonwoven fabric according to [4] above which is either a homopolymer or a copolymer of one or more monomers.
  • the secondary component is an aliphatic ester or an aromatic ester.
  • the manufacturing method according to [12] above, wherein the deformation speed in the thermoforming is 32 mm/sec or more and 320 mm/sec or less.
  • the nonwoven fabric has a difference between the melting point and the crystallization start temperature of 159°C or less, the cold crystal enthalpy heat quantity ⁇ H of 20.0 J/g or less, and 80 by the thermomechanical analysis.
  • the biodegradable nonwoven fabric of the present invention has biodegradability, and is excellent in uniform moldability and moldability (to obtain a molded body with a beautiful shape in a short time with less breakage, fluff, and stretch unevenness), Furthermore, the dimensional stability of the molded product is extremely good.
  • the biodegradable nonwoven fabric of the present embodiment is a nonwoven fabric composed of fibers containing a biodegradable thermoplastic resin, has a basis weight of 10 g/m 2 or more and 450 g/m 2 or less, and has a melting point and crystallization of the nonwoven fabric.
  • the difference from the starting temperature is 91° C. or more, and the cold crystal enthalpy heat quantity ⁇ H of the nonwoven fabric is 1.0 J/g or more.
  • the biodegradable nonwoven fabric of this embodiment is composed of fibers containing a biodegradable thermoplastic resin (hereinafter also referred to as "main component resin”).
  • Biodegradable thermoplastic resins include polylactic acid (PLA) polymer, polyhydroxyalkanoic acid, polyhydroxybutyrate valerate, polyhydroxybutyrate hexanoate, nylon 4, polycaprolactone, polybutylene succinate (PBS ), polybutylene succinate adipate, polybutylene terephthalate succinate, polybutylene succinate carbonate, polybutylene adipate terephthalate, polyethylene succinate, polyethylene terephthalate succinate, polyglycolic acid, and polyvinyl alcohol.
  • a polylactic acid-based polymer is desirable from the viewpoint of spinnability and molding processability.
  • Polylactic acid-based polymers include polymers of D-lactic acid, polymers of L-lactic acid, copolymers of D-lactic acid and L-lactic acid, D-lactic acid and hydroxy A polymer selected from the group consisting of a copolymer with carboxylic acid, a copolymer of L-lactic acid and hydroxycarboxylic acid, and a copolymer of D-lactic acid, L-lactic acid and hydroxycarboxylic acid, or the polymer Blends of two or more combined are included.
  • the D/L ratio of the polylactic acid polymer can be set within a range that does not impair the spinnability and nonwoven fabric properties. 10%, more preferably 0.1 to 6%. When the D-form ratio is within these ranges, the spinnability is good, a nonwoven fabric can be stably obtained, and the melting point, crystallinity, etc. are within appropriate ranges, making it easy to obtain a nonwoven fabric with desired properties.
  • the melt flow rate (MFR) of the polylactic acid polymer is preferably 20-120 g/10 minutes at 210°C, more preferably 30-70 g/10 minutes. If the MFR at 210° C. is 20 g/10 minutes or more, the melt viscosity is appropriate, and the fibers are easily thinned in the spinning process, resulting in good spinnability. On the other hand, when the MFR at 210° C. is 120 g/10 minutes or less, the melt viscosity is appropriate, so that single filament breakage is less likely to occur in the spinning process, resulting in good spinnability.
  • the method for producing the biodegradable nonwoven fabric of the present embodiment is not limited, known spunbonding, meltblowing, airlaid, carding, papermaking, and the like can be employed.
  • the biodegradable nonwoven fabric of this embodiment is preferably integrated by adhesion, and embossing, thermal bonding, columnar flow entangling, mechanical entangling, needle punching, etc. can be used as the bonding method.
  • a long-fiber nonwoven fabric is preferable because it can be efficiently produced and can suppress fluffing after molding, and more preferably manufactured by a spunbond method.
  • the resin is melted by heating and ejected from a spinneret, the spun yarn obtained is cooled using a known cooling device, and drawn and thinned with a suction device such as an air sucker. Subsequently, after the yarn group discharged from the suction device is spread, it is deposited on a conveyor to form a web. Then, the web formed on the conveyor is partially thermocompressed using a partial thermocompression bonding device such as a heated embossing roll to obtain a spunbond nonwoven fabric.
  • the nonwoven fabric obtained by the spunbond method has physical properties such as high fabric strength and no dropout of short fibers due to breakage of the bonding portion, and is low in cost and high in productivity.
  • the biodegradable nonwoven fabric of this embodiment may be laminated with other nonwoven fabrics, for example, it may be one layer of multilayer laminated nonwoven fabrics such as SS, SMS, SMMS, and SMSM.
  • S means a spunbond long-fiber nonwoven fabric
  • M means a meltblown ultrafine nonwoven fabric.
  • you may laminate
  • the shape of the fibers constituting the biodegradable nonwoven fabric of the present embodiment is not particularly limited, but irregular cross-sections such as round, flat, C-shaped, Y-shaped, and V-shaped are used, preferably with a round cross-section. Further, a sea-island structure, a core-sheath structure, or a split fiber structure may be used.
  • Fibers constituting the biodegradable nonwoven fabric of the present embodiment depending on the purpose, other resins, copolymers other than aliphatic polyester copolymers, flame retardants, inorganic fillers, softeners, plasticizers, pigments, It may further contain one or more antistatic agents.
  • the biodegradable nonwoven fabric of this embodiment has a basis weight of 10 g/m 2 or more and 450 g/m 2 or less, preferably 20 to 400 g/m 2 , more preferably 20 to 250 g/m 2 . If the basis weight is 10 g/m 2 or more, the strength will be sufficient. On the other hand, if it is 450 g/m 2 or less, heat will be sufficiently transferred to the nonwoven fabric during molding, and a molded product with high dimensional stability will be easily obtained.
  • the difference between the melting point of the nonwoven fabric and the crystallization start temperature of the nonwoven fabric is 91°C or more.
  • the difference between the melting point of the nonwoven fabric and the crystallization initiation temperature of the nonwoven fabric is preferably 95° C. or higher, more preferably 103° C. or higher, and preferably 160° C. or lower. If the temperature difference is less than 91° C., crystallization will not proceed sufficiently even if the temperature during molding is increased, and a molded product with high dimensional stability will not be obtained.
  • the cold crystal enthalpy heat quantity ⁇ H of the biodegradable nonwoven fabric of the present embodiment is 1.0 J/g or more, preferably 1.2 J/g or more, more preferably 3.3 J/g or more, and still more preferably 8.6 J/g.
  • the cold crystal enthalpy heat quantity ⁇ H is 1.0 J/g or more, crystallization proceeds sufficiently in the molding process, and a molded product with high dimensional stability can be easily obtained.
  • the cold crystal enthalpy heat quantity is preferably 20.0 J/g or less, more preferably 17.5 J/g or less. , and more preferably 15.0 or less.
  • the biodegradable nonwoven fabric of the present embodiment preferably has a dimensional change rate in the MD direction at 80 ° C. to 140 ° C. by thermomechanical analysis of less than ⁇ 4.0%, more preferably ⁇ 4.5% or less, further preferably ⁇ 5.0% or less.
  • the fact that the dimensional change rate of the nonwoven fabric is small, that is, the nonwoven fabric tends to shrink means that the nonwoven fabric has a sufficient amorphous portion. Moldability and dimensional stability of the molded product can be enhanced by promoting crystallization by heat and stretching in thermoforming.
  • the fibers constituting the biodegradable nonwoven fabric of the present embodiment may contain thermoplastic resins as subcomponents (hereinafter also referred to as "subcomponent resins") in addition to the biodegradable thermoplastic resins.
  • the content of the resin as the secondary component is preferably more than 0% by weight and 30% by weight or less, more preferably 0.5 to 30% by weight, and even more preferably, when the total amount of the resin is 100% by weight. 3-27% by weight, most preferably 5-25% by weight. If the amount added is 0.5% by weight or more, the crystallization start temperature of the nonwoven fabric can be lowered, and crystallization can be promoted at a lower temperature during molding. On the other hand, if the amount added is 30% by weight or less, the crystallization is not suppressed and the crystallization sufficiently progresses during molding.
  • the subcomponent resin is selected from the group consisting of aliphatic esters, aromatic esters, or (meth)acrylic acid monomers, olefins, caprolactones, hydroxyalkanoates, alkylene glycols, dibasic acids, and dialcohols. homopolymers or copolymers of one or more monomers. Furthermore, a blend of a plurality of individual biodegradable polymers selected from these can be used. From the viewpoint of compatibility with biodegradable thermoplastic resins and spinnability, aliphatic esters and aromatic esters are preferred, and specifically polybutylene succinate, polybutylene adipate terephthalate, and polybutylene succinate adipate are preferred.
  • the MFR of the resin as an accessory component is preferably 100 g/10 min or less, more preferably 20 to 80 g/10 min, still more preferably 30 to 70 g/10 min, at which the drawability in the spinning process is good.
  • the melt flow rate ratio of the main component resin and the subcomponent resin is preferably 0.2 ⁇ [melt flow rate of the subcomponent resin/melt flow rate of the main component resin] ⁇ 1.5, and more preferably. is between 0.3 and 1.4. When the melt flow ratio is within these ranges, the spinnability is good, and the dispersibility of the subcomponent resin is good, so that stable thermal adhesiveness can be obtained.
  • the fibers constituting the biodegradable nonwoven fabric of the present embodiment are preferably sea-island fibers in which the main component resin is the sea and the subcomponent resin is islands, since they are highly effective in lowering the crystallization start temperature.
  • thermocompression bonding conditions When thermocompression bonding is performed in the production of the biodegradable nonwoven fabric of the present embodiment, a pair of embossing rolls having an uneven pattern on at least one surface is used, and the roll temperature is preferably 25 to 85 ° C., more preferably 40 to 70. At ° C., the linear pressure is preferably 5 to 100 N/mm, more preferably 20 to 70 N/mm, and the compression area ratio is preferably 4 to 50%, more preferably 8 to 40%. be able to. By performing thermocompression bonding in an appropriate range, the nonwoven fabric can be formed so that the adhesion does not come off during molding, and the crystallization is sufficiently promoted by heating for a short period of time to obtain a molded article with good dimensional stability.
  • constant-length heat setting may be performed after embossing.
  • the non-woven fabric web immediately after spinning is thermally compressed and then heated under tension to obtain a non-woven fabric with good surface properties and thermal elongation. It is preferable for obtaining a molded body.
  • a general method may be used, such as hot air drying, pin tenter drying, hot plate, calendering, felt calendering, air-through processing, heat press, and the like.
  • the temperature range for fixed-length heat setting is not particularly limited as long as the resin constituting the nonwoven fabric does not adhere to the device and the fibers of the nonwoven fabric are appropriately bonded, but is preferably 50. °C to 95°C, more preferably 70°C to 90°C, still more preferably 70°C to 80°C. If the temperature at which the constant length heat setting is performed is 95° C. or less, the oriented crystallization of the nonwoven fabric can be moderately suppressed, the crystallization start temperature can be lowered, and the enthalpy heat quantity ⁇ H of the cold crystal peak can be increased. can. Moreover, if the temperature at which the constant-length heat setting is performed is 50° C. or higher, the effect of the above-described constant-length heat setting can be sufficiently obtained.
  • the biodegradable nonwoven fabric of the present embodiment can have a low crystallization initiation temperature under specific aging conditions, and can suppress heat shrinkage during molding (particularly during preheating).
  • a specific aging condition storage in an atmosphere of 40° C. for 10 days or more facilitates obtaining the above effects.
  • a molded body obtained by thermoforming the biodegradable nonwoven fabric of this embodiment will be described below.
  • the biodegradable nonwoven fabric of this embodiment can be processed by thermoforming to form a molded body.
  • shape of the molded body There are no particular restrictions on the shape of the molded body, and it can be selected according to the purpose of use, such as semicircular, cylindrical, elliptical, triangular, and square. If desired, a molding die should be appropriately selected so that the area of the nonwoven fabric before and after molding becomes larger.
  • the method for molding the biodegradable nonwoven fabric of the present embodiment is not particularly limited as long as it includes a thermoforming step, but a preheating step before thermoforming and a shape retention step for maintaining the volume after thermoforming are performed. may contain.
  • a preheating step before thermoforming the temperature of the nonwoven fabric immediately before forming can be controlled, and the characteristic values of the nonwoven fabric, such as storage elastic modulus, can be made suitable for forming.
