WO2022176234A1 - 光学系、画像投写装置および撮像装置 - Google Patents
光学系、画像投写装置および撮像装置 Download PDFInfo
- Publication number
- WO2022176234A1 WO2022176234A1 PCT/JP2021/029380 JP2021029380W WO2022176234A1 WO 2022176234 A1 WO2022176234 A1 WO 2022176234A1 JP 2021029380 W JP2021029380 W JP 2021029380W WO 2022176234 A1 WO2022176234 A1 WO 2022176234A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical system
- lens
- reduction
- lens group
- focal length
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 181
- 238000003384 imaging method Methods 0.000 title claims abstract description 40
- 230000009467 reduction Effects 0.000 claims abstract description 98
- 210000001747 pupil Anatomy 0.000 claims description 17
- 238000010586 diagram Methods 0.000 description 37
- 230000004075 alteration Effects 0.000 description 32
- 230000005499 meniscus Effects 0.000 description 30
- 201000009310 astigmatism Diseases 0.000 description 9
- 230000000875 corresponding effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 102220049405 rs147669920 Human genes 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 240000006829 Ficus sundaica Species 0.000 description 1
- 206010024796 Logorrhoea Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/146—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
- G02B15/1461—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/0095—Relay lenses or rod lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/16—Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/16—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
- G02B15/20—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
Definitions
- the present disclosure relates to an optical system that forms an intermediate image.
- the present disclosure also relates to an image projection device and an imaging device using such an optical system.
- the intermediate imaging optical system has the advantage of being able to achieve wide-angle projection on a large screen with a short focus, but the total length of the optical system tends to be large. As a result, the optical system becomes heavy, and if part of the optical system is mounted outside the body of the image projection device, the moment acting on the center of gravity may cause the optical system to tilt relative to the device body, degrading optical performance. have a nature.
- Patent Document 1 discloses a wide-angle imaging optical system, in which the first lens L1a closest to the conjugate point of enlargement has the largest aperture. Both surfaces of the first lens L1a are aspheric and have a rather complicated shape.
- the present disclosure provides an optical system capable of widening the lens angle, reducing the effective diameter of the lens, and reducing the size and weight of the optical system and zoom mechanism.
- the present disclosure also provides an image projection device and an imaging device using such an optical system.
- a lens system is an optical system that internally includes an intermediate imaging position that is conjugate with an expansion conjugate point on the expansion side and a reduction conjugate point on the reduction side, an enlarging optical system having a plurality of lens elements and positioned on the enlarging side of the intermediate imaging position; a relay optical system having a plurality of lens elements and positioned on the reduction side of the intermediate imaging position; The magnifying optical system is fixed with respect to the reduction conjugate point during zooming,
- the relay optical system includes a plurality of moving lens groups independently movable in the optical axis direction during zooming, Of the plurality of moving lens groups, the most reduction side moving lens group positioned closest to the reduction side has a negative refractive power.
- An image projection apparatus includes the optical system and an image forming element that generates an image to be projected onto a screen via the optical system.
- An imaging device includes the optical system described above and an imaging device that receives an optical image formed by the optical system and converts the optical image into an electrical image signal.
- the lens system it is possible to widen the angle of the lens, reduce the effective diameter of the lens, and reduce the size and weight of the optical system and zoom mechanism.
- Layout of the wide-angle end of the zoom lens system of Example 1 at an object distance of 1100 mm Longitudinal aberration diagram of the zoom lens system of Example 1 at an object distance of 1100 mm
- the optical system is a projector (image projection system) that projects onto a screen image light of an original image S obtained by spatially modulating incident light by an image forming element such as a liquid crystal or a DMD (digital micromirror device) based on an image signal.
- an image forming element such as a liquid crystal or a DMD (digital micromirror device)
- An example of a device will be described. That is, the optical system according to the present disclosure can be used to arrange a screen (not shown) on the extension of the enlargement side, and to enlarge and project the original image S on the image forming element arranged on the reduction side onto the screen.
- the optical system according to the present disclosure collects light emitted from an object positioned on an extension line on the enlargement side, and forms an optical image of the object on the imaging surface of the imaging device arranged on the reduction side. is also available.
- Embodiment 1 of the present disclosure will be described below with reference to FIGS. 1 to 25.
- FIG. Here, a zoom lens system will be described as an example of an optical system.
- 1, 6, 11, 16, and 21 are layout diagrams showing optical paths at the wide-angle end at an object distance of 1100 mm in the zoom lens systems according to Examples 1-5.
- 2, 7, 12, 17, and 22 are layout diagrams of the zoom lens systems according to Examples 1 to 5 at the wide-angle end at an object distance of 1100 mm.
- FIGS. 2(a), 7(a), 12(a), 17(a), and 22(a) show lens layout diagrams at the wide-angle end of the zoom lens system.
- FIGS. 2(b), 7(b), 12(b), 17(b), and 22(b) show lens layout diagrams at intermediate positions of the zoom lens system.
- FIGS. 2(c), 7(c), 12(c), 17(c), and 22(c) show lens layout diagrams at the telephoto end of the zoom lens system.
- the wide-angle end is the shortest focal length state in which the entire system has the shortest focal length fw.
- An intermediate position is an intermediate focal length state between the wide-angle end and the telephoto end.
- the zoom lens systems according to Examples 1 to 5 internally have an intermediate imaging position MI that is conjugate with the enlargement conjugate point on the enlargement side and the reduction conjugate point on the reduction side.
- An enlarging optical system Op is arranged on the enlarging side of the intermediate imaging position MI, and a relay optical system Ol is arranged on the reducing side of the intermediate imaging position MI.
- An optical element P is arranged on the reduction side of the relay optical system Ol.
- the magnifying optical system Op is composed of the first lens element L1 to the fifteenth lens element L15, and includes surfaces 1 to 30 (for surface numbers, see numerical examples described later).
- the relay optical system Ol includes the first lens group G1 to the sixth lens group G6.
- the first lens group G1 has positive power, is composed of a sixteenth lens element L16, and includes surfaces 31-32.
- the second lens group G2 has negative power, is composed of a seventeenth lens element L17, and includes surfaces 33-34.
- the third lens group G3 has positive power and consists of an eighteenth lens element L18 and includes surfaces 35-36.
- the fourth lens group G4 has positive power, is composed of the 19th lens element L19 to the 21st lens element L21, and includes the surfaces 37 to 42 .
- the fifth lens group G5 has negative power, is composed of the twenty-second lens element L22 to the twenty-third lens element L23, and includes surfaces 43 to 47.
- the sixth lens group G6 has positive power, is composed of lens elements L24 to L28, and includes surfaces 48 to 57.
- FIG. Optical element P includes surfaces 58-59.
- the magnifying optical system Op is composed of the first lens element L1 to the fourteenth lens element L14, and includes surfaces 1 to .
- the relay optical system Ol includes the first lens group G1 to the sixth lens group G6.
- the first lens group G1 has positive power and consists of a fifteenth lens element L15 and includes surfaces 29-30.
- the second lens group G2 has negative power and is composed of a sixteenth lens element L16 and includes surfaces 31-32.
- the third lens group G3 has positive power and consists of a seventeenth lens element L17 and includes surfaces 33-34.
- the fourth lens group G4 has positive power, is composed of eighteenth lens element L18 to twentieth lens element L20, and includes surfaces 35-40.
- the fifth lens group G5 has negative power, is composed of the 21st lens element L21 to the 22nd lens element L22, and includes surfaces 41 to 45 .
- the sixth lens group G6 has positive power, is composed of the twenty-third lens element L23 to the twenty-seventh lens element L27, and includes surfaces 468-55.
- Optical element P includes surfaces 56 through 61 .
- the polygonal arrows shown between each figure (a) and each figure (b) indicate, from top to bottom, the first lens group G1 to the sixth lens in each of the wide-angle end, intermediate position, and telephoto end states.
- a straight line obtained by connecting the positions of the group G6.
- the positions between the wide-angle end and the intermediate position, and between the intermediate position and the telephoto end are simply connected by straight lines, and are different from the actual movements of the lens groups G1 to G6.
- the symbols (+) and (-) attached to the symbols of the lens groups G1 to G6 indicate positive and negative powers of the lens groups G1 to G6.
- the zoom lens systems according to Examples 1 to 5 include a force lens group that performs focus adjustment when the object distance changes, and correction of field curvature aberration after the focus adjustment by the focus lens group. and a correction lens group for correcting field curvature.
- the zoom lens system according to Example 1 includes a first focus lens group FG1 composed of the 12th lens element L12 to the 15th lens element L15, and a second focus lens group composed of the 16th lens element L16. FG2.
- the zoom lens systems according to Examples 2 to 5 have a first focus lens group FG1 composed of the 11th lens element L11 to the 14th lens element L14, and a second focus lens group FG2 composed of the 15th lens element L15. including.
- the first focus lens group FG1 and the second focus lens group FG2 are independently movable along the optical axis during focusing.
- the imaging position on the enlargement side (that is, the enlargement conjugate point) is located on the left side
- the imaging position on the reduction side (that is, the reduction conjugate point) is located on the right side.
- the straight line drawn on the side of the most reduction represents the position of the original image S
- the optical element P is positioned on the side of the enlargement of the original image S.
- the optical element P represents an optical element such as a prism for color separation and color synthesis, an optical filter, parallel plate glass, a crystal low-pass filter, and an infrared cut filter.
