WO2022174608A1 - 一种大尺寸抗变形钼合金棒材及其制备方法 - Google Patents

一种大尺寸抗变形钼合金棒材及其制备方法 Download PDF

Info

Publication number
WO2022174608A1
WO2022174608A1 PCT/CN2021/125234 CN2021125234W WO2022174608A1 WO 2022174608 A1 WO2022174608 A1 WO 2022174608A1 CN 2021125234 W CN2021125234 W CN 2021125234W WO 2022174608 A1 WO2022174608 A1 WO 2022174608A1
Authority
WO
WIPO (PCT)
Prior art keywords
forging
deformation
molybdenum alloy
temperature
treatment
Prior art date
Application number
PCT/CN2021/125234
Other languages
English (en)
French (fr)
Inventor
王承阳
董帝
熊宁
刘国辉
常洋
张树勇
杨亚杰
王钰斌
Original Assignee
安泰科技股份有限公司
安泰天龙钨钼科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安泰科技股份有限公司, 安泰天龙钨钼科技有限公司 filed Critical 安泰科技股份有限公司
Publication of WO2022174608A1 publication Critical patent/WO2022174608A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • B22F2003/175Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging by hot forging, below sintering temperature

Definitions

  • the invention belongs to the technical field of powder metallurgy, and particularly relates to a large-sized deformation-resistant molybdenum alloy bar and a preparation method thereof.
  • Pure molybdenum has excellent high temperature strength, good electrical and thermal conductivity and low thermal expansion coefficient, and also has the characteristics of non-coloring of glass.
  • As a glass melting electrode it has been widely used in glass industry and glass fiber industry.
  • Patent CN110066952B discloses a method for preparing a zirconia reinforced molybdenum alloy bar.
  • ammonium molybdate and zirconium nitrate solution are mixed, then ball-milled, dried, and calcined to obtain precursor powder;
  • the molybdenum alloy bar prepared by this method is small in size and cannot meet the requirements of molybdenum electrodes in large-scale glass industrial furnaces.
  • Patent CN109306421B discloses an anti-erosion molybdenum electrode and its manufacturing method.
  • the method adopts solid-liquid doping and multi-element ball milling doping, and is composed of the following components by weight: ZrO 2 3-5wt%, Si 0.8-1.2wt% %, B 0.1 ⁇ 0.5wt%, GeO 2 0.001 ⁇ 3wt%, SnO 2 0.001 ⁇ 3wt%, Bi 2 O 3 0.001 ⁇ 3wt%, W 0 ⁇ 5wt% and Al 2 O 3 0 ⁇ 4wt%, the balance is Mo and impurity that cannot be excluded, the molybdenum alloy has many doped elements, and the uniformity of the molybdenum alloy powder is poor; and the content of the ceramic phase zirconia is relatively large, and the plasticity of the molybdenum alloy is poor, and cracks are prone to occur in the subsequent deformation process.
  • the pass rate is low, and it is not suitable for industrial production.
  • one of the purposes of the present invention is to provide a method for preparing a large-size deformation-resistant molybdenum alloy bar, the molybdenum alloy bar prepared by the method has a high production qualification rate and has fine and uniform grains. , high temperature strength, high recrystallization temperature and excellent performance, and the obtained molybdenum alloy rod can reach ⁇ 90- ⁇ 120mm, and the length can reach 3000mm, which can meet the requirements of the glass fiber industry.
  • a preparation method of a large-size deformation-resistant molybdenum alloy bar comprising:
  • the preparation steps of molybdenum alloy powder respectively weigh molybdenum source, tungsten source and zirconium source according to the weight percentage, and carry out mixing treatment to obtain molybdenum alloy powder.
  • the molybdenum alloy powder includes the following components: W5 %-15%, ZrO 2 0.5%-2.5%, the balance is Mo;
  • Compression molding step the molybdenum alloy powder is loaded into the designed mold cavity for compression molding treatment to obtain a green compact;
  • High-temperature sintering step subjecting the compact to high-temperature sintering in a reducing atmosphere, an inert gas or a vacuum condition to obtain a molybdenum alloy sintered compact;
  • Forging deformation step subjecting the molybdenum alloy sintered billet to forging deformation treatment to obtain a forged billet;
  • Annealing step annealing the forged bar blank in a reducing atmosphere to obtain the large-sized deformation-resistant molybdenum alloy bar.
  • the molybdenum source is molybdenum powder
  • the tungsten source is tungsten powder
  • the zirconium source is nano-state
  • the Fischer particle size of the molybdenum powder is 2.0-4.0 ⁇ m
  • the Fischer particle size of the tungsten powder is 2.5-4.5 ⁇ m
  • the particle size of the nano-zirconia powder is 20-60 nm.
  • tungsten can form a solid solution with molybdenum and play a role of solid solution strengthening; adding nano-scale zirconia in this application can make the zirconia evenly distributed among the grains of the molybdenum matrix, which greatly improves the performance of the molybdenum matrix.
  • Reducing the growth rate of high-temperature grains can also achieve the effect of dispersion strengthening, thereby improving the recrystallization temperature and creep resistance of molybdenum alloys; the content of tungsten and nano-zirconia added in this application is too high, which will cause solid Solution strengthening and second-phase dispersion strengthening lead to the deterioration of the pressure working properties of molybdenum alloys, which are easy to induce crack formation and lead to material failure.
  • the second phase particle nano-zirconia has a moderate amount and is dispersed in the molybdenum alloy with fine particles, the performance of the molybdenum alloy can be improved.
  • the zirconia particles are too large, the strengthening effect is poor.
  • the zirconia particles are too small, it is easy to form agglomeration.
  • the diameter of the green compact is 200-300mm (such as 220mm, 240mm, 260mm, 280mm, 300mm) .
  • the maximum sintering temperature of the high-temperature sintering treatment is 2000-2200°C (for example, 2020°C, 2060°C, 2100°C, 2150°C, 2200°C), and keep the temperature at the highest sintering temperature for 4 to 8 hours (such as 4.5h, 5h, 6h, 7h, 7.5h);
  • the maximum sintering temperature in this application is too low, the density of the sintered blank will be insufficient, which is not conducive to subsequent forging deformation processing. Dramatic increase.
  • the diameter of the molybdenum alloy sintered billet is 180-250mm (for example, 190mm, 210mm, 230mm, 250mm) .
  • the forging deformation step rapid forging deformation treatment is adopted, and the initial forging temperature is 1400-1550 ° C (for example, 1420 ° C, 1450 ° C). °C, 1470 °C, 1520 °C, 1540 °C), the final forging temperature is not lower than 1100 °C, the total deformation of the rapid forging deformation treatment is greater than 70%, and the rapid forging deformation treatment includes more than two forging times.
  • the temperature is 1150-1300 °C (such as 1180 °C, 1210 °C, 1240 °C, 1270 °C); in this application, if the final forging temperature is too high, the grains will be easily coarse, thereby reducing the performance.
  • the amount of deformation (the cross-sectional area before deformation-the cross-sectional area after deformation)/the cross-sectional area before deformation; preferably, the heating time performed before the rapid forging deformation treatment starts is 2-4 hour; more preferably, the forging speed is 80-108mm/s (such as 82mm/s, 85mm/s, 88mm/s, 92mm/s, 95mm/s, 98mm/s, 102mm/s); if the forging speed is too small Then the temperature of the blank drops rapidly during the forging process, which is not conducive to the plasticity of the material; however, if the forging speed is too large, the energy consumption will increase and the cost will increase; further preferably, the rapid forging with a nominal pressure of 1000T and above is used. Machine for forging deformation.
