WO2022174369A1 - 电化学装置及电子装置 - Google Patents

电化学装置及电子装置 Download PDF

Info

Publication number
WO2022174369A1
WO2022174369A1 PCT/CN2021/076725 CN2021076725W WO2022174369A1 WO 2022174369 A1 WO2022174369 A1 WO 2022174369A1 CN 2021076725 W CN2021076725 W CN 2021076725W WO 2022174369 A1 WO2022174369 A1 WO 2022174369A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
negative electrode
electrode active
material layer
Prior art date
Application number
PCT/CN2021/076725
Other languages
English (en)
French (fr)
Inventor
杜昌朝
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to US18/277,902 priority Critical patent/US20240213635A1/en
Priority to JP2023548322A priority patent/JP2024508700A/ja
Priority to PCT/CN2021/076725 priority patent/WO2022174369A1/zh
Priority to CN202180003251.3A priority patent/CN113826262A/zh
Priority to EP21926091.6A priority patent/EP4297119A1/en
Publication of WO2022174369A1 publication Critical patent/WO2022174369A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to an electrochemical device and an electronic device.
  • Electrochemical devices such as lithium-ion batteries
  • electronic products such as communication equipment, notebook computers, digital cameras, and electric vehicles due to their high specific energy, no memory effect, and environmental friendliness.
  • people have put forward higher requirements for the performance of electrochemical devices, such as safety performance.
  • the present application provides an electrochemical device, comprising: a negative electrode, which includes a negative electrode current collector, at least one surface of the negative electrode current collector is provided with a negative electrode active material layer; a positive electrode, which includes a positive electrode current collector fluid, a positive electrode active material layer is provided on at least one surface of the positive electrode current collector, an insulating layer is provided on the surface of one side of the positive electrode current collector close to the tab part; a separator is provided on the negative electrode and the Between the positive electrodes, the positive electrode active material layer and the negative electrode active material layer face each other through the separator; wherein, the outer edge of the negative electrode active material layer is more than the positive electrode active material at the opposite position The outer edge of the insulating layer is closer to the outer side; the inner edge of the insulating layer is in contact with or partially overlaps with the outer edge of the positive electrode active material layer, and the outer edge of the insulating layer is in contact with the negative electrode active material layer. The outer edge is flush with or further outside than the outer
  • the tab portion protrudes from the positive electrode current collector.
  • the insulating layer is provided on a surface of one side of the positive electrode current collector away from the tab portion.
  • the width A of the portion of the outer edge of the insulating layer beyond the outer edge of the negative electrode active material layer satisfies: A ⁇ 3mm.
  • the width A' of the insulating layer satisfies: 0.2mm ⁇ A' ⁇ 10mm.
  • the width B of the outer end edge of the negative electrode active material layer beyond the outer end edge of the positive electrode active material layer satisfies: 0.2mm ⁇ B ⁇ 5mm.
  • the thickness T i of the insulating layer and the thickness T p of the positive electrode active material layer satisfy: 0 ⁇ m ⁇ T p ⁇ T i ⁇ 10 ⁇ m.
  • the thickness T i of the insulating layer satisfies: 10 ⁇ m ⁇ T i ⁇ T p .
  • the insulating layer includes an inorganic material and a binder, wherein the inorganic material includes barium sulfate, calcium silicate, aluminum oxide, boehmite, magnesium hydroxide, aluminum hydroxide, At least one of silicon oxide, magnesium oxide, and calcium orthosilicate, and the adhesive includes polyvinylidene fluoride, polyurethane, polyacrylate, styrene-butadiene rubber, polyetherimide, sodium carboxymethyl cellulose or At least one of acrylates.
  • the inorganic material includes barium sulfate, calcium silicate, aluminum oxide, boehmite, magnesium hydroxide, aluminum hydroxide, At least one of silicon oxide, magnesium oxide, and calcium orthosilicate
  • the adhesive includes polyvinylidene fluoride, polyurethane, polyacrylate, styrene-butadiene rubber, polyetherimide, sodium carboxymethyl cellulose or At least one of acrylates.
  • the weight percentage of the inorganic material is 60% to 93%, and the weight percentage of the adhesive is 7% to 40%.
  • the resistance of the insulating layer is greater than or equal to 1K ⁇ .
  • the present application also provides an electronic device comprising the aforementioned electrochemical device of the present application.
  • the technical solution of the present application has at least the following beneficial effects: the insulating layer provided in the electrochemical device of the present application can provide support for the edge region of the negative electrode active material layer while reducing burrs and material drop caused by punching, The edge area of the negative electrode active material layer and the separator can be more closely combined, reducing the impedance of the negative electrode edge area, improving the negative electrode edge kinetics, improving the lithium precipitation at the negative electrode edge, reducing the probability of fire or explosion of the electrochemical device, and improving the electrical Safety performance of chemical devices.
  • Fig. 1(a) is a part of a cross-sectional view of an electrode body in an embodiment of the present application
  • Fig. 1(b) is an exploded view of Fig. 1(a)
  • Fig. 1(c) is a view of this embodiment from the positive electrode side
  • Fig. 2(a) is a part of a cross-sectional view of an electrode body in another embodiment of the present application
  • Fig. 2(b) is an exploded view of Fig. 2(a)
  • Fig. 2(c) is a view of this embodiment from the positive electrode side
  • Fig. 3(a) is a part of a cross-sectional view of an electrode body in another embodiment of the application
  • Fig. 3(b) is an exploded view of Fig. 3(a)
  • Fig. 3(c) is a view of this embodiment from the positive electrode side
  • Fig. 4(a) is a part of a cross-sectional view of an electrode body in another embodiment of the present application
  • Fig. 4(b) is an exploded view of Fig. 4(a)
  • Fig. 4(c) is a view of the present embodiment from the positive electrode side
  • Fig. 5(a) is a part of a cross-sectional view of an electrode body in another embodiment of the application
  • Fig. 5(b) is an exploded view of Fig. 5(a)
  • Fig. 5(c) is a view of the present embodiment from the positive electrode side
  • Reference numerals are: positive electrode 10, positive electrode current collector 11, positive electrode active material layer 12, outer edge 12a of the positive electrode active material layer, insulating layer 13, outer edge 13a of the insulating layer, inner edge 13b of the insulating layer, The positive electrode active material layer and insulating layer overlap portion 14 , the negative electrode 20 , the negative electrode current collector 21 , the negative electrode active material layer 22 , the outer edge 22 a of the negative electrode active material layer, the separator 30 , and the tab portion 40 .
  • the electrochemical device of the present application is, for example, a primary battery, a secondary battery, a fuel cell, a solar cell, or a capacitor.
  • the secondary battery is, for example, a lithium secondary battery, and the lithium secondary battery includes, but is not limited to, a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.
  • an electrochemical device includes a negative electrode, a positive electrode, and a separator.
  • the negative electrode 20 includes a negative electrode current collector 21 , and a negative electrode active material layer 22 is provided on at least one surface of the negative electrode current collector 21 ;
  • the positive electrode 10 includes a positive electrode current collector 11 , and the positive electrode collector The surface of at least one side of the fluid 11 is provided with a positive electrode active material layer 12;
  • a separator 30 is arranged between the negative electrode 20 and the positive electrode 10, and the positive electrode active material layer 12 and the negative electrode active material layer 22 face each other across the separator 30; the negative electrode The outer edge 22a of the active material layer is located further outside than the outer edge 12a of the positive electrode active material layer facing each other.
  • the width direction (shown by W in the figure) and the thickness direction (shown by T in the figure) are shown in FIGS. 1( a ) to 5 ( c ), and the width direction is relative