- the magnifying optical system Op has the longest air gap along the optical axis within the magnifying optical system. For example, in Example 1, as shown in FIG. 2, there is the longest air gap between the eleventh lens element L11 and the twelfth lens element L12. In Examples 2-5, as shown in FIGS. 7, 12, 17 and 22, there is the longest air gap between the tenth lens element L10 and the eleventh lens element L11.
- the magnifying optical system Op includes a front group Opf located on the enlargement side of the longest air gap, and a rear group Opr located on the contraction side of the longest air gap. The front group Opf and the rear group Opr may have single or multiple lens elements.
- 3, 8, 13, 18, and 23 are longitudinal aberration diagrams at an object distance of 1100 mm of the zoom lens systems according to Examples 1-5.
- 4, 9, 14, 19, and 24 are longitudinal aberration diagrams at object distances of 710 mm and 762 mm of the zoom lens systems according to Examples 1-5.
- 5, 10, 15, 20, and 25 are longitudinal aberration diagrams at object distances of 2842 mm and 3048 mm in the zoom lens systems according to Examples 1-5.
- (a), (b), and (c) in each figure show longitudinal aberration diagrams at the wide-angle end, intermediate position, and telephoto end of the zoom lens system.
- Each longitudinal aberration diagram shows spherical aberration (SA (mm)), astigmatism (AST (mm)), and distortion (DIS (%)) in order from the left.
- the vertical axis represents the height of the pupil
- the solid line is the d-line
- the short dashed line is the F-line
- the long dashed line is the C-line.
- the vertical axis represents the image height
- the solid line is the sagittal plane (indicated by s in the figure)
- the broken line is the meridional plane (indicated by m in the figure).
- the vertical axis represents the image height.
- the distortion aberration represents the distortion aberration for equidistant projection.
- the zoom lens system according to Example 1 includes an enlarging optical system Op and a relay optical system Ol.
- the magnifying optical system Op is composed of the first lens element L1 to the fifteenth lens element L15.
- the magnifying optical system Op includes a front group Opf and a rear group Opr.
- the front group Opf of the enlarging optical system Op is composed of the first lens element L1 to the eleventh lens element L11 in order from the enlarging side to the reducing side.
- the first lens element L1 has a negative meniscus shape with a convex surface facing the magnification side.
- the second lens element L2 has a negative meniscus shape with a convex surface facing the magnification side.
- the third lens element L3 has a negative meniscus shape with a convex surface facing the magnification side.
- the fourth lens element L4 has a biconcave shape.
- the fifth lens element L5 has a biconvex shape.
- the sixth lens element L6 has a positive meniscus shape with a convex surface facing the reduction side.
- the seventh lens element L7 has a positive meniscus shape with a convex surface facing the reduction side.
- the eighth lens element L8 has a biconcave shape.
- the ninth lens element L9 has a positive meniscus shape with a convex surface facing the reduction side.
- the tenth lens element L10 has a biconvex shape.
- the eleventh lens element L11 has a negative meniscus shape with a convex surface facing the magnification side.
- the rear group Opr of the enlarging optical system Op is composed of the 12th lens element L12 to the 15th lens element L15 in order from the enlarging side to the reducing side.
- the twelfth lens element L12 has a biconvex shape.
- the thirteenth lens element L13 has a positive meniscus shape with a convex surface facing the magnification side.
- the fourteenth lens element L14 has a positive meniscus shape with a convex surface facing the magnification side.
- the fifteenth lens element L15 has a negative meniscus shape with a convex surface facing the magnification side.
- the relay optical system Ol is composed of the 16th lens element L16 to the 28th lens element L28 in order from the enlargement side to the reduction side.
- the sixteenth lens element L16 has a negative meniscus shape with a convex surface facing the reduction side.
- the seventeenth lens element L17 has a biconcave shape.
- the eighteenth lens element L18 has a positive meniscus shape with a convex surface facing the reduction side.
- the nineteenth lens element L19 has a biconvex shape.
- the twentieth lens element L20 has a negative meniscus shape with a convex surface facing the reduction side.
- the twenty-first lens element L21 has a biconvex shape.
- the twenty-second lens element L22 has a positive meniscus shape with a convex surface facing the magnification side.
- the twenty-third lens element L23 has a negative meniscus shape with a convex surface facing the magnification side.
- the twenty-fourth lens element L24 has a biconcave shape.
- the twenty-fifth lens element L25 has a biconvex shape.
- the twenty-sixth lens element L26 has a biconvex shape.
- the twenty-seventh lens element L27 has a negative meniscus shape with a convex surface facing the magnification side.
- the twenty-eighth lens element L28 has a biconvex shape.
- the relay optical system Ol includes, in order from the magnification side to the reduction side, a first lens group G1 (L16) having positive power, a second lens group G2 (L17) having negative power, and a third lens group G2 (L17) having positive power.
- the magnifying optical system Op and the sixth lens group G6 are fixed with respect to the reduction conjugate point.
- the first lens group G1 to the fifth lens group G5 may be displaced independently along the optical axis, or at least one of the first lens group G1 to the fifth lens group G5 may be reduced conjugate. It may be fixed with respect to a point.
- a diaphragm A is arranged between the twenty-second lens element L22 and the twenty-third lens element L23.
- An optical element P whose optical power is zero is arranged on the reduction side of the relay optical system Ol.
- the zoom lens systems according to Examples 2 to 5 include an enlarging optical system Op and a relay optical system Ol.
- the magnifying optical system Op is composed of the first lens element L1 to the fourteenth lens element L14.
- the magnifying optical system Op includes a front group Opf and a rear group Opr.
- the front group Opf of the enlarging optical system Op is composed of the first lens element L1 to the tenth lens element L10 in order from the enlarging side to the reducing side.
- the first lens element L1 has a negative meniscus shape with a convex surface facing the magnification side.
- the second lens element L2 has a negative meniscus shape with a convex surface facing the magnification side.
- the third lens element L3 has a negative meniscus shape with a convex surface facing the magnification side.
- the fourth lens element L4 has a biconcave shape.
- the fifth lens element L5 has a biconvex shape.
- the sixth lens element L6 has a positive meniscus shape with a convex surface facing the reduction side.
- the seventh lens element L7 has a positive meniscus shape with a convex surface facing the reduction side.
- the eighth lens element L8 has a biconcave shape.
- the ninth lens element L9 has a biconvex shape.
- the tenth lens element L10 has a biconvex shape.
- the rear group Opr of the enlarging optical system Op is composed of the 11th lens element L11 to the 14th lens element L14 in order from the enlarging side to the reducing side.
- the eleventh lens element L11 has a biconvex shape.
- the twelfth lens element L12 has a positive meniscus shape with a convex surface facing the magnification side.
- the thirteenth lens element L13 has a positive meniscus shape with a convex surface facing the magnification side.
- the fourteenth lens element L14 has a negative meniscus shape with a convex surface facing the magnification side.
- the relay optical system Ol is composed of a fifteenth lens element L15 to a twenty-seventh lens element L27 in order from the enlargement side to the reduction side.
- the fifteenth lens element L15 has a positive meniscus shape with a convex surface facing the reduction side.
- the sixteenth lens element L16 has a biconcave shape.
- the seventeenth lens element L17 has a positive meniscus shape with a convex surface facing the reduction side.
- the eighteenth lens element L18 has a biconvex shape.
- the nineteenth lens element L19 has a negative meniscus shape with a convex surface facing the reduction side.
- the twentieth lens element L20 has a biconvex shape.
- the twenty-first lens element L21 has a positive meniscus shape with a convex surface facing the magnification side.
- the twenty-second lens element L22 has a negative meniscus shape with a convex surface facing the magnification side.
- the twenty-third lens element L23 has a biconcave shape.
- the twenty-fourth lens element L24 has a biconvex shape.
- the twenty-fifth lens element L25 has a biconvex shape.
- the twenty-sixth lens element L26 has a negative meniscus shape with a convex surface facing the magnification side.
- the twenty-seventh lens element L27 has a biconvex shape.
- the relay optical system Ol includes, in order from the magnification side to the reduction side, a first lens group G1 (L15) having positive power, a second lens group G2 (L16) having negative power, and a third lens group G2 (L16) having positive power.
- the magnifying optical system Op and the sixth lens group G6 are fixed with respect to the reduction conjugate point.
- the first lens group G1 to the fifth lens group G5 may be displaced independently along the optical axis, or at least one of the first lens group G1 to the fifth lens group G5 may be reduced conjugate. It may be fixed with respect to a point.
- a diaphragm A is arranged between the twenty-first lens element L21 and the twenty-second lens element L22.
- An optical element P whose optical power is zero is arranged on the reduction side of the relay optical system Ol.
- zoom lens systems according to Examples 1 to 5 include not only lens elements having optical power, but also elements having zero or substantially zero optical power, such as mirrors, diaphragms, masks, cover glasses, filters, and so on.
- Optical elements such as prisms, wave plates, polarizing elements, and the like may also be included.
- the zoom lens systems according to Examples 1 to 5 are optical systems that internally have intermediate imaging positions that are conjugate with an enlargement-side enlargement conjugate point and a reduction-side reduction conjugate point, respectively, an enlarging optical system having a plurality of lens elements and positioned on the enlarging side of the intermediate imaging position; a relay optical system having a plurality of lens elements and positioned on the reduction side of the intermediate imaging position; The magnifying optical system is fixed with respect to the reduction conjugate point during zooming,
- the relay optical system includes a plurality of moving lens groups independently movable in the optical axis direction during zooming, Of the plurality of moving lens groups, the most reduction side moving lens group positioned closest to the reduction side has a negative refractive power.
