WO2022174503A1 - 一种三甲基铝的制备方法 - Google Patents

一种三甲基铝的制备方法 Download PDF

Info

Publication number
WO2022174503A1
WO2022174503A1 PCT/CN2021/085466 CN2021085466W WO2022174503A1 WO 2022174503 A1 WO2022174503 A1 WO 2022174503A1 CN 2021085466 W CN2021085466 W CN 2021085466W WO 2022174503 A1 WO2022174503 A1 WO 2022174503A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
chloride
aluminum
reaction
preparation
Prior art date
Application number
PCT/CN2021/085466
Other languages
English (en)
French (fr)
Inventor
杨敏
杨雪
孙祥祯
Original Assignee
江苏南大光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US18/546,323 priority Critical patent/US20240132526A1/en
Application filed by 江苏南大光电材料股份有限公司 filed Critical 江苏南大光电材料股份有限公司
Priority to JP2023544458A priority patent/JP2024506516A/ja
Priority to EP21926220.1A priority patent/EP4296271A1/en
Priority to KR1020237028954A priority patent/KR20230133905A/ko
Publication of WO2022174503A1 publication Critical patent/WO2022174503A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/061Aluminium compounds with C-aluminium linkage
    • C07F5/062Al linked exclusively to C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/061Aluminium compounds with C-aluminium linkage
    • C07F5/064Aluminium compounds with C-aluminium linkage compounds with an Al-Halogen linkage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present application relates to the field of metal organic chemistry, in particular to a preparation method of trimethylaluminum.
  • Trimethylaluminum is a very important chemical raw material.
  • the applications of trimethylaluminum include: (1) In the field of organic catalysis, the action of trimethylaluminum and water can form highly active methylaluminoxane, while methylaluminum Oxane is one of the most important cocatalysts in metallocene catalytic systems; (2) in the field of organic synthesis, trimethylaluminum and ethylene undergo oligomerization to form higher-carbon alkylaluminum, which can be formed after oxidation and hydrolysis Straight chain higher primary alcohol; trimethylaluminum can also be used to prepare other metal organic compounds, such as methyltin can be prepared by reacting trimethylaluminum with tin chloride; (3) In the field of polymer chemical industry, trimethylaluminum The catalytic system formed by aluminum and transition metal salts can cause directional polymerization of olefins; (4) In other fields, for example, trimethyl aluminum can be used as a liquid fuel
  • the method for preparing trimethylaluminum includes: reacting magnesium-aluminum alloy with halogenated alkane.
  • Chinese patent literature application publication number: CN105175440A, application publication date: December 23, 2015 discloses a combination of monohalomethane and magnesium aluminum alloy to obtain trimethyl aluminum ether ligands in ether solvents A method of obtaining trimethylaluminum by decomposing the complex at high temperature after substitution by a high-boiling organic tertiary amine or organic phosphine. In this method, the ether ligand and trimethylaluminum are firmly bound, and it is difficult to completely remove the trimethylaluminum product, so that the purity of the trimethylaluminum product is low.
  • the method for preparing trimethylaluminum further comprises: reacting a methyl halide with a higher-carbon alkylaluminum.
  • U.S. Patent Literature application publication number: US4948906A, application publication date: August 14, 1990 discloses a kind of using triethylaluminum and methyl halide as raw materials, in the presence of a Lewis acid catalyst such as bismuth chloride A method for obtaining trimethylaluminum through ligand exchange. In this method, triethylaluminum is in excess, resulting in high raw material cost, incomplete ligand exchange, formation of many by-products, and low reaction yield.
  • the method for preparing trimethylaluminum further comprises: reacting alkali metal or alkaline earth metal with methylaluminum dichloride, sesquimethylaluminum chloride or dimethylaluminum chloride.
  • Japanese patent document application publication number: JP2009263326A, application publication date: November 12, 2009 discloses a method for preparing trimethylaluminum using sesquimethylaluminum chloride and alkali metal reaction; Publication number: US5359116A, application publication date: October 25, 1994 discloses a method for preparing trimethylaluminum by reacting dimethylaluminum chloride with metallic sodium and the like.
  • the by-product metal aluminum is easily wrapped on the surface of the alkali metal or alkaline earth metal to form a hard shell, thereby preventing the reaction from continuing, resulting in incomplete reaction, low reaction yield, and very high activity of by-product metal aluminum and unreacted alkali metal or alkaline earth metal, increasing the risk of waste disposal.
  • Chinese patent documents (application publication number: CN111072700A, application publication date: April 28, 2020; application publication number: CN111116625A, application publication date: May 8, 2020 Japan) all discloses a kind of reaction of methyl chloride, sodium, and methylaluminum dichloride or sesquimethylaluminum chloride or dimethylaluminum chloride to prepare trimethylaluminum without using a catalyst.
  • the method for preparing trimethylaluminum still has many defects, and it is particularly important to develop a method for preparing trimethylaluminum.
  • the present application provides a preparation method of trimethylaluminum, so as to solve the problems of low reaction rate, low reaction yield, harsh experimental conditions, many by-products and difficult handling in the prior art for preparing trimethylaluminum.
  • One aspect of the present application provides a method for preparing trimethylaluminum, comprising the steps of: in the presence of a catalyst and a solvent, methylaluminum dichloride or sesquimethylaluminum chloride or dimethylaluminum chloride and metal M React with the system of methyl chloride to generate chloride of trimethylaluminum and metal M; wherein, the catalyst is selected from metals or their ions whose electrochemical sequence is after metal aluminum; the metal M is selected from alkali metals, alkaline earths metal or a combination thereof.
  • the methylaluminum dichloride or sesquimethylaluminum chloride or dimethylaluminum chloride is reacted with the metal M to generate in situ in the presence of the catalyst and the solvent Newly formed aluminum is reacted with the methyl chloride to form sesquimethylaluminum chloride.
  • the methyl chloride is introduced after the methylaluminum dichloride, the sesquimethylaluminum chloride or the dimethylaluminum chloride is mixed with a part of the metal M.
  • the weight ratio of the part of the metal M to the total metal M required for the reaction is between (0.001-0.5):1.
  • the process of obtaining the sesquimethylaluminum chloride is as follows: in the presence of the catalyst and an initiator, the reaction is generated by metal aluminum and methyl chloride.
  • the initiator is selected from at least one of simple substance iodine, 1,2-dibromoethane, methyl iodide and sesquimethylaluminum chloride.
  • the catalyst is selected from Group IB metals or their ions, Group IIB metals or their ions, Group IIIB metals or their ions, and Group IVB metals or their ions, which are electrochemically followed by metal aluminum , Group VB metals or their ions, Group VIB metals or their ions, Group VIIB metals or their ions, Group VIII metals or their ions, Group IIIA metals or their ions, and Group IVA metals or their ions at least one.
  • the catalyst is selected from at least one of a Group IB metal or its ion and a Group VIII metal or its ion which electrochemically rank after the metal aluminum.
  • the catalyst is selected from at least one metal element or ion of silver, gold, nickel, palladium, platinum, copper, iron and rhodium, or selected from silver, gold, nickel, palladium, platinum, An alloy composed of at least two of copper, iron and rhodium.
  • the weight ratio of the catalyst to aluminum in the methylaluminum dichloride or sesquimethylaluminum chloride or dimethylaluminum chloride is between (0.0001-0.1):1 .
  • the metal M is selected from at least one metal element of sodium, potassium and magnesium, or an alloy composed of at least two selected from sodium, potassium and magnesium.
  • the solvent is selected from at least one of n-hexadecane, n-decane, 1,2-o-dichlorobenzene, 1,2,3,4-tetralin, squalane and toluene kind.
  • the temperature of the reaction is between 80°C and 130°C.
  • the reaction is carried out at a pressure between one atmosphere and 130 kPa.
  • the aeration rate of the methyl chloride is adjusted according to the temperature change of the reaction and the reading of a gas flow meter equipped at the end of the experimental setup.
  • methylaluminum dichloride or sesquimethylaluminum chloride or dimethylaluminum chloride is reacted with a system of metal M and methyl chloride to prepare trimethylaluminum, catalyst
  • the reaction rate can be significantly increased, so that the reaction can be operated under very simple experimental conditions such as near normal pressure, the reaction yield and product purity are higher, and there is no by-product metal aluminum and unreacted alkali metal or Alkaline earth metals, the handling of the product is more convenient.
  • the embodiments of the present application provide a method for preparing trimethylaluminum, comprising the steps of: in the presence of a catalyst and a solvent, methylaluminum dichloride, sesquimethylaluminum chloride or dimethylaluminum chloride and metal M React with the system of methyl chloride to generate chloride of trimethylaluminum and metal M; wherein, the catalyst is selected from the metal or its ion whose electrochemical sequence is after the metal aluminum; the metal M is selected from alkali metal, alkaline earth metal or its combination .
  • the value of x is 1, and when the metal M is an alkaline earth metal, the value of x is 2.
  • sesquimethylaluminum chloride reacts with metal M and methyl chloride according to the following chemical reaction equation 2:
  • the value of x is 1, and when the metal M is an alkaline earth metal, the value of x is 2.
  • dimethylaluminum chloride reacts with metal M and methyl chloride according to the following chemical reaction equation 3:
  • the value of x is 1, and when the metal M is an alkaline earth metal, the value of x is 2.
  • the value of x is 1, and when the metal M is an alkaline earth metal, the value of x is 2.
  • sesquimethylaluminum chloride reacts with metal M to generate new aluminum in situ according to the following chemical reaction equation 5:
  • the value of x is 1, and when the metal M is an alkaline earth metal, the value of x is 2.
  • dimethyl aluminum chloride reacts with metal M to generate new aluminum in situ according to the following chemical reaction equation 6:
  • the value of x is 1, and when the metal M is an alkaline earth metal, the value of x is 2.
  • the reaction rate is increased, the reaction yield and product purity are higher, so that the reaction can be carried out in very simple experimental conditions such as near normal pressure, That is, when the gas pressure of methyl chloride can be maintained near normal pressure, the effective reaction can be maintained.
  • the metal or its ions which are electrochemically ordered after aluminum, are not consumed.
  • the reaction rate, reaction yield and product purity all decrease significantly under the same experimental conditions.
  • methyl chloride is introduced after the methylaluminum dichloride or sesquimethylaluminum chloride or dimethylaluminum chloride is mixed with part of the metal M. That is, after adding methylaluminum dichloride, sesquimethylaluminum chloride or dimethylaluminum chloride into the experimental device, first add a part of the metal M to mix with it. During the mixing process, methylaluminum dichloride or sesquimethylaluminum chloride or dimethylaluminum chloride is reacted with this part of metal M first, and then chloromethane is introduced.
  • the weight ratio of part of the metal M to the total metal M required for the reaction is preferably between (0.001-0.5): 1, more preferably (0.01-0.5): 1, still more preferably (0.1-0.5) :1, specifically 0.1:1, 0.2:1, 0.3:1, 0.4:1, or 0.5:1.
  • Adding a part of metal M to methyl aluminum dichloride, sesquimethyl aluminum chloride or dimethyl aluminum chloride, and then introducing methyl chloride can avoid the reaction between methyl chloride and the more active metal M first. It is consumed.
  • the metal M is generally solid, and can be added dropwise to the experimental device by heating the metal M to make it liquid.
  • sesquimethylaluminum chloride can be prepared in situ by direct reaction of metallic aluminum with methyl chloride. That is to say, before preparing trimethylaluminum, in the presence of a catalyst and an initiator, metal aluminum and methyl chloride are reacted to generate sesquimethylaluminum chloride, and then the sesquimethylaluminum chloride is directly used as the preparation method.
  • Raw material of trimethylaluminum in the presence of a catalyst and an initiator, metal aluminum and methyl chloride are reacted to generate sesquimethylaluminum chloride, and then the sesquimethylaluminum chloride is directly used as the preparation method.
  • the initiator can be selected from at least one of simple substance iodine, 1,2-dibromoethane, methyl iodide and sesquimethylaluminum chloride.
  • Electrochemical sequence is a sequence obtained by arranging common metals (and hydrogen) according to their standard electrode potentials from low to high, that is, the standard electrode potential of metals suitable for the catalyst in this application is higher than that of aluminum.
  • the catalyst is selected from Group IB metals or their ions, Group IIB metals or their ions, Group IIIB metals or their ions, and Group IVB metals or their ions which are electrochemically followed by metal aluminum , Group VB metals or their ions, Group VIB metals or their ions, Group VIIB metals or their ions, Group VIII metals or their ions, Group IIIA metals or their ions, and Group IVA metals or their ions at least one. More preferably, it is at least one of a Group IB metal or its ion and a Group VIII metal or its ion.
  • the weight ratio of the catalyst to aluminum in methyl aluminum dichloride or sesquimethyl aluminum chloride or dimethyl aluminum chloride is preferably (0.0001-0.1): 1, more preferably (0.001-0.1): 1 , and then preferably at (0.002-0.1):1. And when the catalyst is located on the inner wall of the container of the reaction system or on the surface of the stirring device, the usage amount of the catalyst is also preferably within the above numerical range.