  • the temperature range of the nonwoven fabric just before molding is preferably 30 to 70°C, more preferably 40 to 60°C, still more preferably 40 to 50°C. When the temperature of the non-woven fabric is 30° C.
  • the non-woven fabric becomes sufficiently soft and conforms well to the molding die during molding, so molding defects such as bag breakage and uneven molding are less likely to occur. Further, if the temperature immediately before molding is 70° C. or less, the nonwoven fabric does not undergo heat shrinkage and is easy to mold.
  • the biodegradable nonwoven fabric of the present embodiment contains a polylactic acid-based polymer
  • the crystallization speed is very slow, so the shrinkage of the molded product due to residual stress when the nonwoven fabric is stretched during molding precedes the crystallization of the nonwoven fabric. This tends to result in a compact having a small volume. Therefore, in order to obtain the effect of rapidly solidifying the molded body and retaining its shape, a molded body having a large capacity can be obtained by including a shape retaining step after molding.
  • the degree of shaping of the biodegradable nonwoven fabric of this embodiment is represented by a shaping index.
  • the molding index in molding the biodegradable nonwoven fabric of the present embodiment is preferably 1.1 or more, more preferably 1.1 or more and 20 or less, still more preferably 1.5 to 10, and most preferably 2.5 to 6. be.
  • a high forming index indicates that the nonwoven has been stretched significantly.
  • a low forming index indicates low elongation of the nonwoven. Since the biodegradable nonwoven fabric of the embodiment has a high elongation, a molded product with a high elongation molding index can be produced. On the other hand, if the molding index is 20 or less, it can be molded without breaking the bag, and if the molding index is 1.1 or more, it can have an appropriate size when filling the contents into the container.
  • the deformation speed is preferably 32 mm/sec or more, more preferably 40 mm/sec or more, and still more preferably 40 mm/sec or more, from the viewpoint of improving both the dimensional stability of the molded product and productivity. is 50 mm/sec or more, most preferably 105 mm/sec or more, and preferably 320 mm/sec or less, more preferably 140 mm/sec or less.
  • Crystallization start temperature (°C) Time-division transmission wide-angle X-ray scattering (WAXS) measurement was used to measure the change in crystallinity of the nonwoven fabric sample at intervals of 20 seconds, and when the crystallinity increased by 3% or more relative to the crystallinity at room temperature (For example, when the crystallinity at room temperature is 20.0%, the temperature at which the crystallinity reaches 20.6%) was taken as the crystallization start temperature. When the secondary component resin is blended and the crystallization increases in two steps, the temperature derived from the main component resin is adopted.
  • the measurement equipment and conditions were as follows.
  • Apparatus NANOPIX manufactured by Rigaku Corporation X-ray wavelength: 0.154 nm
  • Optical system Point collimation (1st: 1.40mm ⁇ , 2nd: open, guard: 0.85mm ⁇ )
  • Detector HyPix-6000 (two-dimensional semiconductor detector)
  • Camera length 122.2mm
  • Exposure time/measurement cycle 10 seconds/20 seconds
  • Environment around the sample cell Vacuum Sample (nonwoven fabric sample) heating conditions: Start heating the furnace from room temperature and keep it at 30°C for 5 minutes to stabilize the temperature inside the cell. After that, the temperature was raised at 1°C/min (maximum temperature 150°C).
  • the temperature was started to rise, and immediately after that, the time division measurement was started.
  • the following formula is used for the scattering pattern I (2 ⁇ , ⁇ ) measured by the two-dimensional detector: ⁇ wherein ⁇ : Bragg angle, ⁇ : azimuth angle, P: polarization factor. ⁇
  • Bragg angle
  • azimuth angle
  • P polarization factor
  • the transmittance of the sample was not measured in order to accurately capture the change in crystallinity due to the temperature change and to shorten the measurement period. Therefore, empty cell scattering correction was not performed.
  • the temperature history in the cell was measured in advance using an empty cell and a thermocouple, and when the temperature was raised at 1°C/min, the temperature change in the cell did not differ from the set value in the furnace. It was confirmed. For each sample, the change in crystallinity of the biodegradable thermoplastic resin with temperature change was calculated.
  • Dimensional change rate (%) dimensional change ( ⁇ m) / ⁇ grasping length (mm) ⁇ 1000 ⁇ ⁇ 100
  • R/Ave Uniform moldability
  • a nonwoven fabric sample is set in a molding machine having 10 rows of molding dies in the width direction, the temperature of the nonwoven fabric is set to 50 ° C. with hot air, and a cylindrical molding mold (4.4 cm in diameter, 3.2 cm in height) at 120 ° C. is used.
  • Press molding is performed by setting the time from contacting the mold to the nonwoven fabric to reaching a predetermined depth at 1.0 seconds, and heat-sealing the PLA sheet as a lid material for sealing and molding.
  • 100 bodies were produced. The bottom portion of the molded body obtained was cut out in 1 cm portions, and the weight was measured.
  • the value of R/Ave is: R (maximum weight of 100 sheets - minimum value) / Ave (average weight of 100 sheets) is a value defined by
  • a molded product having a molding index of 1.9 or more was obtained with a mold having a height of 1.3 cm, and a molding index of 3.4 or more was obtained with a mold having a height of 3.2 cm. Furthermore, the number of broken bags is 1 or less and the number of surface fluffs is 3 or less out of 100 molded products.
  • A molded body having a molding index of 1.9 or more was obtained with a mold having a height of 1.3 cm, and a molding index of 3.4 or more was obtained with a mold having a height of 3.2 cm. However, the number of broken bags is 2 or more and 5 or less, or the number of surface fluffs is 4 or more and 9 or less per 100 molded bodies.
  • A molded product having a molding index of 1.9 or more was obtained with a mold having a height of 1.3 cm, and a molding index of 3.4 or more was obtained with a mold having a height of 3.2 cm.
  • x There is a problem of one or more of 10 or more fluffs on the surface of the molded body, the surface of which is uneven, the surface of which is stretched.
  • x Broken and no molded body was obtained.
  • Example 1 10% by weight of polybutylene succinate (melting point 110°C) is added to polylactic acid (REVODE manufactured by Zhejiang Haizheng Biological Co., Ltd.) having an MFR value of 15 g/10 minutes at a temperature of 210°C, melted and kneaded with a single screw extruder. Then, by the spunbond method, the filament group was extruded toward the moving collection surface at a discharge rate of 0.9 g / min ⁇ Hole, a spinning temperature of 230 ° C., a pulling force of 93 mN / m, and a biodegradable long fiber web (circular cross section) was prepared.
  • polylactic acid REVODE manufactured by Zhejiang Haizheng Biological Co., Ltd.
  • the pressure bonding area ratio is 14%
  • the temperature is 55 ° C. for both the upper and lower rolls
  • the roll linear pressure is 40 N / mm. /m 2 of biodegradable nonwoven fabric was obtained.
  • Example 2 A biodegradable nonwoven fabric was produced in the same manner as in Example 1, except that the polylactic acid was changed to polylactic acid having an MFR value of 15 g/10 min at a temperature of 210°C (Ingeo manufactured by Nature Works).
  • Examples 3 to 7 A biodegradable nonwoven fabric was produced in the same manner as in Example 1, except that the ejection amount, embossing pressure, and line speed were changed so as to achieve the basis weight shown in Table 1 below.
  • Example 8 to 12 A biodegradable nonwoven fabric was produced in the same manner as in Example 5, except that the traction force and the compression area ratio (embossing ratio) were changed.
  • Biodegradable nonwoven fabrics were produced in the same manner as in Example 5, except that the roll temperature (embossing temperature) during thermocompression bonding was 40, 70, and 85°C.
  • Example 16 to 21 Biodegradable nonwoven fabrics were produced in the same manner as in Example 5, except that the polybutylene succinate (PBS) addition rate was 1, 3, 5, 15, 20 and 30 wt%.
  • PBS polybutylene succinate
  • Example 22 A biodegradable nonwoven fabric was produced in the same manner as in Example 5, except that polybutylene succinate adipate (PBSA) was used as the subcomponent resin.
  • PBSA polybutylene succinate adipate
  • Example 23 A biodegradable nonwoven fabric was produced in the same manner as in Example 5, except that polybutylene adipate terephthalate (PBAT) was used as the subcomponent resin.
  • PBAT polybutylene adipate terephthalate
  • Example 24 A biodegradable nonwoven fabric was produced in the same manner as in Example 5, except that polycaprolactone (PCL) was used as the subcomponent resin.
  • PCL polycaprolactone
  • Example 25 A biodegradable nonwoven fabric was produced in the same manner as in Example 5, except that polyhydroxybutyrate hexanoate (PHBH) was used as the subcomponent resin.
  • PHBH polyhydroxybutyrate hexanoate
  • Example 26 A biodegradable nonwoven fabric was produced in the same manner as in Example 5, except that an ethylene-ethyl acrylate copolymer (EEA) was used as the subcomponent resin.
  • ESA ethylene-ethyl acrylate copolymer
  • thermocompression bonding area ratio (embossing rate) during thermocompression bonding was 4, 8, 10, and 40%.
  • Examples 31-33 A biodegradable long-fiber nonwoven fabric was produced in the same manner as in Example 5, except that the embossed pattern during thermocompression bonding was a pin, oval, or flat pattern.
  • Examples 34-36 A biodegradable nonwoven fabric was produced in the same manner as in Example 5, except that the PBS addition rate was 0% and the traction force was changed.
  • Example 37 A biodegradable nonwoven fabric is produced in the same manner as in Example 5 except that the main component resin is nylon 4 (PA4) with an MFR value of 25 g / 10 minutes at a temperature of 210 ° C. and the embossing temperature is changed to 63 ° C. did.
  • PA4 nylon 4
  • Example 38 The procedure was the same as in Example 5 except that the main component resin was polyglycolic acid (PGA) with an MFR value of 20 g/10 minutes at a temperature of 210 ° C., the spinning temperature was changed to 260 ° C., and the embossing temperature was changed to 48 ° C. to produce a biodegradable nonwoven fabric.
  • PGA polyglycolic acid
  • Example 39 Polylactic acid and polybutylene succinate are melted and kneaded in separate extruders, and a sheath-core type spinneret is used as the spinneret, except that polylactic acid is used as the core component and polybutylene succinate is used as the sheath component. , in the same manner as in Example 5, to produce a biodegradable nonwoven fabric.
  • Examples 40-43 In order to confirm the moldability and the like when thermoforming is performed in a short time, the biodegradable nonwoven fabric of Example 5 was used, and the press temperatures during molding were set to 120 ° C., 120 ° C., 140 ° C., and 140 ° C., respectively. Molded bodies were produced at respective times of 0.8 seconds, 0.6 seconds, 0.3 seconds, and 0.1 seconds, and various evaluations were performed.
  • Example 44 As staple fibers, raw cotton of polylactic acid having a single fiber diameter of 30 ⁇ m and containing 10 wt % of polybutylene succinate was used, which was passed through a carding machine to prepare a non-woven cross web having a basis weight of 150 g/m 2 . Next, the produced web is placed on a 100-mesh wire mesh, and subjected to high-pressure liquid flow treatment using a high-pressure liquid flow treatment facility in which injection holes with a hole diameter of 0.08 mm are arranged with a hole feeling of 0.7 mm, and the web is integrated. turned into The liquid flow was jetted once at a water pressure of 60 kg/cm 2 and once at a water pressure of 120 kg/cm 2 . A water pressure of 120 kg/cm 2 was applied once from the opposite side. After that, the obtained web was dried at 100° C. with a hot air dryer to remove excess moisture, and a biodegradable nonwoven fabric was obtained.
  • Example 45 For the nonwoven fabric obtained in Example 44, a pair of embossing rolls having an uneven pattern on one roll surface was used, and the pressure bonding area ratio was 14%, the temperature of both the upper and lower rolls was 55 ° C., and the roll linear pressure was 40 N / mm to obtain a biodegradable nonwoven fabric having a basis weight of 150 g/m 2 .
  • Example 46 The nonwoven fabric obtained in Example 44 was needle-punched at a needle density of 300/cm 2 and entangled with a fiber web to obtain a biodegradable nonwoven fabric with a basis weight of 150 g/m 2 .
  • thermo compression bonding was performed at a compression area ratio of 14%, a temperature of both the upper and lower rolls of 45° C., and a linear roll pressure of 30 N/mm.
  • this temporary press-bonded web was stored at 30° C. for 72 hours, and then heat-treated with a felt calender (drum diameter 2,500 mm, temperature 100° C., processing speed 10 m/min) to obtain a biodegradable nonwoven fabric (basis weight 150 g /m 2 , fiber diameter 30 ⁇ m).
  • the biodegradable nonwoven fabric of the present invention is biodegradable and has excellent molding uniformity and moldability. It can be suitably used in a wide range of fields such as transport trays, fruit and vegetable trays, food containers, seedling pods, and filter applications.
  • the biodegradable nonwoven fabric of the present invention has high elongation and can be used to form a container having a complicated shape. Furthermore, since the heat shrinkage of the molded product can be suppressed, it can be suitably used in fields where designability as a container is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Artificial Filaments (AREA)