- the second lens group G2 to the fifth lens group G5 are independently movable in the optical axis direction during zooming, and the fifth lens group G5 has negative refractive power. .
- the effective diameter of the lens can be reduced. Therefore, the weight of the optical system can be reduced, and the weight of mechanical parts can also be reduced. Moreover, since the zooming operation can be performed without moving the magnifying optical system, which tends to increase in size and weight, the zoom mechanism can be made smaller and lighter.
- the moving lens group on the minimum reduction side of the plurality of moving lens groups has a negative refractive power, the amount of movement during zooming can be reduced, and the effective diameter of the lens can be reduced, so that the size can be reduced. Further, field curvature and astigmatism caused by the intermediate imaging configuration can be corrected by the moving lens group having negative refractive power, and high performance can be realized.
- the maximum reduction side moving lens group may move to the reduction side during zooming from the wide-angle end to the telephoto end.
- the fifth lens group G5 moves to the reduction side during zooming from the wide-angle end to the telephoto end.
- zoom lens systems according to Examples 1 to 5 may satisfy the following condition (1). 0.01 ⁇ CTN/Ymax ⁇ 1.0 (1) here, CTN: Amount of movement of the most reduction side movable lens group during zooming Ymax: Effective image circle diameter on the reduction side.
- Condition (1) is a conditional expression for defining the relationship between the amount of movement of the lens group on the minimum reduction side and the diameter of the effective image circle on the reduction side. By satisfying the condition (1), it is possible to realize a wide-angle and compact lens system. If the lower limit of condition (1) is not reached, the amount of movement of the most reduction-side movable lens group becomes too small, making it difficult to correct curvature of field and astigmatism. If the upper limit of condition (1) is exceeded, the amount of movement of the minimum reduction side moving lens group increases, the total length of the lens increases, and size reduction becomes difficult.
- the relay optical system includes a minimum reduction side fixed lens group that is fixed with respect to the reduction conjugate point during zooming and is located on the maximum reduction side.
- the reduction-side fixed lens group may have positive refractive power.
- the sixth lens group G6 having positive refractive power may be fixed with respect to the reduction conjugate point during zooming.
- the fixed lens group on the minimum reduction side has positive refractive power, it is possible to reduce aberration fluctuations during zooming while maintaining telecentricity.
- the relay optical system may include a maximum-magnification-side fixed lens group that is fixed with respect to the reduction conjugate point during zooming and located on the maximum magnification side.
- the first lens group G1 may be fixed with respect to the reduction conjugate point during zooming.
- the plurality of movable lens groups are arranged between the fixed lens group on the maximum reduction side and the fixed lens group on the maximum magnification side during zooming from the wide-angle end to the telephoto end.
- the second lens group G2 to the fifth lens group G5 move between the sixth lens group G6 and the first lens group G1 during zooming from the wide-angle end to the telephoto end. You may
- the magnifying optical system includes a first focus lens group movable along the optical axis during focusing
- the relay optical system may include a second focus lens group movable along the optical axis during focusing.
- the amount of field curvature aberration generated during focusing is reduced, and good image quality can be obtained.
- the mechanical parts for positioning each focus lens group are distributed, the center of gravity of the lens barrel can be shifted to the reduction side.
- zoom lens systems according to Examples 1 to 5 may satisfy the following condition (2). 10 ⁇ fN/fw ⁇ 5000 (2) here, fN: focal length of the most reduction-side moving lens group fw: focal length of the entire system at the wide-angle end.
- Condition (2) is a conditional expression for defining the relationship between the focal length of the minimum reduction side movable lens group and the focal point of the entire system at the wide-angle end. By satisfying the condition (2), it is possible to realize a lens system with a wide angle and a small lens diameter. If the lower limit of condition (2) is not reached, the effective diameter of the maximum reduction side movable lens group becomes large and heavy. If the upper limit of the condition (2) is exceeded, the power of the minimum reduction side moving lens group becomes too weak, and the curvature of field cannot be corrected appropriately.
- zoom lens systems according to Examples 1 to 5 may satisfy the following condition (3). 3.0 ⁇ Ymax ⁇ f2/ fw2 ⁇ 16.0 (3) here, f2: focal length of the magnifying optical system fw: focal length of the entire system at the wide-angle end.
- Condition (3) is a conditional expression for defining the relationship between the effective image circle diameter on the reduction side, the focal length of the magnifying optical system, and the focal length of the entire system at the wide-angle end. By satisfying the condition (3), miniaturization and high performance can be realized. If the lower limit of condition (3) is exceeded, the diameter of the effective image circle becomes too small for the focal length of the entire system, and the power of the magnifying optical system becomes too strong for the focal length of the entire system. The balance for correcting astigmatism deteriorates, making it difficult to achieve high performance.
- the zoom lens systems according to Examples 1 to 5 may satisfy the following condition (4). 0.02 ⁇ enP/TL1 ⁇ 0.35 (4) here, enP: Distance on the optical axis from the most enlarging side surface of the magnifying optical system to the position of the entrance pupil when the enlarging side is the incident side TL1: Distance on the optical axis from the most reducing side surface to the most enlarging side surface of the magnifying optical system Distance.
- Condition (4) defines the ratio between the distance on the optical axis from the most enlarging side of the enlarging optical system to the position of the entrance pupil when the enlarging side is the incident side, and the overall length of the lenses of the enlarging optical system. is a conditional expression.
- a normal optical system that does not form an intermediate image must ensure a long back focus.
- an intermediate image is formed once and a long back focus is ensured by the relay optical system.
- zoom lens systems according to Examples 1 to 5 may satisfy the following condition (5). 2.0 ⁇ fN1/fw ⁇ 25.0 (5) here, fN1: focal length of the negative lens element located closest to the magnification side among the plurality of lens elements forming the maximum reduction side movable lens group fw: focal length of the entire system at the wide-angle end.
- Condition (5) is for defining the relationship between the focal length of the negative lens element positioned closest to the enlargement side among the plurality of lens elements constituting the minimum reduction side movable lens group and the focal point of the entire system at the wide-angle end. is a conditional expression.
- zoom lens systems according to Examples 1 to 5 may satisfy the following condition (6). ⁇ 27.0 ⁇ fP1/fw ⁇ 4.0 (6) here, fP1: focal length of the positive lens element positioned closest to the enlargement side among the plurality of lens elements forming the maximum reduction side moving lens group fw: focal length of the entire system at the wide-angle end.
- Condition (6) is for defining the relationship between the focal length of the positive lens element located closest to the enlargement side among the plurality of lens elements constituting the maximum reduction side movable lens group and the focal point of the entire system at the wide-angle end. is a conditional expression.
- Z the distance from a point on the aspherical surface whose height from the optical axis is h to the plane tangent to the apex of the aspherical surface; h: height from the optical axis, r: vertex curvature radius, ⁇ : conic constant, An: An n-th order aspheric coefficient.
- Table 21 shows the corresponding values of each conditional expression in each numerical example.
- CTN Movement amount of the most reduction side moving lens group among the plurality of moving lens groups during zooming
- Ymax Effective image circle diameter on the reduction side
- fN Focal length of the most reduction side moving lens group
- fw Entire system at the wide-angle end
- f2 focal length of the enlarging optical system
- enP distance on the optical axis from the most enlarging side of the enlarging optical system to the position of the entrance pupil when the enlarging side is the incident side TL1: from the most reducing side of the enlarging optical system
- fN1 Focal length of the negative lens element located closest to the enlargement side among the plurality of lens elements forming the maximum reduction side moving lens group
- fP1 Constituting the maximum reduction side moving lens group Focal length of the positive lens element located on the most enlarged
- FIG. 26 is a block diagram showing an example of an image projection device according to the present disclosure.
- the image projection apparatus 100 includes the optical system 1 disclosed in the first embodiment, an image forming element 101, a light source 102, a control section 110, and the like.
- the image forming element 101 is composed of liquid crystal, DMD, etc., and generates an image to be projected onto the screen SR via the optical system 1 .
- a light source 102 is composed of an LED (light emitting diode), a laser, or the like, and supplies light to the image forming element 101 .
- the control unit 110 is composed of a CPU, an MPU, or the like, and controls the entire apparatus and each component.
- the optical system 1 may be configured as an interchangeable lens that can be detachably attached to the image projection apparatus 100 . In this case, an apparatus obtained by removing the optical system 1 from the image projection apparatus 100 is an example of the main apparatus.
- the image projection apparatus 100 described above can realize a wide-angle zoom function by the optical system 1 according to the first embodiment, and the size and weight of the apparatus can be reduced.
- FIG. 27 is a block diagram illustrating an example of an imaging device according to the present disclosure.
- the imaging device 200 includes the optical system 1 disclosed in the first embodiment, an imaging device 201, a control unit 210, and the like.
- the imaging device 201 is composed of a CCD (charge-coupled device) image sensor, a CMOS image sensor, or the like, receives an optical image of an object OBJ formed by the optical system 1, and converts it into an electrical image signal.
- the control unit 110 is composed of a CPU, an MPU, or the like, and controls the entire apparatus and each component.
- the optical system 1 may be configured as an interchangeable lens that can be detachably attached to the imaging device 200 . In this case, a device obtained by removing the optical system 1 from the imaging device 200 is an example of the main device.
- the imaging device 200 described above can realize a wide-angle zoom function by the optical system 1 according to the first embodiment, and the size and weight of the device can be reduced.