  • the forging deformation treatment includes two forging treatments, and each forging treatment is performed in turn by heating treatment and Rapid forging treatment; preferably, in the first fire forging treatment, the heating temperature of the heating treatment is 1400-1550°C (such as 1420°C, 1450°C, 1470°C, 1520°C, 1540°C), and the holding time is 1h-2h (such as 1.2h, 1.5h, 1.8h), the first forging treatment at this heating temperature and holding time can make the billet fully heated, the temperature of the edge and core is uniform, improve the plasticity of the material, reduce the high temperature deformation resistance, In order to improve production efficiency and internal quality of forgings; the forging deformation of rapid forging treatment is 40% to 60% (such as 42%, 45%, 48%, 50%, 52%, 54%, 58%). If it is too small, the core of the billet
  • the heating temperature of the heating treatment is 1250-1350 °C (such as 1250 °C, 1280 °C, 1300 °C, 1320 °C, 1340 °C), and the holding time is 0.5h-1.5h (such as 0.7h, 1h, 1.2h, 1.4h), the forging deformation of the quick forging treatment is 30% to 50% (such as 32%, 35%, 38%, 40%, 42%, 44%, 48%), forging
  • the speed is 80-108mm/s (such as 82mm/s, 85mm/s, 88mm/s, 92mm/s, 95mm/s, 98mm/s, 102mm/s); the second fire in this application is compared to the first fire The heating temperature (i.e.
  • the forging temperature) of the secondary heat treatment is reduced, in order to avoid recrystallization during the forging process, but the forging temperature cannot be too low, and cracks will occur if the forging temperature is too low;
  • the assembly will cause the billet to crack, so the forging deformation is controlled at 30% to 50%.
  • the one-fire forging treatment is carried out, it is easy to cause cracks due to the large amount of deformation, and it will affect the ability of the fast forging equipment. challenge.
  • the large deformation forging of molybdenum alloy bars is realized by the rapid forging deformation equipment, and the forging times are not more than two times, so as to reduce the number of thermal cycles in the deformation process and avoid the occurrence of recrystallization behavior in the hot deformation process. .
  • the diameter of the forged bar blank is 90-120 mm (eg, 95 mm, 100 mm, 110 mm, 120 mm).
  • the annealing temperature of the annealing treatment is 1050-1150°C (for example, 1080°C, 1110°C, 1140°C)
  • the holding time is 60 ⁇ 120min (such as 70min, 80min, 90min, 100min, 110min);
  • the main purpose of annealing treatment is to remove the internal stress caused by forging deformation, the temperature is too low to eliminate the effect of stress, the temperature is too high Grain growth is easy to occur; the present application performs annealing treatment in a reducing atmosphere to prevent the molybdenum alloy from being oxidized under high temperature conditions.
  • the second aspect of the present invention provides a large-size deformation-resistant molybdenum alloy bar
  • the large-size deformation-resistant molybdenum alloy bar is prepared by the above preparation method; preferably, the size of the molybdenum alloy bar is ⁇ 90- ⁇ 120mm , the length can reach up to 3000mm, the tensile strength at room temperature can reach up to 750MPa, the high temperature strength at 1300°C can reach up to 350MPa, and the recrystallization temperature can reach up to 1400°C.
  • the present invention has the following positive effects:
  • the preparation method provided by the invention has a simple process, the molybdenum alloy bar produced has a high qualification rate, and is easy to realize industrialized production;
  • the nanometer ceramic zirconia powder is uniformly dispersed among the grains of the molybdenum matrix, which greatly reduces the high temperature
  • the growth rate of grains increases the recrystallization temperature and creep resistance of molybdenum alloys.
  • the molybdenum alloy bar prepared by the invention has the excellent properties of fine and uniform grain structure, high high temperature strength and high recrystallization temperature, the production specification can be expanded to ⁇ 90- ⁇ 120mm, and the longest length can reach 3000mm; the room temperature tensile strength is the highest It can reach 750MPa, and the high temperature strength at 1300°C can reach up to 350MPa, which can meet the requirements of the glass fiber industry.
  • the forging of the present invention has large total deformation and few forging passes, the obtained product has fine and uniform grain structure, high recrystallization temperature, good high-temperature mechanical properties, and excellent high-temperature deformation resistance.
  • Fig. 1 is the microstructure photo of the transverse section of the large-size deformation-resistant molybdenum alloy bar prepared in Example 1;
  • Fig. 2 is the metallographic structure photo of the longitudinal section of the large-size deformation-resistant molybdenum alloy bar prepared in Example 1;
  • Fig. 3 is the microstructure photo of the transverse section of the large-sized deformation-resistant molybdenum alloy bar prepared in Comparative Example 1;
  • Fig. 4 is the microstructure photo of the transverse section of the large-size deformation-resistant molybdenum alloy bar prepared in Comparative Example 2;
  • Figure 5 is a photo of the transverse section metallographic structure of the large-sized deformation-resistant molybdenum alloy bar prepared in Comparative Example 3;
  • the raw materials used in the following examples can be purchased from the market.
  • the equipment used for forging deformation treatment is a fast forging machine, the manufacturer is Lanshi Heavy Industry Co., Ltd., and the model is a 10MN fast forging machine.
  • the purity of molybdenum powder, tungsten powder and zirconia powder used in the following examples are all above 99.9%.
  • molybdenum alloy powder according to Mo-6%W-1%ZrO 2 (that is, according to weight percentage, in molybdenum alloy powder, ZrO 2 1%, W6%, and the balance is Mo) respectively Weigh Fibonacci Molybdenum powder with a particle size of 3.2 ⁇ m, tungsten powder with a Fisher particle size of 2.5 ⁇ m, and zirconia powder with a particle size of 20-40 nm are mixed in a mixer to obtain molybdenum alloy powder;
  • High-temperature sintering put the compact obtained in the above step (2) into a medium-frequency high-temperature hydrogen sintering furnace for sintering: raise the temperature to 1200°C at a rate of 80°C/h, keep the temperature for 6 hours, and then proceed at a rate of 120°C/h Continue to heat up to 2050°C and keep for 4h to obtain a sintered blank with a diameter of 240mm;
  • the sintered billet obtained in the above step (3) is subjected to two-fire fast forging deformation treatment; wherein, the first heating temperature is 1450 ° C, the holding time is 1h, and the forging is 160 mm in diameter, and the amount of forging deformation is is 55%, the forging speed is 95mm/s; the second heating temperature is 1300°C, the holding time is 0.8h, the forging deformation is 44%, the forging speed is 90mm/s, and the final forging temperature is 1150°C.