Abstract

生分解性を有するとともに、均一成型性、及び、成形性(破れ・毛羽・延伸斑が少なく、形のきれいな成型体をより短時間で得ること)に優れ、また、成型後の寸法安定性が良好となる生分解不織布及び成型体の製造方法を提供する。本発明に係る生分解性不織布は、生分解性熱可塑性樹脂を含む繊維から構成される不織布であって、目付が10g/m2以上450g/m2以下であり、該不織布の融点と結晶化開始温度との差が91℃以上であり、かつ、該不織布の冷結晶エンタルピー熱量ΔHが1.0J/g以上であることを特徴とする。

Description

生分解性不織布及び成型体の製造方法
 本発明は生分解性不織布に関する。
 従来、生分解性不織布を熱成形して得られる成型体が知られており、各種分野に使用され、広く用途が展開されている。しかし、生分解性不織布の熱成型において、破れが無く、延伸斑が少なく、成型金型の形に沿った形のきれいな成型体を得ること、さらには成型体として良好な寸法安定性を得ることは難しい。
 以下の引用文献1と引用文献2には、ポリ乳酸又はポリブチレンサクシネートからなる生分解性成型用不織布が開示されている。
 また、以下の特許文献3には、ポリ乳酸系重合体と脂肪族ポリエステル共重合体から成る生分解性長繊維不織布が開示されている。特許文献3では、ポリ乳酸系重合体が海部を、脂肪族ポリエステル共重合体が島部を形成する海島型複合長繊維を構成し、島部を形成する脂肪族ポリエステル共重合体を繊維表面に露出させることにより、熱接着性を向上させ、成型性のある不織布を得ている。
特開平9-95848号公報 特開2000-136478号公報 国際公開2018/070490号
 しかしながら、特許文献1及び2に記載された生分解性成型用不織布は、構成繊維同士が部分的に熱圧着されて形成されていることから、繊維同士の結着が強すぎて、破袋せずに熱成形することが難しく、また、そもそも成型深さが深い成型体を得ることが難しい。
 また、特許文献3に記載された不織布は、熱成型において破れが無く、延伸斑が少なく、成型金型の形に沿った形のきれいな成型体をより短時間で得られるが、特定の用途においては、より高い成型体の寸法安定性が求められている。
 かかる従来技術の問題に鑑み、本発明が解決しようとする課題は、生分解性を有するとともに、均一成型性、及び、成形性(破れ・毛羽・延伸斑が少なく、形のきれいな成型体をより短時間で得ること)に優れ、また、成型後の寸法安定性が良好となる生分解不織布、及び成型体の製造方法を提供することである。
 本発明者らは、上記課題を解決すべく、鋭意検討し実験を重ねた結果、成型前の不織布の特性に注目し、生分解性熱可塑性樹脂を含む繊維から構成され、不織布の目付を10g/m2以上450g/m2以下の範囲にし、不織布の主成融点と結晶化開始温度との差を91℃以上とし、かつ、不織布の冷結晶エンタルピー熱量ΔHを1.0J/g以上とすることによって、均一成型性、及び、成形性に優れ、さらに成型後の寸法安定性が良好となることを見出し、本発明を完成するに至ったものである。
 すなわち、本発明は以下の通りのものである。
 [1]生分解性熱可塑性樹脂を含む繊維から構成される不織布であって、目付が10g/m2以上450g/m2以下であり、該不織布の融点と結晶化開始温度との差が91℃以上であり、かつ、該不織布の冷結晶エンタルピー熱量ΔHが1.0J/g以上であることを特徴とする、生分解性不織布。
 [2]前記不織布の融点と結晶化開始温度との差が159℃以下である、前記[1]に記載の生分解性不織布。
 [3]前記冷結晶エンタルピー熱量ΔHが20.0J/g以下である、前記[1]又は[2]に記載の生分解性不織布。
 [4]前記生分解性熱可塑性樹脂を含む繊維が、該生分解性熱可塑性樹脂を主成分として70重量%超99.5重量%未満で含有し、かつ、該主成分とは異なる熱可塑性樹脂を副成分として0.5重量%以上30重量%以下で含有する、前記[1]~[3]のいずれかに記載の生分解性不織布。
 [5]前記副成分が、脂肪族エステル、芳香族エステル、又は、(メタ)アクリル酸系モノマー、オレフィン、カプロラクトン、ヒドロキシアルカノエート、アルキレングリコール、二塩基酸、及びジアルコールからなる群より選択される1以上のモノマーの単独重合体若しくは共重合体のいずれかである、前記[4]に記載の生分解性不織布。
 [6]前記副成分が、脂肪族エステル、又は、芳香族エステルである、前記[5]に記載の生分解性不織布。
 [7]前記副成分が、ポリブチレンサクシネート、ポリブチレンアジペートテレフタレート、又は、ポリブチレンサクシネートアジペートのいずれか1つを含む、前記[6]に記載の生分解性不織布。
 [8]前記生分解性熱可塑性樹脂を含む繊維が、前記主成分が海、前記副成分が島となる海島繊維である、前記[4]~[7]のいずれかに記載の生分解性不織布。
 [9]前記不織布の圧着面積率が8%以上である、前記[1]~[8]のいずれかに記載の生分解性不織布。
 [10]熱機械分析による80℃~140℃におけるMD方向の寸法変化率が、-4.0%未満である、前記[1]~[9]のいずれかに記載の生分解性不織布。
 [11]スパンボンド不織布である、前記[1]~[10]のいずれかに記載の生分解性不織布。
 [12]前記[1]~[11]のいずれかに記載の生分解性不織布を熱成形する工程を含む、成型体の製造方法。
 [13]前記熱成形における変形速度が32mm/秒以上320mm/秒以下である、前記[12]に記載の製造方法。
 [14]前記熱成形における変形速度が105mm/秒以上140mm/秒以下である、前記[12]に記載の製造方法。
 [15]前記不織布が、前記不織布の融点と結晶化開始温度との差が159℃以下であり、前記冷結晶エンタルピー熱量ΔHが20.0J/g以下であり、かつ、前記熱機械分析による80℃~140℃におけるMD方向の寸法変化率が-4.0%未満であるスパンボンド不織布である、前記[12]又は[14]に記載の製造方法。
 本発明の生分解性不織布は、生分解性を有するとともに、均一成型性、及び、成形性(破れ・毛羽・延伸斑が少なく、形のきれいな成型体をより短時間で得ること)に優れ、さらに成型体の寸法安定性が極めて良好である。
 以下、本発明の実施形態について詳細に説明する。
 本実施形態の生分解性不織布は、生分解性熱可塑性樹脂を含む繊維から構成される不織布であって、目付が10g/m2以上450g/m2以下であり、該不織布の融点と結晶化開始温度との差が91℃以上であり、かつ、該不織布の冷結晶エンタルピー熱量ΔHが1.0J/g以上であることを特徴とする。
 本実施形態の生分解性不織布は、生分解性熱可塑性樹脂(以下、「主成分の樹脂」ともいう。)を含む繊維から構成される。生分解性熱可塑性樹脂としては、ポリ乳酸(PLA)系重合体、ポリヒドロキシアルカン酸、ポリヒドロキシブチレートバリレート、ポリヒドロキシブチレートヘキサノエート、ナイロン4、ポリカプロラクトン、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート、ポリブチレンテレフタレートサクシネート、ポリブチレンサクシネートカーボネート、ポリブチレンアジペートテレフタレート、ポリエチレンサクシネート、ポリエチレンテレフタレートサクシネート、ポリグリコール酸、及びポリビニルアルコールが挙げられる。紡糸性、成型加工性の観点からポリ乳酸系重合体が望ましい。
 ポリ乳酸系重合体(以下、「PLA」ともいう。)としては、D-乳酸の重合体、L-乳酸の重合体、D-乳酸とL-乳酸との共重合体、D-乳酸とヒドロキシカルボン酸との共重合体、L-乳酸とヒドロキシカルボン酸との共重合体、及びD-乳酸とL-乳酸とヒドロキシカルボン酸との共重合体からなる群から選ばれる重合体、又は該重合体の2種以上のブレンド体が挙げられる。ポリ乳酸重合体のD/L比は、紡糸性、不織布特性を阻害しない範囲で設定できるが、全ポリ乳酸重量中のD体比率は、好ましくは0~15%、より好ましくは0.1~10%、さらに好ましくは0.1~6%である。D体比率がこれらの範囲内であると、紡糸性がよく、安定して不織布を得ることができ、また、融点、結晶性等が適当な範囲となり、所望の特性の不織布を得やすい。
 ポリ乳酸系重合体のメルトフローレート(MFR)は、210℃で20~120g/10分であることが好ましく、より好ましくは30~70g/10分である。210℃でのMFRが20g/10分以上であれば、溶融粘性が適切であり、紡糸工程において繊維の細化が起こり易いため紡糸性が良好となる。他方、210℃でのMFRが120g/10分以下であると、溶融粘性が適切なため、紡糸工程において単糸切れが発生することが少なく、紡糸性が良好となる。
 本実施形態の生分解性不織布の製造方法は限定されないが、公知のスパンボンド法、メルトブロー法、エアレイド法、カード法、抄造法などを採用することができる。本実施形態の生分解性不織布は接着により一体化されていることが好ましく、接着方法としては、エンボス加工、サーマルボンド、柱状流交絡、機械交絡、ニードルパンチ等を用いることができる。効率よく生産でき、成型した後の毛羽立ち等も抑制できることから、長繊維不織布が好ましく、更にはスパンボンド法にて製造することが好ましい。