- the present disclosure is applicable to image projection devices such as projectors and head-up displays, and imaging devices such as digital still cameras, digital video cameras, surveillance cameras in surveillance systems, web cameras, and vehicle-mounted cameras.
- imaging devices such as digital still cameras, digital video cameras, surveillance cameras in surveillance systems, web cameras, and vehicle-mounted cameras.
- the present disclosure is applicable to optical systems that require high image quality, such as projectors, digital still camera systems, and digital video camera systems.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Lenses (AREA)
Abstract
Description
複数のレンズ素子を有し、前記中間結像位置より前記拡大側に位置する拡大光学系と、
複数のレンズ素子を有し、前記中間結像位置より前記縮小側に位置するリレー光学系と、を備え、
前記拡大光学系は、ズーミングの際に前記縮小共役点に対して固定され、
前記リレー光学系は、ズーミングの際に光軸方向に独立に移動可能な複数の移動レンズ群を含み、
前記複数の移動レンズ群のうち最も縮小側に位置する最縮小側移動レンズ群は、負の屈折力を有する。
以下、図1~図25を用いて本開示の実施形態1を説明する。ここでは、光学系の一例としてズームレンズ系について説明する。
図1、2に示すように、実施例1に係るズームレンズ系は、拡大光学系Opとリレー光学系Olとを備える。拡大光学系Opは、第1レンズ素子L1から第15レンズ素子L15で構成される。拡大光学系Opは、前群Opfと後群Oprとを含む。
図6、7、11、12、16、17、21、22に示すように、実施例2~5に係るズームレンズ系は、拡大光学系Opとリレー光学系Olとを備える。拡大光学系Opは、第1レンズ素子L1から第14レンズ素子L14で構成される。拡大光学系Opは、前群Opfと後群Oprとを含む。
複数のレンズ素子を有し、前記中間結像位置より前記拡大側に位置する拡大光学系と、
複数のレンズ素子を有し、前記中間結像位置より前記縮小側に位置するリレー光学系と、を備え、
前記拡大光学系は、ズーミングの際に前記縮小共役点に対して固定され、
前記リレー光学系は、ズーミングの際に光軸方向に独立に移動可能な複数の移動レンズ群を含み、
前記複数の移動レンズ群のうち最も縮小側に位置する最縮小側移動レンズ群は、負の屈折力を有する。
一例として、実施例1~5では、ズーミングの際に、第2レンズ群G2~第5レンズ群G5が光軸方向に独立に移動可能であり、第5レンズ群G5は負の屈折力を有する。
また、サイズおよび重量が大きくなる傾向がある拡大光学系を移動することなくズーミング動作が可能になるため、ズーム機構の小型化、軽量化が図られる。
また、複数の移動レンズ群のうち最縮小側移動レンズ群が負の屈折力を有する構成により、ズーミング時の移動量を少なくでき、さらにレンズの有効径も小さくできるため、小型化が図られる。また、中間結像構成により発生する像面湾曲や非点収差を、前記負の屈折力を有する移動レンズ群により補正することができ、高性能化を実現できる。
一例として、実施例1~5では、広角端から望遠端へのズーミングの際に、第5レンズ群G5が縮小側に移動している。
0.01<CTN/Ymax<1.0 …(1)
ここで、
CTN:ズーミングの際に、前記最縮小側移動レンズ群の移動量
Ymax:縮小側における有効像円直径
である。
0.02<CTN/Ymax<0.90 …(1A)
一例として、実施例1~5では、ズーミングの際に、正の屈折力を有する第6レンズ群G6が縮小共役点に対して固定してもよい。
一例として、実施例1~5では、ズーミングの際に、第1レンズ群G1が縮小共役点に対して固定してもよい。
一例として、実施例1~5では、広角端から望遠端へのズーミングの際に、第2レンズ群G2~第5レンズ群G5が第6レンズ群G6と第1レンズ群G1との間で移動してもよい。
前記リレー光学系は、フォーカシングの際に光軸に沿って移動可能な第2フォーカスレンズ群を含んでもよい。
10<fN/fw<5000 …(2)
ここで、
fN:前記最縮小側移動レンズ群の焦点距離
fw:広角端の全系の焦点距離
である。
100<fN/fw<4500 …(2A)
3.0<Ymax・f2/fw2<16.0 …(3)
ここで、
f2:前記拡大光学系の焦点距離
fw:広角端の全系の焦点距離
である。
4.0<Ymax・f2/fw2<15.0 …(3A)
0.02<enP/TL1<0.35 …(4)
ここで、
enP:前記拡大光学系の最も拡大側面から拡大側を入射側とした場合の入射瞳位置までの光軸上の距離
TL1:前記拡大光学系の最も縮小側面から最も拡大側面までの光軸上の距離
である。
0.05<enP/TL1<0.30 …(4A)
2.0<fN1/fw<25.0 …(5)
ここで、
fN1:前記最縮小側移動レンズ群を構成する複数のレンズ素子のうち最も拡大側に位置する負レンズ素子の焦点距離
fw:広角端の全系の焦点距離
である。
3.0<fN1/fw<24.0 …(5A)
-27.0<fP1/fw<-4.0 …(6)
ここで、
fP1:前記最縮小側移動レンズ群を構成する複数のレンズ素子のうち最も拡大側に位置する正レンズ素子の焦点距離
fw:広角端の全系の焦点距離
である。
-26.0<fP1/fw<-5.0 …(6A)
数値実施例1(実施例1に対応)のズームレンズ系について、面データを表1に示し、各種データを表2に示し、フォーカスデータを表3に示し、単レンズデータを表4に示す(単位はmm)。
面データ
面番号 r d nd vd
物面 1100
1* 119.52640 9.95790 1.50940 56.5
2* 35.26070 22.38460
3 80.77750 3.54460 1.72916 54.7
4 36.63530 9.48700
5 62.52070 2.50000 1.83480 42.7
6 27.67310 21.99700
7 -70.15910 8.21900 1.80420 46.5
8 594.69480 1.33940
9 124.64020 5.54800 1.80420 46.5
10 -72.62130 12.49590
11* -26.31610 9.31280 1.51633 64.1
12* -19.60190 0.20000
13 -98.60780 7.09890 1.49700 81.6
14 -26.03630 1.62820
15 -30.52300 2.50000 1.86966 20.0
16 462.48500 1.18290
17 -1029.08340 11.21670 1.49700 81.6
18 -32.78000 5.06020
19 97.10520 10.58070 1.49700 81.6
20 -116.90860 0.20000
21 1514.53830 2.50000 1.69895 30.0
22 112.81290 44.43170
23 182.05880 11.70470 1.92286 20.9
24 -210.37220 0.20000
25 48.61070 8.96200 1.92286 20.9
26 62.66610 0.20000
27 45.19540 9.36130 1.92286 20.9
28 56.62650 8.71460
29 231.84200 3.49290 1.80420 46.5
30 53.15190 31.13120
31 -42.19710 11.00000 1.92286 20.9
32 -44.81820 可変
33 -66.03250 10.98810 1.73800 32.3
34 105.97070 可変
35 -195.89250 9.96520 1.86966 20.0
36 -51.81730 可変
37 787.21310 15.00000 1.59282 68.6
38 -62.23670 4.30150
39 -64.03190 2.00000 1.59270 35.3
40 -221.32210 0.20000
41 170.84870 4.64260 1.49700 81.6
42 -170.84870 可変
43 39.46460 5.47980 1.59270 35.3
44 100.39760 3.09940
45(絞り) ∞ 5.22890
46 79.89460 1.50000 1.51633 64.1
47 29.25490 可変
48 -47.20730 1.50000 1.73800 32.3
49 75.86060 2.98340
50 261.00240 5.81550 1.43700 95.1
51 -50.05640 1.00000
52 70.71160 8.65750 1.49700 81.6
53 -91.07290 7.74240
54 54.14990 2.50000 1.67300 38.3
55 39.07210 3.06530
56 44.60940 20.61510 1.43700 95.1
57 -65.26060 15.56000
58 ∞ 41.77900 1.51680 64.2
59 ∞ BF
像面 ∞
非球面データ
第1面
K= 0.00000E+00, A3= 3.39820E-05, A4=-1.51102E-07, A5=-4.58997E-08
A6= 1.59795E-09, A7=-1.70289E-11, A8=-4.83390E-14, A9= 2.30699E-15
A10=-1.29896E-17
第2面
K=-7.96856E-01, A3= 7.17508E-05, A4=-4.26012E-06, A5= 3.28783E-09
A6= 8.82707E-11, A7=-4.41750E-14, A8= 3.60550E-14, A9= 3.79852E-16
A10=-1.13853E-17
第11面
K= 0.00000E+00, A3= 0.00000E+00, A4=-2.02960E-05, A5= 0.00000E+00
A6=-3.69442E-08, A7= 0.00000E+00, A8=-1.54744E-10, A9= 0.00000E+00
A10=-9.62371E-13
第12面
K= 0.00000E+00, A3= 0.00000E+00, A4= 4.14867E-06, A5= 0.00000E+00
A6= 6.06723E-09, A7= 0.00000E+00, A8=-2.46057E-12, A9= 0.00000E+00
A10= 0.00000E+00
各種データ
ズーム比 1.06933
広角 中間 望遠
焦点距離 -7.2198 -7.4490 -7.7203
Fナンバー -2.02590 -2.00781 -1.98875
画角 -66.9980 -66.3120 -65.5018
像高 17.2650 17.2650 17.2650
レンズ全長 566.0109 566.0160 566.0230
BF 1.01142 1.01655 1.02348
d32 5.4491 4.6995 3.7601
d34 9.3254 9.6493 10.0398
d36 76.8535 74.2970 71.5047
d42 2.0076 6.2752 10.9585
d47 19.5880 18.3026 16.9605
入射瞳位置 41.6882 41.7026 41.7217
射出瞳位置 -1054.2466 -786.0529 -618.7915