  • the weight of aluminum in methylaluminum dichloride or sesquimethylaluminum chloride or dimethylaluminum chloride refers to: when the raw material methylaluminum dichloride or sesquimethylaluminum chloride When aluminum or dimethyl aluminum chloride is commercially available, the weight of aluminum element is the weight of aluminum element in methyl aluminum dichloride or sesquimethyl aluminum chloride or dimethyl aluminum chloride; When the base aluminum chloride is formed by the reaction of metal aluminum and methyl chloride, the weight of the aluminum element is the weight of the raw material, that is, the metal aluminum.
  • Metal M may be selected from alkali metals, alkaline earth metals, or combinations thereof.
  • the metal M can be selected from at least one metal element of sodium, potassium and magnesium, or an alloy composed of at least two of sodium, potassium and magnesium, and these elements or alloys are all Can play an effective reaction effect, can play roughly the same reduction effect.
  • the metal M is sodium.
  • Solvents suitable for the embodiments of the present application can be common solvents known in the art, such as n-hexadecane, n-decane, 1,2-o-dichlorobenzene, 1,2,3,4-tetralin, At least one of squalane, toluene, etc., preferably n-decane or 1,2,3,4-tetralin is used as the main solvent, and other solvents can be used as the secondary solvent.
  • a solvent By adding a solvent to the reaction system, the entire reaction system can be heated and stirred more uniformly. Specifically, when a solvent is used, the raw materials are uniformly dispersed in the solvent and have a dissolving effect on another raw material, methyl chloride gas, so that the reactants are The indirect contact is more complete and the reaction rate is faster.
  • the reaction temperature is preferably between 80-130°C, more preferably between 90-100°C.
  • the reaction is preferably carried out at a pressure between one atmosphere and 130 kPa. That is to keep the reaction under a slight positive pressure, preferably between 105-115kPa, specifically 105kPa, 110kPa, 115kPa, etc.
  • the air pressure is not easy to maintain at a certain value but is maintained within a small range, such as Maintain between 105-110kPa, or between 110-115kPa, etc. Since this reaction process consumes methyl chloride and is converted into solid and liquid substances, the above-mentioned reaction is more conducive to forward progress under slightly positive pressure conditions.
  • the micro-positive pressure operation of the present application obviously greatly improves the experimental efficiency and reduces the low-pressure sealing requirements for the experimental device, and this feature is very beneficial to the optimization of the actual process and reduces the cost.
  • the preparation method of trimethyl aluminum may include the following steps:
  • the preparation method of trimethylaluminum can include the following steps:
  • reaction temperature is controlled at 80-130 °C, preferably 90-100 °C, and keep the reaction temperature 3- 6h to the end of the reaction;
  • the purity of methyl chloride gas is not less than 98%, and the ventilation rate can be 0.001-2g/min;
  • the aeration rate of methyl chloride it can be adjusted according to the reaction temperature change and the indication of the gas flow meter equipped at the end of the experimental apparatus. Specifically, when the reaction temperature rises, the flow rate of methyl chloride gas is increased, and the flow rate is judged according to the indication of the tail flowmeter to ensure that no gas is discharged from the tail; on the contrary, when the reaction temperature drops, the gas flow rate is reduced. The indication of the flowmeter determines the flow rate to ensure that no gas is discharged from the tail.
  • This control of the flow rate of methyl chloride ie, the ventilation rate
  • nitrogen, argon and the like can be selected.
  • the initiator it may be continuously or intermittently added dropwise, and continuous dropwise addition is preferred. Controlling the dropping rate of the initiator can ensure that the reaction can be effectively initiated, and the dropping rate can be 0.01-5 g/min, preferably 0.1-5 g/min.
  • the metal M its purity can be no less than 95%, and it can be added dropwise in batches; the metal M is preferably sodium, and its purity can be no less than 95%, and the temperature of the molten metal M during dropwise addition can be 100-150 °C, the temperature in the reaction device can be 80-130 °C.
  • reaction device it can be a glass reactor, and the interior of the glass reactor can be provided with a stirring device.
  • methylaluminum dichloride Under a nitrogen atmosphere, 11.3g of commercially available methylaluminum dichloride, 40ml of n-hexadecane and 0.01g of gold powder were added to the glass reactor. The weight ratio of gold powder to aluminum in methylaluminum dichloride was 0.0037.
  • a distillation device was installed on the glass reactor, the pressure was adjusted to between 12-14kPa, and the fraction between 60-68°C was collected to obtain about 6.3g of trimethylaluminum, the reaction yield was about 87%, and the product purity was about was 97%.
  • a distillation device was installed on the glass reactor, the pressure was adjusted to between 12-14kPa, and the fraction between 60-68°C was collected to obtain about 12.5g of trimethylaluminum, the reaction yield was about 87%, and the product purity was about is 98%.
  • a distillation device was installed on the glass reactor, the pressure was adjusted to between 12-14kPa, and the fraction between 60-68°C was collected to obtain about 6.2g of trimethylaluminum, the reaction yield was about 86%, and the product purity was about was 97%.
  • the rate of methyl chloride was adjusted by the gas flow meter at the end of the experimental device to ensure that no gas was discharged from the tail, and the reaction was maintained until methyl chloride was no longer absorbed.
  • the total time was about 2.4 hours, and sesquimethylaluminum chloride was obtained.
  • a distillation device was installed on the glass reactor, the pressure was adjusted to 12-14kPa, and the fraction at 60-68°C was collected; after analysis, about 13.3g of trimethylaluminum was obtained, the reaction yield was about 92%, and the product purity was about 98%.
  • the rate of methyl chloride was adjusted by the gas flow meter equipped at the tail of the experimental device to ensure that no gas was discharged from the tail, and the reaction was maintained until methyl chloride was no longer absorbed, and the total duration was about 2.4h to obtain sesquimethylaluminum chloride.
  • a distillation device was installed on the glass reactor, the pressure was adjusted to 12-14kPa, and the fraction at 60-68°C was collected; after analysis, about 13.9g of trimethylaluminum was obtained, the reaction yield was about 96%, and the product purity was about 97%.
  • the rate of methyl chloride was adjusted by a gas flow meter at the tail of the experimental device to ensure that no gas was discharged from the tail, and the reaction was maintained until methyl chloride was no longer absorbed.
  • the total time was about 4 hours, and sesquimethylaluminum chloride was obtained.
  • a distillation device was installed on the glass reactor, the pressure was adjusted between 12-14kPa, and the fraction at 60-68°C was collected; after analysis, about 14g of trimethylaluminum was obtained, the reaction yield was about 97%, and the product purity was about was 97%.
  • the rate of methyl chloride was adjusted by the gas flow meter at the end of the experimental device to ensure that no gas was discharged from the tail, and the reaction was maintained until methyl chloride was no longer absorbed.
  • the total time was about 3.3 hours to obtain sesquimethylaluminum chloride.
  • a distillation device was installed on the glass reactor, the pressure was adjusted between 12-14kPa, and the fraction at 60-68°C was collected; after analysis, about 14.1g of trimethylaluminum was obtained, the reaction yield was about 98%, and the product purity was about 98%.
  • the rate of methyl chloride was adjusted by the gas flow meter at the end of the experimental device to ensure that no gas was discharged from the tail, and the reaction was maintained until methyl chloride was no longer absorbed.
  • the total time was about 3.3 hours to obtain sesquimethylaluminum chloride.
  • a distillation device was installed on the glass reactor, the pressure was adjusted between 12-14kPa, and the fraction at 60-68°C was collected; after analysis, about 13.8g of trimethylaluminum was obtained, the reaction yield was about 96%, and the product purity was about 97%.
  • the rate of methyl chloride was adjusted by the gas flow meter at the end of the experimental device to ensure that no gas was discharged from the tail, and the reaction was maintained until methyl chloride was no longer absorbed.
  • the total time was about 3.3 hours to obtain sesquimethylaluminum chloride.
  • a distillation device was installed on the glass reactor, the pressure was adjusted to 12-14kPa, and the fraction at 60-68°C was collected; after analysis, about 13.9g of trimethylaluminum was obtained, the reaction yield was about 96%, and the product purity was about 97%.
  • the rate of methyl chloride was adjusted by the gas flow meter at the end of the experimental device to ensure that no gas was discharged from the tail, and the reaction was maintained until methyl chloride was no longer absorbed.
  • the total time was about 5.4 hours, and sesquimethylaluminum chloride was obtained.
  • a distillation device was installed on the glass reactor, the pressure was adjusted between 12-14kPa, and the fraction at 60-68°C was collected; after analysis, about 211g of trimethylaluminum was obtained, the reaction yield was about 98%, and the product purity was about was 97%.
  • the aluminum scrap of 5.4g and the bismuth chloride of 0.01g are added in the glass reactor, and the weight ratio of bismuth ion and aluminum scrap in the bismuth chloride is 0.0012.
  • continue to stir for 10 min use a syringe to add about 0.5 g of methyl iodide dropwise, adjust the rate of methyl chloride to 0.3-0.8 g/min, and control the reaction pressure at 115-120 kPa.
  • a distillation device was installed on the glass reactor, the pressure was adjusted between 12-14kPa, and the fraction at 60-68°C was collected; after analysis, about 13.5g of trimethylaluminum was obtained, the reaction yield was about 94%, and the product purity was about 96%.
  • the rate of methyl chloride was adjusted by the gas flow meter at the tail of the experimental device to ensure that no gas was discharged from the tail, and the reaction was maintained until methyl chloride was no longer absorbed.
  • the total time was about 2.3 hours, and sesquimethylaluminum chloride was obtained.
  • a distillation device was installed on the glass reactor, the pressure was adjusted between 12-14kPa, and the fraction at 60-68°C was collected; after analysis, about 13.6g of trimethylaluminum was obtained, the reaction yield was about 94%, and the product purity was about 97%.
  • the pressure in the glass reactor was still maintained at 110-115kPa, until the dropwise addition of 9.2g of metallic sodium was completed, and the ventilation was stopped after stirring for about 2.2h. At this time, methyl chloride was no longer absorbed, and the reaction system was lowered to room temperature.
  • a distillation device was installed on the glass reactor, the pressure was adjusted between 12-14kPa, and the fraction between 60-68°C was collected to obtain about 1.3g of trimethylaluminum, the reaction yield was about 18%, and the product purity was about was 81%.
  • the pressure in the glass reactor was still maintained at 110-115kPa, until all 13.8g of metallic sodium was added dropwise, and the aeration was stopped after continuing to stir for about 3.1h. At this time, methyl chloride was no longer absorbed, and the reaction system was lowered to room temperature.
  • a distillation device was installed on the glass reactor, the pressure was adjusted between 12-14kPa, and the fraction between 60-68°C was collected to obtain about 2.1g of trimethylaluminum, the reaction yield was about 15%, and the product purity was about was 83%.
  • the pressure in the glass reactor was still maintained at 110-115kPa, until all 4.6g of metallic sodium was added dropwise, and the aeration was stopped after stirring for about 2.2h. At this time, methyl chloride was no longer absorbed, and the reaction system was lowered to room temperature.
  • a distillation device was installed on the glass reactor, the pressure was adjusted between 12-14kPa, and the fraction between 60-68°C was collected to obtain about 1.2g of trimethylaluminum, the reaction yield was about 17%, and the product purity was about is 80%.
  • methyl chloride is basically not absorbed, indicating that the aluminum scraps and methyl chloride are basically unreacted, and it is difficult to effectively obtain sesquimethylaluminum chloride.
  • Comparative example 5 is roughly the same as in comparative example 4, the difference is that the total duration of the reaction is extended to 7 days, and the specific experimental process is as follows:
  • a distillation device was installed on the glass reactor, the pressure was adjusted between 12-14kPa, and the fraction between 60-68°C was collected to obtain about 12.5g of trimethylaluminum, the reaction yield was about 80%, and the product purity was about was 97%.
  • Example 1 and Comparative Example 1 when methyl aluminum dichloride or sesquimethyl aluminum chloride or dimethyl aluminum chloride
  • the reaction yield and product purity are significantly improved after the catalyst is used in the reaction.
  • Example 2 and Example 4 to Example 12 It can be seen from Example 2 and Example 4 to Example 12 that when sesquimethylaluminum chloride is generated from the reaction of metal aluminum and methyl chloride, compared with commercially available sesquimethylaluminum chloride, the reaction The yield and product purity were significantly improved.
  • Example 4 and Comparative Example 4 it can be seen from Example 4 and Comparative Example 4 that when the catalyst is not contained, under the same experimental conditions, it is difficult for metal aluminum to react with methyl chloride to generate sesquimethyl aluminum chloride, so that trimethyl aluminum cannot be effectively prepared. ; It can be seen from Example 4 and Comparative Example 5 that when a catalyst is contained, the reaction rate of metal aluminum and methyl chloride will be greatly increased, and the total reaction time will be shortened from 7 days to 2.4h.
  • Example 2 As can be known from Example 2 and Comparative Example 6, when the experimental conditions such as air pressure range and raw material addition ratio are roughly the same, when methyl chloride is mixed with part of sodium metal and sesquimethyl aluminum chloride, the reaction yield is Significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本申请提供一种三甲基铝的制备方法,包括步骤:在催化剂和溶剂的存在下,甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝与金属M和氯甲烷的体系发生反应,生成三甲基铝和金属M的氯化物;其中,所述催化剂选自电化序排在金属铝之后的金属或其离子;所述金属M选自碱金属、碱土金属或其组合。催化剂可显著的增加反应速率,从而可使得该反应在非常简单的实验条件比如在常压附近操作,反应产率以及产物纯度更高,且产物中无副产物金属铝以及未反应完的碱金属或者碱土金属,对产物的处理更加方便。