 スパンボンド法を用いる場合、樹脂を加熱溶融して紡糸口金から吐出させ、得られた紡出糸条を公知の冷却装置を用いて冷却し、エアーサッカー等の吸引装置にて牽引細化する。引き続き、吸引装置から排出された糸条群を開繊させた後、コンベア上に堆積させてウェブとする。次いで、このコンベア上に形成されたウェブに加熱されたエンボスロール等の部分熱圧着装置を用いて部分的に熱圧着を施すことにより、スパンボンド不織布が得られる。スパンボンド法で得られる不織布は、布強度が強く、かつ、ボンディング部の破損による短繊維の脱落がない等の物性上の特徴を有しており、また、低コストで生産性が高い。
 本実施形態の生分解性不織布は、他の不織布が積層されていてもよく、例えば、SS、SMS、SMMS、SMSMなどの多層積層不織布の内の一層であってもよい。ここで、Sは、スパンボンド法の長繊維不織布、Mは、メルトブロウン法の極細不織布を意味する。また、生分解性不織布を基材として、短繊維不織布層を積層してもよい。
 本実施形態の生分解性不織布を構成する繊維の形状は、特に限定しないが、丸型、扁平型、C型、Y型、V型などの異形断面などが用いられ、好ましくは丸型断面であり、さらに、海島構造や芯鞘構造、割繊構造であってもよい。
 本実施形態の生分解性不織布を構成する繊維は、目的に応じて、他の樹脂、脂肪族ポリエステル共重合体以外の共重合体、難燃剤、無機充填剤、柔軟剤、可塑剤、顔料、耐電防止剤などを、さらに1種又は2種以上含有してもよい。
 本実施形態の生分解性不織布の目付は10g/m2以上450g/m2以下であり、好ましくは20~400g/m2であり、より好ましくは20~250g/m2である。目付が10g/m2以上であれば、強度が十分となり、他方、450g/m2以下であれば、成型加工時に不織布に十分に熱が伝わり、寸法安定性の高い成型体が得られやすい。
 本実施形態の生分解性不織布は、前記不織布の融点と、前記不織布の結晶化開始温度との差が91℃以上である。前記不織布の融点と、前記不織布の結晶化開始温度との差は、好ましくは95℃以上であり、さらに好ましくは103℃以上であり、また、好ましくは160℃以下である。この温度差が91℃未満であると、成型加工時の温度を上げても充分に結晶化が進まず、寸法安定性の高い成型体を得られない。
 本実施形態の生分解性不織布の冷結晶エンタルピー熱量ΔHは1.0J/g以上であり、好ましくは1.2J/g以上であり、より好ましくは3.3J/g以上であり、さらに好ましくは8.6J/gである。冷結晶エンタルピー熱量ΔHが1.0J/g以上であると、成形プロセスにおいて充分に結晶化が進行し、寸法安定性の高い成形体が得られやすい。また、成型後の非晶部を少なくして寸法安定性の高い成型体を得るという観点から、冷結晶エンタルピー熱量は20.0J/g以下が好ましく、より好ましくは17.5J/g以下であり、さらに好ましくは15.0以下である。
 前記不織布の融点と結晶化開始温度との差を91℃以上にする具体的な方法としては、例えば、生分解性熱可塑性樹脂の種類、副成分の熱可塑性樹脂の混合(副成分の熱可塑性樹脂の種類、主成分の樹脂との混合比率、等)、紡糸条件(樹脂温度、吐出量、糸条の牽引力、冷却等)、熱圧着条件(ロール温度、圧力、速度、エンボス柄等)、定長熱セット条件、エージングの条件(保管条件等)を調整することが挙げられる。以下、上記各種条件の詳細を説明する。尚、前記不織布の冷結晶ピークのエンタルピー熱量ΔHを1.0J/g以上にする方法についても同様である。
 本実施形態の生分解性不織布は、熱機械分析による80℃~140℃におけるMD方向の寸法変化率が、好ましくは-4.0%未満、より好ましくは-4.5%以下、さらに好ましくは-5.0%以下である。不織布の前記寸法変化率が小さい、即ち不織布が収縮しやすいことは、充分な非晶部を有していることを意味しており、前記寸法変化率が-4.0%未満であれば、熱成形における熱と延伸によって結晶化を促進することで成型性及び成形体の寸法安定性を高くすることができる。
[副成分の熱可塑性樹脂の混合]
 本実施形態の生分解性不織布を構成する繊維は、前記生分解性熱可塑性樹脂に加え、副成分の熱可塑性樹脂(以下、「副成分の樹脂」ともいう。)を含んでもよい。前記副成分の樹脂の含有量は、樹脂の総量を100重量%としたとき、好ましくは0重量%超30重量%以下であり、より好ましくは0.5~30重量%であり、さらに好ましくは3~27重量%、最も好ましくは5~25重量%である。添加量が0.5重量%以上であれば、不織布の結晶化開始温度を下げることができ、成型時により低温で結晶化を促進することができる。他方、添加量が30重量%以下であれば、結晶化が抑制されず、成型時に十分に結晶化が進行する。
 副成分の樹脂としては、脂肪族エステル、芳香族エステル、又は、(メタ)アクリル酸系モノマー、オレフィン、カプロラクトン、ヒドロキシアルカノエート、アルキレングリコール、二塩基酸、及び、ジアルコールからなる群より選択される1以上のモノマーの単独重合体又は共重合体が挙げられる。さらに、これらの生分解性を有する個々の重合体を複数種選択し、これらをブレンドしたものが挙げられる。生分解性熱可塑性樹脂との相溶性、紡糸性の観点から、脂肪族エステル、芳香族エステルが好ましく、具体的にはポリブチレンサクシネートやポリブチレンアジペートテレフタレート、ポリブチレンサクシネートアジペートが好ましい。
 副成分の樹脂のMFRは、紡糸工程の延伸性が良好となる100g/10分以下であることが好ましく、より好ましくは20~80g/10分、さらに好ましくは30~70g/10分である。また、主成分の樹脂と副成分の樹脂との溶融流量比は、好ましくは0.2≦[副成分の樹脂の溶融流量/主成分の樹脂の溶融流量]≦1.5であり、より好ましくは0.3~1.4である。溶融流量比がこれらの範囲内であると紡糸性が良好であり、かつ、副成分の樹脂の分散性が良好となるために安定した熱接着性が得られる。
 本実施形態の生分解性不織布を構成する繊維は、主成分の樹脂を海、副成分の樹脂を島とする海島繊維であると、結晶化開始温度を下げる効果が大きいため、好ましい。
[紡糸時の糸条の牽引力]
 スパンボンド法では、エアジェットによる高速気流牽引装置を用いることが一般的であり、牽引装置に導入するエアー量により牽引力を調整できる。この牽引力は、牽引装置の全長と同じ長さの直径0.235mmのテグス(釣り糸)(本明細書内では、東レ社製 ナイロンテグス 「銀鱗(2号/ナチュラル/50m巻 単体)」を用いた。)2本を牽引装置内に投入し、テグスに連結したバネ測りによって応力を測定し、投入したテグス長で割り返すことで牽引力(mN/m)を計測した。牽引力は、好ましくは82~125mN/mであり、より好ましくは82~105mN/m、最も好ましくは、87~100mN/mである。牽引力を適切な範囲で制御することによって、結晶化開始温度と冷結晶ピーク量を適切な範囲としやすく、さらに、成型時の予熱で収縮しにくくなり、また、充分な延伸性を発現させることができる。
[熱圧着条件]
 本実施形態の生分解性不織布の製造において熱圧着を行う場合、少なくとも一方の表面に凹凸模様を有する一対のエンボスロールを用いて、ロール温度は好ましくは25~85℃、より好ましくは40~70℃にて、線圧は好ましくは5~100N/mm、より好ましくは20~70N/mmにて、圧着面積率は好ましくは4~50%、より好ましくは8~40%にて、熱圧着することができる。適切な範囲で熱圧着を行うことで、成型時に接着が外れることなく、短時間の加熱で充分に結晶化を進めて寸法安定性の良好な成型体を得られるような不織布となる。
[定長熱セット条件]
 本実施形態の生分解性不織布の製造において、エンボス加工後に定長熱セットを行ってもよい。紡糸直後の不織布ウェブは、熱圧着の後、張力を加えた状態で熱を加えることで、不織布の表面性が良く、熱伸長性のある不織布を得て、成型加工時も破れ、形がきれいな成型体を得るために好ましい。定長熱セットを行う方法としては、一般的な方法を用いてよく、熱風乾燥、ピンテンター乾燥、熱板、カレンダー加工、フェルトカレンダー加工、エアスルー加工、熱プレス等を用いてよい。定長熱セットを行う温度範囲としては、不織布を構成する樹脂が装置に付着することなく、不織布の繊維が適度に接着された状態を得られる温度であれば、特に限定しないが、好ましくは50℃~95℃、より好ましくは70℃~90℃、さらに好ましくは70℃~80℃である。定長熱セットを行う温度が95℃以下であれば、不織布の配向結晶化が適度に抑えられ、結晶化開始温度を低くすることができ、また冷結晶ピークのエンタルピー熱量ΔHを大きくすることができる。また、定長熱セットを行う温度が50℃以上であれば、上述の定長熱セットによる効果が十分に得られる。
[エージング]
 本実施形態の生分解性不織布は、特定のエージング条件により、結晶化開始温度を低くすることができ、また、成型加工時(特に予熱工程時)の熱収縮を抑制することが可能である。具体的なエージング条件としては、40℃雰囲気下で10日間以上保管すれば、前記した効果を得やすい。
 以下、本実施形態の生分解性不織布を熱成形して成る成型体について説明する。
 本実施形態の生分解性不織布は、熱成型で加工して、成型体とすることができる。成型体の形状について特に制限はなく、半円形、円柱形、楕円、三角形、四角形など使用目的に応じて選択することができる成型前の不織布の面積に対し、より面積(表面積)の大きな成型体を得たい場合、成型前後の不織布の面積がより大きくなるような成型金型を適宜選定すればよい。