前側主点位置 34.4190 34.1831 33.9052
後側主点位置 573.1850 573.4164 573.6911
フォーカスデータ
広角 望遠
物体距離 710 762
d22 45.1039 44.9532
d30 32.6985 32.3698
d32 3.2095 2.0000
物体距離 2842 3048
d22 43.5563 43.6180
d30 29.1661 29.1908
d32 8.2896 6.5141
単レンズデータ
レンズ 始面 焦点距離
1 1 -102.2638
2 3 -95.1642
3 5 -61.4805
4 7 -77.6073
5 9 57.7824
6 11 101.0651
7 13 68.9431
8 15 -32.8471
9 17 67.8725
10 19 108.5127
11 21 -174.5214
12 23 107.2908
13 25 179.8190
14 27 174.1513
15 29 -86.5064
16 31 770.9116
17 33 -53.6694
18 35 78.4874
19 37 97.9353
20 39 -152.7368
21 41 172.6598
22 43 106.1564
23 46 -90.3026
24 48 -39.2268
25 50 96.6619
26 52 81.5406
27 54 -223.4034
28 56 64.3031
数値実施例2(実施例2に対応)のズームレンズ系について、面データを表5に示し、各種データを表6に示し、フォーカスデータを表7に示し、単レンズデータを表8に示す(単位はmm)。
面データ
面番号 r d nd vd
物面 ∞
1* 108.57490 9.86090 1.50940 56.5
2* 34.69390 20.30690
3 70.39560 3.50000 1.72916 54.7
4 38.31030 11.49800
5 77.82800 2.55000 1.83480 42.7
6 27.71270 17.45220
7 -96.08890 14.26620 1.80420 46.5
8 599.95490 1.50490
9 177.60990 4.95400 1.80420 46.5
10 -97.56240 16.45290
11* -26.06720 10.00000 1.51623 64.0
12* -19.77710 0.50000
13 -173.26010 8.24160 1.49700 81.6
14 -25.51300 1.54570
15 -29.60210 2.50000 1.86966 20.0
16 293.57420 0.52810
17 279.39620 12.50000 1.49700 81.6
18 -34.34210 0.20000
19 198.85500 4.73030 1.49700 81.6
20 -349.39300 53.33020
21 179.39700 11.00000 1.92286 20.9
22 -211.73330 0.20000
23 46.44700 8.12660 1.92286 20.9
24 60.48990 0.20000
25 41.56800 7.73270 1.92286 20.9
26 53.12620 8.05590
27 207.23960 2.65000 1.80420 46.5
28 49.42710 30.55280
29 -41.36010 11.00000 1.92286 20.9
30 -44.00000 可変
31 -71.99170 11.00000 1.73800 32.3
32 101.16590 可変
33 -147.84390 9.32680 1.86966 20.0
34 -50.31900 可変
35 404.68540 15.00000 1.59282 68.6
36 -67.50700 6.02000
37 -69.53260 2.00000 1.59270 35.3
38 -346.15300 0.20000
39 163.62110 5.05600 1.49700 81.6
40 -163.62110 可変
41 41.34420 5.16410 1.59270 35.3
42 88.81710 4.33650
43(絞り) ∞ 8.00930
44 63.11000 1.50000 1.51633 64.1
45 28.89910 可変
46 -47.00530 1.50000 1.73800 32.3
47 73.83990 3.01040
48 262.71120 5.84800 1.43700 95.1
49 -48.24770 1.00000
50 67.92220 8.30000 1.49700 81.6
51 -98.52820 9.50160
52 55.63230 2.50000 1.67300 38.3
53 39.87300 3.18750
54 46.17920 18.61040 1.43700 95.1
55 -63.10060 7.96480
56 ∞ 39.32900 1.51680 64.2
57 ∞ 4.59520
58 ∞ 0.55000 1.51680 64.2
59 ∞ 4.00000
60 ∞ 1.90000 1.51680 64.2
61 ∞ BF
像面 ∞
非球面データ
第1面
K= 0.00000E+00, A3= 3.47339E-05, A4=-6.74283E-07, A5=-3.45951E-08
A6= 1.51025E-09, A7=-1.70058E-11, A8=-4.88886E-14, A9= 2.32790E-15
A10=-1.29625E-17
第2面
K=-8.14220E-01, A3= 7.29749E-05, A4=-4.65798E-06, A5= 9.07093E-09
A6= 1.38885E-10, A7= 6.41794E-13, A8= 4.24196E-15, A9= 3.10765E-16
A10=-7.64882E-18
第11面
K= 0.00000E+00, A3= 0.00000E+00, A4=-1.89513E-05, A5= 0.00000E+00
A6=-3.99376E-08, A7= 0.00000E+00, A8=-9.35343E-11, A9= 0.00000E+00
A10=-1.63883E-12
第12面
K= 0.00000E+00, A3= 0.00000E+00, A4= 3.93978E-06, A5= 0.00000E+00
A6= 4.49592E-09, A7= 0.00000E+00, A8= 1.93270E-11, A9= 0.00000E+00
A10= 0.00000E+00
各種データ
ズーム比 1.06914
広角 中間 望遠
焦点距離 -7.2248 -7.4532 -7.7243
Fナンバー -1.99360 -1.97285 -1.95415
画角 -66.9370 -66.2428 -65.4271
像高 17.2650 17.2650 17.2650
レンズ全長 566.0144 566.0211 566.0304
BF 0.01470 0.02136 0.03046
d30 5.0844 4.4044 3.5601
d32 11.7317 12.0947 12.5117
d34 74.6222 71.8659 68.8635
d40 2.0995 6.5681 11.2409
d45 17.1124 15.7171 14.4742
入射瞳位置 42.4243 42.4414 42.4616
射出瞳位置 -1175.4441 -835.9941 -662.5318
前側主点位置 35.1551 34.9217 34.6472
後側主点位置 573.1935 573.4256 573.7024
フォーカスデータ
広角 望遠
物体距離 710 762
d20 53.9423 53.8172
d28 31.9015 31.6260
d30 3.1236 2.0000
物体距離 2842 3048
d20 52.5571 52.5382
d28 28.8490 28.8074
d30 7.5613 6.0976
単レンズデータ
レンズ 始面 焦点距離
1 1 -104.8116
2 3 -120.8324
3 5 -52.7756
4 7 -102.0570
5 9 78.9371
6 11 103.0090
7 13 59.1041
8 15 -30.8099
9 17 62.3604
10 19 255.7204
11 21 106.6716
12 23 169.6700
13 25 156.7144
14 27 -81.3198
15 29 747.1094
16 31 -55.4956
17 33 83.9783
18 35 98.7613
19 37 -147.1997
20 39 165.4584
21 41 125.4283
22 44 -104.8150
23 46 -38.7141
24 48 93.8125
25 50 82.2590
26 52 -223.4047
27 54 64.3506
数値実施例3(実施例3に対応)のズームレンズ系について、面データを表9に示し、各種データを表10に示し、フォーカスデータを表11に示し、単レンズデータを表12に示す(単位はmm)。
面データ
面番号 r d nd vd
物面 ∞
1* 107.93940 9.71900 1.50940 56.5
2* 34.65080 22.17080
3 70.54480 3.50000 1.72916 54.7
4 36.30430 9.83390
5 64.40750 2.55000 1.83480 42.7
6 26.01010 18.65060
7 -103.03750 15.00000 1.80420 46.5
8 600.63130 1.75360
9 191.47870 8.08310 1.80420 46.5
10 -92.44130 10.25440
11* -26.41320 9.63150 1.51623 64.0
12* -20.25630 0.50000
13 -332.05910 8.32290 1.49700 81.6
14 -26.17580 1.53410
15 -30.65370 2.50000 1.86966 20.0
16 156.28270 0.59640
17 166.12560 12.50000 1.49700 81.6
18 -37.78170 0.51590
19 -289.27290 5.09840 1.49700 81.6
20 -77.19990 52.02180
21 176.86570 11.75190 1.92286 20.9
22 -176.73490 0.20000
23 45.86640 6.96520 1.92286 20.9
24 54.59270 0.20000
25 39.85740 8.12970 1.92286 20.9
26 49.79640 8.83050
27 196.86620 2.65000 1.80420 46.5
28 49.83570 30.13510
29 -41.15780 11.00000 1.92286 20.9
30 -44.00010 可変
31 -70.24890 11.00000 1.73800 32.3
32 101.97770 可変
33 -164.30960 9.63540 1.86966 20.0
34 -51.20660 可変
35 470.56580 15.00000 1.59282 68.6
36 -66.16520 6.05460
37 -66.75820 2.00000 1.59270 35.3
38 -284.20420 0.88270
39 163.19380 4.94440 1.49700 81.6
40 -163.19380 可変
41 42.57330 5.13850 1.59270 35.3
42 96.61330 4.30520
43(絞り) ∞ 7.96890
44 73.76860 1.50000 1.51633 64.1
45 30.53830 可変
46 -50.64390 1.61950 1.73800 32.3
47 66.54560 3.00290
48 198.12540 5.77670 1.43700 95.1
49 -52.21790 1.00000