  • the length direction taking the belt-shaped positive electrode of the wound battery as an example, the extending direction of the long side of the long rectangular positive electrode current collector is regarded as the length direction, and the width direction is perpendicular to the length direction.
  • the edge of the positive electrode active material layer 12 close to the edge of the positive electrode current collector is the outer edge 12 a of the positive electrode active material layer, and the negative electrode active material layer
  • the edge of the layer 22 close to the edge of the negative electrode current collector is the outer edge 22a of the negative electrode active material layer.
  • the lithium ions released from the positive electrode active material layer 12 can be completely received by the negative electrode active material layer 22, so as to avoid the safety risk of lithium precipitation in the part of the positive electrode active material layer 12 beyond the negative electrode active material layer 22, and the negative electrode active material layer 22
  • the width of the material layer 22 is designed to be larger than the width of the positive electrode active material layer 12, so that there is an overhang region on the negative electrode sheet, which is represented in the present application by designing the outer edge 22a of the negative electrode active material layer to be more active than the positive electrode active material in the opposite position.
  • the outer edge 12a of the material layer is further to the outside.
  • the width B of the portion of the outer edge 22a of the negative electrode active material layer beyond the outer edge 12a of the positive electrode active material layer satisfies: 0.2mm ⁇ B ⁇ 5mm. In some embodiments, the width B of the portion of the outer edge 22a of the negative electrode active material layer beyond the outer edge 12a of the positive electrode active material layer satisfies: 0.5mm ⁇ B ⁇ 5mm. In some embodiments, the width B of the portion of the outer edge 22a of the negative electrode active material layer beyond the outer edge 12a of the positive electrode active material layer: 0.8mm ⁇ B ⁇ 2mm.
  • the insulating layer 13 is arranged on the positive electrode current collector 11, and by setting the position and size relationship of the insulating layer 13, the positive electrode active material layer 12 and the negative electrode active material layer 22, the impedance of the negative electrode edge region can be reduced, and the negative electrode edge dynamics can be improved. , improve the lithium precipitation at the edge of the negative electrode, and reduce the probability of the electrochemical device catching fire or exploding.
  • the insulating layer 13 may be arranged only on the side surface of the positive electrode collector 11 close to the tab portion 40 , or may be simultaneously arranged on the side surface of the positive electrode collector 11 close to the tab portion 40 and on the side surface of the positive electrode collector 11 away from the tab portion 40 .
  • One side surface of the tab portion 40 may be arranged only on the side surface of the positive electrode collector 11 close to the tab portion 40 , or may be simultaneously arranged on the side surface of the positive electrode collector 11 close to the tab portion 40 and on the side surface of the positive electrode collector 11 away from the tab portion 40 .
  • the tab portion 40 refers to the empty foil area at the edge of the current collector reserved during the coating of the pole piece. In some embodiments, the tab portion 40 protrudes from the current collector. After rolling and slitting, the tabs can be formed by trimming the empty foil area at the edge of the current collector before winding.
  • an insulating layer 13 is provided on the side surface of the positive electrode current collector 11 close to the tab portion 40 , and the inner end of the insulating layer is provided with an insulating layer 13 .
  • the edge 13b is in contact with the outer edge 12a of the positive electrode active material layer, and the outer edge 13a of the insulating layer is located further outside than the outer edge 22a of the negative electrode active material layer.
  • an insulating layer 13 is provided on the side surface of the positive electrode current collector 11 close to the tab portion 40, and the inner end of the insulating layer is provided with an insulating layer 13.
  • the edge 13b is in contact with the outer edge 12a of the positive electrode active material layer, and the outer edge 13a of the insulating layer is flush with the outer edge 22a of the negative electrode active material layer.
  • the insulating layer 13 is provided on the surface of the positive electrode current collector 11 close to the tab portion 40 , when the pole piece provided with the insulating layer 13 is punched, the burrs and material drop caused by punching can be effectively reduced. , improve the safety performance of the electrochemical device; at the same time, on the one end side close to the tab portion 13, since the positive electrode 10 is provided with the insulating layer 13, and the inner edge 13b of the insulating layer is in contact with the outer edge 12a of the positive electrode active material layer , the outer edge 13a of the insulating layer is closer to the outer side than the outer edge 22a of the negative electrode active material layer or the outer edge 13a of the insulating layer is flush with the outer edge 22a of the negative electrode active material layer, so when the electrical pressure is formed , the insulating layer 13 of the positive electrode at the end side can provide support for the edge region of the negative electrode active material layer, so that the edge region of the negative electrode active material layer and the separator can be more closely combined, so that
  • the outer edge 13a of the insulating layer is further inward than the outer edge 22a of the negative electrode active material layer, the part of the edge of the negative electrode active material layer 22 beyond the insulating layer is in a suspended state, and when the battery is pressurized, the excess part
  • the combination with the isolation film is not close enough, the electron transmission distance is large, the impedance is large, and it is easy to precipitate lithium.
  • the slurry of the insulating layer 13 and the slurry of the positive active material layer 12 are coated on the surface of the positive electrode current collector 11, the slurry of the insulating layer is applied along the edge of the slurry of the positive active material layer , the slurry of the insulating layer and the slurry of the positive electrode active material layer may partially overlap, forming the overlapping portion 14 of the positive electrode active material layer 12 and the insulating layer 13 .
  • an insulating layer 13 is provided on the side surface of the positive electrode current collector 11 close to the tab portion 40 , and the inner edge of the insulating layer is provided with an insulating layer 13 .
  • 13b partially overlaps with the outer edge 12a of the positive electrode active material layer, and the outer edge 13a of the insulating layer is located further outside than the outer edge 22a of the negative electrode active material layer.
  • an insulating layer 13 is provided on the side surface of the positive electrode current collector 11 close to the tab portion 40 , and the inner end of the insulating layer is provided with an insulating layer 13 .
  • the edge 13b partially overlaps with the outer edge 12a of the positive electrode active material layer, and the outer edge 13a of the insulating layer is flush with the outer edge 22a of the negative electrode active material layer.
  • the side surface of the positive electrode current collector 11 close to the tab portion 40 and the side surface away from the tab portion 40 are both
  • the insulating layer 13 is provided, the inner edge 13b of the insulating layer is in contact with the outer edge 12a of the positive electrode active material layer, and the outer edge 13a of the insulating layer is further outside than the outer edge 22a of the negative electrode active material layer.
  • the inner edge 13b of the insulating layer may also be connected to the positive electrode active material.
  • the outer edge 12a of the layer partially overlaps, and the outer edge 13a of the insulating layer can also be flush with the outer edge 22a of the negative electrode active material layer;
  • the solution of the one side surface of the part 40 is similar, and will not be described in detail here.