  • the total deformation of the forging deformation treatment is 75%;
  • Annealing the forged billet obtained in the above step (4) is placed in a hydrogen protection heating furnace for annealing treatment, the annealing temperature is 1100° C., and the temperature is kept for 60 minutes.
  • FIG. 1 is a photo of the metallographic structure of the transverse section of the molybdenum alloy bar prepared in Example 1
  • FIG. 2 is a photo of the metallographic structure of the longitudinal section of the molybdenum alloy bar prepared in Example 1. It can be seen from the figure that this embodiment is 1
  • the prepared molybdenum alloy bars have fine and uniform grains.
  • the recrystallization temperature was obtained by observing the change of the grain structure of the molybdenum alloy rod obtained at different temperatures, and after the tensile test (the room temperature tensile test was in accordance with GB/T 228.1-2010 "Metal Material Tensile Test” Part 1 room temperature test method", high temperature tensile test is carried out according to GB/T 4338-2006 "metal material high temperature tensile test method")
  • the recrystallization temperature of the molybdenum alloy rod obtained in Example 1 is 1300 °C
  • the tensile strength at room temperature reaches 660MPa; the high temperature strength at 1300°C reaches 260MPa; 3 molybdenum rods are prepared in Example 1, and the pass rate is 100%.
  • High-temperature sintering put the compact obtained in the above step (2) into a medium-frequency high-temperature hydrogen sintering furnace for sintering: raise the temperature to 1200°C at a rate of 70°C/h, hold for 8 hours, and then proceed at a rate of 110°C/h Continue to heat up to 2100°C and keep for 5h to obtain a sintered blank with a diameter of 240mm;
  • the sintered billet obtained in the above step (3) is subjected to two rapid forging deformation treatment; wherein, the first heating temperature is 1500 ° C, the holding time is 1.5h, forged to a diameter of 160 mm, forging deformation The weight is 55%, the forging speed is 100mm/s; the second heating temperature is 1350°C, the holding time is 1h, the forging deformation is 44%, the forging speed is 95mm/s, and the final forging temperature is 1150°C.
  • the total deformation of the forging deformation treatment is 75%;
  • Annealing place the forged billet obtained in the above step (4) in a hydrogen protection heating furnace for annealing treatment, the annealing temperature is 1150°C, and the temperature is maintained for 100min.
  • the metallographic structure of the transverse section and the metallographic structure of the longitudinal section of the molybdenum alloy rod obtained in Example 2 are similar to those of the molybdenum alloy rod obtained in Example 1, and the obtained molybdenum alloy rod has fine and uniform grains.
  • the recrystallization temperature of the molybdenum alloy bar prepared in Example 2 is 1350°C, and its room temperature tensile strength reaches 710MPa; the high temperature strength at 1300°C reaches 310MPa; 3 molybdenum bars are prepared in Example 2, and the pass rate is 100%.
  • molybdenum alloy powder according to Mo-14%W-2.2%ZrO 2 (that is, according to the weight percentage, in the molybdenum alloy powder, ZrO 2 2.2%, W 14%, and the balance is Mo) separately Molybdenum powder with a Fisher particle size of 3.2 ⁇ m, tungsten powder with a Fisher particle size of 2.5 ⁇ m, and zirconia powder with a particle size of 20-40 nm were respectively weighed and mixed in a mixer to obtain molybdenum alloy powder.
  • High-temperature sintering put the compact obtained in the above step (2) into a medium-frequency high-temperature hydrogen sintering furnace for sintering: raise the temperature to 1200°C at a rate of 60°C/h, keep the temperature for 10h, and then proceed at a rate of 100°C/h Continue to heat up to 2150°C and keep for 6h to obtain a sintered blank with a diameter of 240mm;
  • the sintered billet obtained in the above step (3) is subjected to two rapid forging deformation treatments; wherein, the first heating temperature is 1520 ° C, the holding time is 2h, and the forging is 160 mm in diameter, and the amount of forging deformation is is 55%, the forging speed is 105mm/s; the second heating temperature is 1350°C, the holding time is 1h, the forging deformation is 44%, the forging speed is 100mm/s, the final forging temperature is 1200°C, and the diameter is finally obtained. 120mm, 3000mm long forged billet, the total deformation of forging deformation treatment is 75%;
  • Annealing The forged billet obtained in the above step (4) is placed in a hydrogen protection heating furnace for annealing treatment, the annealing temperature is 1150° C., and the temperature is kept for 90 minutes.
  • the metallographic structure of the transverse section and the metallographic structure of the longitudinal section of the molybdenum alloy rod obtained in Example 3 are similar to those of the molybdenum alloy rod obtained in Example 1, and the obtained molybdenum alloy rod has fine and uniform grains.
  • the recrystallization temperature of the molybdenum alloy rod obtained in Example 3 is 1400°C, and its room temperature tensile strength reaches 750MPa; the high temperature strength at 1300°C reaches 350MPa; three molybdenum rods are prepared in Example 3, and the pass rate is 100%.
  • Comparative Example 1 is different from Example 1 except that the molybdenum alloy powder obtained in step (1) according to Mo-6%W (that is, according to the weight percentage, W6% in the molybdenum alloy powder, and the balance is Mo) is different from that of Example 1.
  • Example 1 is the same.
  • the recrystallization temperature of the molybdenum alloy bar prepared in Comparative Example 1 was 1250°C, and its room temperature tensile strength reached 620MPa; the high temperature strength at 1300°C reached 230MPa; Comparative Example 1 prepared 3 molybdenum bars, and the pass rate was 100%.
  • Comparative Example 2 is different from Example 1 except that the molybdenum alloy powder obtained in step (1) according to Mo-1% ZrO 2 (that is, according to the weight percentage, ZrO 2 1% in the molybdenum alloy powder, and the balance is Mo) is different from that of Example 1. All are the same as Example 1.
  • the recrystallization temperature of the molybdenum alloy bar prepared in Comparative Example 2 was 1200°C, and its room temperature tensile strength reached 600MPa; the high temperature strength at 1300°C reached 180MPa; Comparative Example 1 prepared 3 molybdenum bars, and the pass rate was 100%.
  • the recrystallization temperature of the molybdenum alloy bar prepared in Comparative Example 3 was 1300°C, and its room temperature tensile strength reached 650MP; the high temperature strength at 1300°C reached 245MPa; Comparative Example 1 prepared 3 molybdenum bars, and the pass rate was 100%.
  • Comparative Example 4 is the same as Example 3 except that the final forging temperature in step (4) is 1350° C., which is different from Example 3.
  • the recrystallization temperature of the molybdenum alloy bar prepared in Comparative Example 4 was 1400°C, and its room temperature tensile strength reached 680MP; the high temperature strength at 1300°C reached 330MPa; Comparative Example 4 prepared 3 molybdenum bars, and the pass rate was 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Forging (AREA)