50 61.19620 8.62750 1.49700 81.6
51 -107.84400 7.97930
52 53.01580 2.50000 1.67300 38.3
53 37.67940 3.33170
54 44.26600 18.60070 1.43700 95.1
55 -64.76840 7.78060
56 ∞ 39.32900 1.51680 64.2
57 ∞ 4.59520
58 ∞ 0.55000 1.51680 64.2
59 ∞ 4.00000
60 ∞ 1.90000 1.51680 64.2
61 ∞ BF
像面 ∞
非球面データ
第1面
K= 0.00000E+00, A3= 3.56263E-05, A4=-6.70122E-07, A5=-3.52652E-08
A6= 1.52095E-09, A7=-1.70058E-11, A8=-4.88886E-14, A9= 2.31926E-15
A10=-1.29625E-17
第2面
K=-8.13160E-01, A3= 7.26090E-05, A4=-4.66900E-06, A5= 9.07850E-09
A6= 1.40082E-10, A7= 6.57697E-13, A8= 4.33351E-15, A9= 3.07920E-16
A10=-7.76577E-18
第11面
K= 0.00000E+00, A3= 0.00000E+00, A4=-1.74363E-05, A5= 0.00000E+00
A6=-3.14611E-08, A7= 0.00000E+00, A8=-1.57381E-10, A9= 0.00000E+00
A10=-9.46957E-13
第12面
K= 0.00000E+00, A3= 0.00000E+00, A4= 3.32932E-06, A5= 0.00000E+00
A6= 4.08635E-09, A7= 0.00000E+00, A8= 5.86116E-12, A9= 0.00000E+00
A10= 0.00000E+00
各種データ
ズーム比 1.06951
広角 中間 望遠
焦点距離 -7.2236 -7.4534 -7.7257
Fナンバー -1.90135 -1.90180 -1.90205
画角 -66.9335 -66.2462 -65.4362
像高 17.2650 17.2650 17.2650
レンズ全長 566.0121 566.0180 566.0260
BF 0.01256 0.01845 0.02641
d30 5.1448 4.4529 3.5909
d32 11.8357 12.1416 12.5089
d34 76.1761 73.5020 70.5797
d40 2.1869 6.5524 11.2141
d45 17.0344 15.7291 14.4844
入射瞳位置 42.1904 42.2072 42.2279
射出瞳位置 -864.5124 -674.6644 -556.1917
前側主点位置 34.9065 34.6714 34.3948
後側主点位置 573.1900 573.4229 573.6995
フォーカスデータ
広角 望遠
物体距離 710 762
d20 52.6205 52.5019
d28 31.5202 31.2460
d30 3.1611 2.0000
物体距離 2842 3048
d20 51.2801 51.2468
d28 28.4192 28.3420
d30 7.6025 6.1591
単レンズデータ
レンズ 始面 焦点距離
1 1 -104.8781
2 3 -107.2001
3 5 -53.8912
4 7 -108.3340
5 9 78.5189
6 11 109.8358
7 13 56.6631
8 15 -29.2857
9 17 63.2210
10 19 210.1999
11 21 97.3420
12 23 224.8099
13 25 155.3855
14 27 -83.6458
15 29 805.2018
16 31 -54.8740
17 33 82.2785
18 35 98.8800
19 37 -147.7192
20 39 165.0097
21 41 124.0284
22 44 -102.1322
23 46 -38.7401
24 48 95.2356
25 50 79.9095
26 52 -207.1220
27 54 63.4635
数値実施例4(実施例4に対応)のズームレンズ系について、面データを表13に示し、各種データを表14に示し、フォーカスデータを表15に示し、単レンズデータを表16に示す(単位はmm)。
面データ
面番号 r d nd vd
物面 ∞
1* 107.68690 9.72840 1.50940 56.5
2* 34.63220 22.56300
3 70.87530 3.50000 1.72916 54.7
4 35.90850 9.42430
5 61.51430 2.55000 1.83480 42.7
6 25.61190 19.05470
7 -100.01630 15.00000 1.80420 46.5
8 596.76870 1.75850
9 183.25580 8.80660 1.80420 46.5
10 -87.61240 9.17330
11* -26.00980 9.43520 1.51623 64.0
12* -19.95640 0.50000
13 -313.22350 8.27000 1.49700 81.6
14 -26.11540 1.54520
15 -30.50610 2.50000 1.86966 20.0
16 147.36870 0.60560
17 158.01220 12.50000 1.49700 81.6
18 -38.42840 1.45500
19 -239.39850 5.30350 1.49700 81.6
20 -71.67790 50.79710
21 179.86360 11.90430 1.92286 20.9
22 -171.06680 0.20000
23 46.19840 6.73480 1.92286 20.9
24 54.51280 0.20000
25 39.42810 8.23100 1.92286 20.9
26 49.08880 9.05080
27 202.31160 2.65000 1.80420 46.5
28 50.13730 29.90550
29 -41.18220 11.00000 1.92286 20.9
30 -43.99980 可変
31 -70.59810 11.00000 1.73800 32.3
32 102.80640 可変
33 -166.30630 9.68500 1.86966 20.0
34 -51.33890 可変
35 536.30660 15.00000 1.59282 68.6
36 -65.36960 5.98980
37 -65.39400 2.00000 1.59270 35.3
38 -258.05550 0.20000
39 162.66690 4.95550 1.49700 81.6
40 -162.66690 可変
41 42.92380 5.13840 1.59270 35.3
42 99.34020 4.28940
43(絞り) ∞ 7.96240
44 76.74060 1.50000 1.51633 64.1
45 30.90790 可変
46 -51.99450 1.56220 1.73800 32.3
47 64.15710 3.01630
48 184.92230 5.77070 1.43700 95.1
49 -53.29550 1.00000
50 59.83760 9.02330 1.49700 81.6
51 -110.87170 7.34660
52 52.97550 2.50000 1.67300 38.3
53 37.47270 3.41830
54 44.44110 18.69280 1.43700 95.1
55 -63.58260 7.72480
56 ∞ 39.32900 1.51680 64.2
57 ∞ 4.59520
58 ∞ 0.55000 1.51680 64.2
59 ∞ 4.00000
60 ∞ 1.90000 1.51680 64.2
61 ∞ BF
像面 ∞
非球面データ
第1面
K= 0.00000E+00, A3= 3.51052E-05, A4=-6.50035E-07, A5=-3.56593E-08
A6= 1.52395E-09, A7=-1.70058E-11, A8=-4.88886E-14, A9= 2.31822E-15
A10=-1.29625E-17
第2面
K=-8.13070E-01, A3= 7.28199E-05, A4=-4.67421E-06, A5= 9.05250E-09
A6= 1.40447E-10, A7= 6.64689E-13, A8= 4.39462E-15, A9= 3.07470E-16
A10=-7.80113E-18
第11面
K= 0.00000E+00, A3= 0.00000E+00, A4=-1.78833E-05, A5= 0.00000E+00
A6=-3.25591E-08, A7= 0.00000E+00, A8=-1.60452E-10, A9= 0.00000E+00
A10=-1.00596E-12
第12面
K= 0.00000E+00, A3= 0.00000E+00, A4= 3.42081E-06, A5= 0.00000E+00
A6= 4.30100E-09, A7= 0.00000E+00, A8= 5.56065E-12, A9= 0.00000E+00
A10= 0.00000E+00
各種データ
ズーム比 1.06970
広角 中間 望遠
焦点距離 -7.2233 -7.4539 -7.7268
Fナンバー -1.90140 -1.90182 -1.90208
画角 -66.9245 -66.2381 -65.4290
像高 17.2650 17.2650 17.2650
レンズ全長 566.0117 566.0180 566.0259
BF 0.01217 0.01841 0.02622
d30 5.1360 4.4478 3.5907
d32 11.8825 12.1640 12.5093
d34 77.2499 74.6008 71.6985
d40 2.3360 6.5824 11.1561
d45 16.8986 15.7081 14.5486
入射瞳位置 42.1910 42.2068 42.2266
射出瞳位置 -832.9840 -667.5316 -557.8821
前側主点位置 34.9050 34.6697 34.3928
後側主点位置 573.1893 573.4232 573.7005
フォーカスデータ
広角 望遠
物体距離 710 762
d20 51.3988 51.2764
d28 31.3005 31.0169
d30 3.1394 2.0000
物体距離 2842 3048
d20 50.0521 50.0205
d28 28.1784 28.1050
d30 7.6082 6.1678
単レンズデータ
レンズ 始面 焦点距離
1 1 -104.9319
2 3 -104.2179
3 5 -54.3222
4 7 -105.5037
5 9 74.7898
6 11 108.5158
7 13 56.7830
8 15 -28.8733
9 17 63.5376
10 19 203.7187
11 21 96.5786
12 23 236.3368
13 25 154.0846
14 27 -83.5337
15 29 797.5899
16 31 -55.2272
17 33 82.1745
18 35 99.2085
19 37 -148.3547
20 39 164.4815
21 41 123.3406
22 44 -101.3582
23 46 -38.6943
24 48 95.3750
25 50 79.5926
26 52 -203.4666
27 54 63.1828
数値実施例5(実施例5に対応)のズームレンズ系について、面データを表17に示し、各種データを表18に示し、フォーカスデータを表19に示し、単レンズデータを表20に示す(単位はmm)。
面データ
面番号 r d nd vd