  • the insulating layer 13 is also provided on the surface of the positive electrode current collector 11 away from the tab portion 40 , the total width of the positive electrode active material layer 12 and the insulating layer 13 is larger than the width of the negative electrode active material layer 22 . Therefore, in the battery During pressurization, the overhang region of the negative electrode sheet can be supported by the insulating layer, so that the edge region of the negative electrode active material layer and the separator can be further closely combined.
  • the insulating layer includes an inorganic material.
  • conventionally used inorganic materials known in the art may be used as the inorganic material.
  • the inorganic material includes barium sulfate (BaSO 4 ), calcium silicate (CaSiO 3 ), aluminum oxide (Al 2 O 3 ), boehmite, magnesium hydroxide, aluminum hydroxide, dihydrate At least one of silicon oxide, magnesium oxide, and calcium orthosilicate (CaSiO 4 ).
  • the weight percentage of the inorganic material is 60% to 93% based on the total weight of the insulating layer. In some embodiments, the weight percentage of the inorganic material is 80% to 93% based on the total weight of the insulating layer.
  • the insulating layer further includes an adhesive.
  • the adhesive includes at least one of polyvinylidene fluoride, polyurethane, polyacrylate, styrene-butadiene rubber, polyetherimide, sodium carboxymethylcellulose or acrylate.
  • the weight percent content of the adhesive is 7% to 40% based on the total weight of the insulating layer.
  • the impedance of the insulating layer is greater than or equal to 1K ⁇ , which can prevent burrs generated during die-cutting of the positive electrode current collector and electron transfer from the insulating layer, thereby isolating the burrs of the positive electrode current collector and the isolation film.
  • the impedance of the insulating layer can be tested with an internal resistance tester: wipe the contact head of the internal resistance tester with lint-free paper dipped in alcohol; turn on the power of the test fixture and adjust the pressure of the contact head to 0.5MPa; place the test pole piece under the contact On the head, start the equipment, let the upper contact head press down the pole piece for 3-5s; record the resistance value of the pole piece as the resistance of the insulating layer.
  • the width A of the portion of the outer edge 13a of the insulating layer beyond the outer edge 22a of the negative active material layer satisfies: A ⁇ 3mm. If the width A of the outer edge of the insulating layer beyond the outer edge of the negative electrode active material layer is too large, the width of the separator needs to be correspondingly increased, resulting in a loss of energy density of the electrochemical device, and even if A is greater than 3 mm, for The lithium deposition at the edge of the negative electrode has no further improvement effect, or the effect of further improvement on the lithium deposition at the edge of the negative electrode is weak. In some embodiments, the width A of the portion where the outer edge 13a of the insulating layer exceeds the outer edge 22a of the negative electrode active material layer satisfies: 1.5mm ⁇ A ⁇ 3mm.
  • the width A' of the insulating layer 13 satisfies: 0.2mm ⁇ A' ⁇ 10mm.
  • the width of the insulating layer refers to the width of the insulating layer on the side of the positive electrode active material layer, that is, the width of the portion where the outer edge of the insulating layer exceeds the outer edge of the positive electrode active material layer.
  • the width A' of the insulating layer 13 satisfies: 1mm ⁇ A' ⁇ 5mm. In some embodiments, the width A' of the insulating layer 13 satisfies: 3mm ⁇ A' ⁇ 5mm.
  • the total width of the positive electrode active material layer 12 and the insulating layer 13 is not greater than the width of the separator 30 to reduce the influence on the battery width and avoid the loss of the energy density of the electrochemical device.
  • the thickness of the insulating layer affects its supporting effect on the edge region of the negative electrode active material layer.
  • the thickness T i of the insulating layer and the thickness T p of the positive electrode active material layer satisfy: 0 ⁇ m ⁇ T p ⁇ T i ⁇ 10 ⁇ m.
  • the thickness of the insulating layer is too small relative to the thickness of the positive electrode active material layer, the supporting effect of the insulating layer on the edge region of the negative electrode active material layer will be weakened, which will affect the improvement effect of lithium deposition at the edge of the negative electrode; if the thickness of the insulating layer is larger than that of the positive electrode active material layer If the thickness of the layer is low, it is difficult to achieve a predetermined compaction density during cold pressing, thereby affecting the energy density of the electrochemical device.
  • the thickness T i of the insulating layer and the thickness T p of the positive electrode active material layer satisfy: 0 ⁇ m ⁇ T p ⁇ T i ⁇ 2 ⁇ m.
  • the thickness T i of the insulating layer satisfies: 10 ⁇ m ⁇ T i ⁇ T p .
  • the thickness T i of the insulating layer in this application refers to the thickness of the insulating layer disposed on the surface of one side of the positive electrode current collector
  • the thickness T p of the positive electrode active material layer refers to the positive electrode disposed on the surface of one side of the positive electrode current collector. The thickness of the active material layer.
  • the negative current collector is a metal such as, but not limited to, copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a conductive metal clad polymer substrate, or a combination thereof.
  • the negative electrode active material layer includes a negative electrode active material, and the negative electrode active material can be selected from various materials capable of intercalating and deintercalating active ions or materials capable of doping and dedoping active ions that can be used as electrochemical devices.
  • the negative active material includes at least one of carbon materials, metal alloys, lithium-containing oxides, and silicon-containing materials.
  • the preparation method of the negative electrode can adopt the preparation method of the negative electrode which can be used for the electrochemical device.
  • a solvent is usually added, the negative electrode active material is added with a negative electrode binder, and a conductive material and a thickener are added as required, and then dissolved or dispersed in the solvent to prepare the negative electrode slurry.
  • the solvent is evaporated and removed during the drying process.
  • the solvent is a solvent that can be used as the negative electrode active material layer, such as, but not limited to, water.
  • the thickener is a thickener that can be used as the anode active material layer, such as but not limited to sodium carboxymethylcellulose (abbreviated as CMC).
  • CMC sodium carboxymethylcellulose
  • the positive electrode current collector is metal, such as but not limited to copper foil, aluminum foil.
  • the positive electrode active material layer includes a positive electrode active material, and the positive electrode active material can be selected from various materials capable of reversibly intercalating and deintercalating active ions, which can be used as a positive electrode active material of an electrochemical device.
  • the positive active material includes LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCo 1-y My O 2 , LiNi 1-y My O 2 , LiMn 2-y My O 4 , LiNi x At least one of Co y Mn z M 1-xyz O 2 , wherein M is selected from Fe, Co, Ni, Mn, Mg, Cu, Zn, Al, Sn, B, Ga, Cr, Sr, V, Ti One or more of, and 0 ⁇ y ⁇ 1, 0 ⁇ x ⁇ 1, 0 ⁇ z ⁇ 1, x+y+z ⁇ 1.
  • the production method of the positive electrode can adopt the production method of the positive electrode that can be used in an electrochemical device.
  • a solvent is usually added, the positive electrode active material is added with a binder, and a conductive agent and a thickening agent are added as required, and then dissolved or dispersed in the solvent to prepare the positive electrode slurry.
  • the solvent is evaporated and removed during the drying process.
  • the solvent is a solvent that can be used as the positive electrode active material layer, such as, but not limited to, N-methylpyrrolidone (NMP).
  • the binder is a binder that can be used as the positive electrode active material layer, such as, but not limited to, polyvinylidene fluoride (PVDF).
  • the conductive agent is a conductive agent that can be used as the positive electrode active material layer, such as but not limited to Super P.