Description

一种三甲基铝的制备方法 技术领域
本申请涉及金属有机化学领域,具体涉及一种三甲基铝的制备方法。
背景技术
三甲基铝是一种非常重要的化工原料,三甲基铝的应用包括:(1)在有机催化领域,三甲基铝与水作用可形成高活性甲基铝氧烷,而甲基铝氧烷是茂金属催化体系中最重要的助催化剂之一;(2)在有机合成领域,三甲基铝与乙烯进行齐聚反应生成高碳烷基铝,后者经氧化和水解后可形成直链高级伯醇;三甲基铝也可用于制取其他金属有机化合物,如用三甲基铝与氯化锡反应可制取甲基锡;(3)在高分子化工领域,三甲基铝和过渡金属盐类形成的催化体系可使烯烃发生定向聚合反应;(4)在其他领域,如三甲基铝可作为火箭的液体燃料、精细有机合成中的烷基化试剂等。
现有技术中,制备三甲基铝的方法包括:通过镁铝合金与卤代烷烃反应。如中国专利文献(申请公布号:CN105175440A,申请公布日:2015年12月23日)公开了一种一卤代甲烷与镁铝合金在醚类溶剂中获得三甲基铝醚类配体的配合物,再通过高沸点的有机叔胺或有机膦取代后高温分解该配合物获得三甲基铝的方法。该方法中,醚类配体和三甲基铝结合牢固,很难完全除去,使得三甲基铝产物纯度低。
现有技术中,制备三甲基铝的方法还包括:通过甲基卤化物与高碳链烷基铝反应。如美国专利文献(申请公布号:US4948906A,申请公布日:1990年8月14日)公开了一种以三乙基铝和甲基卤化物为原料,在路易斯酸催化剂如氯化铋的存在下经过配体交换获得三甲基铝的方法。该方法中,三乙基铝要过量,导致原材料成本高,且配体交换不彻底,形成较多的副产物,反应产率低。
现有技术中,制备三甲基铝的方法还包括:通过碱金属或者碱土金属与甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝反应。如日本专利文献(申请公布号:JP2009263326A,申请公布日:2009年11月12日)公开了使用倍半甲基氯化铝与碱金属反应制备三甲基铝的方法;如美国专利文献(申请公布号:US5359116A,申请公布日:1994年10月25日)公开了使用二甲基氯化铝与金属钠反应制备三甲基铝的方法等等。以上方法中,当碱金属或者碱土金属与甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝反应时,副产物金属铝容易包裹在碱金属或者碱土金属表面形成硬壳,从而阻止反应继续进行,使得反应不完全、反应产率低,且副产物金属铝以及未反应完的碱金属或者碱土金属的活性非常高,增加了废物处理的风险。
为解决金属铝包裹碱金属或者碱土金属造成的问题,中国专利文献(申请公布号:CN111072700A,申请公布日:2020年4月28日;申请公布号:CN111116625A,申请公布日:2020年5月8日)中均公开了一种在不使用催化剂的情况下氯甲烷、钠、以及甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝反应来制备三甲基铝的方法,但是该方法在实际操作中无法实现,金属钠投入后会迅速结块,在没有催化剂存在的情况下,生成的铝很难和氯甲烷进一步反应,造成反应产率极低,生成的产品仅仅是部分的金属钠还原原料得到的三甲基铝,即依然未能有效解决金属铝包裹碱金属或者碱土金属造成的问题。
因此,现有技术中,制备三甲基铝的方法还存在着非常多的缺陷,开发三甲基铝的制备方法显得尤为重要。
发明内容
本申请提供一种三甲基铝的制备方法,以解决现有技术中制备三甲基铝的反应速率低、反应产率低、实验条件苛刻、副产物较多且处理困难的问题。
本申请一方面提供一种三甲基铝的制备方法,包括步骤:在催化剂和溶剂的 存在下,甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝与金属M和氯甲烷的体系发生反应,生成三甲基铝和金属M的氯化物;其中,所述催化剂选自电化序排在金属铝之后的金属或其离子;所述金属M选自碱金属、碱土金属或其组合。
在一个实施方式中,在所述催化剂和所述溶剂的存在下,所述甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝与所述金属M反应原位生成新生成铝,所述新生成铝与所述氯甲烷反应生成倍半甲基氯化铝。
在一个实施方式中,所述氯甲烷在甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝与部分的金属M混合后再通入。
在一个实施方式中,所述部分的金属M相对于所述反应所需全部的金属M的重量比在(0.001-0.5):1之间。
在一个实施方式中,获得所述倍半甲基氯化铝的过程如下:在所述催化剂以及引发剂的存在下,通过金属铝与氯甲烷反应生成。
在一个实施方式中,所述引发剂选自碘单质、1,2-二溴乙烷、碘甲烷以及倍半甲基氯化铝中的至少一种。
在一个实施方式中,所述催化剂选自电化序排在金属铝之后的第ⅠB族金属或其离子、第ⅡB族金属或其离子、第ⅢB族金属或其离子、第ⅣB族金属或其离子、第ⅤB族金属或其离子、第ⅥB族金属或其离子、第ⅦB族金属或其离子、第Ⅷ族金属或其离子、第ⅢA族金属或其离子以及第ⅣA族金属或其离子中的至少一种。
在一个实施方式中,所述催化剂选自电化序排在金属铝之后的第ⅠB族金属或其离子以及第Ⅷ族金属或其离子中的至少一种。
在一个实施方式中,所述催化剂选自银、金、镍、钯、铂、铜、铁以及铑中至少一种的金属单质或其离子,或者选自银、金、镍、钯、铂、铜、铁以及铑中至少两种构成的合金。
在一个实施方式中,所述催化剂相对于所述甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝中铝元素的重量比在(0.0001-0.1):1之间。
在一个实施方式中,所述金属M选自钠、钾以及镁中的至少一种的金属单质,或者选自钠、钾以及镁中的至少两种构成的合金。
在一个实施方式中,所述溶剂选自正十六烷、正癸烷、1,2-邻二氯苯、1,2,3,4-四氢化萘、角鲨烷以及甲苯中的至少一种。
在一个实施方式中,所述反应的温度在80℃至130℃之间。
在一个实施方式中,所述反应在一个大气压至130kPa之间的气压下进行。
在一个实施方式中,所述氯甲烷的通气速率根据所述反应的温度变化以及配备在实验装置尾部的气体流量计的示数进行调节。
有益效果:通过在催化剂和溶剂的存在下,甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝与金属M和氯甲烷的体系发生反应制备三甲基铝,催化剂可显著的增加反应速率,从而可使得该反应在非常简单的实验条件比如在常压附近操作,反应产率以及产物纯度更高,且产物中无副产物金属铝以及未反应完的碱金属或者碱土金属,对产物的处理更加方便。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施的限制。
本申请实施例提供一种三甲基铝的制备方法,包括步骤:在催化剂和溶剂的存在下,甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝与金属M和氯甲烷的体系发生反应,生成三甲基铝和金属M的氯化物;其中,催化剂选自电化序排在金属铝之后的金属或其离子;金属M选自碱金属、碱土金属或其组合。
在催化剂和溶剂的存在下,甲基二氯化铝与金属M和氯甲烷按照如下化学反应方程式1发生:
CH 3AlCl 2+M+CH 3Cl→(CH 3) 3Al+MCl x   (1);
其中,当金属M为碱金属时,x值为1,当金属M为碱土金属时,x值为2。
在催化剂和溶剂的存在下,倍半甲基氯化铝与金属M和氯甲烷按照如下化学反应方程式2发生:
(CH 3) 3Al 2Cl 3+M+CH 3Cl→(CH 3) 3Al+MCl x   (2);
其中,当金属M为碱金属时,x值为1,当金属M为碱土金属时,x值为2。
在催化剂和溶剂的存在下,二甲基氯化铝与金属M和氯甲烷按照如下化学反应方程式3发生:
(CH 3) 2AlCl+M+CH 3Cl→(CH 3) 3Al+MCl x   (3);
其中,当金属M为碱金属时,x值为1,当金属M为碱土金属时,x值为2。
反应按照上述化学反应方程式1、化学反应方程式2和化学反应方程式3分别发生时,在催化剂和溶剂的存在下,甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝与金属M先反应原位生成新生成铝,新生成铝与氯甲烷反应生成倍半甲基氯化铝,而倍半甲基氯化铝又与金属M和氯甲烷按照化学反应方程式2发生反应,从而将甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝中的铝元素均转化成以三甲基铝的形式存在。
在催化剂和溶剂的存在下,甲基二氯化铝与金属M反应原位生成新生成铝按照如下化学反应方程式4发生:
CH 3AlCl 2+M→(CH 3) 3Al+Al+MCl x   (4);
其中,当金属M为碱金属时,x值为1,当金属M为碱土金属时,x值为2。
在催化剂和溶剂的存在下,倍半甲基氯化铝与金属M反应原位生成新生成铝按照如下化学反应方程式5发生:
(CH 3) 3Al 2Cl 3+M→(CH 3) 3Al+Al+MCl x   (5);
其中,当金属M为碱金属时,x值为1,当金属M为碱土金属时,x值为2。
在催化剂和溶剂的存在下,二甲基氯化铝与金属M反应原位生成新生成铝按照如下化学反应方程式6发生:
(CH 3) 2AlCl+M→(CH 3) 3Al+Al+MCl x   (6);
其中,当金属M为碱金属时,x值为1,当金属M为碱土金属时,x值为2。
在催化剂和溶剂的存在下,新生成铝与氯甲烷反应生成倍半甲基氯化铝按照如下化学反应方程式7发生:
Al+CH 3Cl→(CH 3) 3Al 2Cl 3   (7)。