物面 ∞
1* 107.32640 9.75330 1.50940 56.5
2* 34.58550 23.06690
3 69.97420 3.50000 1.72916 54.7
4 35.39210 8.83770
5 57.65260 2.55000 1.83480 42.7
6 24.74670 19.92290
7 -95.31400 15.00000 1.80420 46.5
8 600.03660 1.76880
9 167.20170 8.80910 1.80420 46.5
10 -79.62250 7.70610
11* -25.27710 8.86040 1.51623 64.0
12* -19.44370 0.50000
13 -277.44070 8.24600 1.49700 81.6
14 -25.73980 1.59330
15 -29.69170 2.50000 1.86966 20.0
16 140.52190 0.62760
17 153.63470 12.50000 1.49700 81.6
18 -38.56630 3.16940
19 -224.30250 5.59290 1.49700 81.6
20 -69.32340 48.07180
21 179.14340 12.25130 1.92286 20.9
22 -166.72040 0.20000
23 45.77820 6.54020 1.92286 20.9
24 52.98250 0.20000
25 39.29160 8.37000 1.92286 20.9
26 48.97510 9.27850
27 216.19300 2.65000 1.80420 46.5
28 49.97070 29.69320
29 -41.21940 11.00000 1.92286 20.9
30 -44.00000 可変
31 -71.26720 11.00000 1.73800 32.3
32 105.87870 可変
33 -167.81610 9.77280 1.86966 20.0
34 -51.55790 可変
35 836.00430 15.00000 1.59282 68.6
36 -63.14680 5.33560
37 -62.56920 2.00000 1.59270 35.3
38 -211.81410 0.20000
39 162.85640 4.95760 1.49700 81.6
40 -162.85640 可変
41 43.51190 5.14970 1.59270 35.3
42 104.62450 4.23080
43(絞り) ∞ 7.93870
44 84.96510 1.50000 1.51633 64.1
45 31.64870 可変
46 -54.36570 1.50000 1.73800 32.3
47 61.44020 3.01920
48 168.76060 5.74410 1.43700 95.1
49 -54.77350 1.00000
50 57.79820 10.37250 1.49700 81.6
51 -117.01690 6.21800
52 53.09390 2.50000 1.67300 38.3
53 37.13360 3.53330
54 44.55600 18.79630 1.43700 95.1
55 -62.12050 7.72480
56 ∞ 39.32900 1.51680 64.2
57 ∞ 4.59520
58 ∞ 0.55000 1.51680 64.2
59 ∞ 4.00000
60 ∞ 1.90000 1.51680 64.2
61 ∞ BF
像面 ∞
非球面データ
第1面
K= 0.00000E+00, A3= 3.50560E-05, A4=-6.26647E-07, A5=-3.64379E-08
A6= 1.53157E-09, A7=-1.70058E-11, A8=-4.88886E-14, A9= 2.31486E-15
A10=-1.29625E-17
第2面
K=-8.13220E-01, A3= 7.38627E-05, A4=-4.69123E-06, A5= 8.97173E-09
A6= 1.40980E-10, A7= 6.82314E-13, A8= 4.57316E-15, A9= 3.06921E-16
A10=-7.86124E-18
第11面
K= 0.00000E+00, A3= 0.00000E+00, A4=-1.86266E-05, A5= 0.00000E+00
A6=-3.61032E-08, A7= 0.00000E+00, A8=-1.69497E-10, A9= 0.00000E+00
A10=-1.12305E-12
第12面
K= 0.00000E+00, A3= 0.00000E+00, A4= 3.39082E-06, A5= 0.00000E+00
A6= 4.78562E-09, A7= 0.00000E+00, A8= 2.25262E-13, A9= 0.00000E+00
A10= 0.00000E+00
各種データ
ズーム比 1.07012
広角 中間 望遠
焦点距離 -7.2231 -7.4551 -7.7296
Fナンバー -1.90135 -1.90174 -1.90199
画角 -66.8497 -66.1697 -65.3689
像高 17.2650 17.2650 17.2650
レンズ全長 566.0135 566.0191 566.0261
BF 0.01384 0.01943 0.02646
d30 5.1454 4.4626 3.6196
d32 11.9931 12.2230 12.5159
d34 79.0173 76.4053 73.5350
d40 2.5217 6.6430 11.0569
d45 16.6952 15.6388 14.6452
入射瞳位置 42.1403 42.1550 42.1730
射出瞳位置 -818.7031 -672.7451 -574.9864
前側主点位置 34.8534 34.6172 34.3395
後側主点位置 573.1910 573.4256 573.7034
フォーカスデータ
広角 望遠
物体距離 710 762
d20 48.6847 48.5577
d28 31.1231 30.8269
d30 3.1026 2.0000
物体距離 2842 3048
d20 47.3093 47.2784
d28 27.9146 27.8423
d30 7.6865 6.2639
単レンズデータ
レンズ 始面 焦点距離
1 1 -104.9241
2 3 -102.5916
3 5 -53.8354
4 7 -101.3005
5 9 68.1538
6 11 107.5759
7 13 56.4727
8 15 -27.9948
9 17 63.3968
10 19 199.4869
11 21 95.1909
12 23 254.0972
13 25 152.1946
14 27 -81.3958
15 29 786.4931
16 31 -56.2352
17 33 82.3563
18 35 99.6567
19 37 -150.5745
20 39 164.6725
21 41 121.8612
22 44 -98.6254
23 46 -38.8695
24 48 95.3723
25 50 79.4091
26 52 -195.8940
27 54 62.7347
[表22]
CTN:ズーミングの際に、複数の移動レンズ群のうち最縮小側移動レンズ群の移動量
Ymax:縮小側における有効像円直径
fN:最縮小側移動レンズ群の焦点距離
fw:広角端の全系の焦点距離
f2:拡大光学系の焦点距離
enP:拡大光学系の最も拡大側面から拡大側を入射側とした場合の入射瞳位置までの光軸上の距離
TL1:拡大光学系の最も縮小側面から最も拡大側面までの光軸上の距離
fN1:最縮小側移動レンズ群を構成する複数のレンズ素子のうち最も拡大側に位置する負レンズ素子の焦点距離
fP1:最縮小側移動レンズ群を構成する複数のレンズ素子のうち最も拡大側に位置する正レンズ素子の焦点距離
以下、図26を用いて本開示の実施形態2を説明する。図26は、本開示に係る画像投写装置の一例を示すブロック図である。画像投写装置100は、実施形態1で開示した光学系1と、画像形成素子101と、光源102と、制御部110などを備える。画像形成素子101は、液晶、DMDなどで構成され、光学系1を経由してスクリーンSRに投写する画像を生成する。光源102は、LED(発光ダイオード)、レーザなどで構成され、画像形成素子101に光を供給する。制御部110は、CPUまたはMPUなどで構成され、装置全体および各コンポーネントを制御する。光学系1は、画像投写装置100に対して着脱自在に取付け可能な交換レンズとして構成してもよい。この場合、画像投写装置100から光学系1を取り外した装置が本体装置の一例である。
以下、図27を用いて本開示の実施形態3を説明する。図27は、本開示に係る撮像装置の一例を示すブロック図である。撮像装置200は、実施形態1で開示した光学系1と、撮像素子201と、制御部210などを備える。撮像素子201は、CCD(電荷結合素子)イメージセンサ、CMOSイメージセンサなどで構成され、光学系1が形成する物体OBJの光学像を受光して電気的な画像信号に変換する。制御部110は、CPUまたはMPUなどで構成され、装置全体および各コンポーネントを制御する。光学系1は、撮像装置200に対して着脱自在に取付け可能な交換レンズとして構成してもよい。この場合、撮像装置200から光学系1を取り外した装置が本体装置の一例である。
Claims (14)
- 拡大側の拡大共役点及び縮小側の縮小共役点とそれぞれ共役である中間結像位置を内部に有する光学系であって、
複数のレンズ素子を有し、前記中間結像位置より前記拡大側に位置する拡大光学系と、
複数のレンズ素子を有し、前記中間結像位置より前記縮小側に位置するリレー光学系と、を備え、
前記拡大光学系は、ズーミングの際に前記縮小共役点に対して固定され、
前記リレー光学系は、ズーミングの際に光軸方向に独立に移動可能な複数の移動レンズ群を含み、
前記複数の移動レンズ群のうち最も縮小側に位置する最縮小側移動レンズ群は、負の屈折力を有する、光学系。 - 前記最縮小側移動レンズ群は、広角端から望遠端へのズーミングの際に縮小側に移動する、請求項1に記載の光学系。
- 以下の条件(1)を満足する、請求項2に記載の光学系。
0.01<CTN/Ymax<1.0 …(1)
ここで、
CTN:ズーミングの際に、前記最縮小側移動レンズ群の移動量
Ymax:縮小側における有効像円直径
である。 - 前記リレー光学系は、ズーミングの際に前記縮小共役点に対して固定され、最も縮小側に位置する最縮小側固定レンズ群を含み、前記最縮小側固定レンズ群は、正の屈折力を有する、請求項2に記載の光学系。
- 前記リレー光学系は、ズーミングの際に前記縮小共役点に対して固定され、最も拡大側に位置する最拡大側固定レンズ群を含む、請求項4に記載の光学系。
- 前記複数の移動レンズ群は、広角端から望遠端へのズーミングの際に前記最縮小側固定レンズ群と前記最拡大側固定レンズ群との間で移動する少なくとも4つの移動レンズ群を含む、請求項5に記載の光学系。
- 前記拡大光学系は、フォーカシングの際に光軸に沿って移動可能な第1フォーカスレンズ群を含み、
前記リレー光学系は、フォーカシングの際に光軸に沿って移動可能な第2フォーカスレンズ群を含む、請求項2に記載の光学系。 - 以下の条件(2)を満足する、請求項2に記載の光学系。
10<fN/fw<5000 …(2)
ここで、
fN:前記最縮小側移動レンズ群の焦点距離
fw:広角端の全系の焦点距離
である。 - 以下の条件(3)を満足する、請求項2に記載の光学系。
3.0<Ymax・f2/fw2<16.0 …(3)
ここで、
f2:前記拡大光学系の焦点距離
fw:広角端の全系の焦点距離
である。 - 以下の条件(4)を満足する、請求項2に記載の光学系。
0.02<enP/TL1<0.35 …(4)
ここで、
enP:前記拡大光学系の最も拡大側面から拡大側を入射側とした場合の入射瞳位置までの光軸上の距離
TL1:前記拡大光学系の最も縮小側面から最も拡大側面までの光軸上の距離
である。 - 以下の条件(5)を満足する、請求項2に記載の光学系。
2.0<fN1/fw<25.0 …(5)