Abstract

本发明提供一种大尺寸抗变形钼合金棒材及其制备方法。该方法包括:钼合金粉末的制备步骤、压制成型步骤、高温烧结步骤、锻造变形步骤以及退火步骤,其中,在钼合金粉末的制备步骤中,按重量百分比计:W5%-15%,ZrO 20.5%-2.5%,余量为Mo,分别称取钼源、钨源和锆源,进行混料处理,得到钼合金粉末。本发明制备的钼合金棒材的尺寸为φ90-φ120mm,长度最长可达到3000mm,室温抗拉强度最高可达到750MPa,1300℃高温强度最高可达到350MPa,再结晶温度最高可达到1400℃。

Description

一种大尺寸抗变形钼合金棒材及其制备方法 技术领域
本发明属于粉末冶金技术领域,具体涉及一种大尺寸抗变形钼合金棒材及其制备方法。
背景技术
纯钼具有优异的高温强度,良好的导电导热性能和低的热膨胀系数外,还具有对玻璃不着色等特点,作为玻璃熔融电极在玻璃工业、玻纤工业领域得到了广泛应用。
目前国内生产的普通钼电极规格通常为直径50-80mm,长度≤2000mm,随着玻璃工业窑炉向大型化发展,普通钼电极尺寸已不能满足需求,同时普通纯钼电极存在再结晶温度低,高温强度低,抗蠕变性能较差以及在长期服役过程中容易发生变形甚至断裂等缺点,此外,由于纯钼电极耐腐蚀性较差,长期与玻璃熔体接触易腐蚀,直径逐渐变细,使用寿命短,使得现有的钼电极已逐渐不能满足行业需求。
专利CN110066952B公开了一种氧化锆增强钼合金棒材的制备方法,该方法将钼酸铵与硝酸锆溶液混合,然后球磨、干燥,焙烧得前驱体粉;将前驱体粉在还原气氛中进行二段还原,然后压制成型、烧结、锻造得到钼合金棒材,但该方法制备的钼合金棒材尺寸较小,不能满足大规格玻璃工业窑炉钼电极使用要求。
专利CN109306421B公开了一种抗侵蚀钼电极及其制造方法,该方法通过固液掺杂和多元素球磨掺杂,由如下重量百分比的组分组成:ZrO 23~5wt%、Si 0.8~1.2wt%、B 0.1~0.5wt%、GeO 20.001~3wt%、SnO 20.001~3wt%、Bi 2O 30.001~3wt%、W 0~5wt%和Al 2O 30~4wt%,余量为Mo及不可剔除的杂质,该钼合金掺杂元素较多,钼合金粉末均匀性较差;并且陶 瓷相氧化锆含量较多,钼合金塑性较差,在后续变形加工过程中容易出现裂纹,生产合格率较低,不适合于工业化生产。
发明内容
针对现有技术存在的不足及缺陷,本发明的目的之一在于提供一种大尺寸抗变形钼合金棒材的制备方法,该方法制备的钼合金棒材生产合格率高、具有晶粒细小均匀、高温强度高、再结晶温度高等优异性能,且制得的钼合金棒材可达到φ90-φ120mm,长度可达到3000mm,可满足玻纤行业领域的使用要求。
本发明解决技术问题所采用的技术方案如下:
一种大尺寸抗变形钼合金棒材的制备方法,包括:
钼合金粉末的制备步骤:按所述重量百分比分别称取钼源、钨源和锆源,进行混料处理,得到钼合金粉末,按重量百分比计,所述钼合金粉末包括如下组分:W5%-15%,ZrO 2 0.5%-2.5%,余量为Mo;
压制成型步骤:将所述钼合金粉末装入设计好的模具型腔内进行压制成型处理,得到压坯;
高温烧结步骤:将所述压坯在还原性气氛、惰性气体或者真空条件进行高温烧结处理,得到钼合金烧坯;
锻造变形步骤:将所述钼合金烧坯进行锻造变形处理,得到锻造棒坯;
退火步骤:将所述锻造棒坯在还原性气氛下进行退火处理,得到所述大尺寸抗变形钼合金棒材。
在上述大尺寸抗变形钼合金棒材的制备方法中,作为一种优选实施方式,在所述钼合金粉末的制备步骤中,钼源为钼粉,钨源为钨粉,锆源为纳米态氧化锆粉末,钼粉的费氏粒度为2.0~4.0μm,钨粉的费氏粒度为2.5~4.5μm,纳米氧化锆粉末粒径为20~60nm。
本申请中通过在钼基体中引入钨元素,钨能够与钼形成固溶体,起到固溶强化的作用;本申请加入纳米级的氧化锆,能使氧化锆均匀分布在钼基体晶粒间,大大降低高温晶粒的长大速度,又可以达到弥散强化的作用,从而提高钼合金的再结晶温度和抗蠕变性能;本申请中添加的钨元素、纳米氧化锆含量过高,则会使固溶强化、第二相弥散强化导致钼合金压力加工性能恶 化,容易诱发裂纹形成并导致材料失效,添加的钨元素、纳米氧化锆含量较低,钼合金性能提升不明显;此外,在钼合金中,当第二相颗粒纳米氧化锆数量适中并且以细小的颗粒弥散分布在钼合金中,可提高钼合金的性能,当氧化锆颗粒太大,强化效果较差,当氧化锆颗粒太小,容易形成团聚。
在上述大尺寸抗变形钼合金棒材的制备方法中,作为一种优选实施方式,在所述压制成型步骤中,压坯的直径为200~300mm(比如220mm、240mm、260mm、280mm、300mm)。
在上述大尺寸抗变形钼合金棒材的制备方法中,作为一种优选实施方式,在所述高温烧结步骤中,高温烧结处理的最高烧结温度为2000~2200℃(比如2020℃、2060℃、2100℃、2150℃、2200℃),在最高烧结温度条件下保温4~8h(比如4.5h、5h、6h、7h、7.5h);优选地,所述高温烧结处理设置成分段升温烧结,在达到最高烧结温度之前设置若干保温台阶从而去除杂质;本申请中最高烧结温度过低则烧结坯密度不足,不利于后续的锻造变形加工,最高烧结温度过高容易引起晶粒长大、且产品成本急剧增加。
在上述大尺寸抗变形钼合金棒材的制备方法中,作为一种优选实施方式,在所述高温烧结步骤中,钼合金烧坯的直径为180~250mm(比如190mm、210mm、230mm、250mm)。
在上述大尺寸抗变形钼合金棒材的制备方法中,作为一种优选实施方式,在所述锻造变形步骤中,采用快锻变形处理,始锻温度为1400~1550℃(比如1420℃、1450℃、1470℃、1520℃、1540℃),终锻温度不低于1100℃,快锻变形处理的总变形量大于70%,快锻变形处理包括两火次以上锻造处理;优选地,终锻温度为1150-1300℃(比如1180℃、1210℃、1240℃、1270℃);本申请中若终锻温度过高,则晶粒容易粗大,从而降低性能,若终锻温度低于1100℃,则锻造过程中容易产生裂纹;本申请中,变形量=(变形前截面积-变形后截面积)/变形前截面积;优选地,快锻变形处理开始前所进行的加热时间为2-4小时;更优选地,锻造速度为80~108mm/s(比如82mm/s、85mm/s、88mm/s、92mm/s、95mm/s、98mm/s、102mm/s);若锻造速度过小则此坯料在锻打过程中温度下降较快,不利于材料的塑性;但若锻造速度过大,耗能就会越大而导致成本增加;进一步优选地,采用1000T及以上公称压力的快锻机进行锻造变形处理。