通过在反应体系中加入电化序排在铝之后的金属或其离子后,使得反应速率增加,反应产率和产物纯度更高,这样使得该反应可在非常简单的实验条件比如常压附近进行,即氯甲烷的气压可保持在常压附近时维持有效反应。而在反应过程中,该电化序排在铝之后的金属或其离子并没有被消耗。在不加入该催化剂时,基本相同的实验条件下,反应速率、反应产率和产物纯度均明显下降。且由于催化剂的存在,甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝与金属M和氯甲烷的反应非常充分,产物中无副产物金属铝以及未反应完的碱金属或者碱土金属,对产物的处理更加方便。
在一个优选的实施方案中,氯甲烷在甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝与部分的金属M混合后再通入。即在将甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝加入实验装置中后,先加入部分的金属M与其混合。在混合的过程中,甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝与该部分的金属M先反应,然后再通入氯甲烷。其中,部分的金属M相对于该反应所需的全部金属M的重量比优选在(0.001-0.5):1之间,更优选在(0.01-0.5):1,再优选在(0.1-0.5):1之间,具体可以为0.1:1、0.2:1、0.3:1、0.4:1或者0.5:1。在甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝中加入部分的金属M,然后再通入氯甲烷,可以避免氯甲烷与活性更强的金属M先反应而被消耗。常温下,金属M 一般为固态,可通过对金属M加热使其变为液态滴加到实验装置中。
本申请中,原料甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝可商购(商业方式购买)。在一个优选的实施方式中,倍半甲基氯化铝可通过金属铝与氯甲烷直接反应生成的方式原位制备。也就是说,制备三甲基铝之前,在催化剂以及引发剂的存在下,先通过金属铝和氯甲烷反应生成倍半甲基氯化铝,然后直接使用该倍半甲基氯化铝作为制备三甲基铝的原料。由于在获得倍半甲基氯化铝的过程中,已经将催化剂引入反应体系,后续制备三甲基铝时,不需要额外加入催化剂。相比商购原料,通过在催化剂存在下制备倍半甲基氯化铝时,制备三甲基铝的反应产率、产物纯度均有进一步的提升。引发剂可选自碘单质、1,2-二溴乙烷、碘甲烷以及倍半甲基氯化铝中的至少一种。
适用于本申请实施例中的催化剂为电化序排在铝之后的金属或其离子。电化序又叫电化学序,是常见金属(以及氢)按其标准电极电势由低到高排列得到的序列,即适用于本申请中催化剂的金属的标准电极电势高于铝。
在一个优选的实施方式中,催化剂选自电化序排在金属铝之后的第ⅠB族金属或其离子、第ⅡB族金属或其离子、第ⅢB族金属或其离子、第ⅣB族金属或其离子、第ⅤB族金属或其离子、第ⅥB族金属或其离子、第ⅦB族金属或其离子、第Ⅷ族金属或其离子、第ⅢA族金属或其离子以及第ⅣA族金属或其离子中的至少一种。更优选为第ⅠB族金属或其离子以及第Ⅷ族金属或其离子中的至少一种。更优选为银、金、镍、钯、铂、铜、铁以及铑中至少一种的金属单质或其离子,或者选自银、金、镍、钯、铂、铜、铁以及铑中至少两种构成的合金。更优选为粉末状的金、银或铜的金属单质或其离子或它们之间的任意合金。此外,本领域技术人员基于本申请的这种教导,非常容易选定具体的催化剂。
这些金属单质或其离子、合金可单独添加在反应体系中,此外,如果该反应体系的容器内壁任一地方表面镀有或者是掺杂有上述催化剂,或者该反应体系的容器的搅拌设备表面镀有或者是掺杂或者是缠绕或者是以其他形式存在于反应 体系内有上述催化剂,都可以起到本申请所限定的催化作用,因此这些方案也都在本申请的保护范围内。
催化剂相对于甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝中铝元素的重量比优选为(0.0001-0.1):1,更优选在(0.001-0.1):1,再优选在(0.002-0.1):1。而当催化剂位于该反应体系的容器内壁或者搅拌设备表面上时,催化剂的使用量也优选在上述数值范围。本申请中,“甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝中铝元素的重量”是指:当原料甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝为商购时,铝元素的重量为甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝中铝元素的重量;当原料倍半甲基氯化铝通过金属铝和氯甲烷反应生成时,铝元素的重量为原料即金属铝的重量。
金属M可选自碱金属、碱土金属或其组合。在一个优选的实施方案中,金属M可以选自钠、钾以及镁中的至少一种的金属单质,或者选自钠、钾以及镁中的至少两种构成的合金,这些金属单质或者合金均能起到有效的反应效果,均可以发挥大致相同的还原作用。优选金属M是钠。
适合于本申请实施例中的溶剂可以是本领域已知的常用溶剂,例如正十六烷、正癸烷、1,2-邻二氯苯、1,2,3,4-四氢化萘、角鲨烷、甲苯等中的至少一种,优选使用正癸烷或1,2,3,4-四氢化萘作为主要溶剂,其他溶剂可作为次溶剂。通过在反应体系中加入溶剂,可以使整个反应体系受热和搅拌更加均匀,具体地,当使用溶剂时,原料在溶剂中均匀分散且对另一原料氯甲烷气体具有溶解作用,从而使反应物之间接触更为充分,反应速率更快。
反应温度优选在80-130℃之间,更优选在90-100℃之间。
反应优选在一个大气压至130kPa之间的气压下进行。即保持反应在微正压下进行,优选在105-115kPa之间,具体可以为105kPa、110kPa、115kPa等,在实际反应中,气压不易维持在一个确定值而是维持在一个小范围内,比如维持在105-110kPa之间,或者维持在110-115kPa之间等。由于该反应过程会消耗氯 甲烷并且转化为固态物质和液态物质,因此上述反应在微正压条件下更有利于正向进行。本申请的这种微正压操作显然大大提高实验效率,降低对实验装置的低压密封要求,且这种特点非常利于实际工艺的优化,降低成本。
本申请实施方式中,当甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝为商购时,三甲基铝的制备方法可以包括如下步骤:
1)在惰性气体保护下,向反应装置中加入甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝、催化剂和溶剂,并搅拌使其混合均匀,加热至反应温度;
2)向反应装置中加入部分的金属M,继续搅拌混合一段时间;
3)向反应装置中通入氯甲烷气体;其中,氯甲烷气体的纯度不低于98%,通气速率可以为0.001-2g/min;
4)保持通入氯甲烷气体,继续加入剩余量的金属M,保持反应装置内微正压,直至反应结束;
5)将反应装置内的压力调节到12-14kPa,通过减压蒸馏收集60-68℃的馏分,得到产物三甲基铝。
当倍半甲基氯化铝通过金属铝与氯甲烷反应生成时(在催化剂以及引发剂的存在下),三甲基铝的制备方法可以包括如下步骤:
1)在惰性气体保护下,向反应装置中加入金属铝和催化剂;
2)开启搅拌,边加热边向反应装置中通入氯甲烷气体;其中,氯甲烷气体的纯度不低于98%,通气速率可以为0.01-2g/min;
3)向反应装置中滴加引发剂;
4)维持反应温度并保持该反应温度一段时间至反应结束,得到倍半甲基氯化铝;其中,该反应温度控制在80-130℃,优选90-100℃,并保持该反应温度3-6h至反应结束;
5)重新开启加热和搅拌,加入溶剂;
6)在反应温度下,加入部分的金属M后又开始通入氯甲烷气体;其中,氯 甲烷气体的纯度不低于98%,通气速率可以为0.001-2g/min;
7)保持通入氯甲烷气体,继续加入剩余量的金属M,保持反应装置内微正压,直至反应结束;
8)将反应装置内的压力调节到12-14kPa,通过减压蒸馏收集60-68℃的馏分,得到产物三甲基铝。
关于氯甲烷的通气速率,可以根据反应温度变化以及配备在实验装置尾部的气体流量计的示数进行调节。具体而言,当反应温度上升,则增大氯甲烷气体的流量,根据尾部流量计的示数判断流量大小,保证尾部无气体排出;反之,当反应温度下降,则减小气体流量,根据尾部流量计的示数判断流量大小,保证尾部无气体排出。这种根据反应过程的推进来控制氯甲烷的流量(即通气速率),能使氯甲烷被充分利用,由此既可以节约原料又可以减少废气排放。
关于惰性气体,其可以选择氮气、氩气等。
关于引发剂,其可以连续滴加或间断滴加,优选连续滴加。控制引发剂的滴加速度,可以保证能够有效引发反应,其滴加速率可以为0.01-5g/min,优选0.1-5g/min。
关于金属M,其纯度可以不低于95%,其可以分批次进行滴加;金属M优选为钠,其纯度可以不低于95%,滴加时熔融金属M的温度可以为100-150℃,反应装置内温度可以为80-130℃。
关于反应装置,其可以为玻璃反应釜,玻璃反应釜的内部可带有搅拌装置。
下面将结合具体实施例进一步说明本申请。
实施例1
在氮气氛围下,将11.3g商购的甲基二氯化铝、40ml的正十六烷和0.01g的金粉加入玻璃反应釜中,金粉与甲基二氯化铝中铝元素的重量比为0.0037。开启搅拌,保持玻璃反应釜内温度在100℃,向玻璃反应釜内分批滴加熔融金属钠(使金属钠熔融的加热温度为130℃),滴加1g后,开始通入氯甲烷,继续 滴加熔融金属钠同时保持通气,通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,保持玻璃反应釜内的压力为110-115kPa,直至9.2g的金属钠全部滴加完毕,继续搅拌约2.2h后直至氯甲烷不再吸收,停止通气,将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃之间的馏分,得到约6.3g的三甲基铝,反应产率约为87%,产物纯度约为97%。
实施例2