 本実施形態の生分解性不織布の成型方法は、熱成型工程を含んでいれば、その方法は特に限定はされないが、熱成型前に予熱工程や、熱成型後に容量を維持する保形工程を含んでいてもよい。
 予熱工程を熱成型前に含むことで、成型直前の不織布の温度を制御することができ、貯蔵弾性率など不織布の特性値を成型に適した値とすることができる。成型直前の不織布の温度の範囲は、好ましくは30~70℃、より好ましくは40~60℃、さらに好ましくは40~50℃である。成型直前の不織布温度は30℃以上であると、不織布が十分に柔らかくなり成型時に成型型に対する追従性が良好となるため、破袋や成型斑等、成型不良が発生しにくい。また、成型直前の温度が70℃以下であれば、不織布が熱収縮せず、成型加工しやすい。
 本実施形態の生分解性不織布がポリ乳酸系重合体を含む場合、結晶化速度が非常に遅いため、成型時に不織布を延伸した際の残留応力による成型体の収縮が不織布の結晶化よりも先に起こり、容量の小さい成型体となりやすい。このため、成型体を急冷固化させ、保形する効果を得るため、成型後に保形工程を含ませることで容量の大きい成型体を得ることができる。
 本実施形態の生分解性不織布の成型の程度は、成型指数で表される。成型指数とは、成型体の表面積を、成型体に用いられた成型前の平面状の不織布の面積(容器形状の場合は開口部面積)で割って求められる次式(1):
   成型指数=(成型体の表面積(cm2))/(成型前の不織布の面積(cm2))
で定義される値である。
 本実施形態の生分解性不織布の成形における成型指数は、好ましくは1.1以上、より好ましくは1.1以上20以下、さらに好ましくは1.5~10、最も好ましくは2.5~6である。成型指数が大きい場合、不織布が大きく伸ばされていることを示す。他方、成型指数が小さい場合、不織布の伸びが少ないことを示す。実施形態の生分解性不織布は、不織布が高伸度を有するため、高伸度成型指数の大きな成型品を作製することができる。他方、成型指数が20以下であれば、破袋することなく成型でき、成型指数が1.1以上であれば、容器に内容物を充填する際に適度な大きさを有することができる。
 本実施形態の生分解性不織布を成形する際、成型体の寸法安定性の向上と生産性の両立という観点から、変形速度は好ましくは32mm/秒以上、より好ましくは40mm/秒以上、さらに好ましくは50mm/秒以上、最も好ましくは105mm/秒以上であり、また、好ましくは320mm/秒以下、より好ましくは140mm/秒以下である。
 以下、本発明を実施例により具体的に説明する。
 まず、実施例、比較例で用いた測定法、評価法等を説明する。
 (生分解性不織布の特性評価)
(1)目付(g/m2
 JIS L-1913に従って、総面積が1500cm2(例えば、幅20cmx長さ25cm 3枚)となるように不織布試料を切り取り、単位当たりの質量に換算して求めた。
(2)嵩密度(g/cm3
 Mitsutoyo社製の厚み計を用いて、不織布試料の100g荷重時の厚み(mm)を測定し、以下の式:
   嵩密度(g/cm3)=目付(g/m2)/厚み(mm)/1000
で計算した。
(3)融点(℃)
 PerkinElmer社製の示差走査熱量計DSC6000を用い、10℃/minで不織布試料の融点を超える温度まで昇温した。得られたチャートの融解ピークに相当するピークの頂点を融点とした。尚、ポリ乳酸のD体比率、もしくは副成分樹脂のブレンドによっては融解ピークが複数見られることがあるが、ここでいう融点とは、主成分樹脂に対応するピークの低温側のピークに関して、その頂点を融点とする。
(4)結晶化開始温度(℃)
 時分割透過型広角X線散乱(WAXS)測定にて、不織布試料の結晶化度の変化を20秒間隔で測定し、室温時の結晶化度に対して3%以上結晶化度が増加した時(例えば、室温時の結晶化度が20.0%の場合、結晶化度が20.6%となった時)の温度を結晶化開始温度とした。副成分樹脂をブレンドし、結晶化の増加が2段階に分かれる場合は、主成分樹脂由来の温度を採用する。尚、測定装置・条件については以下の通りとした。
  装置:(株)リガク製 NANOPIX
  X線波長:0.154nm
  光学系:ポイントコリメーション(1st:1.40mmφ、2nd:open、guard:0.85mmφ)
  検出器:HyPix-6000(2次元半導体検出器)
  カメラ長:122.2mm
  露光時間/測定周期:10秒/20秒
  試料セル周りの環境:真空
  サンプル(不織布試料)加熱条件:室温から炉内の加温をスタートし、セル内温度を安定させるため30℃で5分間保温後、1℃/minで昇温させた(最大温度150℃)。
 測定の流れとしては、セルにセットした不織布試料を炉内に挿入後、昇温を開始し、その直後から時分割測定を開始した。データ処理としては2次元検出器により測定された散乱パターンI(2θ,φ)に対し、以下の式:
Figure JPOXMLDOC01-appb-M000001
{式中、θ:ブラッグ角、φ:方位角、P:偏光因子。}
により円環平均することで、1次元散乱プロフィールI(2θ)を得た。
 本測定では、温度変化に伴う結晶化度の変化を確実に捉え、測定周期を短くするために、サンプルの透過率測定を実施していない。そのため、空セル散乱補正は行わなかった。セル内の温度履歴については空セルと熱電対を使用して事前に測定しており、1℃/minで昇温させた場合、セル内の温度変化は炉内の設定値と差異はないことを確認した。各サンプルに対して、温度変化に伴う生分解性熱可塑性樹脂の結晶化度の変化を算出した。結晶化度Xは、1次元散乱プロフィールを結晶ピークとアモルファスハローにピーク分離し、以下の式:
Figure JPOXMLDOC01-appb-M000002
{式中、Ici:i番目の結晶ピークの面積、Iai:アモルファスハローの面積。}により算出した。
 ピーク分離は、各ピークが十分に分離される条件を採用すればよい。PLAの場合、ピーク分離条件として、アモルファスピークはベースラインを2θ=5°から2θ=28°を結ぶように引き、フィッティング範囲を5°<2θ<28°とした。結晶ピークは、温度変化に伴い観測されたPLAの結晶由来の回折ピークを用いた。(110)/(200),(203)面由来の回折ピーク2つ、いずれもガウス関数でフィッティングし、束縛条件としてアモルファスピーク位置を2θ=16.9°、半値全幅を9.5°で固定してフィッティングを行った。
(5)冷結晶エンタルピー熱量ΔH(J/g)
 PerkinElmer社製の示差走査熱量計DSC6000を用い、10℃/minで不織布試料の融点を超える温度まで昇温した。得られたチャートの結晶化由来の発熱ピークに対して、微分曲線から熱量変化のある領域でピーク面積を測定した。
(6)機械熱分析による80℃~140℃におけるMD方向の寸法変化率(%)
 試料の両端5cmを除き、(1)で測定した目付が±10%となるような幅2mm、長さ25mmの試料を切り出し、ティ・エイ・インスツルメント社製TMAQ400を用いて、クランプ上部にフィルム/ファイバー用クランプ、下部にティ・エイ・インスルメント製アルミボールを使用し、初期荷重0.005N、30℃~160℃ まで、昇温速度10℃/分、把握長15mmにて測定を行った。80℃~140℃において、下記式:
   寸法変化率(%)=寸法変化(μm)/{把握長(mm)×1000}×100
により、寸法変化率(%)を求めた。N=3測定し、その平均値を算出した。
(7)生分解性(産業用コンポスト)
 ISO 16929(JIS K 6952)パイロットスケール好気性崩壊度測定にて、不織布試料の最大12週間のコンポスト化を行い、最後に目開き2mmのフルイに通し、フルイを通す前の重量に対するフルイ残りの重量の割合によって以下評価基準で評価した。
[評価基準]
  ◎:フルイ残り5%以下
  ○:フルイ残り5%超10%以下
  ×:フルイ残り10%超。
(8)均一成型性(R/Ave)
 幅方向10列の成型金型を有する成型機に不織布試料をセットし、熱風で不織布温度を50℃として、120℃の円筒成型金型(直径4.4cm、高さ3.2cm)を用いて、金型が不織布に接触してから所定の深さに到達するまでの時間を1.0秒に設定してプレス成型を実施し、PLAシートを蓋材としてヒートシールして封止し、成型体を100個作製した。
 得られた成型体の底部を1cm各に切り抜き、重量測定した。
 R/Aveの値は次式:
   R(100枚の重量の最大値-最小値の値)/Ave(100枚の重量の平均値)
で定義される値である。
(9)成型性
 直径4.4cm、高さ1.3cm(13mm)、及び、直径4.4cm、高さ3.2cm(32mm)の2種類の円筒成型金属を用いて、(7)と同様の方法でプレス成型を実施した時の成型体の様子を観察し、以下の評価基準で評価した。尚、成型指数は、成型体の表面積を成型体に用いられた成型前の平面状の不織布の面積(容器形状の場合は開口部の面積)で割って求められる次式:
   成型指数=(成型体の表面積(cm2))/(成型前の不織布の面積(cm2))
で定義される値である。
(評価基準)
 尚、表面毛羽の個数として、成型体の表面の毛羽本数を計測し、N=10の平均値を求めた。