在上述大尺寸抗变形钼合金棒材的制备方法中,作为一种优选实施方式,在所述锻造变形步骤中,锻造变形处理包括两火次锻造处理,每火次锻造处理依次进行加热处理和快锻处理;优选地,在第一火次锻造处理中,加热处理的加热温度为1400~1550℃(比如1420℃、1450℃、1470℃、1520℃、1540℃),保温时间为1h~2h(比如1.2h、1.5h、1.8h),在此加热温度和保温时间内的第一火次锻造处理可使坯料加热充分,边缘和心部温度均匀,提高材料的塑性,降低高温变形抗力,进而提高生产效率及锻件内部质量;快锻处理的锻造变形量为40%~60%(比如42%、45%、48%、50%、52%、54%、58%),若锻造变形量太小,坯料的心部未变形,若锻造变形量太大,则容易产生裂纹,合格率降低;锻造速度为80~108mm/s(比如82mm/s、85mm/s、88mm/s、92mm/s、95mm/s、98mm/s、102mm/s)。
优选地,在第二火次锻造处理中,加热处理的加热温度为1250~1350℃(比如1250℃、1280℃、1300℃、1320℃、1340℃),保温时间为0.5h-1.5h(比如0.7h、1h、1.2h、1.4h),快锻处理的锻造变形量为30%~50%(比如32%、35%、38%、40%、42%、44%、48%),锻造速度为80~108mm/s(比如82mm/s、85mm/s、88mm/s、92mm/s、95mm/s、98mm/s、102mm/s);本申请中第二火次相比第一火次加热处理的加热温度(即锻造温度)降低,为避免锻造过程中发生再结晶,但是锻造温度也不能过低,锻造温度过低则会产生裂纹;本申请中若第二火次变形量太大会造成坯料开裂,因此将锻造变形量控制在30%~50%,相比两火次锻造处理,若进行一火次锻造处理容易因变形量太大而产生裂纹,且对快锻设备能力构成挑战。
本申请中,通过快锻变形设备实现钼合金棒材的大变形量锻造,锻造火次不超过两道次,以减少变形加工中的热循环次数,避免热变形加工中的再结晶行为的发生。
在上述大尺寸抗变形钼合金棒材的制备方法中,作为一种优选实施方式,在所述锻造变形步骤中,锻造棒坯的直径为90-120mm(比如95mm、100mm、110mm、120mm)。
在上述大尺寸抗变形钼合金棒材的制备方法中,作为一种优选实施方式,在所述退火步骤中,退火处理的退火温度为1050~1150℃(比如1080℃、1110℃、1140℃),保温时间为60~120min(比如70min、80min、 90min、100min、110min);本申请中退火处理主要目的在于去除锻造变形引起的内应力,温度过低起不到消除应力的作用,温度过高则易发生晶粒长大;本申请在还原性气氛下进行退火处理,防止钼合金在高温条件下被氧化。
本发明第二方面提供一种大尺寸抗变形钼合金棒材,所述大尺寸抗变形钼合金棒材采用上述制备方法制备而成;优选地,所述钼合金棒材的尺寸为φ90-φ120mm,长度最长可达到3000mm,室温抗拉强度最高可达到750MPa,1300℃高温强度最高可达到350MPa,再结晶温度最高可达到1400℃。
本发明与现有技术相比具有如下积极效果:
(1)本发明提供的制备方法工艺简单,生产的钼合金棒材合格率高,易实现工业化生产;
(2)本发明通过在制备过程中加入W和ZrO 2,通过W的固溶强化和ZrO 2弥散强化,其中纳米态陶瓷氧化锆粉末均匀弥散分布在钼基体晶粒间,大大降低了高温下晶粒的长大速度,从而提高了钼合金的再结晶温度和抗蠕变性能。
(3)本发明制备的钼合金棒材具有晶粒组织细小均匀、高温强度高、再结晶温度高等优异性能,生产规格可扩大到φ90-φ120mm,长度最长可达到3000mm;室温抗拉强度最高可达到750MPa,1300℃高温强度最高可达到350MPa,可满足玻纤行业领域的使用要求。
(4)本发明的锻造总变形量大,锻造道次少,获得的产品晶粒组织细小均匀,再结晶温度高,高温力学性能好,具有优异的高温抗变形性能。
附图说明
为更清晰地描述本发明,此处结合附图对本发明进一步说明。其中:
图1为实施例1制备得到的大尺寸抗变形钼合金棒材的横向剖面金相组织照片;
图2为实施例1制备得到的大尺寸抗变形钼合金棒材的纵向剖面金相组织照片;
图3为对比例1制备得到的大尺寸抗变形钼合金棒材的横向剖面金相组织照片;
图4为对比例2制备得到的大尺寸抗变形钼合金棒材的横向剖面金相组织照片;
图5对比例3制备得到的大尺寸抗变形钼合金棒材的横向剖面金相组织照片;
图6为对比例4制备得到的大尺寸抗变形钼合金棒材的横向剖面金相组织照片。
具体实施方式
下面结合附图和实施例对本发明的大尺寸抗变形钼合金棒材及其制备方法进行说明。应理解,这些实施例仅用于解释本发明而不用于限制本发明的范围。对外应理解,在阅读了本发明的内容之后,本领域技术人员对本发明作各种改动和修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
以下实施例中所用原料都可以从市场上购得。锻造变形处理所用设备为快锻机,生产厂家为兰石重工有限公司,型号为10MN快锻机。以下实施例中使用的钼粉、钨粉和氧化锆粉末纯度均为99.9%以上。
实施例1
(1)钼合金粉末的制备:按照Mo-6%W-1%ZrO 2(即:按照重量百分比,在钼合金粉末中ZrO 21%,W6%,余量为Mo)分别称取费氏粒度3.2μm的钼粉、费氏粒度2.5μm的钨粉、粒径为20-40nm的氧化锆粉末,在混料机中进行混合,得到钼合金粉末;
(2)冷等静压成型:将上述步骤(1)得到的钼合金粉末放入模具中,再在150MPa压力下保压6分钟,得到直径为280mm的压坯;
(3)高温烧结:将上述步骤(2)得到的压坯放入中频高温氢气烧结炉内进行烧结:以80℃/h的速率升温到1200℃,保温6h,再以120℃/h的速率继续升温到2050℃,保温4h,得到直径为240mm的烧结坯;