在氮气氛围下,将20.5g商购的倍半甲基氯化铝、40ml的正十六烷和0.1g的银粉加入玻璃反应釜中,银粉与倍半甲基氯化铝中铝元素的重量比为0.019。开启搅拌,保持玻璃反应釜内温度在100℃,向玻璃反应釜内分批滴加熔融金属钠(使金属钠熔融的加热温度为130℃),滴加4g后开始通入氯甲烷,继续滴加熔融金属钠同时保持通气,通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,保持玻璃反应釜内的压力为110-115kPa,直至13.8g的金属钠全部滴加完毕,继续搅拌约3.1h后直至氯甲烷不再吸收,停止通气,将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃之间的馏分,得到约12.5g的三甲基铝,反应产率约为87%,产物纯度约为98%。
实施例3
在氮气氛围下,将9.2g商购的二甲基氯化铝、40ml的正十六烷和0.27g的铜粉加入玻璃反应釜中,铜粉与二甲基氯化铝中铝元素的重量比为0.1。开启搅拌,保持玻璃反应釜内温度在100℃,向玻璃反应釜内分批滴加熔融金属钠(使金属钠熔融的加热温度为130℃),滴加1.1g后开始通入氯甲烷,继续滴加熔融金属钠同时保持通气,通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,保持玻璃反应釜内的压力为110-115kPa,直至4.6g的金属钠全部滴加完毕,继续搅拌约2.2h后直至氯甲烷不再吸收,停止通气, 将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃之间的馏分,得到约6.2g的三甲基铝,反应产率约为86%,产物纯度约为97%。
实施例4
在氮气氛围下,将5.4g的铝屑和0.01g的银粉加入玻璃反应釜中,银粉与铝屑的重量比为0.0019。开启搅拌并加热至90℃,搅拌15min后开始通入氯甲烷气体,通气速率控制在0.05-0.1g/min。继续搅拌10min,使用针筒注射器滴加约0.5g的碘甲烷,调节氯甲烷的速率至0.3-0.5g/min,控制反应压力在115-120kPa。通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,维持反应直至氯甲烷不再吸收,总时长约2.4h,获得倍半甲基氯化铝。
向玻璃反应釜内加入40ml的正十六烷,保持玻璃反应釜的温度在100℃,向玻璃反应釜内分批滴加熔融金属钠(使金属钠熔融的加热温度为130℃)。滴加5g后开始通入氯甲烷,继续滴加熔融金属钠同时保持通气,通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,保持玻璃反应釜内的压力为110-115kPa,直至13.8g金属钠滴加完毕。当金属钠滴加结束后,搅拌约3h后直至氯甲烷不再吸收,停止通气,将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃的馏分;经分析,得到约13.3g的三甲基铝,反应产率约为92%,产物纯度约为98%。
实施例5
在氮气氛围下,将5.4g的铝屑和0.54g的铜粉加入玻璃反应釜中,铜粉与铝屑的重量比为0.1。开启搅拌并加热至90℃,搅拌15min后开始通入氯甲烷气体,通气速率控制在0.05-0.1g/min。继续搅拌10min,使用针筒注射器滴加约0.5g的碘单质,调节氯甲烷的速率至0.3-0.5g/min,控制反应压力在115-120kPa。通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体 排出,维持反应直至氯甲烷不再吸收,总时长约2.4h,获得倍半甲基氯化铝。
向玻璃反应釜内加入40ml的正十六烷,保持玻璃反应釜的温度在100℃,向玻璃反应釜内分批滴加熔融金属钠(使金属钠熔融的加热温度为130℃)。滴加3g后开始通入氯甲烷,速率约为0.2g/min,继续滴加熔融金属钠同时保持通气,通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,保持玻璃反应釜内的压力为110-115kPa,直至13.8g金属钠滴加完毕。当金属钠滴加结束后,搅拌约3h后直至氯甲烷不再吸收,停止通气,将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃的馏分;经分析,得到约13.9g的三甲基铝,反应产率约为96%,产物纯度约为97%。
实施例6
在氮气氛围下,将5.4g的铝屑和0.1g的金粉加入玻璃反应釜中,金粉与铝屑的重量比为0.019。开启搅拌并加热至90℃,搅拌15min后开始通入氯甲烷气体,通气速率控制在0.05-0.1g/min。继续搅拌10min,使用针筒注射器滴加约0.5g的碘甲烷,调节氯甲烷的速率至0.3-0.8g/min,控制反应压力在115-120kPa。通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,维持反应直至氯甲烷不再吸收,总时长约4h,获得倍半甲基氯化铝。
向玻璃反应釜内加入40ml的1,2,3,4-四氢化萘,保持玻璃反应釜的温度在100℃,向玻璃反应釜内分批滴加熔融金属钠(使金属钠熔融的加热温度为130℃)。滴加2.3g后开始通入氯甲烷,继续滴加熔融金属钠同时保持通气,通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,保持玻璃反应釜内的压力为110-115kPa,直至13.8g金属钠滴加完毕。当金属钠滴加结束后,搅拌约3h后直至氯甲烷不再吸收,停止通气,将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃的馏分;经分析,得到约14g的三甲基铝,反应产率约为97%,产物纯度约为97%。
实施例7
在氮气氛围下,将5.4g的铝屑和0.01g的银/铜合金(银/铜重量比为3:14)加入玻璃反应釜中,银/铜合金与铝屑的重量比为0.0019。开启搅拌并加热至90℃,搅拌15min后开始通入氯甲烷气体,通气速率控制在0.05-0.1g/min。继续搅拌10min,使用针筒注射器滴加约0.5g的倍半甲基氯化铝,调节氯甲烷的速率至0.3-0.8g/min,控制反应压力在115-120kPa。通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,维持反应直至氯甲烷不再吸收,总时长约3.3h,获得倍半甲基氯化铝。
向玻璃反应釜内加入40ml的1,2,3,4-四氢化萘,保持玻璃反应釜的温度在100℃,向玻璃反应釜内分批滴加熔融金属钠(使金属钠熔融的加热温度为130℃)。滴加4.5g后开始通入氯甲烷,继续滴加熔融金属钠同时保持通气,通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,保持玻璃反应釜内的压力为110-115kPa,直至13.8g金属钠滴加完毕。当金属钠滴加结束后,搅拌约4h后直至氯甲烷不再吸收,停止通气,将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃的馏分;经分析,得到约14.1g的三甲基铝,反应产率约为98%,产物纯度约为98%。
实施例8
在氮气氛围下,将5.4g的铝屑和0.02g的镍加入玻璃反应釜中,镍与铝屑的重量比为0.0037。开启搅拌并加热至90℃,搅拌15min后开始通入氯甲烷气体,通气速率控制在0.05-0.1g/min。继续搅拌10min,使用针筒注射器滴加约 0.5g的碘甲烷,调节氯甲烷的速率至0.3-0.8g/min,控制反应压力在115-120kPa。通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,维持反应直至氯甲烷不再吸收,总时长约3.3h,获得倍半甲基氯化铝。
向玻璃反应釜内加入40ml的1,2,3,4-四氢化萘,保持玻璃反应釜的温度在100℃,向玻璃反应釜内分批滴加熔融金属钠(使金属钠熔融的加热温度为130℃)。滴加5g后,开始通入氯甲烷,继续滴加熔融金属钠同时保持通气,通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,保持玻璃反应釜内的压力为110-115kPa,直至13.8g金属钠滴加完毕。当金属钠滴加结束后,搅拌约4h后直至氯甲烷不再吸收,停止通气,将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃的馏分;经分析,得到约13.8g的三甲基铝,反应产率约为96%,产物纯度约为97%。
实施例9
在氮气氛围下,将5.4g的铝屑和0.02g的钴加入玻璃反应釜中,钴与铝屑的重量比为0.0037。开启搅拌并加热至90℃,搅拌15min后开始通入氯甲烷气体,通气速率控制在0.05-0.1g/min。继续搅拌10min,使用针筒注射器滴加约0.5g的碘甲烷,调节氯甲烷的速率至0.3-0.8g/min,控制反应压力在115-120kPa。通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,维持反应直至氯甲烷不再吸收,总时长约3.3h,获得倍半甲基氯化铝。
向玻璃反应釜内加入40ml的1,2,3,4-四氢化萘,保持玻璃反应釜的温度在100℃,向玻璃反应釜内分批滴加熔融金属钠(使金属钠熔融的加热温度为130℃)。滴加4.4g后,开始通入氯甲烷,继续滴加熔融金属钠同时保持通气,通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,保持玻璃反应釜内的压力为110-115kPa,直至13.8g金属钠滴加完毕。当金属 钠滴加结束后,搅拌约4h后直至氯甲烷不再吸收,停止通气,将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃的馏分;经分析,得到约13.9g的三甲基铝,反应产率约为96%,产物纯度约为97%。
实施例10