  ◎:高さ1.3cmの金型において成型指数1.9以上、高さ3.2cmの金型において成型指数3.4以上の成型体が得られた。さらに、成型体100個中、破袋数が1個以下であり、表面毛羽は3個以下である。
  ○:高さ1.3cmの金型において成型指数1.9以上、高さ3.2cmの金型において成型指数3.4以上の成型体が得られた。但し、成型体100個中、破袋数が2個以上5個以下であり、又は表面毛羽は4個以上9個以下である。
  △:高さ1.3cmの金型において成型指数1.9以上、高さ3.2cmの金型において成型指数3.4以上の成型体が得られた。但し、成型体の表面に斑がある、延伸斑がある、表面毛羽が10個以上のうちいずれか一つ以上の問題がある。
  ×:破れて成型体が得られなかった。
(10)成型体の寸法安定性(沸水浸漬時の容量変化)
 前記(8)の方法で作製した成型体を沸水に1分間浸漬後、風乾させ、沸水浸漬前後の容量変化を求め、N=5個の平均値を求めた。容量変化率によって、以下の評価基準に従って判定した。
  ◎:成型体の容量変化が±5%以内
  ○:成型体の容量変化が±10%以内
  △:成型体の容量変化が±20%以内
  ×:成型体の容量変化が±20%超え。
[実施例1]
 温度210℃のMFR値が15g/10分のポリ乳酸(浙江海正生物社製 REVODE)に、ポリブチレンサクシネート(融点110℃)を10重量%添加し、単軸押出機にて溶融、混練させ、スパンボンド法により、吐出量0.9g/分・Hole、紡糸温度230℃、牽引力93mN/mで、フィラメント群を移動捕集面に向けて押し出し、生分解性長繊維ウェブ(円形断面)を調製した。
 次いで、一方のロール表面に凹凸模様を有する一対のエンボスロールを用いて、圧着面積率が14%、上・下ロールとも温度55℃、ロール線圧40N/mmの条件で熱圧着し、目付100g/m2の生分解性不織布を得た。
[実施例2]
 ポリ乳酸を温度210℃のMFR値が15g/10分のポリ乳酸(Nature Works社製 Ingeo)に変更したこと以外は、実施例1と同様にして、生分解性不織布を製造した。
[実施例3~7]
 以下の表1に記載の目付となるよう、吐出量、エンボス圧力、ライン速度を変更したこと以外は、実施例1と同様にして、生分解性不織布を製造した。
[実施例8~12]
 牽引力、圧着面積率(エンボス率)を変更したこと以外は、実施例5と同様にして、生分解性不織布を製造した。
[実施例13~15]
 熱圧着時のロール温度(エンボス温度)を40、70、85℃としたこと以外は、実施例5と同様にして、生分解性不織布を製造した。
[実施例16~21]
 ポリブチレンサクシネート(PBS)添加率を1、3、5、15、20、30wt%としたこと以外は、実施例5と同様にして、生分解性不織布を製造した。
[実施例22]
 副成分の樹脂をポリブチレンサクシネートアジペート(PBSA)としたこと以外は、実施例5と同様にして、生分解性不織布を製造した。
[実施例23]
 副成分の樹脂をポリブチレンアジペートテレフタレート(PBAT)としたこと以外は、実施例5と同様にして、生分解性不織布を製造した。
[実施例24]
 副成分の樹脂をポリカプロラクトン(PCL)としたこと以外は、実施例5と同様にして、生分解性不織布を製造した。
[実施例25]
 副成分の樹脂をポリヒドロキシブチレートヘキサノエート(PHBH)としたこと以外は、実施例5と同様にして、生分解性不織布を製造した。
[実施例26]
 副成分の樹脂をエチレン-エチルアクリレート共重合体(EEA)としたこと以外は、実施例5と同様にして、生分解性不織布を製造した。
[実施例27~30]
 熱圧着時の熱圧着面積率(エンボス率)を4、8、10、40%としたこと以外は、実施例5と同様にして、生分解性不織布を製造した。
[実施例31~33]
 熱圧着時のエンボス柄をピン、オーバル、フラット柄としたこと以外は、実施例5と同様にして、生分解性長繊維不織布を製造した。
[実施例34~36]
 PBS添加率を0%とし、牽引力を変更したこと以外は、実施例5と同様にして、生分解性不織布を製造した。
[実施例37]
 主成分の樹脂を温度210℃のMFR値が25g/10分のナイロン4(PA4)とし、エンボス温度を63℃に変更したこと以外は、実施例5と同様にして、生分解性不織布を製造した。
[実施例38]
 主成分の樹脂を温度210℃のMFR値が20g/10分のポリグリコール酸(PGA)とし、紡糸温度を260℃に、エンボス温度を48℃に変更したこと以外は、実施例5と同様にして、生分解性不織布を製造した。
[実施例39]
 ポリ乳酸とポリブチレンサクシネートをそれぞれ別の押出機にて溶融、混錬させ、紡糸口金として鞘芯型紡糸口金を用い、芯成分をポリ乳酸、鞘成分をポリブチレンサクシネートとしたこと以外は、実施例5と同様にして、生分解性不織布を製造した。
[実施例40~43]
 短時間で熱成形を行った時の成形性等を確認するため、実施例5の生分解性不織布を用いて、成型時のプレス温度をそれぞれ120℃、120℃、140℃、140℃、プレス時間をそれぞれ0.8秒、0.6秒、0.3秒、0.1秒として成型体を作製し、各種評価を行った。
[実施例44]
 短繊維として、単繊維繊維径が30μmの、ポリブチレンサクシネートが10wt%含まれるポリ乳酸の原綿を用い、これをカード機に通して目付150g/m2の不織クロスウェブを作製した。次いで作製したウェブを100メッシュの金網上に載置し、孔径0.08mmの噴射孔が孔感覚0.7mmで配置された高圧液体流処理設備を用いて高圧液体流処理を行い、ウェブを一体化した。液体流の噴射条件は、60kg/cm2の水圧で1回、120kg/cm2の水圧で1回とした。また反対側より120kg/cm2の水圧で1回とした。その後、得られたウェブの過剰な水分の除去のため、熱風乾燥機によって100℃で乾燥処理を行い、生分解不織布を得た。
[実施例45]
 実施例44で得られた不織布に対して、一方のロール表面に凹凸模様を有する一対のエンボスロールを用いて、圧着面積率が14%、上・下ロールとも温度55℃、ロール線圧40N/mmの条件で熱圧着し、目付150g/m2の生分解性不織布を得た。
[実施例46]
 実施例44で得られた不織布に対して、刺針密度300本/cm2のニードルパンチ加工を行い、繊維ウェブを交絡させることで、目付150g/m2の生分解性不織布を得た。
[比較例1、2]
 目付がそれぞれ5、500g/m2となるようライン速度を変更したこと以外は、実施例1と同様にして、生分解性不織布を製造した。
[比較例3、4]
 牽引力を79、137mN/mとしたこと以外は、実施例5と同様にして、生分解性長繊維不織布を製造した。尚、比較例3では牽引装置に糸条が詰まり紡糸が不可能であった。
[比較例5]
 熱圧着時のロール温度を90℃としたこと以外は、実施例5と同様にして、生分解性不織布を製造しようとしたが、熱圧着時に不織布が激しく収縮して、不織布の製造が不可能であった。
[比較例6]
 生分解性長繊維不織布製造時のPBS添加率を35wt%としたこと以外は、実施例5と同様にして、生分解性不織布を製造しようとしたが、糸切れが頻発して紡糸が不可能であった。
[比較例7]
 温度210℃のMFR値が15g/10分のポリ乳酸(浙江海正生物社製 REVODE)に、ポリブチレンサクシネート(融点110℃)を10重量%添加し、単軸押出機にて溶融、混練させ、スパンボンド法により、吐出量0.9g/分・Hole、紡糸温度230℃、牽引力87/mで、フィラメント群を移動捕集面に向けて押し出し、生分解性長繊維ウェブ(円形断面)を調製した。
 次いで、一方のロール表面に凹凸模様を有する一対のエンボスロールを用いて、圧着面積率が14%、上・下ロール温度とも45℃、ロール線圧30N/mmで熱圧着した。
 次いで、この仮圧着ウェブを、30℃で72時間保管後、フェルトカレンダー(ドラム直径2,500mm、温度100℃、加工速度10m/分)で熱処理を行い、生分解性不織布を得た(目付150g/m2、繊維径30μm)。
[比較例8]
 フェルトカレンダーの温度を135℃としたこと以外は、比較例7と同様にして、生分解性不織布を製造した。
[比較例9]
 温度210℃のMFR値が30g/10分のポリブチレンサクシネートを単軸押出機にて溶融、混練させ、スパンボンド法により、吐出量0.9g/分・Hole、紡糸温度220℃、牽引力93mN/mで、フィラメント群を移動捕集面に向けて押し出し、生分解性長繊維ウェブ(円形断面)を調製した。
 次いで、一方のロール表面に凹凸模様を有する一対のエンボスロールを用いて、圧着面積率が12%、上・下ロールとも温度90℃、ロール線圧40N/mmの条件で熱圧着して、生分解性不織布を製造した。
 実施例1~46、比較例1~9の結果を、以下の表1~5に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本発明の生分解性不織布は、生分解性と共に、優れた成形均一性、成型性を有するため、生活資材向け容器や工業資材向け容器、車両内装材・外装材、防音材、吸音材、部品搬送トレイ、青果物トレイ、食品容器、育苗ポッド、フィルター用途などの幅広い分野に好適に利用可能である。また、本発明の生分解性不織布は、高伸度であり、複雑な形状の容器を形成することができる。さらに成型品の熱収縮を抑制できるため、容器としての意匠性が要求される分野においても好適に利用可能である。