(4)锻造变形:将上述步骤(3)得到的烧结坯进行两火次快锻变形处理;其中,第一火次加热温度为1450℃,保温时间为1h,锻造到直径160mm,锻造变形量为55%,锻造速度为95mm/s;第二火次加热温度为1300℃,保温时间为0.8h,锻造变形量为44%,锻造速度为90mm/s,终锻 温度为1150℃,最终得到直径120mm,长度为3000mm的锻造棒坯,锻造变形处理的总变形量为75%;
(5)退火:将上述步骤(4)得到的锻造棒坯放置于氢气保护加热炉中进行退火处理,退火温度为1100℃,保温60min。
图1为实施例1制得的钼合金棒材的横向剖面金相组织照片,图2为实施例1制备的钼合金棒材的纵向剖面金相组织照片,从图中可以看出本实施例1制备的钼合金棒材晶粒细小均匀。
本实施例中再结晶温度的获得通过在不同温度下观察制得的钼合金棒材的晶粒组织变化,经过拉伸试验(室温拉伸实验按照GB/T 228.1-2010《金属材料拉伸试验第1部分室温试验方法》进行,高温拉伸实验按照GB/T 4338-2006《金属材料高温拉伸试验方法》进行),实施例1制得的钼合金棒材的再结晶温度为1300℃、室温抗拉强度达到660MPa;1300℃高温强度达到260MPa;实施例1制备钼棒3根,合格率为100%。
实施例2
(1)钼合金粉末的制备:按照Mo-10%W-1.5%ZrO 2(即:按照重量百分比,在钼合金粉末中ZrO 2 1.5%,W 10%,余量为Mo)分别称取费氏粒度分别称取费氏粒度3.2μm的钼粉、费氏粒度2.5μm的钨粉、粒径为20-40nm的氧化锆粉末,在混料机中进行混合,得到钼合金粉末;
(2)冷等静压成型:将上述步骤(1)得到的钼合金粉末放入模具中,再在180MPa压力下保压8分钟,得到直径为280mm的压坯;
(3)高温烧结:将上述步骤(2)得到的压坯放入中频高温氢气烧结炉内进行烧结:以70℃/h的速率升温到1200℃,保温8h,再以110℃/h的速率继续升温到2100℃,保温5h,得到直径为240mm的烧结坯;
(4)锻造变形:将上述步骤(3)得到的烧结坯进行两火次快锻变形处理;其中,第一火次加热温度为1500℃,保温时间为1.5h,锻造到直径160mm,锻造变形量为55%,锻造速度为100mm/s;第二火次加热温度为1350℃,保温时间为1h,锻造变形量为44%,锻造速度为95mm/s,终锻温度为1150℃,最终得到直径120mm,长度为3000mm的锻造棒坯,锻造变形处理的总变形量为75%;
(5)退火:将上述步骤(4)得到的锻造棒坯放置于氢气保护加热炉中 进行退火处理,退火温度为1150℃,保温100min。
实施例2制得的钼合金棒材的横向剖面金相组织和纵向剖面金相组织与实施例1制得的钼合金棒材相似,所制得的钼合金棒材晶粒细小均匀。
实施例2制得的钼合金棒材的再结晶温度为1350℃,其室温抗拉强度达到710MPa;1300℃高温强度达到310MPa;实施例2制备钼棒3根,合格率为100%。
实施例3
(1)钼合金粉末的制备:按照Mo-14%W-2.2%ZrO 2(即:按照重量百分比,在钼合金粉末中ZrO 22.2%,W 14%,余量为Mo)分别称取费氏粒度分别称取费氏粒度3.2μm的钼粉、费氏粒度2.5μm的钨粉、粒径为20-40nm的氧化锆粉末,在混料机中进行混合,得到钼合金粉末。
(2)冷等静压成型:将上述步骤(1)得到的钼合金粉末放入模具中,再在200MPa压力下保压10分钟,得到直径为280mm的压坯;
(3)高温烧结:将上述步骤(2)得到的压坯放入中频高温氢气烧结炉内进行烧结:以60℃/h的速率升温到1200℃,保温10h,再以100℃/h的速率继续升温到2150℃,保温6h,得到直径为240mm的烧结坯;
(4)锻造变形:将上述步骤(3)得到的烧结坯进行两火次快锻变形处理;其中,第一火次加热温度为1520℃,保温时间为2h,锻造到直径160mm,锻造变形量为55%,锻造速度为105mm/s;第二火次加热温度为1350℃,保温时间为1h,锻造变形量为44%,锻造速度为100mm/s,终锻温度为1200℃,最终得到直径120mm,长度为3000mm的锻造棒坯,锻造变形处理的总变形量为75%;
(5)退火:将上述步骤(4)得到的锻造棒坯放置于氢气保护加热炉中进行退火处理,退火温度为1150℃,保温90min。
实施例3制得的钼合金棒材的横向剖面金相组织和纵向剖面金相组织与实施例1制得的钼合金棒材相似,所制得的钼合金棒材晶粒细小均匀。
实施例3制得的钼合金棒材的再结晶温度为1400℃,其室温抗拉强度达到750MPa;1300℃高温强度达到350MPa;实施例3制备钼棒3根,合格率为100%。
对比例1
对比例1除了步骤(1)中按照Mo-6%W(即:按照重量百分比,在钼合金粉末中W6%,余量为Mo)得到钼合金粉末与实施例1不同以外,其余均与实施例1相同。
对比例1制得的钼合金棒材的再结晶温度为1250℃,其室温抗拉强度达到620MPa;1300℃高温强度达到230MPa;对比例1制备钼棒3根,合格率为100%。
对比例2
对比例2除了步骤(1)中按照Mo-1%ZrO 2(即:按照重量百分比,在钼合金粉末中ZrO 21%,余量为Mo)得到钼合金粉末与实施例1不同以外,其余均与实施例1相同。
对比例2制得的钼合金棒材的再结晶温度为1200℃,其室温抗拉强度达到600MPa;1300℃高温强度达到180MPa;对比例1制备钼棒3根,合格率为100%。
对比例3
对比例3除了步骤(1)中按照Mo-6%W-1%ZrO 2(即:按照重量百分比,在钼合金粉末中W6%,ZrO 21%,余量为Mo)分别称取费氏粒度3.2μm的钼粉、费氏粒度2.5μm的钨粉、粒径为60-100nm的氧化锆粉末,得到钼合金粉末与实施例1不同以外,其余均与实施例1相同。
对比例3制得的钼合金棒材的再结晶温度为1300℃,其室温抗拉强度达到650MP;1300℃高温强度达到245MPa;对比例1制备钼棒3根,合格率为100%。
对比例4
对比例4除了步骤(4)中终锻温度为1350℃与实施例3不同以外,其余均与实施例3相同。
对比例4制得的钼合金棒材的再结晶温度为1400℃,其室温抗拉强度达到680MP;1300℃高温强度达到330MPa;对比例4制备钼棒3根,合格率为100%。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均在本发明 待批权利要求保护范围之内。