在氮气氛围下,将81g的铝屑加入玻璃反应釜中,搅拌装置为四氟搅拌桨上缠绕银丝构成,银丝约0.73g,银丝与铝屑的重量比为0.009。开启搅拌并加热至90℃,搅拌15min后开始通入氯甲烷气体,通气速率控制在0.05-0.1g/min。继续搅拌10min,使用针筒注射器滴加约6g的碘甲烷,调节氯甲烷的速率至0.3-0.8g/min,控制反应压力在115-120kPa。通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,维持反应直至氯甲烷不再吸收,总时长约5.4h,获得倍半甲基氯化铝。
向玻璃反应釜内加入600ml的1,2-邻二氯苯与正癸烷(1,2-邻二氯苯与正癸烷的体积比1:4),保持玻璃反应釜的温度在100℃,向玻璃反应釜内分批滴加熔融金属钠(使金属钠熔融的加热温度为130℃)。滴加5g后,开始通入氯甲烷,继续滴加熔融金属钠同时保持通气,通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,保持玻璃反应釜内的压力为105-110kPa,直至207g金属钠滴加完毕。当金属钠滴加结束后,搅拌约5.5h后直至氯甲烷不再吸收,停止通气,将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃的馏分;经分析,得到约211g的三甲基铝,反应产率约为98%,产物纯度约为97%。
实施例11
在氮气氛围下,将5.4g的铝屑和0.01g的氯化铋加入玻璃反应釜中,氯化 铋中铋离子与铝屑的重量比为0.0012。开启搅拌并加热至90℃,搅拌15min后开始通入氯甲烷气体,通气速率控制在0.05-0.1g/min。继续搅拌10min,使用针筒注射器滴加约0.5g的碘甲烷,调节氯甲烷的速率至0.3-0.8g/min,控制反应压力在115-120kPa。通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,维持反应直至氯甲烷不再吸收,总时长约2.6h,获得倍半甲基氯化铝。
向玻璃反应釜内加入40ml的正十六烷,保持玻璃反应釜的温度在100℃,向玻璃反应釜内分批滴加熔融金属钠(使金属钠熔融的加热温度为130℃)。滴加6g后,开始通入氯甲烷,继续滴加熔融金属钠同时保持通气,通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,保持玻璃反应釜内的压力为105-110kPa,直至13.8g金属钠滴加完毕。当金属钠滴加结束后,搅拌约3.1h后直至氯甲烷不再吸收,停止通气,将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃的馏分;经分析,得到约13.5g的三甲基铝,反应产率约为94%,产物纯度约为96%。
实施例12
在氮气氛围下,将5.4g的铝屑和0.017g的氯化钴加入玻璃反应釜中,氯化钴中钴离子与铝屑中铝元素的重量比为0.0014。开启搅拌并加热至90℃搅拌15min后开始通入氯甲烷气体,通气速率控制在0.05-0.1g/min。继续搅拌10min,使用针筒注射器滴加约0.5g的碘甲烷,调节氯甲烷的速率至0.3-0.8g/min,控制反应压力在115-120kPa。通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,维持反应直至氯甲烷不再吸收,总时长约2.3h,获得倍半甲基氯化铝。
向玻璃反应釜内加入40ml的正十六烷,保持玻璃反应釜的温度在100℃,向玻璃反应釜内分批滴加熔融金属钠(使金属钠熔融的加热温度为130℃)。 滴加4g后,开始通入氯甲烷,继续滴加熔融金属钠同时保持通气,通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,保持玻璃反应釜内的压力为105-110kPa,直至13.8g金属钠滴加完毕。当金属钠滴加结束后,搅拌约3.1h后直至氯甲烷不再吸收,停止通气,将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃的馏分;经分析,得到约13.6g的三甲基铝,反应产率约为94%,产物纯度约为97%。
对比例1
在氮气氛围下,将11.3g商购的甲基二氯化铝和40ml的正十六烷加入玻璃反应釜中。开启搅拌,保持玻璃反应釜内温度在100℃,向玻璃反应釜内分批滴加熔融金属钠(使金属钠熔融的加热温度为130℃),滴加1g后发现金属钠的表面逐渐出现灰黑色物质。开始通入氯甲烷,继续滴加熔融金属钠同时保持通气,通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,前期气体吸入相对较快,而后期发现玻璃反应釜内出现黑色固体,气体无明显吸收。仍然保持玻璃反应釜内的压力为110-115kPa,直至9.2g的金属钠全部滴加完毕,继续搅拌约2.2h后停止通气,此时氯甲烷也不再被吸收,将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃之间的馏分,得到约1.3g的三甲基铝,反应产率约为18%,产物纯度约为81%。
对比例2
在氮气氛围下,将20.5g商购的倍半甲基氯化铝和40ml的正十六烷加入玻璃反应釜中。开启搅拌,保持玻璃反应釜内温度在100℃,向玻璃反应釜内分批滴加熔融金属钠(使金属钠熔融的加热温度为130℃),滴加4g后发现金属钠的表面逐渐出现灰黑色物质。开始通入氯甲烷,继续滴加熔融金属钠同时保持通气,通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体 排出,前期气体吸入相对较快,而后期发现玻璃反应釜内出现黑色固体,气体无明显吸收。仍然保持玻璃反应釜内的压力为110-115kPa,直至13.8g的金属钠全部滴加完毕,继续搅拌约3.1h后停止通气,此时氯甲烷也不再被吸收,将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃之间的馏分,得到约2.1g的三甲基铝,反应产率约为15%,产物纯度约为83%。
对比例3
在氮气氛围下,将9.2g商购的二甲基氯化铝和40ml的正十六烷加入玻璃反应釜中。开启搅拌,保持玻璃反应釜内温度在100℃,向玻璃反应釜内分批滴加熔融金属钠(使金属钠熔融的加热温度为130℃),滴加1.1g后发现金属钠的表面逐渐出现灰黑色物质。开始通入氯甲烷,继续滴加熔融金属钠同时保持,通气通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,前期气体吸入相对较快,而后期发现玻璃反应釜内出现黑色固体,气体无明显吸收。仍然保持玻璃反应釜内的压力为110-115kPa,直至4.6g的金属钠全部滴加完毕,继续搅拌约2.2h后停止通气,此时氯甲烷也不再被吸收,将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃之间的馏分,得到约1.2g的三甲基铝,反应产率约为17%,产物纯度约为80%。
对比例4
在氮气氛围下,将5.4g的铝屑加入玻璃反应釜中。开启搅拌并加热至90℃,搅拌15min后开始通入氯甲烷气体,通气速率控制在0.05-0.1g/min。继续搅拌10min,使用针筒注射器滴加约0.5g的碘甲烷,调节氯甲烷的速率至0.3-0.5g/min,控制反应压力在115-120kPa,总时长约2.4h。上述步骤中,氯甲烷基本未被吸收,说明铝屑与氯甲烷基本未反应,很难有效获得倍半甲基氯化铝。
对比例5
对比例5与对比例4中大体相同,所不同在于延长反应总时长至7天,具体实验过程如下:
在氮气氛围下,将5.4g的铝屑加入玻璃反应釜中。开启搅拌并加热至90℃,搅拌15min后开始通入氯甲烷气体,通气速率控制在0.05-0.1g/min。继续搅拌10min,使用针筒注射器滴加约0.5g的碘甲烷,调节氯甲烷的速率至0.3-0.5g/min,控制反应压力在115-120kPa,持续反应直至铝屑被完全反应生成倍半甲基氯化铝,反应总时长为7天。
对比例6
在氮气氛围下,将20.5g商购的倍半甲基氯化铝、40ml的正十六烷和0.1g的银粉加入玻璃反应釜中,银粉与倍半甲基氯化铝中铝元素的重量比为0.019。保持玻璃反应釜内温度在100℃,开始通入氯甲烷,滴加熔融金属钠同时保持通气,通过配备在实验装置尾部的气体流量计调节氯甲烷的速率保证尾部无气体排出,保持玻璃反应釜内的压力为110-115kPa,直至13.8g的金属钠全部滴加完毕,继续搅拌约3.1h后停止通气,将反应体系降至室温。
在玻璃反应釜上安装蒸馏装置,将压力调节为12-14kPa之间,收集60-68℃之间的馏分,得到约12.5g的三甲基铝,反应产率约为80%,产物纯度约为97%。
以上,由实施例1和对比例1、实施例2和对比例2、实施例3和对比例3中可知,当甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝为商购时,反应中使用催化剂后,反应产率和产物纯度均有明显提升。
由实施例2、以及实施例4至实施例12中可知,当倍半甲基氯化铝来源于金属铝与氯甲烷反应生成时,相比于商购的倍半甲基氯化铝,反应产率和产物纯度均有明显提升。
由实施例4和对比例4中可知,当不含催化剂时,相同的实验条件下,金属铝与氯甲烷基本很难反应生成倍半甲基氯化铝,从而基本无法有效制备三甲基铝;由实施例4和对比例5中可知,当含有催化剂时,金属铝与氯甲烷的反应速 率会大幅增加,反应总时长由7天缩短至2.4h。
由实施例2和对比例6中可知,在气压范围、原料添加比例等实验条件大致相同时,氯甲烷在部分的金属钠与倍半甲基氯化铝混合后再通入时,反应产率有明显提升。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本申请的多个示例性实施例,但是,在不脱离本申请精神和范围的情况下,仍可根据本申请公开的内容直接确定或推导出符合本申请原理的许多其他变型或修改。因此,本申请的范围应被理解和认定为覆盖了所有这些其他变型或修改。
Figure PCTCN2021085466-appb-000001