Claims (15)

  1.  生分解性熱可塑性樹脂を含む繊維から構成される不織布であって、目付が10g/m2以上450g/m2以下であり、該不織布の融点と結晶化開始温度との差が91℃以上であり、かつ、該不織布の冷結晶エンタルピー熱量ΔHが1.0J/g以上であることを特徴とする、生分解性不織布。
  2.  前記不織布の融点と結晶化開始温度との差が159℃以下である、請求項1に記載の生分解性不織布。
  3.  前記冷結晶エンタルピー熱量ΔHが20.0J/g以下である、請求項1又は2に記載の生分解性不織布。
  4.  前記生分解性熱可塑性樹脂を含む繊維が、該生分解性熱可塑性樹脂を主成分として70重量%超99.5重量%未満で含有し、かつ、該主成分とは異なる熱可塑性樹脂を副成分として0.5重量%以上30重量%以下で含有する、請求項1~4のいずれか1項に記載の生分解性不織布。
  5.  前記副成分が、脂肪族エステル、芳香族エステル、又は、(メタ)アクリル酸系モノマー、オレフィン、カプロラクトン、ヒドロキシアルカノエート、アルキレングリコール、二塩基酸、及びジアルコールからなる群より選択される1以上のモノマーの単独重合体若しくは共重合体のいずれかである、請求項4に記載の生分解性不織布。
  6.  前記副成分が、脂肪族エステル、又は、芳香族エステルである、請求項5に記載の生分解性不織布。
  7.  前記副成分が、ポリブチレンサクシネート、ポリブチレンアジペートテレフタレート、又は、ポリブチレンサクシネートアジペートのいずれか1つを含む、請求項6に記載の生分解性不織布。
  8.  前記生分解性熱可塑性樹脂を含む繊維が、前記主成分が海、前記副成分が島となる海島繊維である、請求項4~7のいずれか1項に記載の生分解性不織布。
  9.  前記不織布の圧着面積率が8%以上である、請求項1~8のいずれか1項に記載の生分解性不織布。
  10.  熱機械分析による80℃~140℃におけるMD方向の寸法変化率が、-4.0%未満である、請求項1~9のいずれか1項に記載の生分解性不織布。
  11.  スパンボンド不織布である、請求項1~10のいずれか1項に記載の生分解性不織布。
  12.  請求項1~11のいずれか1項に記載の生分解性不織布を熱成形する工程を含む、成型体の製造方法。
  13.  前記熱成形における変形速度が32mm/秒以上320mm/秒以下である、請求項12に記載の製造方法。
  14.  前記熱成形における変形速度が105mm/秒以上140mm/秒以下である、請求項12に記載の製造方法。
  15.  前記不織布が、前記不織布の融点と結晶化開始温度との差が159℃以下であり、前記冷結晶エンタルピー熱量ΔHが20.0J/g以下であり、かつ、前記熱機械分析による80℃~140℃におけるMD方向の寸法変化率が-4.0%未満であるスパンボンド不織布である、請求項12又は14に記載の製造方法。
PCT/JP2022/005162 2021-02-17 2022-02-09 生分解性不織布及び成型体の製造方法 WO2022176741A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/276,525 US20240102217A1 (en) 2021-02-17 2022-02-09 Biodegradable Non-Woven Fabric and Method for Producing Molded Body
JP2023500778A JP7475535B2 (ja) 2021-02-17 2022-02-09 生分解性不織布及び成型体の製造方法
CA3204737A CA3204737A1 (en) 2021-02-17 2022-02-09 Biodegradable non-woven fabric and method for producing molded body
KR1020237026092A KR20230127321A (ko) 2021-02-17 2022-02-09 생분해성 부직포 및 성형체의 제조 방법
CN202280014862.2A CN116867938A (zh) 2021-02-17 2022-02-09 生物降解性非织造布及成型体的制造方法
EP22756062.0A EP4296417A4 (en) 2021-02-17 2022-02-09 BIODEGRADABLE NONWOVEN FABRIC AND METHOD FOR PRODUCING A MOULDED BODY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-023167 2021-02-17
JP2021023167 2021-02-17