ここで、
fN1:前記最縮小側移動レンズ群を構成する複数のレンズ素子のうち最も拡大側に位置する負レンズ素子の焦点距離
fw:広角端の全系の焦点距離
である。 - 以下の条件(6)を満足する、請求項2に記載の光学系。
-27.0<fP1/fw<-4.0 …(6)
ここで、
fP1:前記最縮小側移動レンズ群を構成する複数のレンズ素子のうち最も拡大側に位置する正レンズ素子の焦点距離
fw:広角端の全系の焦点距離
である。 - 請求項1から12のいずれかに記載の光学系と、
該光学系を経由してスクリーンに投写する画像を生成する画像形成素子と、を備える画像投写装置。 - 請求項1から12のいずれかに記載の光学系と、
該光学系が形成する光学像を受光して電気的な画像信号に変換する撮像素子と、を備える撮像装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023500514A JPWO2022176234A1 (ja) | 2021-02-16 | 2021-08-06 | |
EP21926663.2A EP4296746A4 (en) | 2021-02-16 | 2021-08-06 | OPTICAL SYSTEM, IMAGE PROJECTION DEVICE AND IMAGING DEVICE |
CN202180093705.0A CN116868103A (zh) | 2021-02-16 | 2021-08-06 | 光学系统、图像投影装置以及摄像装置 |
US18/232,936 US20230384571A1 (en) | 2021-02-16 | 2023-08-11 | Optical system, image projection apparatus, and imaging apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-022596 | 2021-02-16 | ||
JP2021022596 | 2021-02-16 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/232,936 Continuation US20230384571A1 (en) | 2021-02-16 | 2023-08-11 | Optical system, image projection apparatus, and imaging apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022176234A1 true WO2022176234A1 (ja) | 2022-08-25 |
Family
ID=82931299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/029380 WO2022176234A1 (ja) | 2021-02-16 | 2021-08-06 | 光学系、画像投写装置および撮像装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230384571A1 (ja) |
EP (1) | EP4296746A4 (ja) |
JP (1) | JPWO2022176234A1 (ja) |
CN (1) | CN116868103A (ja) |
WO (1) | WO2022176234A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014045596A1 (ja) * | 2012-09-20 | 2014-03-27 | 日東光学株式会社 | ズームレンズシステムおよび撮像装置 |
WO2017195561A1 (ja) * | 2016-05-09 | 2017-11-16 | コニカミノルタ株式会社 | 投影光学系及びプロジェクター |
JP2019174633A (ja) | 2018-03-28 | 2019-10-10 | 富士フイルム株式会社 | 結像光学系、投写型表示装置、および撮像装置 |
JP2020052386A (ja) * | 2018-09-25 | 2020-04-02 | 富士フイルム株式会社 | 結像光学系、投写型表示装置、および撮像装置 |
JP2021009421A (ja) * | 2020-10-29 | 2021-01-28 | コニカミノルタ株式会社 | 投影光学系及びプロジェクター |
US20210033831A1 (en) * | 2019-08-02 | 2021-02-04 | Canon Kabushiki Kaisha | Zoom lens, image projection apparatus, and image pickup apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5871743B2 (ja) * | 2012-07-31 | 2016-03-01 | キヤノン株式会社 | 結像光学系、及びそれを用いた投射型画像表示装置、撮像装置 |
JP6657863B2 (ja) * | 2015-12-01 | 2020-03-04 | コニカミノルタ株式会社 | 投影光学系及びプロジェクター |
JP6556106B2 (ja) * | 2016-08-30 | 2019-08-07 | 富士フイルム株式会社 | ズームレンズ、投写型表示装置、および、撮像装置 |
JP6625028B2 (ja) * | 2016-08-30 | 2019-12-25 | 富士フイルム株式会社 | ズームレンズ、撮像装置、および投写型表示装置 |
JP6587591B2 (ja) * | 2016-08-30 | 2019-10-09 | 富士フイルム株式会社 | ズームレンズ、投写型表示装置、および、撮像装置 |
JP6570493B2 (ja) * | 2016-08-30 | 2019-09-04 | 富士フイルム株式会社 | ズームレンズ、投写型表示装置、および撮像装置 |
-
2021
- 2021-08-06 CN CN202180093705.0A patent/CN116868103A/zh active Pending
- 2021-08-06 WO PCT/JP2021/029380 patent/WO2022176234A1/ja active Application Filing
- 2021-08-06 EP EP21926663.2A patent/EP4296746A4/en active Pending
- 2021-08-06 JP JP2023500514A patent/JPWO2022176234A1/ja active Pending
-
2023
- 2023-08-11 US US18/232,936 patent/US20230384571A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014045596A1 (ja) * | 2012-09-20 | 2014-03-27 | 日東光学株式会社 | ズームレンズシステムおよび撮像装置 |
WO2017195561A1 (ja) * | 2016-05-09 | 2017-11-16 | コニカミノルタ株式会社 | 投影光学系及びプロジェクター |
JP2019174633A (ja) | 2018-03-28 | 2019-10-10 | 富士フイルム株式会社 | 結像光学系、投写型表示装置、および撮像装置 |
JP2020052386A (ja) * | 2018-09-25 | 2020-04-02 | 富士フイルム株式会社 | 結像光学系、投写型表示装置、および撮像装置 |
US20210033831A1 (en) * | 2019-08-02 | 2021-02-04 | Canon Kabushiki Kaisha | Zoom lens, image projection apparatus, and image pickup apparatus |
JP2021009421A (ja) * | 2020-10-29 | 2021-01-28 | コニカミノルタ株式会社 | 投影光学系及びプロジェクター |
Non-Patent Citations (1)
Title |
---|
See also references of EP4296746A4 |
Also Published As
Publication number | Publication date |
---|---|
US20230384571A1 (en) | 2023-11-30 |
CN116868103A (zh) | 2023-10-10 |
JPWO2022176234A1 (ja) | 2022-08-25 |
EP4296746A1 (en) | 2023-12-27 |
EP4296746A4 (en) | 2024-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017195857A1 (ja) | 結像光学系及び画像投写装置 | |
CN103592748B (zh) | 缩放投射光学系统以及图像投影装置 | |
JP2006208889A (ja) | ズームレンズ及びそれを有する撮像装置 | |
WO2013061535A1 (ja) | 投写用ズームレンズおよび投写型表示装置 | |
JP4695744B2 (ja) | ズームレンズ及びそれを用いた投影装置 | |
JPH05297275A (ja) | 非球面ズームレンズとそれを用いたビデオカメラ | |
JP2004258509A (ja) | ズームレンズ | |
JP7316616B2 (ja) | 光学系、画像投写装置および撮像装置 | |
JP7407384B2 (ja) | 交換レンズ、画像投写装置および撮像装置 | |
US20210341715A1 (en) | Optical system, image projection apparatus, and imaging apparatus | |
WO2022176234A1 (ja) | 光学系、画像投写装置および撮像装置 | |
JP3548517B2 (ja) | ズームレンズ及びそれを用いた投影装置 | |
JP2019109266A (ja) | ズームレンズ及びそれを有する光学機器 | |
JPH10268195A (ja) | 近距離合焦可能な変倍光学系 | |
JP2004226644A (ja) | ズームレンズ | |
CN114868066A (zh) | 光学系统、图像投影装置以及摄像装置 | |
WO2022239274A1 (ja) | 光学系、画像投写装置および撮像装置 | |
JPH09189859A (ja) | ズームレンズ | |
JP7398671B2 (ja) | 光学系、画像投写装置および撮像装置 | |
WO2023243154A1 (ja) | 光学系、画像投写装置および撮像装置 | |
WO2021171713A1 (ja) | 光学系、画像投写装置および撮像装置 | |
JP2001330776A (ja) | ズームレンズ及びそれを用いた投影装置 | |
JP6008173B2 (ja) | 撮影レンズ及びこの撮影レンズを有する撮像装置 | |
JP7304561B2 (ja) | 投写レンズ系及び画像投写装置 | |
JP2023155932A (ja) | レンズ系、画像投写装置および撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21926663 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180093705.0 Country of ref document: CN Ref document number: 2023500514 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021926663 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021926663 Country of ref document: EP Effective date: 20230918 |