Claims (14)

  1. 一种三甲基铝的制备方法,其特征在于,包括步骤:在催化剂和溶剂的存在下,甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝与金属M和氯甲烷的体系发生反应,生成三甲基铝和金属M的氯化物;其中,所述催化剂选自电化序排在金属铝之后的金属或其离子;所述金属M选自碱金属、碱土金属或其组合。
  2. 根据权利要求1所述的制备方法,其特征在于,在所述催化剂和所述溶剂的存在下,所述甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝与所述金属M反应原位生成新生成铝,所述新生成铝与所述氯甲烷反应生成倍半甲基氯化铝。
  3. 根据权利要求1所述的制备方法,其特征在于,所述氯甲烷在甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝与部分的金属M混合后再通入。
  4. 根据权利要求3所述的制备方法,其特征在于,所述部分的金属M相对于所述反应所需全部的金属M的重量比在(0.001-0.5):1之间。
  5. 根据权利要求1所述的制备方法,其特征在于,获得所述倍半甲基氯化铝的过程如下:在所述催化剂以及引发剂的存在下,通过金属铝与氯甲烷反应生成。
  6. 根据权利要求5所述的制备方法,其特征在于,所述引发剂选自碘单质、1,2-二溴乙烷、碘甲烷以及倍半甲基氯化铝中的至少一种。
  7. 根据权利要求1所述的制备方法,其特征在于,所述催化剂选自电化序排在金属铝之后的第ⅠB族金属或其离子以及第Ⅷ族金属或其离子中的至少一种。
  8. 根据权利要求7所述的制备方法,其特征在于,所述催化剂选自银、金、镍、钯、铂、铜、铁以及铑中至少一种的金属单质或其离子,或者选自银、金、镍、钯、铂、铜、铁以及铑中至少两种构成的合金。
  9. 根据权利要求1所述的制备方法,其特征在于,所述催化剂相对于所述甲基二氯化铝或倍半甲基氯化铝或二甲基氯化铝中铝元素的重量比在 (0.0001-0.1):1之间。
  10. 根据权利要求1所述的制备方法,其特征在于,所述金属M选自钠、钾以及镁中的至少一种的金属单质,或者选自钠、钾以及镁中的至少两种构成的合金。
  11. 根据权利要求1所述的制备方法,其特征在于,所述溶剂选自正十六烷、正癸烷、1,2-邻二氯苯、1,2,3,4-四氢化萘、角鲨烷以及甲苯中的至少一种。
  12. 根据权利要求1所述的制备方法,其特征在于,所述反应的温度在80℃至130℃之间。
  13. 根据权利要求1所述的制备方法,其特征在于,所述反应在一个大气压至130kPa之间的气压下进行。
  14. 根据权利要求1所述的制备方法,其特征在于,所述氯甲烷的通气速率根据所述反应的温度变化以及配备在实验装置尾部的气体流量计的示数进行调节。
PCT/CN2021/085466 2021-02-20 2021-04-02 一种三甲基铝的制备方法 WO2022174503A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/546,323 US20240132526A1 (en) 2021-02-20 2021-04-01 Preparation method for trimethylaluminum
JP2023544458A JP2024506516A (ja) 2021-02-20 2021-04-02 トリメチルアルミニウムの製造方法
EP21926220.1A EP4296271A1 (en) 2021-02-20 2021-04-02 Preparation method for trimethylaluminum
KR1020237028954A KR20230133905A (ko) 2021-02-20 2021-04-02 트리메틸알루미늄의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110190944.XA CN112552324B (zh) 2021-02-20 2021-02-20 一种三甲基铝的制备方法
CN202110190944.X 2021-02-20