Claims (10)

  1. 一种大尺寸抗变形钼合金棒材的制备方法,其特征在于,包括:
    钼合金粉末的制备步骤:按所述重量百分比分别称取钼源、钨源和锆源,进行混料处理,得到钼合金粉末,按重量百分比计,所述钼合金粉末包括如下组分:W5%-15%,ZrO 20.5%-2.5%,余量为Mo;
    压制成型步骤:将所述钼合金粉末装入设计好的模具型腔内进行压制成型处理,得到压坯;
    高温烧结步骤:将所述压坯在还原性气氛、惰性气体或者真空条件进行高温烧结处理,得到钼合金烧坯;
    锻造变形步骤:将所述钼合金烧坯进行锻造变形处理,得到锻造棒坯;
    退火步骤:将所述锻造棒坯在还原性气氛下进行退火处理,得到所述大尺寸抗变形钼合金棒材。
  2. 根据权利要求1所述的大尺寸抗变形钼合金棒材的制备方法,其特征在于,在所述钼合金粉末的制备步骤中,钼源为钼粉,钨源为钨粉,锆源为纳米态氧化锆粉末,钼粉的费氏粒度为2.0~4.0μm,钨粉的费氏粒度为2.5~4.5μm,纳米氧化锆粉末粒径为20~60nm。
  3. 根据权利要求1或2所述的大尺寸抗变形钼合金棒材的制备方法,其特征在于,在所述压制成型步骤中,压坯的直径为200~300mm。
  4. 根据权利要求1-3中任一项所述的大尺寸抗变形钼合金棒材的制备方法,其特征在于,在所述高温烧结步骤中,高温烧结处理的最高烧结温度为2000~2200℃,在最高烧结温度条件下保温4~8h;优选地,所述高温烧结处理设置成分段升温烧结,在达到最高烧结温度之前设置若干保温台阶从而去除杂质。
  5. 根据权利要求1-4中任一项所述的大尺寸抗变形钼合金棒材的制备方法,其特征在于,在所述高温烧结步骤中,所述钼合金烧坯的直径为180~250mm。
  6. 根据权利要求1-5中任一项所述的大尺寸抗变形钼合金棒材的制备方法,其特征在于,在所述锻造变形步骤中,采用快锻变形处理,始锻温度为1400~1550℃,终锻温度不低于1100℃,快锻变形处理的总变形量大于70%, 快锻变形处理包括两火次以上锻造处理;优选地,终锻温度为1150-1300℃;优选地,快锻变形处理开始前所进行的加热时间为2-4小时;更优选地,锻造速度为80~108mm/s;进一步优选地,采用1000T及以上公称压力的快锻机进行锻造变形处理。
  7. 根据权利要求6所述的大尺寸抗变形钼合金棒材的制备方法,其特征在于,在所述锻造变形步骤中,锻造变形处理包括两火次锻造处理,每火次锻造处理依次进行加热处理和快锻处理;优选地,在第一火次锻造处理中,加热处理的加热温度为1400~1550℃,保温时间为1h~2h,快锻处理的锻造变形量为40%~60%,锻造速度为80~108mm/s;优选地,在第二火次锻造处理中,加热处理的加热温度为1250~1350℃,保温时间为0.5h-1.5h,快锻处理的锻造变形量为30%~50%,锻造速度为80~108mm/s。
  8. 根据权利要求1-7中任一项所述的大尺寸抗变形钼合金棒材的制备方法,其特征在于,在所述锻造变形步骤中,锻造棒坯的直径为90~120mm。
  9. 根据权利要求1-8中任一项所述的大尺寸抗变形钼合金棒材的制备方法,其特征在于,在所述退火步骤中,退火处理的退火温度为1050~1150℃,保温时间为60~120min。
  10. 一种大尺寸抗变形钼合金棒材,其特征在于,采用如权利要求1-9中任一项所述制备方法制备而成;优选地,所述钼合金棒材的尺寸为φ90-φ120mm,长度最长可达到3000mm,室温抗拉强度最高可达到750MPa,1300℃高温强度最高可达到350MPa,再结晶温度最高可达到1400℃。
PCT/CN2021/125234 2021-07-28 2021-10-21 一种大尺寸抗变形钼合金棒材及其制备方法 WO2022174608A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110859614.5A CN113604720B (zh) 2021-07-28 2021-07-28 一种大尺寸抗变形钼合金棒材及其制备方法
CN202110859614.5 2021-07-28