  • the present application has no particular restrictions on the mixing ratio of the positive electrode active material, the positive electrode binder, and the positive electrode conductive agent in the positive electrode active material, and the mixing ratio can be controlled according to the desired performance of the electrochemical device.
  • the separator is a separator that can be used in electrochemical devices in the art.
  • the present application has no particular limitations on the material and shape of the separator.
  • the electrochemical device also includes an electrolyte. Electrolytes are electrolytes that can be used in electrochemical devices in the art.
  • the electrolyte includes an organic solvent, an electrolyte salt, and additives.
  • the electrolyte salt is selected from lithium salts. In some embodiments, the lithium salt is selected from LiPF6.
  • the electrochemical device further includes an overpack housing.
  • the outer packaging case is an outer packaging case that can be used in electrochemical devices in the art and is stable to the electrolyte used, such as, but not limited to, a metal type outer packaging case.
  • the tab portion includes a plurality of positive tabs and a plurality of negative tabs. Multiple tabs can increase the electron channel during charging and discharging of the electrochemical device, and reduce polarization and heat release of the cell.
  • the numbers of the positive electrode tabs and the negative electrode tabs are respectively equal to the number of the cell layers, or the numbers of the positive electrode tabs and the negative electrode tabs are respectively 1/2 of the number of the cell layers. The positive electrode tab and the negative electrode tab are overlapped after the battery core is wound, and are respectively welded and connected to the nickel-aluminum metal sheet.
  • the electronic device of the present application is any electronic device, such as but not limited to notebook computers, pen-type computers, mobile computers, e-book players, portable telephones, portable fax machines, portable copiers, portable printers, headsets, video recorders , LCD TV, Portable Cleaner, Portable CD Player, Mini CD, Transceiver, Electronic Notepad, Calculator, Memory Card, Portable Recorder, Radio, Backup Power, Motor, Automobile, Motorcycle, Power-assisted Bicycle, Bicycle, Lighting Appliances, toys, game consoles, clocks, power tools, flashlights, cameras, large household batteries, lithium-ion capacitors.
  • the electrochemical device of the present application is not only applicable to the electronic devices exemplified above, but also applicable to energy storage power stations, marine vehicles, and air vehicles.
  • Airborne vehicles include airborne vehicles within the atmosphere and airborne vehicles outside the atmosphere.
  • the electronic device comprises an electrochemical device as previously described herein.
  • step S1 the positive electrode active material lithium cobalt oxide, the conductive agent Super P, and the binder PVDF are fully stirred and mixed in an appropriate amount of NMP according to the weight ratio of 98:1:1 to obtain a uniformly mixed positive electrode slurry; the inorganic material BaSO4 Fully stirring and mixing with the adhesive PVDF in an appropriate amount of NMP according to the weight ratio of 93:7 to obtain a uniformly mixed insulating paste;
  • Step S2 the prepared positive electrode slurry is simultaneously coated on one side of the positive electrode current collector aluminum foil by an extrusion coater, the coating thickness is 30 ⁇ m, and the insulating slurry is coated along the edge of the positive electrode slurry on the positive electrode slurry close to the electrode.
  • the coating width of the insulating slurry is 3.5mm, and the coating thickness is 30 ⁇ m.
  • Step S3 fully stirring and mixing the negative electrode active material graphite, the binder styrene-butadiene rubber, and the thickener lithium carboxymethyl cellulose in an appropriate amount of deionized water according to the weight ratio of 97.5:1.3:1.2 to form a uniform negative electrode slurry, the negative electrode slurry is coated on one side of the negative electrode current collector copper foil by an extrusion coater, and after drying, the other side of the negative electrode current collector copper foil is continuously coated in the same way, dried, and cold pressed to obtain negative electrode sheet;
  • step S4 the PE porous polymer film is used as the separator, the separator is placed between the negative electrode sheet and the positive electrode sheet, and the positive electrode active material layer and the negative electrode active material layer are made to face each other through the separator, and the outer end of the negative electrode active material layer is made to face each other.
  • the edge exceeds the outer edge of the positive active material layer by 2 mm, and the outer edge of the insulating layer exceeds the outer edge of the negative active material layer by 1.5 mm;
  • step S5 the stacked separator, the negative electrode sheet and the positive electrode sheet are wound to form an electrode assembly, and then the electrode assembly to be fully infiltrated is obtained through packaging, injection of electrolyte and standing, and then the formation and capacity steps are carried out to obtain a lithium ion battery .
  • the preparation method is the same as that of Example 1, except that the parameters of the insulating layer, the positive electrode active material layer and the negative electrode active material layer are adjusted in Examples 2-21.
  • the preparation method is the same as that of Example 1, except that in Example 22, the insulating slurry is coated on both sides of the positive electrode slurry along the edge of the positive electrode slurry (the side close to the tab portion and the side away from the tab portion). , the coating width of the insulating slurry on each side is 8 mm; meanwhile, the parameters of other insulating layers, positive electrode active material layers, and negative electrode active material layers are also adjusted in Example 22.
  • the preparation method is the same as that of Example 22, except that the parameters of the insulating layer, the positive electrode active material layer, and the negative electrode active material layer are adjusted in Example 23.
  • the preparation method is the same as that of Example 5, except that the parameters of the insulating layer, the positive electrode active material layer, and the negative electrode active material layer are adjusted in Example 24.
  • the preparation method is the same as that of Example 1, except that the parameters of the insulating layer, the positive electrode active material layer and the negative electrode active material layer are adjusted in Comparative Examples 1-2.
  • the outer edge of the negative electrode active material layer was further outside than the outer edge of the insulating layer.
  • the negative electrode sheet After disassembling the lithium-ion battery, the negative electrode sheet is obtained.
  • the golden yellow is the normal area, and the white is the lithium precipitation area.
  • Comparative Example 1 and Comparative Example 2 although an insulating layer is provided on the side of the positive electrode current collector close to the tab portion, after the cell is fabricated, the outer edge of the negative electrode active material layer is smaller than the outer edge of the insulating layer. On the outer side, therefore, the insulating layer cannot provide support for the edge region of the negative electrode active material layer, the negative electrode lithium precipitation is prone to occur, and the pass rate of the thermal failure test is low.
  • the thickness of the insulating layer affects the lithium deposition of the negative electrode and the improvement effect of the thermal failure test pass rate of the lithium ion battery. From the data of Examples 8 to 12, it can be seen that if the thickness of the insulating layer is too small, the improvement effect of the negative electrode lithium evolution and the thermal failure test pass rate of the lithium ion battery becomes poor.
  • the composition and impedance of the insulating layer affect the improvement effect of the thermal failure test pass rate of lithium-ion batteries. From the data of Examples 9, 14 to 21, it can be obtained that if the mass proportion of inorganic materials in the insulating layer is too small, the resistance of the insulating layer is low, and the improvement effect of the thermal failure test pass rate of the lithium ion battery becomes poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供一种电化学装置及电子装置。所述电化学装置包括:负极,其包括负极集流体,负极集流体的表面设置有负极活性物质层;正极,其包括正极集流体,正极集流体的表面设置有正极活性物质层,正极集流体靠近极耳部的一侧表面设置有绝缘层;隔离膜;其中,负极活性物质层的外端缘比相面对位置的正极活性物质层的外端缘更靠外侧;绝缘层的内端缘与正极活性物质层的外端缘相接或部分重合,绝缘层的外端缘与负极活性物质层的外端缘齐平或比负极活性物质层的外端缘更靠外侧。本申请能够在减少冲切产生的毛刺和掉料的同时,有效减少负极边缘区域的阻抗,改善负极边缘动力学,改善负极边缘析锂,减少电化学装置着火或爆炸的几率。

Description

电化学装置及电子装置 技术领域
本申请涉及一种电化学装置及电子装置。
背景技术
电化学装置,例如锂离子电池,具有比能量高、无记忆效应、绿色环保等特性被广泛用于通信设备、笔记本电脑、数码相机等电子产品以及电动汽车上。随着技术的快速发展以及市场需求的多样性,人们对电化学装置的性能提出了更高的要求,例如安全性能。
影响锂离子电池安全性能的因素有很多;例如,卷绕式锂离子电池的制备工艺涉及到极片冲切工艺时,用于冲切的模具随着使用频次的增加,其边缘产生毛刺及掉料的风险也随之增大,如果极片在冲切过程中出现毛刺或掉料,可能会刺穿隔膜并引发短路,进而造成安全风险;再例如,电池析锂可能会导致电池着火或爆炸的几率增加,进而造成安全风险。
发明内容
在一些实施例中,本申请提供了一种电化学装置,包括:负极,其包括负极集流体,所述负极集流体的至少一侧的表面设置有负极活性物质层;正极,其包括正极集流体,所述正极集流体的至少一侧的表面设置有正极活性物质层,所述正极集流体靠近极耳部的一侧表面设置有绝缘层;隔离膜,其设置于所述负极与所述正极之间,所述正极活性物质层与所述负极活性物质层隔着所述隔离膜相面对;其中,所述负极活性物质层的外端缘比相面对位置的所述正极活性物质层的外端缘更靠外侧;所述绝缘层的内端缘与所述正极活性物质层的外端缘相接或部分重合,所述绝缘层的外端缘与所述负极活性物质层的外端缘齐平或比所述负极活性物质层的外端缘更靠外侧。
在一些实施例中,所述极耳部从所述正极集流体凸出。
在一些实施例中,所述正极集流体远离所述极耳部的一侧表面设置有所述绝缘层。
在一些实施例中,所述绝缘层的外端缘超出所述负极活性物质层的外端缘部分的宽度A满足:A≤3mm。
在一些实施例中,所述绝缘层的宽度A’满足:0.2mm≤A’≤10mm。
在一些实施例中,所述负极活性物质层的外端缘超出所述正极活性物质层的外端缘部分的宽度B满足:0.2mm≤B≤5mm。
在一些实施例中,所述绝缘层的厚度T i与所述正极活性物质层的厚度T p满足:0μm≤T p–T i≤10μm。
在一些实施例中,所述绝缘层的厚度T i满足:10μm≤T i≤T p
在一些实施例中,所述绝缘层包括无机材料和粘接剂,其中,所述无机材料包括硫酸钡、硅酸钙、三氧化二铝、勃姆石、氢氧化镁、氢氧化铝、二氧化硅、氧化镁、原硅酸钙中的至少一种,所述粘接剂包括聚偏氟乙烯、聚氨酯、聚丙烯酸盐、丁苯橡胶、聚醚酰亚胺、羧甲基纤维素钠或丙烯酸酯中的至少一种。
在一些实施例中,基于所述绝缘层的总重量,所述无机材料的重量百分含量为60%至93%,所述粘接剂的重量百分含量为7%至40%。
在一些实施例中,所述绝缘层的阻抗为大于等于1KΩ。
本申请还提供了一种电子装置,所述电子装置包括本申请的前述电化学装置。本申请的技术方案至少具有以下有益的效果:本申请的电化学装置中设置的绝缘层能够在减少冲切产生的毛刺和掉料的同时,还能够为负极活性物质层的边缘区域提供支撑,使负极活性物质层的边缘区域和隔离膜之间能够更紧密地结合,减少负极边缘区域的阻抗,改善负极边缘动力学,改善负极边缘析锂,减少电化学装置着火或爆炸的几率,提高电化学装置的安全性能。
附图说明
图1(a)为本申请的一种实施方式中电极体的剖面图的一部分,图1(b)为图1(a)的分解图,图1(c)为从正极侧观看本实施方式的电极体的一部分的示意图;
图2(a)为本申请的另一种实施方式中电极体的剖面图的一部分,图2(b)为图2(a)的分解图,图2(c)为从正极侧观看本实施方式的电极体的一部分的示意图;
图3(a)为本申请的另一种实施方式中电极体的剖面图的一部分,图3(b)为图3(a)的分解图,图3(c)为从正极侧观看本实施方式的电极体的一部分的示意图;
图4(a)为本申请的另一种实施方式中电极体的剖面图的一部分,图4(b)为图4(a)的分解图,图4(c)为从正极侧观看本实施方式的电极体的一部分的示意图;
图5(a)为本申请的另一种实施方式中电极体的剖面图的一部分,图5(b)为图5 (a)的分解图,图5(c)为从正极侧观看本实施方式的电极体的一部分的示意图;
附图标记为:正极10,正极集流体11,正极活性物质层12,正极活性物质层的外端缘12a,绝缘层13,绝缘层的的外端缘13a,绝缘层的内端缘13b,正极活性物质层与绝缘层重合部14,负极20,负极集流体21,负极活性物质层22,负极活性物质层的外端缘22a,隔离膜30,极耳部40。
具体实施方式
将理解的是,所公开的实施例仅仅是本申请的示例,本申请可以以各种形式实施,因此,本文公开的具体细节不应被解释为限制,而是仅作为权利要求的基础且作为表示性的基础用于教导本领域普通技术人员以各种方式实施本申请。
在本申请的描述中,需要理解的是,术语“长度”、“宽度”、“厚度”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
(电化学装置)
本申请的电化学装置例如为一次电池、二次电池、燃料电池、太阳能电池或电容器。二次电池例如为锂二次电池,锂二次电池包含但不限于锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池。
在一些实施例中,电化学装置包含负极、正极和隔离膜。
请参照图1(a)至图5(c),负极20包括负极集流体21,负极集流体21的至少一侧的表面设置有负极活性物质层22;正极10包括正极集流体11,正极集流体11的至少一侧的表面设置有正极活性物质层12;隔离膜30设置于负极20与正极10之间,正极活性物质层12与负极活性物质层22隔着隔离膜30相面对;负极活性物质层的外端缘22a比相面对位置的正极活性物质层的外端缘12a更靠外侧。
为了清楚地描述各个方位,图1(a)至图5(c)中示出了宽度方向(在图中以W示出)和厚度方向(在图中以T示出),宽度方向是相对于长度方向而言的,以卷绕式电池的带状正极为例,长条矩形的正极集流体的长边的延伸方向视为长度方向,宽度方向与长度方向垂直。如图1(a)至图5(c)所示,在宽度方向的两端侧,正极活性物质层12靠近正极集流体边缘的端缘为正极活性物质层的外端缘12a,负极活性物质层22靠近负 极集流体边缘的端缘为负极活性物质层的外端缘22a。
为了防止电池短路,保证正极活性物质层12脱出的锂离子能够完全被负极活性物质层22所接收,以避免正极活性物质层12超出负极活性物质层22的部分产生析锂的安全风险,负极活性物质层22的宽度被设计为大于正极活性物质层12的宽度,使得负极片上存在overhang区域,在本申请中表现为将负极活性物质层的外端缘22a设计为比相面对位置的正极活性物质层的外端缘12a更靠外侧。在一些实施例中,所述负极活性物质层的外端缘22a超出所述正极活性物质层的外端缘12a部分的宽度B满足:0.2mm≤B≤5mm。在一些实施例中,所述负极活性物质层的外端缘22a超出所述正极活性物质层的外端缘12a部分的宽度B满足:0.5mm≤B≤5mm。在一些实施例中,所述负极活性物质层的外端缘22a超出所述正极活性物质层的外端缘12a部分的宽度B:0.8mm≤B≤2mm。
但是,发明人发现,当负极活性物质层22的宽度大于正极活性物质层12时,与正极活性物质层的外端缘12a对应的负极活性物质层22附近的阻抗较大,降低负极边缘区域动力学,容易出现析锂,产生安全风险。如果采用降低充电倍率的方法来降低负极充电过程中的极化产生的阻抗,虽然能够避免负极边缘析锂,但是降低充电倍率会延长充电时间,极大地降低了客户使用体验和产品竞争力;如果提高负极活性物质动力学、提高负极活性物质的比例、使用CMC-Li(羧甲基纤维素锂)取代CMC-Na(羧甲基纤维素钠)或者使用动力学更好的粘接剂,如使用苯丙类粘接剂取代丁苯橡胶类粘接剂来提高负极边缘区域动力学,虽然具有一定的效果,但通过这些方法提升动力学已经发展到一个瓶颈期,难以在现有的基础上继续提升。
本申请在正极集流体11上设置绝缘层13,并通过设置绝缘层13、正极活性物质层12和负极活性物质层22的位置与尺寸关系,能够减少负极边缘区域的阻抗,改善负极边缘动力学,改善负极边缘析锂,减少电化学装置着火或爆炸的几率。
绝缘层13可以是仅设置在正极集流体11上靠近极耳部40的一侧表面,也可以是同时设置在正极集流体11上靠近极耳部40的一侧表面以及正极集流体11上远离极耳部40的一侧表面。
在本申请中,极耳部40是指在极片涂布时预留的集流体边缘空箔区,在一些实施例中,极耳部40从集流体凸出。经过辊压和分切后,在卷绕前将集流体边缘空箔区经过裁切处理后可形成极耳。
在一些实施例中,如图1(a)至图1(c)所示意的电极体的一部分,正极集流体11靠近极耳部40的一侧表面设置有绝缘层13,绝缘层的内端缘13b与正极活性物质层的外 端缘12a相接,绝缘层的外端缘13a比负极活性物质层的外端缘22a更靠外侧。在一些实施例中,如图2(a)至图2(c)所示意的电极体的一部分,正极集流体11靠近极耳部40的一侧表面设置有绝缘层13,绝缘层的内端缘13b与正极活性物质层的外端缘12a相接,绝缘层的外端缘13a与负极活性物质层的外端缘22a齐平。
此时,由于在正极集流体11靠近极耳部40的一侧表面设置了绝缘层13,当对设置有绝缘层13的极片予以冲切时,能够有效减少冲切产生的毛刺和掉料,改善电化学装置的安全性能;同时,在靠近极耳部13的一端侧,由于正极10设置了绝缘层13,并且绝缘层的内端缘13b与正极活性物质层的外端缘12a相接,绝缘层的外端缘13a比负极活性物质层的外端缘22a更靠外侧或者绝缘层的外端缘13a与负极活性物质层的外端缘22a齐平,因此在电持加压化成时,该端侧正极的绝缘层13能够为负极活性物质层的边缘区域提供支撑,使负极活性物质层的边缘区域和隔离膜之间能够更紧密地结合,从而能够减小负极边缘区域的阻抗,改善负极边缘区域动力学。如果绝缘层的外端缘13a比负极活性物质层的外端缘22a更靠内侧,则负极活性物质层22的边缘超出绝缘层的部分处于悬空状态,在电池加压化成时,该超出的部分和隔离膜之间的结合不够紧密,电子传输距离较大,阻抗较大,容易析锂。
在涂覆浆料的过程中,将绝缘层13的浆料和正极活性物质层12的浆料涂覆在正极集流体11表面时,绝缘层浆料沿正极活性物质层浆料的边缘涂布,绝缘层的浆料和正极活性物质层的浆料可能会有部分重合,形成正极活性物质层12与绝缘层13重合部14。在一些实施例中,图3(a)至图3(c)所示意的电极体的一部分,正极集流体11靠近极耳部40的一侧表面设置有绝缘层13,绝缘层的内端缘13b与正极活性物质层的外端缘12a部分重合,绝缘层的外端缘13a比负极活性物质层的外端缘22a更靠外侧。在一些实施例中,如图4(a)至图4(c)所示意的电极体的一部分,正极集流体11靠近极耳部40的一侧表面设置有绝缘层13,绝缘层的内端缘13b与正极活性物质层的外端缘12a部分重合,绝缘层的外端缘13a与负极活性物质层的外端缘22a齐平。
在一些实施例中,如图5(a)至图5(c)所示意的电极体的一部分,正极集流体11靠近极耳部40的一侧表面以及远离极耳部40的一侧表面均设置有绝缘层13,绝缘层的内端缘13b与正极活性物质层的外端缘12a相接,绝缘层的外端缘13a比负极活性物质层的外端缘22a更靠外侧。
当绝缘层13同时设置在正极集流体11靠近极耳部40的一侧表面以及正极集流体11远离极耳部40的一侧表面时,绝缘层的内端缘13b也可以是与正极活性物质层的外端缘 12a部分重合,绝缘层的外端缘13a也可以是与负极活性物质层的外端缘22a齐平;具体地,与当绝缘层12仅设置在正极集流体11靠近极耳部40的一侧表面时的方案类似,在此不再作详细的描述。
此时,由于在正极集流体11远离极耳部40的一侧表面也设置了绝缘层13,使得正极活性物质层12和绝缘层13的总宽度大于负极活性物质层22的宽度,因此在电池加压化成时,负极片的overhang区域均能够得到绝缘层的支撑,使负极活性物质层的边缘区域和隔离膜之间能够进一步地紧密地结合。
在一些实施例中,所述绝缘层包括无机材料。在本申请中,无机材料可以使用本领域公知的常规使用的无机材料。在一些实施例中,所述无机材料包括硫酸钡(BaSO 4)、硅酸钙(CaSiO 3)、三氧化二铝(Al 2O 3)、勃姆石、氢氧化镁、氢氧化铝、二氧化硅、氧化镁、原硅酸钙(CaSiO 4)中的至少一种。在一些实施例中,基于所述绝缘层的总重量,所述无机材料的重量百分含量为60%至93%。在一些实施例中,基于所述绝缘层的总重量,所述无机材料的重量百分含量为80%至93%。
在一些实施例中,所述绝缘层还包括粘接剂。所述粘接剂包括聚偏氟乙烯、聚氨酯、聚丙烯酸盐、丁苯橡胶、聚醚酰亚胺、羧甲基纤维素钠或丙烯酸酯中的至少一种。在一些实施例中,基于所述绝缘层的总重量,所述粘接剂的重量百分含量为7%至40%。
在一些实施例中,所述绝缘层的阻抗为大于等于1KΩ,能够防止正极集流体在模切时产生的毛刺和绝缘层产生电子传输,从而起到隔离正极集流体毛刺和隔离膜的作用。绝缘层的阻抗的测试可使用内阻仪进行测试:用无尘纸蘸取酒精擦拭内阻仪的接触头;打开测试夹具的电源,调节接触头压力至0.5MPa;将测试极片放置在下接触头上,启动设备,让上接触头下压极片3-5s;记录极片阻值即为绝缘层的阻抗。
在一些实施例中,如图1(a)至图5(c)所示,绝缘层的外端缘13a超出负极活性物质层的外端缘22a部分的宽度A满足:A≤3mm。如果绝缘层的外端缘超出负极活性物质层的外端缘部分的宽度A过大,则需要对应地增加隔离膜的宽度,造成电化学装置能量密度的损失,并且,即使A大于3mm,对于负极边缘析锂没有进一步改善的效果,或者对负极边缘析锂进一步改善的效果微弱。在一些实施例中,绝缘层的外端缘13a超出负极活性物质层的外端缘22a部分的宽度A满足:1.5mm≤A≤3mm。
在一些实施例中,如图1(a)至图5(c)所示,绝缘层13的宽度A’满足:0.2mm≤A’≤10mm。在本申请中,绝缘层的宽度表示正极活性物质层一侧的绝缘层的宽度,也即绝缘层的外端缘超出正极活性物质层的外端缘部分的宽度。如果绝缘层的宽度A’过 大,则需要对应地增加隔离膜的宽度,造成电化学装置能量密度的损失,并且,即使A’大于10mm,对于负极边缘析锂没有进一步改善的效果,或者对负极边缘析锂进一步改善的效果微弱;如果绝缘层的宽度A’过小,则不能较好地减少冲切产生的毛刺和掉料,影响对安全性能的改善效果。在一些实施例中,所述绝缘层13的宽度A’满足:1mm≤A’≤5mm。在一些实施例中,所述绝缘层13的宽度A’满足:3mm≤A’≤5mm。
在本申请的实施方式中,正极活性物质层12和绝缘层13的总宽度不大于隔离膜30的宽度,以减少对电池宽度的影响,避免造成电化学装置能量密度的损失。
绝缘层的厚度影响其对负极活性物质层边缘区域的支撑效果。在一些实施例中,所述绝缘层的厚度T i与所述正极活性物质层的厚度T p满足:0μm≤T p–T i≤10μm。如果绝缘层的厚度相对于正极活性物质层的厚度过小,则绝缘层对负极活性物质层边缘区域的支撑效果会减弱,影响负极边缘析锂的改善效果;如果绝缘层的厚度大于正极活性物质层的厚度,则在冷压时难以达到预定的压实密度,进而影响电化学装置的能量密度。在一些实施例中,所述绝缘层的厚度T i与所述正极活性物质层的厚度T p满足:0μm≤T p–T i≤2μm。
在一些实施例中,所述绝缘层的厚度T i满足:10μm≤T i≤T p
需要说明的是,本申请中绝缘层的厚度T i是指设置在正极集流体单侧表面的绝缘层的厚度,正极活性物质层的厚度T p是指设置在正极集流体单侧表面的正极活性物质层的厚度。
在一些实施例中,负极集流体为金属,例如但不限于铜箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜、包覆有导电金属的聚合物基板或它们的组合。
负极活性物质层包括负极活性材料,负极活性材料可选用各种可被用作电化学装置的能够嵌入、脱嵌活性离子的材料或能够掺杂、脱掺杂活性离子的材料。在一些实施例中,负极活性材料包括碳材料、金属合金、含锂氧化物及含硅材料中的至少一种。负极的制备方法可采用可被用于电化学装置的负极的制备方法。在一些实施例中,在负极浆料的制备中,通常加入溶剂,负极活性材料加入负极粘结剂并根据需要加入导电材料和增稠剂后溶解或分散于溶剂中制成负极浆料。溶剂在干燥过程中挥发去除。溶剂是可被用作负极活性物质层的溶剂,溶剂例如但不限于水。增稠剂是可被用作负极活性物质层的增稠剂,增稠剂例如但不限于羧甲基纤维素钠(简写为CMC)。本申请对于负极活性物质层中的负极活性材料、负极粘结剂、增稠剂的混合比例没有特别的限制,可以根据期望的电化学装置性能控制其混合比例。
在一些实施例中,正极集流体为金属,例如但不限于铜箔、铝箔。
正极活性物质层包括正极活性材料,正极活性材料可选用各种可被用作电化学装置的正极活性材料的能够可逆地嵌入、脱嵌活性离子的材料。在一些实施例中,正极活性材料包含LiCoO 2、LiNiO 2、LiMn 2O 4、LiCo 1-yM yO 2、LiNi 1-yM yO 2、LiMn 2-yM yO 4、LiNi xCo yMn zM 1-x-y-zO 2中的至少一种,其中,M选自Fe、Co、Ni、Mn、Mg、Cu、Zn、Al、Sn、B、Ga、Cr、Sr、V、Ti中的一种或多种,且0≤y≤1,0≤x≤1,0≤z≤1,x+y+z≤1。正极的制备方法可采用可被用于电化学装置的正极的制备方法。在一些实施例中,在正极浆料的制备中,通常加入溶剂,正极活性材料加入粘结剂并根据需要加入导电剂和增稠剂后溶解或分散于溶剂中制成正极浆料。溶剂在干燥过程中挥发去除。溶剂是可被用作正极活性材料层的溶剂,溶剂例如但不限于N-甲基吡咯烷酮(NMP)。粘结剂是可被用作正极活性材料层的粘结剂,例如但不限于聚偏氟乙烯(PVDF)。导电剂是可被用作正极活性材料层的导电剂,例如但不限于Super P。本申请对于正极活性物质中的正极活性材料、正极粘结剂、正极导电剂的混合比例没有特别的限制,可以根据期望的电化学装置性能控制其混合比例。
隔离膜是本领域可被用于电化学装置的隔离膜。本申请对隔离膜的材料和形状没有特别限制。
电化学装置还包括电解液。电解液是本领域可被用于电化学装置的电解液。在一些实施例中,电解液包括有机溶剂、电解质盐和添加剂。在一些实施例中,电解质盐选自锂盐。在一些实施例中,锂盐选自LiPF 6
在一些实施例中,电化学装置还包含外包装壳体。外包装壳体是本领域可被用于电化学装置并且对于所使用的电解液稳定的外包装壳体,例如但不限于金属类外包装壳体。
在一些实施例中,极耳部包括多个正极极耳和多个负极极耳。多个极耳能够增加电化学装置充放电时的电子通道,减小极化和电芯放热。在一些实施例中,正极极耳和负极极耳的数量分别与电芯层数相等,或者正极极耳和负极极耳的数量分别为电芯层数的1/2。正极极耳与负极极耳在电芯卷绕后重叠,并分别与镍铝金属片焊接连接。
(电子装置)
本申请的电子装置是任何电子装置,例如但不限于笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、 助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池、锂离子电容器。注意的是,本申请的电化学装置除了适用于上述例举的电子装置外,还适用于储能电站、海运运载工具、空运运载工具。空运运载装置包含在大气层内的空运运载装置和大气层外的空运运载装置。
在一些实施例中,电子装置包含本申请前述的电化学装置。
下面结合实施例,进一步阐述本申请。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。在本申请的下述具体实施例中,仅示出电池为锂离子电池的实施例,但本申请不限于此。在下述实施例、对比例中,所使用到的试剂、材料以及仪器如没有特殊的说明,均可商购获得或合成获得。
实施例1
步骤S1,将正极活性材料钴酸锂、导电剂Super P、粘结剂PVDF按照98:1:1的重量比在适量的NMP中充分搅拌混合,得到混合均匀的正极浆料;将无机材料BaSO4和粘接剂PVDF按照93:7的重量比在适量的NMP中充分搅拌混合,得到混合均匀的绝缘浆料;
步骤S2,将制得的正极浆料通过挤压涂布机同时涂覆在正极集流体铝箔的一面,涂覆厚度为30μm,绝缘浆料沿正极浆料的边缘涂覆在正极浆料靠近极耳部的一侧,绝缘浆料的涂覆宽度为3.5mm,涂覆厚度为30μm,烘干后以同样的方式继续涂覆正极集流体铝箔的另一面,烘干,冷压,得到正极片;
步骤S3,将负极活性材料石墨、粘结剂丁苯橡胶、增稠剂羧甲基纤维素锂按照97.5︰1.3︰1.2的重量比在适量的去离子水中充分搅拌混合,使其形成均匀的负极浆料,将负极浆料通过挤压涂布机涂覆在负极集流体铜箔的一面,烘干后以同样的方式继续涂覆负极集流体铜箔的另一面,烘干,冷压,得到负极片;
步骤S4,以PE多孔聚合薄膜作为隔离膜,隔离膜置于负极片与正极片之间,并使正极活性物质层与负极活性物质层隔着隔离膜相面对,负极活性物质层的外端缘超出正极活性物质层的外端缘2mm,绝缘层的外端缘超出负极活性物质层的外端缘1.5mm;
步骤S5,将叠好的隔离膜、负极片和正极片卷绕制成电极组件,再经过封装、注入电解液静置得到待浸润充分的电极组件,然后经过化成及容量步骤,得到锂离子电池。
实施例2-21
与实施例1的制备方法相同,区别在于实施例2-21调整了绝缘层、正极活性物质层、负极活性物质层的参数。
实施例22
与实施例1的制备方法相同,区别在于实施例22中绝缘浆料沿正极浆料的边缘涂覆在正极浆料的两侧(靠近极耳部的一侧以及远离极耳部的一侧),每一侧绝缘浆料的涂覆宽度为8mm;同时,实施例22还调整了其他的绝缘层、正极活性物质层、负极活性物质层的参数。
实施例23
与实施例22的制备方法相同,区别在于实施例23调整了绝缘层、正极活性物质层、负极活性物质层的参数。
实施例24
与实施例5的制备方法相同,区别在于实施例24调整了绝缘层、正极活性物质层、负极活性物质层的参数。
对比例1-2
与实施例1的制备方法相同,区别在于对比例1-2调整了绝缘层、正极活性物质层、负极活性物质层的参数。在对比例1-2中,负极活性物质层的外端缘比绝缘层的外端缘更靠外侧。
实施例1-24以及对比例1-2中的参数如表1所示。
锂离子电池的性能测试:
热失效(Hotbox)测试:
1)20±5℃下,电池0.5C放电到3.0V,放置5min;
2)0.5C充电到4.45V,恒压充电到0.05C(4.45V体系);
3)20±5℃下静置60min;
4)5℃/min±2℃/min的速率升至130℃±2℃,并保持60min;
5)结束测试后,检查电芯外观,电池着火,测试不通过。
25℃ 3C析锂测试:
测试在25℃环境下进行
1)电池放置30min;
2)0.5C充电到4.45V,恒压充电到0.05C;
3)放置5min;
4)0.5C放电到3V;
5)放置60min;
6)3C充电到4.45V,恒压充电到0.05C;
7)放置5min;
8)1C放电到3V;
9)放置5min;
10)第6步到第9步循环10次;
11)放置120min;
12)3C充电到4.45V,恒压充电到0.05C;
13)放置5min;观察锂离子电池的析锂状况,并按照以下标准分类:
将锂离子电池拆解后获得负极片,金黄色为正常区域,白色为析锂区域,利用高倍(20倍以上)显微镜拍照后,对不同区域进行分析,如果白色区域在总面积中的占比n满足0<n<1%,则记为“不析锂”;如果白色区域在总面积中的占比n满足1%<n<10%,则记为“轻微析锂”;如果白色区域在总面积中的占比n满足10%<n<100%,则记为“严重析锂”。
Figure PCTCN2021076725-appb-000001
由表1的数据分析可以得到,当负极活性物质层的外端缘比相面对位置的正极活性物质层的外端缘更靠外侧时,在正极集流体靠近极耳部的一侧设置绝缘层,并使绝缘层的内端缘与正极活性物质层的外端缘相接或部分重合,使绝缘层的外端缘与负极活性物质层的外端缘齐平或比负极活性物质层的外端缘更靠外侧,此时,能够改善锂离子电池的负极析锂状况,并提高热失效测试的通过率。在对比例1和对比例2中,虽然在正极集流体靠近极耳部的一侧设置了绝缘层,但是在制成电芯后,负极活性物质层的外端缘比绝缘层的外端缘更靠外侧,因此,绝缘层不能为负极活性物质层的边缘区域提供支撑,容易发生负极析锂且热失效测试的通过率较低。
绝缘层的厚度影响负极析锂以及锂离子电池热失效测试通过率的改善效果。由实施例8至12的数据可以得到,如果绝缘层的厚度过小,负极析锂以及锂离子电池热失效测试通过率的改善效果变差。
绝缘层组成和阻抗影响锂离子电池热失效测试通过率的改善效果。由实施例9、14至21的数据可以得到,如果绝缘层中无机材料的质量占比过小,绝缘层阻抗较低,锂离子电池热失效测试通过率的改善效果变差。
上面详细的说明描述多个示范性实施例,但本文不意欲限制到明确公开的组合。因此,除非另有说明,本文所公开的各种特征可以组合在一起而形成出于简明目的而未示出的多个另外组合。

Claims (11)

  1. 一种电化学装置,包括:
    负极,其包括负极集流体,所述负极集流体的至少一侧的表面设置有负极活性物质层;
    正极,其包括正极集流体,所述正极集流体的至少一侧的表面设置有正极活性物质层,所述正极集流体靠近极耳部的一侧表面设置有绝缘层;
    隔离膜,其设置于所述负极与所述正极之间,所述正极活性物质层与所述负极活性物质层隔着所述隔离膜相面对;
    其中,
    所述负极活性物质层的外端缘比相面对位置的所述正极活性物质层的外端缘更靠外侧;
    所述绝缘层的内端缘与所述正极活性物质层的外端缘相接或部分重合,所述绝缘层的外端缘与所述负极活性物质层的外端缘齐平或比所述负极活性物质层的外端缘更靠外侧。
  2. 根据权利要求1所述的电化学装置,其中,
    所述正极集流体远离所述极耳部的一侧表面设置有所述绝缘层。
  3. 根据权利要求1或2所述的电化学装置,其中,
    所述绝缘层的外端缘超出所述负极活性物质层的外端缘部分的宽度A满足:A≤3mm。
  4. 根据权利要求1或2所述的电化学装置,其中,
    所述绝缘层的宽度A’满足:0.2mm≤A’≤10mm。
  5. 根据权利要求1或2所述的电化学装置,其中,
    所述负极活性物质层的外端缘超出所述正极活性物质层的外端缘部分的宽度B满足:0.2mm≤B≤5mm。
  6. 根据权利要求1或2所述的电化学装置,其中,
    所述绝缘层的厚度T i与所述正极活性物质层的厚度T p满足:0μm≤T p–T i≤10μm。
  7. 根据权利要求1或2所述的电化学装置,其中,
    所述绝缘层的厚度T i满足:10μm≤T i≤T p
  8. 根据权利要求1或2所述的电化学装置,所述绝缘层包括无机材料和粘接剂,其中,
    所述无机材料包括硫酸钡、硅酸钙、三氧化二铝、勃姆石、氢氧化镁、氢氧化铝、二氧化硅、氧化镁、原硅酸钙中的至少一种,所述粘接剂包括聚偏氟乙烯、聚氨酯、聚丙烯酸盐、丁苯橡胶、聚醚酰亚胺、羧甲基纤维素钠或丙烯酸酯中的至少一种。
  9. 根据权利要求8所述的电化学装置,其中,
    基于所述绝缘层的总重量,所述无机材料的重量百分含量为60%至93%,所述粘接剂的重量百分含量为7%至40%。
  10. 根据权利要求1或2所述的电化学装置,其中,
    所述绝缘层的阻抗为大于等于1KΩ。
  11. 一种电子装置,包括权利要求1至10任一项所述的电化学装置。
PCT/CN2021/076725 2021-02-18 2021-02-18 电化学装置及电子装置 WO2022174369A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/277,902 US20240213635A1 (en) 2021-02-18 2021-02-18 Electrochemical apparatus and electronic apparatus
JP2023548322A JP2024508700A (ja) 2021-02-18 2021-02-18 電気化学装置及び電子装置
PCT/CN2021/076725 WO2022174369A1 (zh) 2021-02-18 2021-02-18 电化学装置及电子装置
CN202180003251.3A CN113826262A (zh) 2021-02-18 2021-02-18 电化学装置及电子装置
EP21926091.6A EP4297119A1 (en) 2021-02-18 2021-02-18 Electrochemical device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076725 WO2022174369A1 (zh) 2021-02-18 2021-02-18 电化学装置及电子装置

Publications (1)

Publication Number Publication Date
WO2022174369A1 true WO2022174369A1 (zh) 2022-08-25

Family

ID=78918822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076725 WO2022174369A1 (zh) 2021-02-18 2021-02-18 电化学装置及电子装置

Country Status (5)

Country Link
US (1) US20240213635A1 (zh)
EP (1) EP4297119A1 (zh)
JP (1) JP2024508700A (zh)
CN (1) CN113826262A (zh)
WO (1) WO2022174369A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430018B (zh) * 2022-01-19 2024-07-19 宁德新能源科技有限公司 一种电化学装置及包含该电化学装置的电子装置
CN114744156B (zh) * 2022-03-30 2024-06-28 惠州市恒泰科技股份有限公司 正极极片结构及其制备方法
CN114744198B (zh) * 2022-04-19 2024-04-02 珠海冠宇电池股份有限公司 一种电芯和电池
CN114843519A (zh) * 2022-05-26 2022-08-02 东莞锂威能源科技有限公司 集流体、正极片、负极片、叠片电芯、电池及制备方法
CN115832449B (zh) * 2023-02-10 2023-05-19 宁德新能源科技有限公司 电化学装置和电子装置
WO2024197736A1 (zh) * 2023-03-30 2024-10-03 宁德新能源科技有限公司 电化学装置以及电子设备
CN219873926U (zh) * 2023-04-21 2023-10-20 无锡先导智能装备股份有限公司 电芯、电池及电池模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103356A (ja) * 2005-09-12 2007-04-19 Matsushita Electric Ind Co Ltd 非水系二次電池
CN103430357A (zh) * 2011-03-23 2013-12-04 三洋电机株式会社 非水电解质充电电池用正极极板及其制造方法、以及非水电解质充电电池及其制造方法
CN104659368A (zh) * 2013-11-25 2015-05-27 株式会社杰士汤浅国际 蓄电元件以及蓄电元件模块
CN111799439A (zh) * 2019-04-09 2020-10-20 丰田自动车株式会社 锂离子电池
CN112133925A (zh) * 2019-04-26 2020-12-25 宁德时代新能源科技股份有限公司 电池、电动汽车及消费类电子产品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7221592B2 (ja) * 2017-11-08 2023-02-14 三星エスディアイ株式会社 多孔質絶縁層形成用組成物、非水電解質二次電池用電極、非水電解質二次電池及び非水電解質二次電池用電極の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103356A (ja) * 2005-09-12 2007-04-19 Matsushita Electric Ind Co Ltd 非水系二次電池
CN103430357A (zh) * 2011-03-23 2013-12-04 三洋电机株式会社 非水电解质充电电池用正极极板及其制造方法、以及非水电解质充电电池及其制造方法
CN104659368A (zh) * 2013-11-25 2015-05-27 株式会社杰士汤浅国际 蓄电元件以及蓄电元件模块
CN111799439A (zh) * 2019-04-09 2020-10-20 丰田自动车株式会社 锂离子电池
CN112133925A (zh) * 2019-04-26 2020-12-25 宁德时代新能源科技股份有限公司 电池、电动汽车及消费类电子产品

Also Published As

Publication number Publication date
CN113826262A (zh) 2021-12-21
EP4297119A1 (en) 2023-12-27
JP2024508700A (ja) 2024-02-28
US20240213635A1 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
WO2022174369A1 (zh) 电化学装置及电子装置
CN113097441B (zh) 电化学装置及电子装置
TW511315B (en) Secondary cell and method for preparation thereof
CN111540880B (zh) 一种负极片、制备方法及包含其的锂离子电池
WO2022204967A1 (zh) 电化学装置和电子装置
CN113659105B (zh) 电化学装置和电子装置
WO2020259480A1 (en) Lithium primary battery
CN114156607A (zh) 一种电化学装置及电子装置
JP2010225545A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2022268153A1 (zh) 一种电极组件及二次电池
CN101714656A (zh) 锂离子二次电池
CN116072817B (zh) 电化学装置及用电装置
US6818354B2 (en) Nonaqueous electrolyte secondary cell
WO2024077635A1 (zh) 电池单体、电池及用电装置
JP2001313037A (ja) 負極及び非水電解質電池、並びにそれらの製造方法
WO2023060529A1 (zh) 锂离子电池
WO2013175916A1 (ja) 非水電解質二次電池
JP5086644B2 (ja) 非水電解質二次電池
JP2015138729A (ja) リチウムイオン二次電池
CN116914228B (zh) 电芯、电池和用电设备
WO2024011540A1 (zh) 电极极片、二次电池、电池模块、电池包和用电装置
WO2024007319A1 (zh) 电极极片、二次电池、电池模块、电池包及用电装置
CN116666775B (zh) 锂离子电池、电化学装置以及电子设备
WO2024098171A1 (zh) 电芯及其制备方法、二次电池和用电装置
WO2024169402A1 (zh) 负极添加剂、负极极片、二次电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926091

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548322

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18277902

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202327062167

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021926091

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021926091

Country of ref document: EP

Effective date: 20230918