Publications (1)

Publication Number Publication Date
WO2022174503A1 true WO2022174503A1 (zh) 2022-08-25

Family

ID=75034389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085466 WO2022174503A1 (zh) 2021-02-20 2021-04-02 一种三甲基铝的制备方法

Country Status (6)

Country Link
US (1) US20240132526A1 (zh)
EP (1) EP4296271A1 (zh)
JP (1) JP2024506516A (zh)
KR (1) KR20230133905A (zh)
CN (1) CN112552324B (zh)
WO (1) WO2022174503A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112552324B (zh) * 2021-02-20 2021-05-11 江苏南大光电材料股份有限公司 一种三甲基铝的制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3006942A (en) * 1957-07-11 1961-10-31 Nat Distillers Chem Corp Recovery of by-product aluminum and preparation of aluminum alkyls
US4948906A (en) 1990-02-16 1990-08-14 Ethyl Corporation Trimethylaluminum process
US5359116A (en) 1992-05-13 1994-10-25 Witco Gmbh Process for preparing trimethylaluminum by reducing methylaluminum chlorides with sodium using high shearing forces
JP2009263326A (ja) 2008-03-31 2009-11-12 Sumitomo Chemical Co Ltd トリメチルアルミニウムの製造方法
JP4784729B2 (ja) * 2005-06-09 2011-10-05 信越化学工業株式会社 トリメチルガリウムの製造方法
CN105175440A (zh) 2015-09-30 2015-12-23 江西佳因光电材料有限公司 一种三甲基铝的制备方法
JP2016141631A (ja) * 2015-01-30 2016-08-08 日本アルキルアルミ株式会社 トリメチルアルミニウム−ジメチルアルミニウムハイドライド組成物の製造方法
CN109843895A (zh) * 2016-10-20 2019-06-04 东曹精细化工株式会社 含有铝合金的组合物及其制备方法以及三烷基铝的制备方法
CN111072700A (zh) 2019-12-20 2020-04-28 南京奥格美化学研究所有限公司 一种合成三甲基铝的新方法
CN111116625A (zh) 2019-12-20 2020-05-08 南京奥格美化学研究所有限公司 一种合成三甲基铝的洁净工艺方法
CN112028920A (zh) * 2020-08-28 2020-12-04 江西佳因光电材料有限公司 一种非极性溶剂合成高纯度三甲基铝的方法
CN112552324A (zh) * 2021-02-20 2021-03-26 江苏南大光电材料股份有限公司 一种三甲基铝的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110727000B (zh) * 2019-11-19 2022-09-13 西南交通大学 一种基于gnss高采样率数据的小周跳修复方法
CN111116618B (zh) * 2019-12-20 2022-06-21 南京奥格美化学研究所有限公司 制备烷基金属化合物的方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3006942A (en) * 1957-07-11 1961-10-31 Nat Distillers Chem Corp Recovery of by-product aluminum and preparation of aluminum alkyls
US4948906A (en) 1990-02-16 1990-08-14 Ethyl Corporation Trimethylaluminum process
US5359116A (en) 1992-05-13 1994-10-25 Witco Gmbh Process for preparing trimethylaluminum by reducing methylaluminum chlorides with sodium using high shearing forces
JP4784729B2 (ja) * 2005-06-09 2011-10-05 信越化学工業株式会社 トリメチルガリウムの製造方法
JP2009263326A (ja) 2008-03-31 2009-11-12 Sumitomo Chemical Co Ltd トリメチルアルミニウムの製造方法
JP2016141631A (ja) * 2015-01-30 2016-08-08 日本アルキルアルミ株式会社 トリメチルアルミニウム−ジメチルアルミニウムハイドライド組成物の製造方法
CN105175440A (zh) 2015-09-30 2015-12-23 江西佳因光电材料有限公司 一种三甲基铝的制备方法
CN109843895A (zh) * 2016-10-20 2019-06-04 东曹精细化工株式会社 含有铝合金的组合物及其制备方法以及三烷基铝的制备方法
CN111072700A (zh) 2019-12-20 2020-04-28 南京奥格美化学研究所有限公司 一种合成三甲基铝的新方法
CN111116625A (zh) 2019-12-20 2020-05-08 南京奥格美化学研究所有限公司 一种合成三甲基铝的洁净工艺方法
CN112028920A (zh) * 2020-08-28 2020-12-04 江西佳因光电材料有限公司 一种非极性溶剂合成高纯度三甲基铝的方法
CN112552324A (zh) * 2021-02-20 2021-03-26 江苏南大光电材料股份有限公司 一种三甲基铝的制备方法

Also Published As

Publication number Publication date
CN112552324B (zh) 2021-05-11
KR20230133905A (ko) 2023-09-19
JP2024506516A (ja) 2024-02-14
CN112552324A (zh) 2021-03-26
US20240132526A1 (en) 2024-04-25
EP4296271A1 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
Caubère Complex Reducing Agents (CRA's)—Versatile, Novel Ways of Using Sodium Hydride in Organic Synthesis
Brown et al. Diborane as a mild reducing agent for the conversion of primary, secondary, and tertiary amides into the corresponding amines
Darensbourg et al. Water-soluble organometallic compounds. 5. The regio-selective catalytic hydrogenation of unsaturated aldehydes to saturated aldehydes in an aqueous two-phase solvent system using 1, 3, 5-triaza-7-phosphaadamantane complexes of rhodium
Klabunde et al. Active metal slurries by metal vapor techniques. Reactions with alkyl and aryl halides
EP0548974A1 (en) Catalyst comprising noble metal supported on a base metal catalyst
WO2022174503A1 (zh) 一种三甲基铝的制备方法
EP2060323A1 (en) Methods of preparing, optionally supported, ordered intermetallic palladium gallium compounds, the compounds as such, and their use in catalysis
CN108586191B (zh) 7-溴-1-庚烯类化合物的连续化合成系统及连续化合成方法
JPS6059215B2 (ja) ベンゼンからのシクロヘキセンの製法
Ashby et al. Hydrometallation of 1-octene with grignard reagents. Alkylmagnesiums and alkylmagnesium hydrides catalyzed by dicyclopentadienyltitanium dichloride
GB1561730A (en) Organometallic halides their preparation and use
JP3225564B2 (ja) アルミニウムアルコキサイドの製造方法
FREY Jr et al. Bimetallic Ethyl Compounds as Reagents for the Synthesis of Tetraethyllead from Lead Metal
TW201000490A (en) Process for the preparation of haloalkylalkoxysilanes and haloalkylhalosilanes
Casey et al. Inversion of configuration in the bromination of vinylic mercurials
JPS6123798B2 (zh)
JPH1053546A (ja) アルカリアルコラートの接触反応による製造のための方法
JPH08239335A (ja) パーフルオルアルキルアイオダイドテロマーの製造方法
US4538011A (en) Method for the preparation of halogen substituted methanes and ethanes
JPH09221437A (ja) エタノールの製造方法
Masuda et al. The formation of alkyl acetate in the reaction of trialkylborane with lead (IV) acetate or phenyliodoso acetate.
EP3619186B1 (en) Process for the production of semifluorinated alkanes
US6657091B2 (en) Catalytic preparation of alkali metal alkoxides
Berry et al. Photoinduced synthesis of binuclear molybdenocene and tungstenocene derivatives: catalytic deoxygenation of epoxides by metallocenes
Villiers et al. Synthesis and crystal structure of [UO2 (BH4) 2 (hmpa) 2], a novel uranyl complex and the first metal oxoborohydride

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023544458

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18546323

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237028954

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021926220

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021926220

Country of ref document: EP

Effective date: 20230920