Publications (1)

Publication Number Publication Date
WO2022176741A1 true WO2022176741A1 (ja) 2022-08-25

Family

ID=82931662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005162 WO2022176741A1 (ja) 2021-02-17 2022-02-09 生分解性不織布及び成型体の製造方法

Country Status (8)

Country Link
US (1) US20240102217A1 (ja)
EP (1) EP4296417A4 (ja)
JP (1) JP7475535B2 (ja)
KR (1) KR20230127321A (ja)
CN (1) CN116867938A (ja)
CA (1) CA3204737A1 (ja)
TW (1) TWI835071B (ja)
WO (1) WO2022176741A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071403A1 (ja) * 2022-09-30 2024-04-04 株式会社クレハ 洗堀防止用保護ネットおよび洗堀防止用保護材
WO2024162019A1 (ja) * 2023-01-31 2024-08-08 エム・エーライフマテリアルズ株式会社 生分解性不織布及びその用途

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304939A (ja) * 1994-05-10 1995-11-21 Unitika Ltd ポリエチレンサクシネート樹脂組成物
JPH0995848A (ja) 1995-10-03 1997-04-08 Unitika Ltd 生分解性成形用長繊維不織布およびその製造方法
JP2000136478A (ja) 1998-10-27 2000-05-16 Unitika Ltd 生分解性を有する成型用不織布、その製造方法、同不織布を用いてなる容器形状品
JP2003326594A (ja) * 2002-05-09 2003-11-19 Asahi Kasei Corp 生分解性ポリエステル延伸成形体
WO2009024837A1 (en) * 2007-08-22 2009-02-26 Kimberly-Clark Worldwide, Inc. Method for forming polylactic acid fibers
JP2011157660A (ja) * 2010-02-02 2011-08-18 Asahi Kasei Fibers Corp 生分解性長繊維不織布
JP2013104153A (ja) * 2011-11-15 2013-05-30 Kureha Corp 塩基性悪臭物質吸収性不織布、及び塩基性悪臭物質の低減方法
WO2018070490A1 (ja) * 2016-10-14 2018-04-19 旭化成株式会社 生分解性不織布
JP2018204168A (ja) * 2017-06-05 2018-12-27 旭化成株式会社 生分解性長繊維不織布
JP2019071962A (ja) * 2017-10-12 2019-05-16 旭化成株式会社 生分解性飲料抽出用容器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165217A (en) * 1997-10-02 2000-12-26 Gore Enterprise Holdings, Inc. Self-cohering, continuous filament non-woven webs
JP5712465B2 (ja) * 2009-04-24 2015-05-07 Jnc株式会社 生分解性不織布およびそれを用いた繊維製品
CA2987189A1 (en) 2016-12-16 2018-06-16 Ems-Patent Ag Transparent polyamide moulding compositions with high tensile strain at break
JP2019073809A (ja) * 2017-10-12 2019-05-16 旭化成株式会社 熱成型性を有する生分解性長繊維不織布

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304939A (ja) * 1994-05-10 1995-11-21 Unitika Ltd ポリエチレンサクシネート樹脂組成物
JPH0995848A (ja) 1995-10-03 1997-04-08 Unitika Ltd 生分解性成形用長繊維不織布およびその製造方法
JP2000136478A (ja) 1998-10-27 2000-05-16 Unitika Ltd 生分解性を有する成型用不織布、その製造方法、同不織布を用いてなる容器形状品
JP2003326594A (ja) * 2002-05-09 2003-11-19 Asahi Kasei Corp 生分解性ポリエステル延伸成形体
WO2009024837A1 (en) * 2007-08-22 2009-02-26 Kimberly-Clark Worldwide, Inc. Method for forming polylactic acid fibers
JP2011157660A (ja) * 2010-02-02 2011-08-18 Asahi Kasei Fibers Corp 生分解性長繊維不織布
JP2013104153A (ja) * 2011-11-15 2013-05-30 Kureha Corp 塩基性悪臭物質吸収性不織布、及び塩基性悪臭物質の低減方法
WO2018070490A1 (ja) * 2016-10-14 2018-04-19 旭化成株式会社 生分解性不織布
JP2018204168A (ja) * 2017-06-05 2018-12-27 旭化成株式会社 生分解性長繊維不織布
JP2019071962A (ja) * 2017-10-12 2019-05-16 旭化成株式会社 生分解性飲料抽出用容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4296417A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071403A1 (ja) * 2022-09-30 2024-04-04 株式会社クレハ 洗堀防止用保護ネットおよび洗堀防止用保護材
WO2024162019A1 (ja) * 2023-01-31 2024-08-08 エム・エーライフマテリアルズ株式会社 生分解性不織布及びその用途

Also Published As

Publication number Publication date
EP4296417A1 (en) 2023-12-27
TWI835071B (zh) 2024-03-11
EP4296417A4 (en) 2024-08-07
JP7475535B2 (ja) 2024-04-26
JPWO2022176741A1 (ja) 2022-08-25
KR20230127321A (ko) 2023-08-31
CA3204737A1 (en) 2022-08-25
CN116867938A (zh) 2023-10-10
TW202237924A (zh) 2022-10-01
US20240102217A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
US6787493B1 (en) Biodegradable formable filament nonwoven fabric and method of producing the same
US6770356B2 (en) Fibers and webs capable of high speed solid state deformation
US6607996B1 (en) Biodegradable filament nonwoven fabric and method of producing the same
KR100504214B1 (ko) 분해성 고분자섬유, 이것의 제조방법과 제품 및 이것의 사용방법
WO2018070490A1 (ja) 生分解性不織布
JP7475535B2 (ja) 生分解性不織布及び成型体の製造方法
WO2023032763A1 (ja) 生分解性不織布及びその用途
EP1057915A1 (en) Biodegradable filament nonwoven fabric and method of producing the same
JP2018204168A (ja) 生分解性長繊維不織布
JP2000273750A (ja) 生分解性長繊維不織布およびその製造方法
RU2823702C2 (ru) Биоразлагаемый нетканый материал и способ производства формованного изделия
JP4488835B2 (ja) ポリ乳酸系不織布
JP4212264B2 (ja) ポリ乳酸系長繊維不織布の製造方法およびポリ乳酸系長繊維の製造方法
JP2002088630A (ja) 耐候性長繊維不織布
WO2024162019A1 (ja) 生分解性不織布及びその用途
JP2024108784A (ja) 生分解性不織布及びその用途
JPH0429776B2 (ja)
JP5394667B2 (ja) タフテッドカーペット用一次基布
JP2011162925A (ja) ポリ乳酸系長繊維不織布
JP2023097053A (ja) スパンボンド不織布、表皮材用シート、及び表皮材
JP2002105756A (ja) ポリオキシメチレン系繊維、ポリオキシメチレン系スパンボンド不織布およびこれらの製造方法
JP2024108588A (ja) 生分解性不織布及びその用途
JP2009256819A (ja) 長繊維不織布

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500778

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3204737

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237026092

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18276525

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280014862.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022756062

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022756062

Country of ref document: EP

Effective date: 20230918