Publications (1)

Publication Number Publication Date
WO2022174608A1 true WO2022174608A1 (zh) 2022-08-25

Family

ID=78305826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125234 WO2022174608A1 (zh) 2021-07-28 2021-10-21 一种大尺寸抗变形钼合金棒材及其制备方法

Country Status (2)

Country Link
CN (1) CN113604720B (zh)
WO (1) WO2022174608A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116287833A (zh) * 2023-03-14 2023-06-23 河南科技大学 原位自生二维碳化物弥散强韧化钼合金的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104439236A (zh) * 2014-12-23 2015-03-25 金堆城钼业股份有限公司 一种氧化锆钼合金电极的制备方法
EP3118339A1 (de) * 2015-07-17 2017-01-18 Gesellschaft für Wolfram Industrie mbH Molybdänlegierung, elektrode umfassend eine molybdänlegierung, sowie verwendung einer elektrode
CN109306421A (zh) * 2018-09-18 2019-02-05 厦门虹鹭钨钼工业有限公司 一种抗侵蚀钼合金电极及其制造方法
CN110453127A (zh) * 2019-09-09 2019-11-15 安泰天龙钨钼科技有限公司 一种多元复合强化钼合金及其制备方法
CN110722152A (zh) * 2019-10-29 2020-01-24 安泰天龙钨钼科技有限公司 一种大尺寸细晶钼棒及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255757B2 (en) * 2003-12-22 2007-08-14 General Electric Company Nano particle-reinforced Mo alloys for x-ray targets and method to make
CN102875147B (zh) * 2012-10-17 2013-11-20 安泰科技股份有限公司 氧化锆陶瓷材料及其制备方法
CN106591613B (zh) * 2016-11-10 2018-02-13 洛阳科威钨钼有限公司 利用有益元素掺杂制备钨钼合金的方法
WO2018101435A1 (ja) * 2016-12-01 2018-06-07 新日鐵住金株式会社 鉄道車両用焼結摩擦材及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104439236A (zh) * 2014-12-23 2015-03-25 金堆城钼业股份有限公司 一种氧化锆钼合金电极的制备方法
EP3118339A1 (de) * 2015-07-17 2017-01-18 Gesellschaft für Wolfram Industrie mbH Molybdänlegierung, elektrode umfassend eine molybdänlegierung, sowie verwendung einer elektrode
CN109306421A (zh) * 2018-09-18 2019-02-05 厦门虹鹭钨钼工业有限公司 一种抗侵蚀钼合金电极及其制造方法
CN110453127A (zh) * 2019-09-09 2019-11-15 安泰天龙钨钼科技有限公司 一种多元复合强化钼合金及其制备方法
CN110722152A (zh) * 2019-10-29 2020-01-24 安泰天龙钨钼科技有限公司 一种大尺寸细晶钼棒及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Material for Nuclear Power Plants", 31 January 2017, SHANGHAI SCIENTIFIC & TECHNICAL PUBLISHERS, CN, ISBN: 978-7-5478-3362-9, article WOLFGANG HOFFNER: "Oxide Dispersion Strengthening", pages: 84 - 85, XP009539175 *
"Materials Science and Engineering for Molybdenum", 31 July 2014, METALLURGICAL INDUSTRY PRESS, CN, ISBN: 978-7-5024-6595-7, article XU, KEDIAN: "Molybdenum-tungsten Alloy", pages: 582 - 591, XP009539174 *

Also Published As

Publication number Publication date
CN113604720B (zh) 2022-07-01
CN113604720A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
CN108342605A (zh) 一种TiC颗粒增强7085铝基复合材料的制备方法
WO2021027824A1 (zh) 一种钨基合金材料及其制备方法
CN107245621B (zh) 一种耐磨耐蚀钼合金及其制备方法
CN109252061B (zh) 一种高温、高热稳定性、高断裂韧性钛合金棒材的制备方法
CN113061782A (zh) 一种gh3230镍基高温合金材料及其消除激光选区熔化成形微裂纹的方法与应用
US11951530B2 (en) High-strength stainless steel rotor and method for preparing the same
WO2021046927A1 (zh) 一种含微量稀土元素的镍铼合金旋转管状靶材及制备方法
CN111304493B (zh) 一种超强高塑钛合金及其制备方法
CN113088733B (zh) 一种Ti-W异构金属-金属复合材料及其制备方法
WO2022174608A1 (zh) 一种大尺寸抗变形钼合金棒材及其制备方法
CN110142402B (zh) 一种粉末冶金铝基材料及其制备方法
CN111926226B (zh) 一种高强塑性铝合金及其制备方法
CN108866378A (zh) 一种高温环境用高强高导电率铜合金及其制备方法
CN111041355B (zh) 一种添加TiC的低密度高强度钢及其制备方法
CN115679145B (zh) 控制棒中子吸收体材料及其制备方法
CN109516802B (zh) 一种精密铸造用氧化锆坩埚及其热处理方法
WO2023197621A1 (zh) 一种掺杂有铸造铝镍钴的异质结烧结铝镍钴的制备方法
CN114351007B (zh) 一种耐高温紧固件及其制造方法
CN111283210A (zh) 一种高纯金属钒粉及其制备方法
CN112708788B (zh) 一种提高k403合金塑性的方法,模具材料和制品
CN110216275B (zh) 一种粉末冶金铝基材料及其制备方法
CN110699564B (zh) 一种碳化硼基金属陶瓷复合材料的制备方法
CN113957294A (zh) 一种CrCoNi中熵合金增强Al基复合材料及其制备方法
CN110629123A (zh) 一种提高合金钢铸件耐热疲劳性的方法
Liu et al. Microstructure evolution and process optimization of molybdenum rods during loose tooling forging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE