WO2022172882A1 - 推測装置、推測システム、推測プログラム及び推測方法 - Google Patents

推測装置、推測システム、推測プログラム及び推測方法 Download PDF

Info

Publication number
WO2022172882A1
WO2022172882A1 PCT/JP2022/004611 JP2022004611W WO2022172882A1 WO 2022172882 A1 WO2022172882 A1 WO 2022172882A1 JP 2022004611 W JP2022004611 W JP 2022004611W WO 2022172882 A1 WO2022172882 A1 WO 2022172882A1
Authority
WO
WIPO (PCT)
Prior art keywords
water system
parameter
parameters
relationship model
water
Prior art date
Application number
PCT/JP2022/004611
Other languages
English (en)
French (fr)
Inventor
康広 豊岡
昌樹 田頭
仁樹 桂
要 原田
勝彦 日▲高▼
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to EP22752706.6A priority Critical patent/EP4286583A4/en
Priority to CN202280014302.7A priority patent/CN116829785A/zh
Priority to KR1020237027836A priority patent/KR20230133886A/ko
Publication of WO2022172882A1 publication Critical patent/WO2022172882A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/34Paper
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F1/00Wet end of machines for making continuous webs of paper
    • D21F1/66Pulp catching, de-watering, or recovering; Re-use of pulp-water
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F7/00Other details of machines for making continuous webs of paper
    • D21F7/02Mechanical driving arrangements
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21GCALENDERS; ACCESSORIES FOR PAPER-MAKING MACHINES
    • D21G9/00Other accessories for paper-making machines
    • D21G9/0009Paper-making control systems
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J7/00Manufacture of hollow articles from fibre suspensions or papier-mâché by deposition of fibres in or on a wire-net mould
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Biological oxygen demand [BOD] or chemical oxygen demand [COD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • C02F2209/055Hardness
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/09Viscosity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • C02F2209/105Particle number, particle size or particle characterisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/23O3
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/26H2S
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/29Chlorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/36Biological material, e.g. enzymes or ATP

Definitions

  • the present invention relates to a guessing device, guessing system, guessing program, and guessing method.
  • Patent Document 1 proposes a method of measuring two or more water quality parameters related to water quality in a water system for manufacturing paper and performing water treatment of the water system based on the measured values. And according to the method shown in this patent document 1, high-quality paper can be manufactured.
  • Patent Document 1 does not disclose the occurrence of troubles in the water system used to manufacture paper and the quantitative estimation of the quality of paper products. On the other hand, it is necessary to quantitatively estimate the occurrence of troubles and the quality of paper products in the water system in order to control the operating conditions and the amount of chemicals added to the system more precisely.
  • the present invention provides an estimation device, an estimation system, an estimation program, and an estimation method that can quantitatively estimate the occurrence of troubles in water systems and the quality of products manufactured through water systems. .
  • an inferring device for inferring probable future outcomes in or derived from a water system.
  • This estimating device includes a parameter information acquiring section, a relationship model information acquiring section, and an estimating section.
  • the parameter information acquisition unit acquires water quality parameters related to the water quality of the water system, control parameters related to the control conditions of equipment related to the water system or raw materials added to the water system, and parameters that have different meanings from the expected results and are related to the water system and the water system Parameter information that includes two or more parameters that are any one of the result parameters related to the results generated in the equipment or raw materials added to the water system, or derived from the water system, the equipment related to the water system, or the raw materials added to the water system get.
  • the relationship model information acquisition unit acquires relationship model information indicating a relationship between an expected result or an index related to the expected result and two or more parameters created in advance.
  • the estimation unit estimates an expected result or an indicator related to the expected result based on the parameter information and the relationship model information.
  • the relationship model is a regression analysis, a time series analysis, a decision tree, and a prior confirmation result corresponding to the expected result or an index related to the prior confirmation result and two or more of the parameters.
  • a guesser that is a model determined by neural network, Bayesian, clustering or ensemble learning.
  • the water system is a water system in the process of manufacturing paper products.
  • the water quality parameters are pH, electrical conductivity, redox potential, zeta potential, turbidity, temperature, foam height, biochemical oxygen demand (BOD), chemical oxygen demand of the water system.
  • control parameters are the operating speed (papermaking speed) of the paper machine, the rotation speed of the filter cloth of the raw material dehydrator, the rotation speed of the filter cloth of the washer, the amount of chemical added to the water system, and the raw material to be added to the water system.
  • Amount of chemical added to water system, amount of chemical added to equipment related to the water system, amount of steam for heating, steam temperature for heating, steam pressure for heating, flow rate from seed box, nip pressure of press part, felt of press part One type selected from the group consisting of vacuum pressure, blending ratio of raw materials for paper manufacturing, waste paper blending amount of raw materials for manufacturing paper, opening of screen for raw materials for manufacturing paper, gap distance between rotor and stator of beater, freeness and degree of beating.
  • a guessing device that is more than that.
  • the result parameters are the unit weight of the paper product (weight per square meter), the yield rate, the concentration of white water, the moisture content of the paper product, the amount of steam in the equipment for manufacturing the paper product, and the paper product.
  • An estimation system for estimating expected results that may occur in the water system or derived from the water system comprising a parameter information acquisition unit, a relationship model information acquisition unit, and an estimation unit, wherein the parameter information acquisition unit is a water quality parameter related to the water quality of the water system, a control parameter related to the water system, equipment related to the water system, or a control condition of raw materials added to the water system, and a parameter having a meaning different from the expected result, wherein the water system, the A parameter that is any one of a result parameter related to a result that occurs in a facility associated with a water system or a raw material added to said water system, or derived from said water system, equipment associated with said water system, or raw material added to said water system.
  • the relationship model information acquisition unit creates a relationship indicating a relationship between the expected result or an index related to the expected result created in advance and the two or more parameters
  • An inference system that acquires model information, and in which the estimation unit estimates the expected result or an index related to the expected result based on the parameter information and the relationship model information.
  • An estimation program for estimating expected results that may occur in the water system or derived from the water system wherein the computer functions as a parameter information acquisition unit, a relationship model information acquisition unit, and an estimation unit, and the parameter information acquisition
  • the part is a water quality parameter related to the water quality of the water system, a control parameter related to the control condition of the water system, equipment related to the water system, or a raw material to be added to the water system, and a parameter having a meaning different from the expected result, the water system,
  • a parameter that is any one of result parameters relating to a result generated in equipment associated with said water system or raw materials added to said water system or derived from said water system, equipment associated with said water system or raw materials added to said water system and the relationship model information acquisition unit creates a relationship indicating the relationship between the expected result or an index related to the expected result and the two or more parameters
  • a guessing program that acquires sex model information, and the guessing unit guesses the expected result or an index related to the expected result based on the parameter information
  • An estimation method for estimating expected results that may occur in a water system or derived from the water system comprising a parameter information acquisition step, a relationship model information acquisition step, and an estimation step, wherein the parameter information acquisition step.
  • a water quality parameter related to the water quality of the water system a control parameter related to the control conditions of the water system, equipment related to the water system, or raw materials to be added to the water system, and a parameter having a meaning different from the expected result
  • the water system the A parameter that is any one of a result parameter relating to a result that occurs in equipment related to a water system or raw materials added to said water system or derived from said water system, equipment related to said water system or raw materials added to said water system.
  • Acquiring parameter information including two or more, and in the relationship model information acquiring step, a relationship indicating a relationship between the expected result or an index related to the expected result created in advance and two or more of the parameters
  • An estimation method for acquiring model information and, in the estimation step, estimating the expected result or an indicator related to the expected result based on the parameter information and the relationship model information is not limited to this.
  • FIG. 1 is a schematic diagram of an inference system according to this embodiment;
  • FIG. It is a schematic diagram which shows the functional structure of the inference apparatus which concerns on this embodiment.
  • It is a schematic diagram showing the hardware constitutions of the guessing device concerning this embodiment.
  • 10 is a plot of the number of trouble occurrences A for a total of 30 sets of data sets versus an index a related to the likely outcome;
  • FIG. 10 is a graph showing the degree of influence of each parameter on index a related to expected results;
  • 1 is a schematic diagram of equipment for manufacturing paper in Example 1.
  • FIG. 4 is a plot of the number of defects versus defect index ⁇ for a total of 572 data sets for Example 1; 7 is a graph showing the degree of influence of each parameter on the defect index; 4 is a plot of strength agent usage intensity vs. strength index value for a total of 60 data sets for Example 2; 4 is a graph showing the degree of influence of each parameter on the paper strength index; 4 is a graph showing the occurrence of paper breakage and changes over time in the paper breakage index. 4 is a graph showing the occurrence of paper breakage and changes over time in the paper breakage index.
  • FIG. 4 is a schematic diagram of equipment for manufacturing paper in Example 4.
  • FIG. 11 is a plot of the number of defects versus defect index ⁇ values for a total of 647 sets of data sets for relationship modeling in Example 4;
  • FIG. 11 is a plot of the number of defects versus defect index ⁇ values for a total of 255 sets of data sets for accuracy verification in Example 4;
  • FIG. 10 is a plot showing changes over time in defect indexes calculated from a total of 255 sets of data sets for accuracy verification in Example 4.
  • FIG. 4 is a graph showing the degree of influence of each parameter on defect index ⁇ .
  • FIG. 11 is a plot of the number of defects versus the defect index ⁇ value for a total of 631 sets of data sets for relationship modeling in Example 5;
  • FIG. 10 is a plot of the number of defects versus defect index ⁇ values for a total of 255 sets of data sets for accuracy verification in Example 5; 10 is a plot showing changes over time in defect indexes calculated from a total of 271 sets of data sets for accuracy verification in Example 5.
  • FIG. 4 is a graph showing the degree of influence of each parameter on defect index ⁇ .
  • FIG. 11 is a plot of the number of defects versus the defect index ⁇ value for a total of 1216 sets of data sets for relationship modeling in Example 6;
  • FIG. 10 is a plot of the number of defects versus the defect index ⁇ value for a total of 490 sets of data sets for accuracy verification in Example 6; 4 is a graph showing the degree of influence of each parameter on defect index ⁇ .
  • FIG. 11 is a plot of the number of defects versus the defect index ⁇ value for a total of 1216 sets of data sets for relationship modeling in Example 6;
  • FIG. 10 is a plot of the number of defects versus the defect index ⁇ value for
  • FIG. 11 is a plot of defect count versus defect index ⁇ for a total of 1503 sets of data sets for relationship modeling in Example 7;
  • FIG. 11 is a plot of the number of defects versus defect index ⁇ for a total of 537 sets of data sets for accuracy verification in Example 7;
  • 4 is a graph showing the degree of influence of each parameter on defect index ⁇ .
  • the program for realizing the software of this embodiment may be provided as a computer-readable non-transitory recording medium (Non-Transitory Computer-Readable Medium), or may be provided downloadably from an external server. Alternatively, it may be provided so that the program is activated by an external computer and the function is realized by the client terminal (so-called cloud computing).
  • the term “unit” may include, for example, a combination of hardware resources implemented by circuits in a broad sense and software information processing that can be specifically realized by these hardware resources.
  • various information is handled in the present embodiment, and these information are, for example, physical values of signal values representing voltage and current, and signal values as binary bit aggregates composed of 0 or 1. It is represented by high and low, or quantum superposition (so-called quantum bit), and communication and operation can be performed on a circuit in a broad sense.
  • a circuit in a broad sense is a circuit realized by at least appropriately combining circuits, circuits, processors, memories, and the like.
  • Application Specific Integrated Circuit ASIC
  • Programmable Logic Device for example, Simple Programmable Logic Device (SPLD), Complex Programmable Logic Device (CPLD), and field It includes a programmable gate array (Field Programmable Gate Array: FPGA)).
  • the estimating system is an estimating system for estimating possible future outcomes in or derived from a water system.
  • this estimation system includes a parameter information acquisition section, a relationship model information acquisition section, and an estimation section.
  • the parameter information acquisition unit obtains a water quality parameter related to the water quality of the water system, a control parameter related to the control condition of the water system, equipment related to the water system, or the raw material to be added to the water system, and a parameter having a meaning different from the expected result and the water system
  • Two or more parameters that are any one of the following: , result parameters related to results generated in equipment related to water systems or raw materials added to water systems, or derived from water systems, equipment related to water systems, or raw materials added to water systems It acquires parameter information including
  • the relationship model information acquisition unit acquires relationship model information indicating a relationship between an expected result or an index related to the expected result created in advance and two or more parameters.
  • the estimation unit estimates an expected result or an index related to the expected result based on the parameter information and the relationship model information.
  • the inference system may include one or both of the relationship model creation unit and the output unit. Note that FIG. 1, which will be described below, mainly describes an inference system that includes all of these.
  • FIG. 1 is a schematic diagram of an inference system according to this embodiment.
  • This guessing system 1 comprises a guessing device 2 and an output device 3 .
  • FIG. 2 is a schematic diagram showing the functional configuration of the guessing device according to this embodiment.
  • the estimating device 2 according to the present embodiment is an estimating device for estimating expected results that may occur in the future in the water system W or derived from the water system W, and includes a parameter information acquisition unit 21, A relationship model information acquisition unit 22 and an estimation unit 23 are provided.
  • the estimation device 2 according to this embodiment further includes a second estimation unit 24 , a relationship model creation unit 25 , a second relationship model creation unit 26 , and a second relationship model information acquisition unit 27 . Although each of these units is described here as being included inside one device, each unit may be included as a separate device.
  • the output device 3 is an example of an output unit
  • the parameter information measurement device 4 is an example of a parameter information measurement unit.
  • expected results that may occur in the water system or derived from the water system are the results that will occur in the water system when the water system is operated.
  • BOD biochemical oxygen demand
  • COD increase in
  • SS suspended solids
  • turbidity increase increase in chromaticity increase
  • transparency decrease dehydrated sludge amount increase
  • heat exchanger efficiency decrease chiller efficiency decrease
  • chiller efficiency decrease Reduced efficiency of cooling towers, increased frequency of backwashing filter media and activated carbon, increased frequency of replacement of filter media and activated carbon, increased frequency of cleaning membranes (MF membrane, UF membrane, RO membrane, etc.), Increased replacement frequency, increased regeneration frequency of ion exchange resin, increased replacement frequency of ion exchange resin, corrosion of equipment and piping (due
  • expected results that may occur in the future derived from water systems are the results that occur in relation to water systems other than those water systems when such water systems are operated and operated. performance deterioration, product yield reduction, unwanted by-products increase, and changes in product odor.
  • the "index related to the expected result” may be any index that has a certain correlation with the expected result (for example, a function of two or more parameters), and is not a generally known index but a speculation It may be created independently by the system user (operator, etc.).
  • the "expected results that may occur in the future in the water system" of the paper manufacturing process include, for example, contamination of the paper machine, contamination of the papermaking approach system, contamination of the white water recovery system, pump air entrapment, screen blockage, reduction in papermaking speed, wire part Poor drainage, poor dehydration in the press part, poor drying in the dryer part, bad odor in the water system, poor peeling in the dryer process, dirt on the block system, dirt on the raw material system, and the like.
  • the "expected results that may occur in the future derived from the water system" of the paper manufacturing process are, for example, those related to paper products produced from such water system (number of defects, paper strength, joint ratio, sizing degree, air permeability, smoothness degree, ash content, color tone, whiteness, formation, odor, causticization rate, firing rate, kappa number, freeness, moisture content, etc.), and events that can occur outside of water systems (paper breakage in the press part to dryer part, etc.) is mentioned.
  • the parameter information acquisition unit 21 obtains a water quality parameter related to the water quality of the water system W, a control parameter related to the control condition of the water system W, equipment related to the water system W, or a raw material to be added to the water system W, and a parameter having a different meaning from the expected result, Any one of the result parameters related to the result generated in the water system W, the equipment related to the water system W, or the raw material added to the water system W, or derived from the water system W, the equipment related to the water system W, or the raw material added to the water system W This is to acquire parameter information including two or more parameters.
  • the water system here is not limited to those existing in one tank or channel or those in which a continuous flow exists, but those having a plurality of tanks or channels, specifically, A water system in which branching or confluence of a plurality of flow paths exists, or in which water is transferred from tank to tank in units of batches, or in which treatment is performed in the middle, is also considered as one water system.
  • the water system related to the water quality parameters, control parameters or result parameters is divided by tanks, etc., the water quality parameters, control parameters or result parameters for a part of the water system may be used, and the water quality parameters for the entire water system may be used. , control parameters or outcome parameters may be used.
  • the water quality parameter is not particularly limited as long as it relates to the water quality of the water system W.
  • the control parameter is not particularly limited as long as it relates to the control condition of the water system W, equipment related to the water system W, or raw material added to the water system W.
  • a parameter that has a different meaning from the expected result and is derived from the water system W, the equipment related to the water system W, or the raw material added to the water system W, or from the water system W, the equipment related to the water system W, or the raw material added to the water system W It is not particularly limited as long as it relates to the results produced by Note that “has a different meaning from the expected result” means that if the evaluation index (e.g., physical quantity) is different (e.g., one is length and the other is mass), the evaluation index is the same but the evaluation results are different. Including cases where the target is different (e.g. the mass of paper and the mass of additives) and cases where the measurement points are different (e.g.
  • Water quality parameters include, for example, water system pH, electrical conductivity, redox potential, zeta potential, turbidity, temperature, foam height, biochemical oxygen demand (BOD), chemical oxygen demand (COD), absorbance (e.g., UV absorbance), color (e.g., RGB value), particle size distribution, degree of aggregation, amount of foreign matter, foamed area on water surface, soiled area in water, amount of air bubbles, amount of glucose, amount of organic acid, amount of starch , the amount of calcium, the amount of total chlorine, the amount of free chlorine, the amount of dissolved oxygen, the amount of cation demand, the amount of hydrogen sulfide, the amount of hydrogen peroxide, and the respiration rate of microorganisms in the system. It is preferable to use the above.
  • Control parameters include, for example, the operating speed (papermaking speed) of the paper machine, the rotation speed of the filter cloth of the raw material dehydrator, the rotation speed of the filter cloth of the washer, the amount of chemical added to the water system, the amount of chemical added to the raw material added to the water system, the water system Amount of chemical added to the equipment related to , Steam volume for heating, Steam temperature for heating, Steam pressure for heating, Flow rate from seed box, Press part nip pressure, Press part felt vacuum pressure, Mixing of papermaking raw materials It is preferable to use one or more selected from the group consisting of ratio, waste paper blending amount of papermaking raw material, screen opening of papermaking raw material, gap distance between rotor and stator of beating machine, freeness and beating degree.
  • the water system W is a water system in the process of manufacturing paper products
  • equipment related to the water system include equipment such as paper machine wires and felts that directly add chemicals.
  • Result parameters include, for example, the unit weight of paper products (weight per square meter), yield rate, white water concentration, moisture content of paper products, amount of steam in the facility that manufactures paper products, and amount of steam in the facility that manufactures paper products. , steam temperature in equipment for manufacturing paper products, steam pressure in equipment for manufacturing paper products, thickness of paper products, ash concentration in paper products, types of defects in paper products, number of defects in paper products, It is preferable to use one or more selected from the group consisting of time of paper breakage in the process, freeness, beating degree and aeration amount.
  • the amount of steam in equipment for manufacturing paper products includes, for example, the amount of steam in paper machine dryers, the amount of steam in kraft pulp black liquor evaporators, the amount of steam in black liquor heaters in kraft pulp digesters, the amount of steam in pulp raw materials and white water Steam volume blowing for temperature can be used.
  • two or more parameters acquired by the parameter information acquisition unit should not be substantially the same.
  • the two parameters are:
  • the use of process steam generated from black liquor as a result parameter and the amount of steam used to warm (concentrate) concentrated black liquor as a control parameter shall be excluded. This is because in such a case, the process steam generated from the black liquor as the result parameter and the amount of steam used for warming (concentrating) the concentrated black liquor as the control parameter are substantially the same.
  • the two parameters are the process steam generated from black liquor as a result parameter and , and the amount of steam used for warming (concentrating) the concentrated black liquor as control parameters. This is because in such cases, the process steam generated from the black liquor as the result parameter and the amount of steam used to warm (concentrate) the concentrated black liquor as the control parameter are not substantially the same.
  • the two parameters are the process steam generated from the black liquor as a result parameter , and the amount of steam used for heating (concentrating) the concentrated black liquor as a control parameter, in addition to other parameters such as the pH of the water system as a water quality parameter. may be substantially the same.
  • freeness and freeness are the same parameters, but can be included in both the control parameters and the result parameters.
  • the water quality parameter, control parameter, and result parameter are concepts that each include multiple parameters.
  • parameter information including two or more parameters two or more parameters included in the parameter information can be independently selected from the water quality parameters, the control parameters, and the result parameters.
  • a combination of two or three of the water quality parameters, the control parameters and the result parameters e.g. pH and the press pressure and thickness of the paper product.
  • exactly the same parameter for example, the pH of water at location A and the pH of water at location A
  • should not be selected (however, for example, the pH of water at location A and the water at location B, which are different measurement locations) ).
  • the relationship model information acquisition unit 22 acquires relationship model information indicating the relationship between an expected result or an index related to the expected result, which has been created in advance, and two or more parameters.
  • a relationship model is created in advance and shows the relationship between expected results or indicators related to expected results and two or more parameters.
  • "preliminary" refers to the expected result or before estimating the index related to the expected result, and whether the expected result or the expected result is Any prior to estimating indices related to .
  • the relationship model is not particularly limited, but for example, an expected result or an index related to the expected result, a function indicating the relationship between two or more parameters, a lookup table or an expected result or an index related to the expected result, Examples include a trained model of the relationship between two or more parameters.
  • Two or more parameters included in the parameter information acquired by the parameter information acquisition unit 21 and parameters included in the parameter information used in the relationship model shall have two or more in common.
  • the water quality parameter, control parameter, and result parameter are concepts that each include a plurality of parameters. "Two or more of the parameters are common" means that two or more of the water quality parameters, control parameters, and result parameters (e.g., two or more only water quality parameters; water pH and temperature) are common.
  • a combination of water quality parameters, control parameters, and result parameters may be common, or water quality parameters, All control parameters and result parameters (eg, one water quality parameter, one control parameter and one result parameter) may be common.
  • the estimation unit 23 estimates an expected result or an index related to the expected result based on the parameter information and the relationship model information.
  • the estimating unit 23 inputs the current parameter information of the water system W into the relationship model created in advance, substitutes or compares it with the relationship model, and obtains an expected result or an index related to the expected result. to estimate (calculate).
  • the second estimation unit 24 estimates an expected result from the index when the estimation unit 23 estimates an index related to the expected result instead of the expected result itself.
  • the estimation unit 23 is called a "first estimation unit" for convenience.
  • the first estimation unit 23 estimates an index related to the expected result (hereinafter also referred to as "related indicator"), it is necessary to estimate the expected result from the related indicator. Specifically, this related index is input to a second relationship model prepared in advance, and an expected result is estimated. In addition, when using a 2nd relationship model, the relationship model used by the 1st estimation part 23 is called a “1st relationship model" for convenience.
  • a threshold can be set for the related index, and it can be inferred that trouble will occur if the related index is greater (or smaller) than the threshold.
  • the related indicator When estimating the possibility of trouble occurring, for example, by setting multiple thresholds for the related indicators, for example, dividing them into three stages, when the related indicator is in the first stage, the occurrence of trouble will certainly occur, and the related indicator will When it is in the second stage, it can be assumed that trouble may occur, and when the related index is in the third stage, it can be inferred that trouble will not occur. Also, the relationship between the related index and the probability of occurrence of trouble can be converted into a function or a learned model from the statistical data of actual operation, and the probability of occurrence of trouble can be calculated.
  • the relationship model creating unit 25 creates a relationship model. This relationship model may be acquired by the relationship model information acquisition unit 22 and used by the estimation unit 23 to estimate the expected result or an index related to the expected result.
  • a relationship model is created, for example, as follows. Prior to inferring a prospective outcome or related metric, a pre-measured outcome corresponding to the prospective outcome or a pre-measured metric associated with the pre-result is measured. Also, in the same water system, two or more parameters that are any one of the water quality parameter, the control parameter and the result parameter are measured. A plurality of data sets of these pre-measurement results or pre-measurement indicators and parameters are prepared so that the pre-measurement results or pre-measurement indicators and parameters are varied by, for example, changing the day or time of measurement.
  • the pre-measured result or pre-measured index is assumed to be a function of two or more parameters, compared with the pre-measured result or pre-measured index to determine the form and coefficients of the function, and build a relationship model.
  • regression analysis methods linear model, generalized linear model, generalized linear mixed model, ridge regression , Lasso regression, elastic net, support vector regression, projection pursuit regression, etc.
  • time series analysis VAR model, SVAR model, ARIMAX model, SARIMAX model, state space model, etc.
  • decision tree decision tree, regression tree, random forest, XGBoost, etc.
  • neural networks simple perceptron, multilayer perceptron, DNN, CNN, RNN, LSTM, etc.
  • Bayes naive Bayes, etc.
  • clustering k-means, k-means++, etc
  • the relationship model is preferably a model obtained by regression analysis of the pre-confirmation result corresponding to the expected result or the index related to the pre-confirmation result and two or more parameters. Note that the number of sample sets for regression analysis is not particularly limited.
  • the relationship model in the same water system as the one for estimating the expected results. Also, for example, when the water quality of the water system changes greatly even within the same apparatus (for example, when the pulp that is the raw material for paper manufacturing is changed in the papermaking system of a paper mill), the water system after the water quality changes It is preferable to create and use a relationship model for .
  • the expected results or related indicators and two or more parameters are measured regularly or irregularly, and a relationship model is created each time, or data is added to the relationship model. may be updated.
  • the relationship model creation unit 25 is not an essential component, the relationship model may be created manually (manually) by, for example, an operator.
  • the second relationship model creating section 26 creates a second relationship model.
  • This second relationship model may be acquired by the second relationship model information acquisition unit 26 (to be described later) and may be used for estimating expected results by the second estimating unit 24 .
  • the second relationship model is a model that shows the relationship between the related index and the expected result.
  • the relationship model creation unit 25 will be called the "first relationship model creation unit" for convenience.
  • the second relationship model is not particularly limited, but includes, for example, a function indicating the relationship between the related index and the expected result, a lookup table, or a learned model of the relationship between the related index and the expected result.
  • the second relationship model is created, for example, as follows. Prior to inferring a prospective outcome, a prior measurement corresponding to the prospective outcome and a prior measurement indicator associated with the prior outcome are measured. A plurality of data sets of these preliminary measurement results and preliminary measurement indices are prepared so that the preliminary measurement results and the preliminary measurement indices are varied by, for example, changing the day and time of the measurement. An inferential model is then constructed using the pre-measured results as a function of the pre-measured index. Alternatively, for example, after preparing multiple data sets of pre-measurement results and pre-measurement indicators, thresholds are set for related indicators at points (pre-measurement indicators) where the pre-measurement results change significantly, and the second relationship model is generated. may be constructed.
  • the second relationship model in the same water system as the one for estimating the expected results. Also, for example, when the water quality of the water system changes greatly even within the same apparatus (for example, when the pulp that is the raw material for paper manufacturing is changed in the papermaking system of a paper mill), the water system after the water quality changes Preferably, a second relationship model for is created and used.
  • the second relationship model creating unit 26 is not an essential component, and the second relationship model may be created manually (manually) by, for example, an operator.
  • the second relationship model information acquisition unit 27 acquires the second relationship model.
  • the second relationship model may be one created by the second relationship model creating unit 26 .
  • the relationship model acquisition unit 22 is called the "first relationship model acquisition unit" for convenience.
  • the inference system 1 and the inference device 2 may include a relationship model evaluation unit (not shown).
  • the relationship model evaluation unit evaluates the relationship model created by the relationship model creation unit 25, and evaluates the degree of influence of each parameter information on the expected result or related index.
  • the relationship model evaluation unit evaluates the magnitude of the impact of each parameter information.
  • the method of evaluating the magnitude of the influence of each parameter information is not particularly limited. For example, when the expected result is expressed as a linear function of each parameter, the absolute value of the coefficient can be compared and evaluated.
  • the parameter information may be arranged in order of influence on the relationship model, and other than a predetermined number of parameter information may be excluded in descending order of influence, or a predetermined number of parameter information may be excluded in descending order of influence. may be provided, and parameters below this threshold may be excluded by the relationship model adjustment unit.
  • the inference system 1 and the inference device 2 may include a relationship model information adjustment unit (not shown).
  • the relationship model information adjustment unit performs adjustment to exclude parameter information that has a small impact on the relationship model, and then again instructs the relationship model information creation unit 25 to create relationship model information.
  • the evaluation of the relationship model evaluation unit and the adjustment of the relationship model information adjustment unit may be performed only once, or may be repeated twice or more. you can go
  • the output unit 3 is configured to output at least one of the expected result or related index calculated by the estimating unit 23 and the expected result estimated by the second estimating unit 24 .
  • the output unit 3 may, for example, display expected results or related indicators over time (expected results or related indicators vs. time graph, etc.).
  • the output unit 3 may output a warning when, for example, the expected result or related index exceeds a certain threshold.
  • the parameter information measurement unit 4 measures water quality parameters, control parameters, or result parameters.
  • parameter information measuring device 4 Although only one parameter information measuring device 4 is shown in FIG. 1 for convenience, it is not limited to this example, and two or more parameter information measuring devices may be used.
  • Various sensors can be selected as the measuring device, depending on the content of the parameters to be measured.
  • Examples of measuring devices include pH meter, electrical conductivity meter, oxidation-reduction potential meter, turbidity meter, thermometer, level meter for measuring foam height, COD meter, UV meter, particle size distribution meter, cohesion sensor, digital Camera (or digital video camera), internal bubble sensor, absorption photometer, freeness meter, dissolved oxygen meter, zeta potential meter, residual chlorine meter, hydrogen sulfide meter, retention/freeness meter, color sensor, hydrogen peroxide meter, etc. can be used.
  • Control parameters and the like may be directly input for controlling the device and may be used as they are. Such data may be communicated and received from the device. For this purpose, it may be recorded on a device other than the device.
  • the target water system of the estimation system is not particularly limited, and may be, for example, a water system in the process of manufacturing paper products. Specifically, if it is a process for manufacturing paper products, it includes a cooking process, a washing process, a black liquor concentration process, a causticizing process, and the like.
  • the target water system may be any water system other than the process of manufacturing paper products, such as various pipes, heat exchangers, storage tanks, kilns, washing equipment, and the like.
  • FIG. 3 is a schematic diagram showing the hardware configuration of the inference device according to this embodiment.
  • the guessing device 2 has a communication unit 51 , a storage unit 52 and a control unit 53 , and these components are electrically connected via a communication bus 54 inside the guessing device 2 . It is connected to the. These components are further described below.
  • the communication unit 51 is preferably a wired communication means such as USB, IEEE1394, Thunderbolt, wired LAN network communication, etc., but wireless LAN network communication, mobile communication such as 3G/LTE/5G, Bluetooth (registered trademark) communication, etc. is required. can be included depending on That is, it is more preferable to implement as a set of these communication means. As a result, information and instructions are exchanged between the guessing device 2 and other devices that can communicate with each other.
  • the storage unit 52 stores various information defined by the above description. This can be, for example, a storage device such as a solid state drive (SSD), or a random access memory (Random Access Memory: RAM) or the like. Moreover, the memory
  • the storage unit 52 also stores various programs that can be read by the control unit 53, which will be described later.
  • the control unit 53 processes and controls overall operations related to the inferring device 2 .
  • the control unit 53 is, for example, a central processing unit (CPU, not shown).
  • the control unit 53 implements various functions related to the guessing device 2 by reading a predetermined program stored in the storage unit 52 .
  • information processing by software stored in the storage unit 52
  • hardware control unit 53
  • FIG. 3 shows a single control unit 53, the present invention is not limited to this in practice, and a plurality of control units 53 may be provided for each function.
  • a single controller and multiple controllers may be combined.
  • the water quality parameter x, water quality parameter y, and control parameter z shown in Table 1 below are measured, and the number of trouble occurrences A is also measured to obtain a total of 30 sets of data. The data obtained are shown in Table 1 below.
  • the index a related to the expected result is represented by the following formula (1), where x, y, and z are the “parameters”, bn is the coefficient of x, y, and z, and a 0 and b 0 are constants.
  • FIG. 4 is a plot of the number of occurrences of trouble A for a total of 30 sets of data sets versus an index a related to the expected results.
  • FIG. 5 is a graph showing the magnitude of the influence of each parameter on the index a related to the expected result.
  • the control parameter z, the water quality parameter x, and the water quality parameter y have a greater influence on the index a related to the expected result in that order.
  • a negative binomial regression analysis using the standardized scores for each parameter yields the results in FIG.
  • the standardized score can be obtained by (individual numerical value ⁇ average value)/standard deviation.
  • the function of the index a related to the expected result used in the regression analysis, the water quality parameter x, the water quality parameter y, and the control parameter z is not limited to the above formula (1), and the general formula (2) can be used. can.
  • the estimation system 1 and the estimation device 2 as described above, it is possible to quantitatively estimate the occurrence of troubles in the water system W and the quality of products manufactured through the water system W. In particular, even if there are many parameters that affect the occurrence of troubles and product quality, it is possible to predict the occurrence of troubles and product quality by more accurately considering the respective influences.
  • the speculation program according to the present embodiment is a speculation program for estimating expected results that may occur in the water system or derived from the water system. Specifically, this estimation program causes a computer to function as a parameter information acquisition section, a relationship model information acquisition section, and an estimation section.
  • the parameter information acquisition unit acquires water quality parameters related to the water quality of the water system, control parameters related to the control conditions of equipment related to the water system or raw materials added to the water system, and parameters that have different meanings from the expected results and are related to the water system and the water system Parameter information that includes two or more parameters that are any one of the result parameters related to the results generated in the equipment or raw materials added to the water system, or derived from the water system, the equipment related to the water system, or the raw materials added to the water system to obtain.
  • the relationship model information acquisition unit acquires relationship model information indicating a relationship between an expected result or an index related to the expected result created in advance and two or more parameters.
  • the estimation unit estimates an expected result or an index related to the expected result based on the parameter information and the relationship model information.
  • parameter information acquisition unit the relationship model information acquisition unit, and the estimation unit can be similar to those of the estimation system described above, so descriptions thereof will be omitted here.
  • the estimating method is an estimating method for estimating expected results that may occur in the future in or derived from the water system.
  • this estimation method includes a parameter information acquisition process, a relationship model information acquisition process, and an estimation process.
  • the parameter information acquisition process water quality parameters related to the water quality of the water system, control parameters related to the control conditions of equipment related to the water system or raw materials added to the water system, and parameters that have different meanings from the expected results and are related to the water system
  • Parameter information that includes two or more parameters that are any one of the result parameters related to the results generated in the equipment or raw materials added to the water system, or derived from the water system, the equipment related to the water system, or the raw materials added to the water system get.
  • relationship model information acquisition step relationship model information indicating the relationship between the expected result created in advance or an index related to the expected result and two or more parameters is acquired.
  • estimating step an expected result or an index associated with the expected result is estimated based on the parameter information and the relationship model information.
  • FIG. 6 is a flowchart of the estimation method according to this embodiment.
  • parameter information is acquired (parameter information acquisition step S1)
  • relationship model information is acquired (relationship model information acquisition step S2)
  • these are input.
  • an expected result or an index related to the expected result is guessed (estimating step S3).
  • Example 1 In the water system of the paper production facility (a continuous water system consisting of the raw material system, the papermaking system, and the recovery system), the redox potential of the raw material system 1, the redox potential of the raw material system 2, and the redox potential, turbidity, and pH of the papermaking system. , water temperature, and foam height in the recovery system were measured as water quality parameters, respectively, and the average values for 24 hours before the production of the corresponding paper products were used.
  • 7 is a schematic diagram of equipment for manufacturing paper in Example 1.
  • defect index (sometimes called “ ⁇ ”)
  • the number of defects occurring within 24 hours
  • seven water quality parameters and one result parameter function (hereinafter referred to as "defect index (sometimes called “ ⁇ ”)) relationship model was created. More specifically, as a procedure for creating the defect index ⁇ , after excluding parameters that are two standard deviations or more away from the average value as outliers, regression analysis was performed using IBM's SPSS Modeler. The correlation coefficient between the defect index ⁇ obtained by regression analysis and the number of defects was 0.71 (p ⁇ 0.05), indicating a strong correlation.
  • the water quality parameters and parameters are applied to the above-mentioned relationship model was applied to calculate the defect index ⁇ , and the correlation coefficient with the number of defects was calculated to be 0.71 (p ⁇ 0.05). From this, it was confirmed that there is a strong correlation between the number of defects and the defect index ⁇ , and that the defect index ⁇ is effective in predicting the number of defects that will occur in the future.
  • FIG. 8 is a plot of the number of defects versus defect index ⁇ for a total of 572 data sets in Example 1.
  • FIG. 8 372 sets of data sets for relationship model creation are indicated by circles, and 200 sets of data sets for accuracy verification are indicated by rectangles.
  • FIG. 9 is a graph showing the degree of influence of each parameter on the defect index ⁇ .
  • Raw material system 1 to 3 of the corrugated board (liner) production facility pH, electrical conductivity, raw material system 2 pH, oxidation-reduction potential, raw material system 3 pH, electrical conductivity, papermaking system: water temperature, electrical conductivity were measured as water quality parameters, respectively (see FIG. 7).
  • water quality parameter measurement we also measured the basic unit of paper strength agent usage of manufactured paper products, and prepared 60 sets of these data sets. These data sets were randomly divided into 7:3, and 70% (42 pairs) were used as relationship model creation data and 30% (18 pairs) as model validation data.
  • a relationship model that indicates the reciprocal of the paper strength agent usage unit was created as a "paper strength index" as a function of the eight water quality parameters described above. More specifically, as a procedure for creating a paper strength index, after excluding parameters that are two standard deviations or more away from the average value as outliers, regression analysis was performed using IBM's SPSS Modeler. The correlation coefficient between the paper strength index obtained by regression analysis and the basic unit of paper strength agent usage was ⁇ 0.58 (p ⁇ 0.05), indicating a correlation.
  • FIG. 10 is a plot of paper strength agent usage intensity vs. paper strength index value for a total of 60 sets of data sets in Example 2.
  • 42 sets of data sets for relationship model creation are indicated by circles, and 18 sets of data sets for accuracy verification are indicated by rectangles.
  • FIG. 11 is a graph showing the magnitude of the influence of each parameter on the paper strength index.
  • the paper strength index proportional to the amount of paper strength used per unit
  • Example 3 Temperature, pH, oxidation-reduction potential, electrical conductivity, turbidity, standing turbidity, pH, Oxidation-reduction potential, electrical conductivity, turbidity, and recovery system turbidity were measured as water quality parameters (see FIG. 7). Operation timing, papermaking speed, amount of internal additives added, felt moisture content, ash content in paper, product basis weight, and product brand were used as control parameters. Furthermore, the paper break timing was measured, and 138,276 sets of these data sets were prepared. The same water quality parameters, control parameters, and paper break timing were used.
  • paper breakage index a relationship model for Specifically, as a procedure for creating a paper break occurrence index, parameters that are two standard deviations or more away from the average value are excluded as outliers, and regression analysis is performed using IBM's SPSS Modeler to determine the relationship created a gender model. Since the number of data sets is enormous, plot diagrams are omitted.
  • FIGS. 12 and 13 are graphs showing the occurrence of paper breakage and the temporal change of the paper breakage index.
  • the vertical axis indicates occurrence of paper breakage and the paper breakage index
  • the horizontal axis indicates time. Circles indicate the presence or absence of actual paper breakage (0 indicates no paper breakage, 1 indicates paper breakage occurrence) (left axis of ordinate), and squares indicate the index of paper breakage (right axis of ordinate). ). From FIGS. 12 and 13, it is clear that a paper break actually occurs when the paper break index approaches one. It was found that a paper break can be predicted by appropriately setting a threshold value for the paper break index.
  • Example 4 In the water system of the paper production facility (continuous water system consisting of raw material system, papermaking system, recovery system, and drainage system), the pH and turbidity of the raw material system 1, the redox potential of the papermaking system, and the electrical conductivity of the drainage system are measured. It was measured as a water quality parameter, and the value measured 16 hours before the production of the corresponding paper product was used. 14 is a schematic diagram of equipment for manufacturing paper in Example 4. FIG. In addition, the speed of paper products was measured as a control parameter. In addition, the basis weight of the paper product was measured as a result parameter. In addition, the number of defects in paper products was measured, and 647 sets of these data sets were prepared.
  • defect index ⁇ a relationship model of the number of defects and functions of four water quality parameters, one control parameter and one result parameter (hereinafter sometimes referred to as "defect index ⁇ ") was created. More specifically, as a procedure for creating the defect index ⁇ , after excluding parameters that are two standard deviations or more away from the average value as outliers, use the R language package KFAS, which is a programming language for statistical analysis. Then, we performed an analysis using a state-space model. The correlation coefficient between the defect index ⁇ obtained by the state space model and the number of defects was 0.62 (p ⁇ 0.05), confirming that there is a correlation.
  • FIG. 15 is a plot of the number of defects versus the defect index ⁇ value of the data set for creating the data of the total of 647 sets in Example 4.
  • FIG. 16 is a plot of the number of defects in the total 255 data sets for accuracy verification in Example 4 versus the defect index ⁇ value for data creation.
  • FIG. 17 is a plot showing changes over time in defect indices calculated from a total of 255 sets of data sets for accuracy verification in Example 4.
  • FIG. 18 is a graph showing the degree of influence of each parameter on the defect index ⁇ .
  • Example 5 The pH and turbidity of the water system of the paper production facility (a continuous water system consisting of the raw material system, the papermaking system, the recovery system, and the drainage system), the redox potential of the papermaking system, and the electrical conductivity of the wastewater system are measured. It was measured and used as a parameter (see FIG. 14). In addition, the speed of paper products was measured as a control parameter. In addition, the basis weight of the paper product was measured as a result parameter. In addition, the number of defects in paper products was measured, and 631 sets of these data sets were prepared.
  • defect index ⁇ a relationship model of the number of defects and functions of four water quality parameters, one control parameter and one result parameter (hereinafter sometimes referred to as "defect index ⁇ ") was created. More specifically, as a procedure for creating the defect index ⁇ , after excluding parameters that are two standard deviations or more away from the average value as outliers, the R language package vars, which is a programming language for statistical analysis, is used. We conducted an analysis using the VAR model, which is a type of time series analysis. It was confirmed that the defect index ⁇ obtained by the VAR model and the number of actually generated defects are linked.
  • FIG. 19 is a plot of the number of defects versus the defect index ⁇ value of a total of 631 sets of data sets for relationship model creation.
  • FIG. 20 is a plot of defect count versus defect index ⁇ value for a total of 255 datasets for accuracy verification in Example 5;
  • FIG. 21 is a plot showing changes over time in defect indices calculated from a total of 271 sets of data sets for accuracy verification in Example 5.
  • FIG. 21 is a plot showing changes over time in defect indices calculated from a total of 271 sets of data sets for accuracy verification in Example 5.
  • FIG. 22 is a graph showing the degree of influence of each parameter on the defect index ⁇ . Note that FIG. 22 shows only parameters that are significant (p ⁇ 0.10) at a significance level of 10%. When considering a process to reduce the number of defects, it is necessary to specify parameters that have a large effect on the defect index ⁇ (proportional to the number of defects), and to prioritize investigation and improvement of the causes of fluctuations. It is also possible to effectively reduce the number of defects.
  • Example 6 Measure the pH and turbidity of the raw material system, the oxidation-reduction potential of the papermaking system, and the electrical conductivity of the drainage system as water quality parameters in the water system of the paper production facility (a continuous water system consisting of the raw material system, the papermaking system, and the drainage system). 16 hours before production of the corresponding paper product was used (see FIG. 14). In addition, the speed of paper products was measured as a control parameter. In addition, as result parameters, the basis weight of paper products and the number of defects of paper products were measured, and 1706 sets of these data sets were prepared.
  • the number of defects that occur after 16 hours, four water quality parameters, one control parameter and one result parameter function (below , sometimes called “defect index ⁇ ”). More specifically, as a procedure for creating the defect index ⁇ , after excluding parameters that are two standard deviations or more away from the average value as outliers, IBM's SPSS Modeler is used to create a multi-layer perceptron, which is a type of neural network. Analysis was performed by The correlation coefficient between the defect index ⁇ obtained by the multi-layer perceptron and the number of defects was 0.73 (p ⁇ 0.05), indicating a strong correlation.
  • the water quality parameters and parameters are applied to the above-mentioned relationship model was applied to calculate the defect index ⁇ , and the correlation coefficient with the number of defects was calculated to be 0.73 (p ⁇ 0.05). From this, it was confirmed that there is a strong correlation between the number of defects and the defect index ⁇ , and that it is effective for predicting the number of defects that will occur in the future.
  • FIG. 23 is a plot of the number of defects versus the defect index ⁇ value of a total of 1216 sets of data sets for relationship model creation in Example 6.
  • FIG. 24 is a plot of the number of defects versus the defect index ⁇ value for a total of 490 sets of data sets for accuracy verification in Example 6;
  • FIG. 11 is a plot of the number of defects versus the defect index ⁇ value for the data set of Example 6;
  • FIG. 23 is a plot of the number of defects versus the defect index ⁇ value of a total of 1216 sets of data sets for relationship model creation in Example 6.
  • FIG. 24 is a plot of the number of defects versus the defect index ⁇ value for a total of 490 sets of data sets for accuracy verification in Example 6;
  • FIG. 11 is a plot of the number of defects versus the defect index ⁇ value for the data set of Example 6;
  • FIG. 25 is a graph showing the degree of influence of each parameter on the defect index ⁇ .
  • Example 7 Measure the pH and turbidity of the raw material system, the oxidation-reduction potential of the papermaking system, and the electrical conductivity of the drainage system as water quality parameters in the water system of the paper production facility (a continuous water system consisting of the raw material system, the papermaking system, and the drainage system). 16 hours before production of the corresponding paper product was used (see FIG. 14). In addition, the flow rate of the seed box and the speed of the paper product were measured as control parameters. In addition, as result parameters, the basis weight of the paper product and the number of defects of the paper product were measured, and 2040 sets of these data sets were prepared.
  • the number of defects occurring after 16 hours four water quality parameters, two control parameters and one result parameter function (below , sometimes called “defect index ⁇ ”). More specifically, as a procedure for creating the defect index ⁇ , after excluding parameters that are two standard deviations or more away from the average value as outliers, IBM's SPSS Modeler is used to determine a decision tree and a kind of ensemble learning. An XGBoost analysis was performed. The correlation coefficient between the defect index ⁇ obtained by XGBoost and the number of defects was 0.95 (p ⁇ 0.05), indicating a strong correlation.
  • the water quality parameters and parameters are applied to the above-mentioned relationship model was applied to calculate the defect index ⁇ , and the correlation coefficient with the number of defects was calculated to be 0.57 (p ⁇ 0.05). From this, it was confirmed that there is a correlation between the number of defects and the defect index ⁇ , and that it is effective for predicting the number of defects that will occur in the future.
  • FIG. 26 is a plot of the number of defects versus the defect index ⁇ of a total of 1503 sets of data sets for relationship model creation in Example 7.
  • FIG. FIG. 27 is a plot of defect number versus defect index ⁇ for a total of 537 datasets for accuracy verification in Example 7;
  • FIG. 28 is a graph showing the degree of influence of each parameter on the defect index ⁇ .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Emergency Medicine (AREA)
  • Biomedical Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

【課題】水系におけるトラブルの発生や水系を介して製造される製品の品質を定量的に推測することができる推測装置、推測システム、推測プログラム及び推測方法を提供すること。 【解決手段】本発明の一態様によれば、水系において又は水系から派生して今後生じ得る見込結果を推測するための推測装置が提供される。この推測装置は、パラメータ情報取得部と、関係性モデル情報取得部と、推測部とを備える。パラメータ情報取得部は、水系の水質に関する水質パラメータ、水系、水系に関連する設備又は水系に添加する原料の制御条件に関する制御パラメータ、及び見込結果と異なる意味を持つパラメータであって水系、水系に関連する設備若しくは水系に添加する原料において又は水系、水系に関連する設備若しくは水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得する。関係性モデル情報取得部は、事前に作成した、見込結果又は見込結果に関連する指標と、2つ以上のパラメータとの関係を示す関係性モデル情報を取得する。推測部は、パラメータ情報及び関係性モデル情報に基づいて、見込結果又は見込結果に関連する指標を推測する。

Description

推測装置、推測システム、推測プログラム及び推測方法
 本発明は、推測装置、推測システム、推測プログラム及び推測方法に関する。
 紙製品をはじめとして、様々な製品が水系の工程で製造されている。このような工程において、操業におけるトラブルの発生や製品への悪影響を防いだり、軽減したりする観点から、トラブルを事前に予測することが行われている。
 例えば紙製品の製造において、トラブルや紙製品の品質に影響を与えることが経験的に知られているパラメータの現在の値やその変化の傾向を確認して、各種操業の条件や、水系に添加する薬品の制御を行っていた。
 例えば、特許文献1には、紙を製造する水系において、水質に関わる2以上の水質パラメータを測定し、その測定値に基づいてかかる水系の水処理を行う方法が提案されている。そして、この特許文献1に示される方法によれば、高品質の紙の製造をすることができる。
国際公開第2012/070644号
 特許文献1には、紙を製造する水系におけるトラブルの発生や紙製品の品質を定量的に推測することは開示されていない。一方で、各種操業の条件や系内に添加する薬品量の制御をより精密に行うためには、水系においてトラブルの発生や紙製品の品質を定量的に推測することが必要である。
 本発明では上記事情に鑑み、水系におけるトラブルの発生や水系を介して製造される製品の品質を定量的に推測することができる推測装置、推測システム、推測プログラム及び推測方法を提供することとした。
 本発明の一態様によれば、水系において又は水系から派生して今後生じ得る見込結果を推測するための推測装置が提供される。この推測装置は、パラメータ情報取得部と、関係性モデル情報取得部と、推測部とを備える。パラメータ情報取得部は、水系の水質に関する水質パラメータ、水系、水系に関連する設備又は水系に添加する原料の制御条件に関する制御パラメータ、及び見込結果と異なる意味を持つパラメータであって水系、水系に関連する設備若しくは水系に添加する原料において又は水系、水系に関連する設備若しくは水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得する。関係性モデル情報取得部は、事前に作成した、見込結果又は見込結果に関連する指標と、2つ以上のパラメータとの関係を示す関係性モデル情報を取得する。推測部は、パラメータ情報及び関係性モデル情報に基づいて、見込結果又は見込結果に関連する指標を推測する。
 本発明は、次に記載の各態様で提供されてもよい。
 前記推測装置において、前記関係性モデルは、前記見込結果に相当する事前確認結果又は前記事前確認結果に関連する指標と、2つ以上の前記パラメータとの回帰分析、時系列分析、決定木、ニューラルネットワーク、ベイズ、クラスタリング又はアンサンブル学習により求められるモデルである推測装置。
 前記推測装置において、前記水系は紙製品を製造する工程における水系である推測装置。
 前記推測装置において、前記水質パラメータは、前記水系のpH、電気伝導率、酸化還元電位、ゼータ電位、濁度、温度、泡高さ、生物化学的酸素要求量(BOD)、化学的酸素要求量(COD)、吸光度、色、粒度分布、凝集度合い、異物量、水面の発泡面積、水中の汚れ面積、気泡の量、グルコースの量、有機酸の量、デンプンの量、カルシウムの量、全塩素の量、遊離塩素の量、溶存酸素量、カチオン要求量、硫化水素の量、過酸化水素の量及び系内の微生物の呼吸速度からなる群から選択される1種以上である、推測装置。
 前記推測装置において、前記制御パラメータは、抄紙機の運転速度(抄速)、原料脱水機のろ布回転速度、洗浄機のろ布回転速度、前記水系に対する薬品添加量、前記水系に添加する原料に対する薬品添加量、前記水系に関連する設備に対する薬品添加量、加熱用の蒸気量、加熱用の蒸気温度、加熱用の蒸気圧力、種箱からの流量、プレスパートのニップ圧、プレスパートのフェルトバキューム圧、製紙原料の配合比率、製紙原料の損紙配合量、製紙原料のスクリーンの目開き、叩解機のローターとステーターの間の隙間距離、フリーネス及び叩解度からなる群から選択される1種以上である推測装置。
 前記推測装置において、前記結果パラメータは、前記紙製品の単位重量(米坪)、歩留率、白水濃度、前記紙製品の含水率、前記紙製品を製造する設備内の蒸気量、前記紙製品を製造する設備内の蒸気温度、前記紙製品を製造する設備内の蒸気圧力、紙製品の厚さ、前記紙製品中の灰分濃度、前記紙製品の欠点の種類、前記紙製品の欠点の数、工程内における断紙の時期、フリーネス、叩解度及び曝気量からなる群から選択される1種以上である推測装置。
 水系において又は前記水系から派生して今後生じ得る見込結果を推測するための推測システムであって、パラメータ情報取得部と、関係性モデル情報取得部と、推測部とを備え、前記パラメータ情報取得部は、前記水系の水質に関する水質パラメータ、前記水系、前記水系に関連する設備又は前記水系に添加する原料の制御条件に関する制御パラメータ、及び前記見込結果と異なる意味を持つパラメータであって前記水系、前記水系に関連する設備若しくは前記水系に添加する原料において又は前記水系、前記水系に関連する設備若しくは前記水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得し、前記関係性モデル情報取得部は、事前に作成した、前記見込結果又は前記見込結果に関連する指標と、2つ以上の前記パラメータとの関係を示す関係性モデル情報を取得し、前記推測部は、前記パラメータ情報及び前記関係性モデル情報に基づいて、前記見込結果又は前記見込結果に関連する指標を推測する推測システム。
 水系において又は前記水系から派生して今後生じ得る見込結果を推測するための推測プログラムであって、コンピュータを、パラメータ情報取得部、関係性モデル情報取得部及び推測部として機能させ、前記パラメータ情報取得部は、前記水系の水質に関する水質パラメータ、前記水系、前記水系に関連する設備又は前記水系に添加する原料の制御条件に関する制御パラメータ、及び前記見込結果と異なる意味を持つパラメータであって前記水系、前記水系に関連する設備若しくは前記水系に添加する原料において又は前記水系、前記水系に関連する設備若しくは前記水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得し、前記関係性モデル情報取得部は、事前に作成した、前記見込結果又は前記見込結果に関連する指標と、2つ以上の前記パラメータとの関係を示す関係性モデル情報を取得し、前記推測部は、前記パラメータ情報及び前記関係性モデル情報に基づいて、前記見込結果又は前記見込結果に関連する指標を推測する推測プログラム。
 水系において又は前記水系から派生して今後生じ得る見込結果を推測するための推測方法であって、パラメータ情報取得工程と、関係性モデル情報取得工程と、推測工程とを備え、前記パラメータ情報取得工程では、前記水系の水質に関する水質パラメータ、前記水系、前記水系に関連する設備又は前記水系に添加する原料の制御条件に関する制御パラメータ、及び前記見込結果と異なる意味を持つパラメータであって前記水系、前記水系に関連する設備若しくは前記水系に添加する原料において又は前記水系、前記水系に関連する設備若しくは前記水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得し、前記関係性モデル情報取得工程では、事前に作成した、前記見込結果又は前記見込結果に関連する指標と、2つ以上の前記パラメータとの関係を示す関係性モデル情報を取得し、前記推測工程では、前記パラメータ情報及び前記関係性モデル情報に基づいて、前記見込結果又は前記見込結果に関連する指標を推測する推測方法。
 もちろん、この限りではない。
 本発明によれば、水系におけるトラブルの発生や水系を介して製造される製品の品質を定量的に推測することができる。
本実施形態に係る推測システムの概略図である。 本実施形態に係る推測装置の機能構成を示す概略模式図である。 本実施形態に係る推測装置のハードウェア構成を示す概略図である。 合計30組のデータセットのトラブル発生回数A対見込結果に関連する指標aのプロットである。 見込結果に関連する指標aに対する各パラメータの影響の大小を示すグラフである。 本実施形態に係る推測方法のフローチャート図である。 実施例1における紙を製造する設備の概略図模式である。 実施例1の合計572組のデータセットの欠点数対欠点インデックスαのプロットである。 欠点インデックスに対する各パラメータの影響の大小を示すグラフである。 実施例2の合計60組のデータセットの紙力剤使用量原単位対紙力インデックス値のプロットである。 紙力インデックスに対する各パラメータの影響の大小を示すグラフである。 断紙の発生及び断紙インデックスの経時変化を示すグラフである。 断紙の発生及び断紙インデックスの経時変化を示すグラフである。 実施例4における紙を製造する設備の概略模式図である。 実施例4の関係性モデル作成用の合計647組のデータセットの欠点数対欠点インデックスβ値のプロットである。 実施例4の精度検証用の合計255組のデータセットの欠点数対欠点インデックスβ値のプロットである。 実施例4の精度検証用の合計255組のデータセットから算出した欠点インデックスの経時変化を示すプロットである。 欠点インデックスβに対する各パラメータの影響の大小を示すグラフである。 実施例5の関係性モデル作成用の合計631組のデータセットの欠点数対欠点インデックスγ値のプロットである。 実施例5の精度検証用の合計255組のデータセットの欠点数対欠点インデックスγ値のプロットである。 実施例5の精度検証用の合計271組のデータセットから算出した欠点インデックスの経時変化を示すプロットである。 欠点インデックスγに対する各パラメータの影響の大小を示すグラフである。 実施例6の関係性モデル作成用の合計1216組のデータセットの欠点数対欠点インデックスδ値のプロットである。 実施例6の精度検証用の合計490組のデータセットの欠点数対欠点インデックスδ値のプロットである。 欠点インデックスδに対する各パラメータの影響の大小を示すグラフである。 実施例7の関係性モデル作成用の合計1503組のデータセットの欠点数対欠点インデックスεのプロットである。 実施例7の精度検証用の合計537組のデータセットの欠点数対欠点インデックスεのプロットである。 欠点インデックスεに対する各パラメータの影響の大小を示すグラフである。
 以下、図を用いて本発明の実施形態について説明する。以下の実施形態に示した各構成要素は、互いに組み合わせ可能である。
 本実施形態のソフトウェアを実現するためのプログラムは、コンピュータが読み取り可能な非一時的な記録媒体(Non-Transitory Computer-Readable Medium)として提供されてもよいし、外部のサーバからダウンロード可能に提供されてもよいし、外部のコンピュータで当該プログラムを起動させてクライアント端末でその機能を実現(いわゆるクラウドコンピューティング)するように提供されてもよい。
 また、本実施形態において「部」とは、例えば、広義の回路によって実施されるハードウェア資源と、これらのハードウェア資源によって具体的に実現されうるソフトウェアの情報処理とを合わせたものも含みうる。また、本実施形態においては様々な情報を取り扱うが、これら情報は、例えば電圧・電流を表す信号値の物理的な値、0又は1で構成される2進数のビット集合体としての信号値の高低、又は量子的な重ね合わせ(いわゆる量子ビット)によって表され、広義の回路上で通信・演算が実行されうる。
 また、広義の回路とは、回路(Circuit)、回路類(Circuitry)、プロセッサ(Processor)、及びメモリ(Memory)等を少なくとも適当に組み合わせることによって実現される回路である。すなわち、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等を含むものである。
<推測システム>
 本実施形態に係る推測システムは、水系において又は水系から派生して今後生じ得る見込結果を推測するための推測システムである。具体的に、この推測システムは、パラメータ情報取得部と、関係性モデル情報取得部と、推測部とを備えるものである。これらのうち、パラメータ情報取得部は、水系の水質に関する水質パラメータ、水系、水系に関連する設備又は水系に添加する原料の制御条件に関する制御パラメータ、及び見込結果と異なる意味を持つパラメータであって水系、水系に関連する設備若しくは水系に添加する原料において又は水系、水系に関連する設備若しくは水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得するものである。関係性モデル情報取得部は、事前に作成した、見込結果又は見込結果に関連する指標と、2つ以上のパラメータとの関係を示す関係性モデル情報を取得するものである。推測部は、パラメータ情報及び関係性モデル情報に基づいて、見込結果又は見込結果に関連する指標を推測するものである。
 また、必須の構成要素ではないが、本実施形態に係る推測システムは、関係性モデル作成部及び出力部の一方又は両方を備えてもよい。なお、以下で説明する図1には、これら全てを備える推測システムについて主として説明する。
〔推測システムの機能的構成〕
 図1は、本実施形態に係る推測システムの概略図である。この推測システム1は、推測装置2と、出力装置3とを備える。
 このうち、推測装置2は、推測システム1における推測のための情報処理を制御するものである。図2は、本実施形態に係る推測装置の機能構成を示す概略模式図である。この図2に示すように、本実施形態に係る推測装置2は、水系Wにおいて又は水系Wから派生して今後生じ得る見込結果を推測するための推測装置であり、パラメータ情報取得部21と、関係性モデル情報取得部22と、推測部23とを備える。また、本実施形態に係る推測装置2は、第2推測部24と、関係性モデル作成部25と、第2関係性モデル作成部26と、第2関係性モデル情報取得部27をさらに備える。なお、これらの各部は、ここでは一つの装置の内部に含まれているものとして記載しているが、各部はそれぞれが別な装置として含まれていてもよい。また、出力装置3は、出力部の一例であり、パラメータ情報測定装置4は、パラメータ情報測定部の一例であるが、以下では特に区別せず説明する。
 ここで、「水系において又は水系から派生して今後生じ得る見込結果」のうち、「水系において今後生じ得る見込結果」とは、かかる水系を運用、操業した場合においてその水系で生じる結果であり、対象とする水系によって異なるが、例えば水系の閉塞、意図しない微生物の増加、発泡、臭気の発生や悪化、生物化学的酸素要求量(BOD)の上昇、(COD)の上昇、懸濁物質(SS)の上昇、濁度の上昇、色度の上昇、透視度の低下、脱水汚泥量の増加、汚泥ケーキ含水率の上昇、熱交換器の効率低下、冷凍機の効率低下、チラーの効率低下、冷却塔の効率低下、ろ過器のろ材や活性炭の逆洗頻度の増加、ろ過器のろ材や活性炭の交換頻度増加、膜(MF膜、UF膜、RO膜等)の洗浄頻度の増加、膜の交換頻度の増加、イオン交換樹脂の再生頻度の増加、イオン交換樹脂の交換頻度の増加、設備や配管の腐食(微生物汚れ、残留塩素による)、薬品(消泡剤、排水凝集剤、凝結剤、COD低減剤、キレート剤、生物処理栄養剤、汚泥やスラッジの脱水剤、膜汚れ防止剤、スライムコントロール剤、スケール抑制剤、防食材、洗浄剤、pH調整剤(酸、アルカリ)、緩衝剤、酸化剤、還元剤、イオン交換樹脂再生薬剤等)の増加等が挙げられる。また、「水系から派生して今後生じ得る見込結果」とは、かかる水系を運用、操業した場合においてその水系に関連してその水系以外で生じる結果であり、対象とする水系によって異なるが、製品の性能の低下、製品の歩留の低下、不要副産物の増加等、製品の臭いの変化が挙げられる。また、「見込結果に関連する指標」とは、見込結果と一定の相関関係を有する指標(例えば、2つ以上のパラメータの関数)であればよく、一般的に知られた指標でなくかかる推測システムの使用者(オペレータ等)が独自に作ったものであってもよい。
 また、紙を製造する工程の「水系において今後生じ得る見込結果」としては、例えば抄紙機の汚れ、抄紙アプローチ系の汚れ、白水回収系の汚れ、ポンプエア噛み、スクリーン閉塞、抄紙速度低下、ワイヤーパートろ水不良、プレスパート脱水不良、ドライヤーパート乾燥不良、水系内の臭気、ドライヤー工程における剥離不良、ブローク系の汚れ、原料系の汚れ等が挙げられる。紙を製造する工程の「水系から派生して今後生じ得る見込結果」とは、例えばかかる水系から生産される紙製品に関するもの(欠点数、紙力、継手率、サイズ度、透気度、平滑度、灰分量、色調、白色度、地合、臭気、苛性化率、焼成率、カッパー価、フリーネス、水分率等)や、水系以外で生じ得る事象(プレスパート~ドライヤーパートにおける断紙等)が挙げられる。
〔推測システムの機能〕
 以下、推測システム1の各部の機能について具体的に説明する。
 [パラメータ情報取得部]
 パラメータ情報取得部21は、水系Wの水質に関する水質パラメータ、水系W、水系Wに関連する設備又は水系Wに添加する原料の制御条件に関する制御パラメータ、及び見込結果と異なる意味を持つパラメータであって水系W、水系Wに関連する設備若しくは水系Wに添加する原料において又は水系W、水系Wに関連する設備若しくは水系Wに添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得するものである。
 なお、ここでの水系は、一つの槽や流路に存在するものや連続的な流れが存在するものには限られず、複数の槽や流路を持つもの、具体的には、流路に枝分かれや複数の流路の水の合流が存在したり、槽から槽へバッチ単位で移動したり、途中での処理を施したりするものも一つの水系として考える。また、水質パラメータ、制御パラメータ又は結果パラメータに係る水系が、槽等によって区分けされている場合、その水系の一部についての水質パラメータ、制御パラメータ又は結果パラメータを用いればよく、水系全部についての水質パラメータ、制御パラメータ又は結果パラメータを用いてもよい。
 水質パラメータとしては、水系Wの水質に関するものであれば特に限定されない。また、制御パラメータは、水系W、水系Wに関連する設備又は水系Wに添加する原料の制御条件に関するものであれば特に限定されない。さらに、見込結果と異なる意味を持つパラメータであって水系W、水系Wに関連する設備若しくは水系Wに添加する原料において又は水系W、水系Wに関連する設備若しくは水系Wに添加する原料から派生して生じた結果に関するものであれば特に限定されない。なお、「見込結果と異なる意味を持つ」とは、評価指標(例えば物理量)が異なる場合(例えば、一方が長さで、もう一方が質量である場合)、評価指標は同じであるが評価の対象が異なる場合(例えば紙の質量と、添加剤の質量)や測定箇所が異なる場合(例えば、製紙原料系の酸化還元電位と、抄紙系の酸化還元電位)を含む一方、結果の意味合いが異なる場合(例えば、酸化還元電位が正の場合と、酸化還元電位が負の場合)については含まない。
 以下、水系Wが紙製品を製造する工程における水系である場合の水質パラメータ、制御パラメータ及び結果パラメータの具体例について説明する。
 水質パラメータとしては、例えば水系のpH、電気伝導率、酸化還元電位、ゼータ電位、濁度、温度、泡高さ、生物化学的酸素要求量(BOD)、化学的酸素要求量(COD)、吸光度(例えば、UV吸光度)、色(例えば、RGB値)、粒度分布、凝集度合い、異物量、水面の発泡面積、水中の汚れ面積、気泡の量、グルコースの量、有機酸の量、デンプンの量、カルシウムの量、全塩素の量、遊離塩素の量、溶存酸素量、カチオン要求量、硫化水素の量、過酸化水素の量及び系内の微生物の呼吸速度からなる群から選択される1種以上を用いることが好ましい。
 制御パラメータとしては、例えば抄紙機の運転速度(抄速)、原料脱水機のろ布回転速度、洗浄機のろ布回転速度、水系に対する薬品添加量、水系に添加する原料に対する薬品添加量、水系に関連する設備に対する薬品添加量、加熱用の蒸気量、加熱用の蒸気温度、加熱用の蒸気圧力、種箱からの流量、プレスパートのニップ圧、プレスパートのフェルトバキューム圧、製紙原料の配合比率、製紙原料の損紙配合量、製紙原料のスクリーンの目開き、叩解機のローターとステーターの間の隙間距離、フリーネス及び叩解度からなる群から選択される1種以上を用いることが好ましい。なお、「水系に関連する設備」としては、水系Wが紙製品を製造する工程における水系である場合、例えば薬品を直接添加する抄紙機のワイヤーやフェルト等の設備が挙げられる。
 結果パラメータとしては、例えば紙製品の単位重量(米坪)、歩留率、白水濃度、紙製品の含水率、紙製品を製造する設備内の蒸気量、紙製品を製造する設備内の蒸気量、紙製品を製造する設備内の蒸気温度、紙製品を製造する設備内の蒸気圧力、紙製品の厚さ、紙製品中の灰分濃度、紙製品の欠点の種類、紙製品の欠点の数、工程内における断紙の時期、フリーネス、叩解度及び曝気量からなる群から選択される1種以上を用いることが好ましい。このうち、紙製品を製造する設備内の蒸気量としては、例えば抄紙機ドライヤーの蒸気量、クラフトパルプ黒液エバポレータの蒸気量、クラフトパルプ蒸解釜の黒液ヒーターの蒸気量、パルプ原料や白水加温のために吹き込んでいる蒸気量を用いることができる。
 なお、本来、同一の事項を示すパラメータであるが、目的によって分類が水質パラメータ、制御パラメータ及び結果パラメータのうち2以上に属するものがある。例えば、黒液エバポレータでは、ボイラから発生させた蒸気との間接熱交換で黒液を温め、加熱の結果、黒液からプロセス蒸気が発生する。このプロセス蒸気は次の工程の濃縮黒液の加温(濃縮)に使用される。黒液から発生したという観点から、発生したプロセス蒸気の量は、結果パラメータであるし、次の工程の濃縮黒液の加温(濃縮)に使用されるという観点から、制御パラメータとして用いられる。また、黒液を温めるためにボイラから発生させた蒸気は、制御パラメータとして用いられる。なお、パラメータ情報取得部で取得する2つ以上のパラメータは、全てのパラメータが実質的に同一のものにならないようにする。例えば、上述した黒液から発生したプロセス蒸気の全量を、次の工程の濃縮黒液の加温(濃縮)に使用する場合において、2つのパラメータ(この2つ以外にパラメータを用いない)として、結果パラメータとしての黒液から発生したプロセス蒸気と、制御パラメータとしての濃縮黒液の加温(濃縮)に使用する蒸気量とを用いることは除くものとする。このような場合において、結果パラメータとしての黒液から発生したプロセス蒸気と、制御パラメータとしての濃縮黒液の加温(濃縮)に使用する蒸気量とは実質的に同一だからである。ただし、黒液から発生したプロセス蒸気の一部を、次の工程の濃縮黒液の加温(濃縮)に使用する場合において、2つのパラメータとして、結果パラメータとしての黒液から発生したプロセス蒸気と、制御パラメータとしての濃縮黒液の加温(濃縮)に使用する蒸気量とを用いることはできる。このような場合において、結果パラメータとしての黒液から発生したプロセス蒸気と、制御パラメータとしての濃縮黒液の加温(濃縮)に使用する蒸気量とは実質的に同一でないからである。さらに、上述した黒液から発生したプロセス蒸気の全量を、次の工程の濃縮黒液の加温(濃縮)に使用する場合において、2つのパラメータとして、結果パラメータとしての黒液から発生したプロセス蒸気と、制御パラメータとしての濃縮黒液の加温(濃縮)に使用する蒸気量とを用いることに加え、さらに例えば水質パラメータとしての水系のpH等他のパラメータを組み合わせれば、複数のパラメータが実質的に同一であってもよい。加えて、例えばフリーネスや叩解度も同一のパラメータではあるが、制御パラメータ及び結果パラメータのいずれにも含まれ得るものである。
 これらのパラメータは、定量的なものであっても、定性的なものであってもよい。定性的なパラメータを用いる場合、数値を割り振って、定量的なデータとして扱ってもよい。
 なお、水質パラメータ、制御パラメータ及び結果パラメータは、それぞれ複数のパラメータを包含する概念である。「パラメータを2つ以上含むパラメータ情報」に関し、パラメータ情報に含まれる2つ以上のパラメータはそれぞれ独立して、水質パラメータ、制御パラメータ及び結果パラメータそれぞれのパラメータから選択することができ、水質パラメータ、制御パラメータ及び結果パラメータのいずれかのみから2つ以上を選択しても(例えば、水のpHと温度)、水質パラメータ、制御パラメータ及び結果パラメータの2又は3の組み合わせ(例えば、pHとプレスパートのプレス圧と紙製品の厚さ)から2つ以上を選択してもよい。ただし、全く同一のパラメータ(例えば、箇所Aの水のpHと箇所Aの水のpH)については選択しないものとする(ただし、例えば、測定箇所の異なる箇所Aの水のpHと箇所Bの水のpHであればよい)。
 [関係性モデル情報取得部]
 関係性モデル情報取得部22は、事前に作成した、見込結果又は見込結果に関連する指標と、2つ以上のパラメータとの関係を示す関係性モデル情報を取得するものである。
 関係性モデルは、事前に作成されたものであって、見込結果又は見込結果に関連する指標と、2つ以上のパラメータとの関係を示すものである。なお、「事前」とは、見込結果又は見込結果に関連する指標を推定する以前をいい、かかる水系Wについて実操業中であっても、実操業の前であっても、見込結果又は見込結果に関連する指標を推定する以前であればいずれでもよい。
 関係性モデルとしては、特に限定されないが、例えば見込結果又は見込結果に関連する指標と、2つ以上のパラメータとの関係を示す関数、ルックアップテーブル又は見込結果又は見込結果に関連する指標と、2つ以上のパラメータとの関係の学習済モデル等が挙げられる。
 なお、パラメータ情報取得部21で取得するパラメータ情報に含まれる2つ以上のパラメータと、関係性モデルに使用するパラメータ情報に含まれるパラメータとは、そのうち2つ以上が共通するものとする。上述したとおり、水質パラメータ、制御パラメータ及び結果パラメータはそれぞれ複数のパラメータを包含する概念である。「パラメータのうち2つ以上が共通する」とは、水質パラメータ、制御パラメータ及び結果パラメータいずれかのパラメータのうちの2つ以上(例えば水質パラメータのみで2以上;水のpHと温度)が共通していてもよいし、水質パラメータ、制御パラメータ及び結果パラメータの組み合わせ(例えば水質パラメータ1つと制御パラメータ1つ;例えば水のpHとプレスパートのプレス圧)が共通していてもよいし、水質パラメータ、制御パラメータ及び結果パラメータ全て(例えば水質パラメータ1つと制御パラメータ1つと結果パラメータ1つ)が共通していてもよい。
 [推測部]
 推測部23は、パラメータ情報及び関係性モデル情報に基づいて、見込結果又は見込結果に関連する指標を推測するものである。
 具体的に推測部23では、予め作成した関係性モデルに、かかる水系Wの現在のパラメータ情報を入力し、関係性モデルに代入又は照らし合わせ等をして、見込結果又は見込結果に関連する指標を推測(算出)する。
 [第2推測部]
 第2推測部24は、推測部23において、見込結果そのものではなく、見込結果に関連する指標を推測した場合において、その指標から、見込結果を推測するものである。なお、第2推測部24を設ける場合において、便宜上、推測部23を「第1推測部」と呼ぶ。
 第1推測部23で見込結果に関連する指標(以下、「関連指標」と呼ぶこともある)を推測する場合においては、関連指標から見込結果を推測する必要がある。具体的に、この関連指標を、事前に用意した第2関係性モデルに入力し、見込結果を推測する。なお、第2関係性モデルを用いる場合、便宜上、第1推測部23で用いる関係性モデルを「第1関係性モデル」と呼ぶ。
 見込結果を推測する場合、例えば関連指標に閾値を設け、関連指標がその閾値より大きければ(又は小さければ)トラブルが発生すると推測することができる。
 トラブルが発生する可能性を推測する場合、例えば関連指標に複数の閾値を設け、例えば3段階に分けて、関連指標が1段階目にあるときは、トラブルの発生が確実に起こり、関連指標が2段階目にあるときは、トラブルが生成する可能性があり、関連指標が3段階目にあるときは、トラブルの発生が確実に起こらないと推測することができる。また、関連指標とトラブルの発生確率との関係を実操業の統計データから関数化又は学習済みモデル化し、トラブルの発生の確率を算出することができる。
 [関係性モデル作成部]
 関係性モデル作成部25は、関係性モデルを作成するものである。この関係性モデルは、関係性モデル情報取得部22で取得し、かつ推測部23で見込結果又は見込結果に関連する指標の推測に用いるものであってよい。
 関係性モデルは、例えば次のようにして作成する。見込結果又は関連指標を推測するよりも前に、見込結果に対応する事前測定結果又は事前結果に関連する事前測定指標を測定する。また、同じ水系で、水質パラメータ、制御パラメータ及び結果パラメータのうちいずれか1種であるパラメータを2つ以上測定する。これらの事前測定結果又は事前測定指標及びパラメータのデータセットを複数、例えば測定を行う日や時間を変える等して事前測定結果又は事前測定指標及びパラメータに変動が生じるように用意する。次いで、事前測定結果又は事前測定指標を2以上のパラメータの関数と仮定し、事前測定結果又は事前測定指標と対比して、関数の形態や係数を確定し、関係性モデルを構築する。このとき、2以上のパラメータの関数と事前測定結果又は事前測定指標との対比によって関数の係数を確定するに際しては、回帰分析法(線形モデル、一般化線形モデル、一般化線形混合モデル、リッジ回帰、ラッソ回帰、エラスティックネット、サポートベクター回帰、射影追跡回帰等)、時系列分析(VARモデル、SVARモデル、ARIMAXモデル、SARIMAXモデル、状態空間モデル等)、決定木(決定木、回帰木、ランダムフォレスト、XGBoost等)、ニューラルネットワーク(単純パーセプトロン、多層パーセプトロン、DNN、CNN、RNN、LSTM等)、ベイズ(ナイーブベイズ等)、クラスタリング(k-means、k-means++等)、アンサンブル学習(Boosting、Adaboost等)等を用いることができる。
 一実施形態において、関係性モデルは、見込結果に相当する事前確認結果又は事前確認結果に関連する指標と、2つ以上のパラメータとの回帰分析により求められるモデルであることが好ましい。なお、回帰分析を行う場合の、サンプルセット数は特に限定されるものではない。
 関係性モデルの作成は、見込結果を推測する水系と同一の水系で行うことが好ましい。また、例えば同一の装置内でも、水系の水質が大きく変化するような場合(例えば、製紙工場の抄紙系において、製紙原料であるパルプを変更した場合等)には、水質が変化した後の水系についての関係性モデルを作成して用いることが好ましい。
 このような観点から、水系Wの操業中に、定期又は不定期に、見込結果又は関連指標及び2以上のパラメータを測定し、都度関係性モデルを作成したり、データを追加して関係性モデルを更新したりしてもよい。
 なお、関係性モデル作成部25は必須の構成要素ではないため、関係性モデルの作成は例えばオペレータ等が人的に(手動で)行ってもよい。
 [第2関係性モデル作成部]
 第2関係性モデル作成部26は、第2関係性モデルを作成するものである。この第2関係性モデルは、後述する第2関係性モデル情報取得部26で取得し、かつ第2推測部24で見込結果を推測するためのものであってよい。
 ここで、第2関係性モデルとは、関連指標と見込結果との関係を示すモデルをいう。なお、第2関係性モデル作成部26を設ける場合において、便宜上、関係性モデル作成部25を「第1関係性モデル作成部」と呼ぶ。
 第2関係性モデルとしては、特に限定されないが、例えば関連指標と見込結果との関係を示す関数、ルックアップテーブル又は関連指標と見込結果との関係の学習済モデル等が挙げられる。
 第2関係性モデルは、例えば次のようにして作成する。見込結果を推測するよりも前に、見込結果に対応する事前測定結果及び事前結果に関連する事前測定指標を測定する。これらの事前測定結果及び事前測定指標のデータセットを複数、例えば測定を行う日や時間を変える等して事前測定結果及び事前測定指標に変動が生じるように用意する。次いで、事前測定結果を事前測定指標の関数として、推測モデルを構築する。または、例えば事前測定結果及び事前測定指標のデータセットを複数用意した後、事前測定結果が顕著に変化する点(事前測定指標)等で関連指標について閾値を設定して、第2関係性モデルを構築してもよい。
 第2関係性モデルの作成は、見込結果を推測する水系と同一の水系で行うことが好ましい。また、例えば同一の装置内でも、水系の水質が大きく変化するような場合(例えば、製紙工場の抄紙系において、製紙原料であるパルプを変更した場合等)には、水質が変化した後の水系についての第2関係性モデルを作成して用いることが好ましい。
 なお、第2関係性モデル作成部26は必須の構成要素ではなく、第2関係性モデルの作成は例えばオペレータ等が人的に(手動で)行ってもよい。
 [第2関係性モデル情報取得部]
 第2関係性モデル情報取得部27は、第2関係性モデルを取得するものである。第2関係性モデルは、第2関係性モデル作成部26で作成したものであってよい。
 なお、第2関係性モデル取得部27を設ける場合において、便宜上、関係性モデル取得部22を「第1関係性モデル取得部」と呼ぶ。
 [関係性モデル評価部]
 推測システム1、推測装置2は、関係性モデル評価部(図示せず。)を備えてもよい。
 関係性モデル評価部は、関係性モデル作成部25で作成した関係性モデルを評価し、見込結果又は関連指標に対する、それぞれのパラメータ情報の影響の大きさを評価するものである。
 パラメータごとに関係性モデルに対する影響の大きさは異なるものであり、関係性モデルに対する影響の小さいパラメータが多く含まれていても、精度が向上しないばかりか、演算等の効率が低下することがある。そこで、後述する関係性モデル情報調整部で、関係性モデルに対する影響の小さいパラメータ情報を除外するため、関係性モデル評価部では、それぞれのパラメータ情報の影響の大きさを評価する。
 それぞれのパラメータ情報の影響の大きさを評価する方法としては、特に限定されないが、例えば、見込結果が各パラメータの1次関数として関係性モデルが表される場合、その係数の絶対値の大きさによって比較評価すればよい。例えば、関係性モデルに対する影響順にパラメータ情報を並べて、影響の大きい順に所定の数のパラメータ情報以外を除外しても、影響の小さい順に所定の数のパラメータ情報を除外してもよく、また、閾値を設けこの閾値を下回るパラメータを関係性モデル調整部で除外する等してもよい。
 [関係性モデル調整部]
 推測システム1、推測装置2は、関係性モデル情報調整部(図示せず。)を備えてもよい。
 上述したとおり、関係性モデル情報調整部は、関係性モデルに対する影響の小さいパラメータ情報を除外調整した上で、再度、関係性モデル情報作成部25に関係性モデル情報の作成を指示する。
 このような関係性モデル評価部、関係性モデル情報調整部を設ける場合、関係性モデル評価部の評価及び関係性モデル情報調整部の調整は、1回のみ行ってもよいし、2回以上繰り返し行ってもよい。
 [出力部]
 出力部3は、推測部23が算出した見込結果若しくは関連指標又は第2推測部24が推測した見込結果の少なくともいずれかを出力するように構成されるものである。
 出力部3は、例えば見込結果又は関連指標を経時的に表示(見込結果又は関連指標対時間グラフ等)してもよい。
 出力部3は、例えば見込結果又は関連指標が一定の閾値を超えた場合等に警告を出力してもよい。
 [パラメータ情報測定部]
 パラメータ情報測定部4は、水質パラメータ、制御パラメータ又は結果パラメータを測定するものである。
 なお、図1におけるパラメータ情報測定装置4として、便宜上、1つのみを記載しているが、この例に限られず、2以上のパラメータ情報測定装置を用いてもよい。
 測定装置としては、測定すべきパラメータの内容により異なり、各種センサ等を選択することができる。測定装置としては、例えば、pH計、電気伝導率計、酸化還元電位計、濁度計、温度計、泡高さを測定するレベル計、COD計、UV計、粒度分布計、凝集センサ、デジタルカメラ(又はデジタルビデオカメラ)、内部気泡センサ、吸光光度計、フリーネス計、溶存酸素計、ゼータ電位計、残留塩素計、硫化水素計、リテンション・ろ水度計、カラーセンサ、過酸化水素計等を用いることができる。
 なお、制御パラメータ等は、装置の制御のために直接入力するものをそのまま用いる場合もあり、そのようなデータを装置から通信して授受してもよいし、装置のオペレータなどが制御パラメータの記録のために、装置以外に記録しておいてもよい。
 本実施形態に係る推測システム等の対象とする水系としては、特に限定されず、例えば紙製品を製造する工程における水系であってよい。具体的に、紙製品を製造する工程であれば、蒸解工程、洗浄工程、黒液濃縮工程、苛性化工程等が挙げられる。また、対象とする水系としては、紙製品を製造する工程以外の水系以外でもよく、例えば各種の配管、熱交換器、貯蔵タンク、窯、洗浄装置等が挙げられる。
〔推測システムのハードウェア構成〕
 図3は、本実施形態に係る推測装置のハードウェア構成を示す概略図である。図3に示されるように、推測装置2は、通信部51と、記憶部52と、制御部53とを有し、これらの構成要素が推測装置2の内部において通信バス54を介して電気的に接続されている。以下、これらの構成要素についてさらに説明する。
 通信部51は、USB、IEEE1394、Thunderbolt、有線LANネットワーク通信等といった有線型の通信手段が好ましいが、無線LANネットワーク通信、3G/LTE/5G等のモバイル通信、Bluetooth(登録商標)通信等を必要に応じて含めることができる。すなわち、これら複数の通信手段の集合として実施することがより好ましい。これにより推測装置2と通信可能な他の機器との間で情報や命令のやりとりが実行される。
 記憶部52は、上述記載により定義される様々な情報を記憶する。これは、例えばソリッドステートドライブ(Solid State Drive:SSD)等のストレージデバイスとして、または、プログラムの演算に係る一時的に必要な情報(引数、配列等)を記憶するランダムアクセスメモリ(Random Access Memory:RAM)等のメモリとして実施され得る。また、記憶部52は、これらの組合せであってもよい。また、記憶部52は、後述する制御部53が読み出し可能な各種のプログラムを記憶している。
 制御部53は、推測装置2に関連する全体動作の処理・制御を行う。この制御部53は、例えば中央処理装置(Central Processing Unit:CPU、図示せず。)である。制御部53は、記憶部52に記憶された所定のプログラムを読み出すことによって、推測装置2に係る種々の機能を実現するものである。すなわち、ソフトウェア(記憶部52に記憶されている。)による情報処理がハードウェア(制御部53)によって具体的に実現されることで、図3に示されるように、制御部53における各機能部として実行され得る。なお、図3においては、単一の制御部53として表記されているが、実際にはこれに限るものではなく、機能ごとに複数の制御部53を有するように構成してもよく、また、単一の制御部と複数の制御部を組合せてもよい。
〔関係性モデル作成の例〕
 以下、関係性モデル作成の例について説明する。具体的には、水質パラメータx、水質パラメータy及び制御パラメータzを用いて、見込結果に関連する指標aを算出し、この見込結果に関連する指標aと見込結果としてのトラブル発生回数A(回数/日)を算出する場合について説明する。
 関係性モデルの作成にあたって、下記表1に示す水質パラメータx、水質パラメータy、制御パラメータzを測定するとともに、トラブル発生回数Aも測定し、合計30組のデータを取得する。取得したデータを下記表1に示す。
 見込結果に関連する指標aは、「パラメータ」をx、y、zとし、bをx,y,zの係数とし、a,bを定数として下記式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 トラブル発生回数Aの実測値と式(1)の見込結果に関連する指標aに基づいて負の二項回帰分析を行う。これより算出される見込結果に関連する指標aを表1にあわせて示す。また、図4は、合計30組のデータセットのトラブル発生回数A対見込結果に関連する指標aのプロットである。トラブル発生回数Aと見込結果に関連する指標aとの相関係数は、r=0.78(p<0.05)であり、強い相関が認められる。
Figure JPOXMLDOC01-appb-T000002
 また、図5は、見込結果に関連する指標aに対する各パラメータの影響の大小を示すグラフである。この例においては、制御パラメータz、水質パラメータx、水質パラメータyの順に見込結果に関連する指標aに対し影響が大きいといえる。各パラメータの標準化得点を用いて負の二項回帰分析を行うことにより、図5の結果が得られる。なお、標準化得点は、(個別の数値-平均値)/標準偏差で求めることができる。
 なお、回帰分析に用いた見込結果に関連する指標aと、水質パラメータx、水質パラメータy及び制御パラメータzとの関数は、上記式(1)に限られず、一般式(2)を用いることができる。
Figure JPOXMLDOC01-appb-M000003
 以上のような推測システム1、推測装置2によれば、水系Wにおけるトラブルの発生や水系Wを介して製造される製品の品質を定量的に推測することができる。特に、トラブルの発生や製品の品質に影響を与えるパラメータの数が多くても、それぞれの影響をより正確に考慮してトラブルの発生や製品の品質を予測することができる。
<推測プログラム>
 本実施形態に係る推測プログラムは、推測プログラムは、水系において又は水系から派生して今後生じ得る見込結果を推測するための推測プログラムである。具体的に、この推測プログラムは、コンピュータを、パラメータ情報取得部、関係性モデル情報取得部及び推測部として機能させるものである。パラメータ情報取得部は、水系の水質に関する水質パラメータ、水系、水系に関連する設備又は水系に添加する原料の制御条件に関する制御パラメータ、及び見込結果と異なる意味を持つパラメータであって水系、水系に関連する設備若しくは水系に添加する原料において又は水系、水系に関連する設備若しくは水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得するものである。関係性モデル情報取得部は、事前に作成した、見込結果又は見込結果に関連する指標と、2つ以上のパラメータとの関係を示す関係性モデル情報を取得するものである。推測部は、パラメータ情報及び関係性モデル情報に基づいて、見込結果又は見込結果に関連する指標を推測するものである。
 なお、パラメータ情報取得部、関係性モデル情報取得部及び推測部については、上述した推測システムと同様のものを用いることができるため、ここでの説明は省略する。
<推測方法>
 本実施形態に係る推測方法は、水系において又は水系から派生して今後生じ得る見込結果を推測するための推測方法である。具体的に、この推測方法は、パラメータ情報取得工程と、関係性モデル情報取得工程と、推測工程とを備えるものである。パラメータ情報取得工程では、水系の水質に関する水質パラメータ、水系、水系に関連する設備又は水系に添加する原料の制御条件に関する制御パラメータ、及び見込結果と異なる意味を持つパラメータであって水系、水系に関連する設備若しくは水系に添加する原料において又は水系、水系に関連する設備若しくは水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得する。関係性モデル情報取得工程では、事前に作成した、見込結果又は見込結果に関連する指標と、2つ以上のパラメータとの関係を示す関係性モデル情報を取得する。推測工程では、パラメータ情報及び関係性モデル情報に基づいて、見込結果又は見込結果に関連する指標を推測する。
 図6は、本実施形態に係る推測方法のフローチャート図である。図6に示すとおり、本実施形態に係る支援方法においては、パラメータ情報を取得する(パラメータ情報取得工程S1)とともに、関係性モデル情報を取得し(関係性モデル情報取得工程S2)、これらを入力情報として、見込結果又は見込結果に関連する指標を推測する(推測工程S3)。
 以下、本発明について実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
〔実施例1〕
 洋紙生産設備の水系(原料系、抄紙系、回収系からなる連続した水系)の原料系1で酸化還元電位を、原料系2で酸化還元電位を、抄紙系で酸化還元電位、濁度、pH、水温を、回収系で泡高さをそれぞれ水質パラメータとして測定し、対応する紙製品の製造前24時間の平均値を用いた。図7は、実施例1における紙を製造する設備の概略模式図である。また、結果パラメータとして紙製品の米坪を測定した。さらに、紙製品の欠点数を測定し、これらのデータセットを572組用意した。このデータセットのうち時系列順で前半65%(372組)のデータセットを用いて、24時間以内に発生する欠点数と、7つの水質パラメータ及び1つの結果パラメータの関数(以下、「欠点インデックスα」ということもある)の関係性モデルを作成した。より具体的に、欠点インデックスαの作成の手順としては、平均値から2標準偏差以上離れているパラメータを外れ値として除外した上で、IBM社のSPSS Modelerを使用して回帰分析を行った。回帰分析により得られた欠点インデックスαと欠点数との相関係数は0.71(p<0.05)であり強い相関が認められた。
 次に、将来発生する欠点数に対する欠点インデックスαの予測精度を検証するため、データセットのうち時系列順で後半35%(200組)のデータセットについて、水質パラメータ及びパラメータを上述の関係性モデルに当てはめて欠点インデックスαを算出し、欠点数との相関係数を算出したところ、その値は0.71(p<0.05)であった。このことから欠点数と欠点インデックスαとの間には強い相関があり、欠点インデックスαは将来発生する欠点数の予測に有効であることが確認された。
 図8は、実施例1の合計572組のデータセットの欠点数対欠点インデックスαのプロットである。なお、図8において、関係性モデル作成用の372組のデータセットを円形、精度検証用の200組のデータセットを四角形でそれぞれ示した。
 図9は、欠点インデックスαに対する各パラメータの影響の大小を示すグラフである。欠点数を減らす処理を検討する際には、このようにして欠点インデックス(欠点数に比例)に対して影響の大きいパラメータを特定し、それが変動する原因を優先的に調査、改善することにより効率的に欠点数を減らすこともできる。
〔実施例2〕
 段ボール原紙(ライナー)生産設備の原料系1~3でpH、電気伝導率を、原料系2でpH、酸化還元電位を、原料系3でpH、電気伝導率、抄紙系:水温、電気伝導率をそれぞれ水質パラメータとして測定した(図7参照)。また、水質パラメータ測定と同時間に製造された紙製品の紙力剤使用量原単位を測定し、これらのデータセットを60組用意した。これらのデータセットをランダムに7:3に区分し、70%(42組)を関係性モデル作成用データ、30%(18組)をモデル検証用データとして用いた。
 まず、関係性モデル作成用データを用いて、紙力剤使用量原単位の逆数を示す関係性モデルを「紙力インデックス」とし、上述した8個の水質パラメータの関数として作成した。より具体的に、紙力インデックス作成の手順としては、平均値から2標準偏差以上離れているパラメータを外れ値として除外した上で、IBM社のSPSS Modelerを使用して回帰分析を行った。回帰分析により得られた紙力インデックスと紙力剤使用量原単位との相関係数は-0.58(p<0.05)であり相関が認められた。
 次に、紙力インデックスの精度を検証するため、データセットのうち残りの30%のデータセットについて、水質パラメータから紙力インデックスを算出し、紙力剤使用量原単位との相関係数を算出したところ、その値は-0.59(p<0.05)であり、紙力剤使用量原単位と紙力インデックスとの間には相関があることが確認された。
 図10は、実施例2の合計60組のデータセットの紙力剤使用量原単位対紙力インデックス値のプロットである。なお、図10において、関係性モデル作成用の42組のデータセットを円形、精度検証用の18組のデータセットを四角形でそれぞれ示した。
 図11は、紙力インデックスに対する各パラメータの影響の大小を示すグラフである。紙製品の強度(紙力)の安定化や、紙力剤使用量原単位の改善を検討する際には、このようにして紙力インデックス(紙力使用量原単位に比例)に対して影響の大きいパラメータを特定し、それが変動する原因を優先的に調査、改善することにより効率的に製品強度(紙力)を安定化させ、紙力剤使用量原単位を改善することもできる。
〔実施例3〕
 板紙生産設備の水系(原料系、抄紙系、回収水からなる連続した水系)の原料系で温度、pH、酸化還元電位、電気伝導度、濁度、静置上積み濁度、抄紙系でpH、酸化還元電位、電気伝導度、濁度、回収系で濁度をそれぞれ水質パラメータとして測定した(図7参照)。制御パラメータとして操業稼働タイミング、抄紙速度、内添薬品添加量、フェルト含水率、紙中灰分、製品米坪、製品銘柄を用いた。さらに断紙タイミングを測定し、これらのデータセットを138,276組用意した。なお、水質パラメータ、制御パラメータ及び断紙タイミングは、同じ時間のものを用いた。このデータセットを用いて、実施例1及び実施例2と同様にして、24時間以内に発生する断紙と上述した水質パラメータ及び制御パラメータの関数(以下、「断紙インデックス」ということもある)の関係性モデルを作成した。具体的には、断紙発生指標作成の手順としては、平均値から2標準偏差以上離れているパラメータを外れ値として除外した上で、IBM社のSPSS Modelerを使用して回帰分析を行い、関係性モデルを作成した。なお、データセット数が膨大であるため、プロット図は省略する。
 同じ板紙生産設備の水系で、実操業(板紙生産)の際に、水質パラメータ及び制御パラメータを測定し、上述したようにして作成した関係性モデルを用いて、断紙インデックスを求めた。また、これに対応する実際の断紙発生回数を測定した。それぞれ日時を変えて合計2回測定を行った。
 図12及び図13は、断紙の発生及び断紙インデックスの経時変化を示すグラフである。図12及び図13においては、縦軸に断紙の発生及び断紙インデックスを、横軸に時間を示している。円形が実際の断紙の発生の有無(0のときには断紙発生無、1のときには断紙発生有)を示しており(縦軸左)、四角形が断紙インデックスを示している(縦軸右)。図12及び図13から、断紙インデックスが1に近づくと実際に断紙が発生することが明らかである。断紙インデックスに対する閾値を適切に設けることで、断紙を予測することができることが分かった。
[実施例4]
 洋紙生産設備の水系(原料系、抄紙系、回収系、排水系からなる連続した水系)の原料系1でpH、濁度を、抄紙系で酸化還元電位を、排水系で電気伝導率をそれぞれ水質パラメータとして測定し、対応する紙製品の製造16時間前の測定値を用いた。図14は、実施例4における紙を製造する設備の概略模式図である。また、制御パラメータとして紙製品の抄速を測定した。さらに、結果パラメータとして紙製品の米坪を測定した。あわせて紙製品の欠点数を測定し、これらのデータセットを647組用意した。このデータセットを用いて、欠点数と、4つの水質パラメータ、1つの制御パラメータ及び1つの結果パラメータの関数(以下、「欠点インデックスβ」ということもある)の関係性モデルを作成した。より具体的に、欠点インデックスβ作成の手順としては、平均値から2標準偏差以上離れているパラメータを外れ値として除外した上で、統計解析向けのプログラミング言語であるR言語のパッケージKFASを使用して状態空間モデルによる解析を行った。状態空間モデルにより得られた欠点インデックスβと欠点数との相関係数は0.62(p<0.05)であり、相関があることが確認された。
 将来発生する欠点数に対する欠点インデックスβの予測精度を検証するために、16時間毎に直近647組のデータセットを用いて、16時間先までの欠点インデックスβを算出する解析を1時間おきに1バッチ、合計16バッチ(16回)順に繰り返し、255組の欠点インデックスβを得た。なお、172~264時間の間、洋紙の生産を停止した。これらの欠点インデックスβと、16時間後までに実際に発生した欠点数との相関係数を算出したところ、その値は0.80(p<0.05)であった。このことから欠点数と欠点インデックスβとの間には強い相関があり、欠点インデックスβは将来発生する欠点数の予測に有効であることが確認された。
 図15は、実施例4の合計647組のデータ作成用のデータセットの欠点数対欠点イン デックスβ値のプロットである。また、図16は、実施例4の合計255組の精度検証用のデータセットの欠点数対データ作成用の欠点インデックスβ値のプロットである。
 図17は、実施例4の精度検証用の合計255組のデータセットから算出した欠点インデックスの経時変化を示すプロットである。
 図18は、欠点インデックスβに対する各パラメータの影響の大小を示すグラフである。欠点数を減らす処理を検討する際には、このようにして欠点インデックスβ(欠点数に比例)に対して影響の大きいパラメータを特定し、それが変動する原因を優先的に調査、改善することにより効率的に欠点数を減らすこともできる。
[実施例5]
 洋紙生産設備の水系(原料系、抄紙系、回収系、排水系からなる連続した水系)の原料系でpH、濁度を、抄紙系で酸化還元電位を、排水系で電気伝導率をそれぞれ水質パラメータとして測定し用いた(図14参照)。また、制御パラメータとして紙製品の抄速を測定した。さらに、結果パラメータとして紙製品の米坪を測定した。あわせて紙製品の欠点数を測定し、これらのデータセットを631組用意した。このデータセットを用いて、欠点数と、4つの水質パラメータ、1つの制御パラメータ及び1つの結果パラメータの関数(以下、「欠点インデックスγ」ということもある)の関係性モデルを作成した。より具体的に、欠点インデックスγ作成の手順としては、平均値から2標準偏差以上離れているパラメータを外れ値として除外した上で、統計解析向けのプログラミング言語であるR言語のパッケージvarsを使用して時系列分析の一種であるVARモデルによる解析を行った。VARモデルにより得られた欠点インデックスγと実際に発生した欠点数が連動することが確認された。
 将来発生する欠点数に対する欠点インデックスγの予測精度を検証するために、6時間毎に直近631組のデータセットを用いて、6時間先までの欠点インデックスγを算出する解析を1時間おきに1バッチ、合計46バッチ(46回)順に繰り返し、271組の欠点インデックスγを得た。これらの欠点インデックスγと、6時間後までに実際に発生した欠点数との相関係数を算出したところ、その値は0.64(p<0.05)であった。このことから欠点数と欠点インデックスγとの間には相関があり、将来発生する欠点数の予測に有効であることが確認された。
 図19は関係性モデル作成用の合計631組のデータセットの欠点数対欠点インデックスγ値のプロットである。図20は、実施例5の精度検証用の合計255組のデータセットの欠点数対欠点インデックスγ値のプロットである。
 図21は、実施例5の精度検証用の合計271組のデータセットから算出した欠点インデックスの経時変化を示すプロットである。
 図22は、欠点インデックスγに対する各パラメータの影響の大小を示すグラフである。なお、図22においては、有意水準10%で有意(p<0.10)であるパラメータのみを示した。欠点数を減らす処理を検討する際には、このようにして欠点インデックスγ(欠点数に比例)に対して影響の大きいパラメータを特定し、それが変動する原因を優先的に調査、改善することにより効率的に欠点数を減らすこともできる。
[実施例6]
 洋紙生産設備の水系(原料系、抄紙系、排水系からなる連続した水系)の原料系でpH、濁度を、抄紙系で酸化還元電位を、排水系で電気伝導率をそれぞれ水質パラメータとして測定し、対応する紙製品の製造16時間前の数値を用いた(図14参照)。また、制御パラメータとして紙製品の抄速を測定した。また、結果パラメータとして紙製品の米坪と紙製品の欠点数を測定し、これらのデータセットを1706組用意した。このデータセットのうち時系列順で前半71%(1216組)のデータセットを用いて、16時間後に発生する欠点数と、4つの水質パラメータ、1つの制御パラメータ及び1つの結果パラメータの関数(以下、「欠点インデックスδ」ということもある)の関係性モデルを作成した。より具体的に、欠点インデックスδ作成の手順としては、平均値から2標準偏差以上離れているパラメータを外れ値として除外した上で、IBM社のSPSSModelerを使用してニューラルネットワークの一種である多層パーセプトロンによる解析を行った。多層パーセプトロンにより得られた欠点インデックスδと欠点数との相関係数は0.73(p<0.05)であり強い相関が認められた。
 次に、欠点インデックスδの将来発生する欠点数に対する予測精度を検証するため、データセットのうち時系列順で後半29%(490組)のデータセットについて、水質パラメータ及びパラメータを上述の関係性モデルに当てはめて欠点インデックスδを算出し、欠点数との相関係数を算出したところ、その値は0.73(p<0.05)であった。このことから欠点数と欠点インデックスδとの間には強い相関があり、将来発生する欠点数の予測に有効であることが確認された。
 図23は、実施例6の関係性モデル作成用の合計1216組のデータセットの欠点数対欠点インデックスδ値のプロットである。図24は、実施例6の精度検証用の合計490組のデータセットの欠点数対欠点インデックスδ値のプロットである。実施例6のデータセットの欠点数対欠点インデックスδ値のプロットである。
 図25は、欠点インデックスδに対する各パラメータの影響の大小を示すグラフである。欠点数を減らす処理を検討する際には、このようにして欠点インデックスδ(欠点数に比例)に対して影響の大きいパラメータを特定し、それが変動する原因を優先的に調査、改善することにより効率的に欠点数を減らすこともできる。
 [実施例7]
 洋紙生産設備の水系(原料系、抄紙系、排水系からなる連続した水系)の原料系でpH、濁度を、抄紙系で酸化還元電位を、排水系で電気伝導率をそれぞれ水質パラメータとして測定し、対応する紙製品の製造16時間前の数値を用いた(図14参照)。また、制御パラメータとして種箱の流量と紙製品の抄速を測定した。また、結果パラメータとして紙製品の米坪と紙製品の欠点数を測定し、これらのデータセットを2040組用意した。このデータセットのうち時系列順で前半74%(1503組)のデータセットを用いて、16時間後に発生する欠点数と、4つの水質パラメータ、2つの制御パラメータ及び1つの結果パラメータの関数(以下、「欠点インデックスε」ということもある)の関係性モデルを作成した。より具体的に、欠点インデックスε作成の手順としては、平均値から2標準偏差以上離れているパラメータを外れ値として除外した上で、IBM社のSPSSModelerを使用して決定木及びアンサンブル学習の一種であるXGBoostによる解析を行った。XGBoostにより得られた欠点インデックスεと欠点数との相関係数は0.95(p<0.05)であり強い相関が認められた。
 次に、欠点インデックスεの将来発生する欠点数に対する予測精度を検証するため、データセットのうち時系列順で後半26%(537組)のデータセットについて、水質パラメータ及びパラメータを上述の関係性モデルに当てはめて欠点インデックスεを算出し、欠点数との相関係数を算出したところ、その値は0.57(p<0.05)であった。このことから欠点数と欠点インデックスεとの間には相関があり、将来発生する欠点数の予測に有効であることが確認された。
 図26は、実施例7の関係性モデル作成用の合計1503組のデータセットの欠点数対欠点インデックスεのプロットである。図27は、実施例7の精度検証用の合計537組のデータセットの欠点数対欠点インデックスεのプロットである。
 図28は、欠点インデックスεに対する各パラメータの影響の大小を示すグラフである。欠点数を減らす処理を検討する際には、このようにして欠点インデックスε(欠点数に比例)に対して影響の大きいパラメータを特定し、それが変動する原因を優先的に調査、改善することにより効率的に欠点数を減らすこともできる。
 1  推測システム
 2  推測装置
 3  出力装置又は出力部
 4  パラメータ情報測定装置又はパラメータ情報測定部
 21  パラメータ情報取得部
 22  関係性モデル情報取得部又は第1関係性モデル情報取得部
 23  推測部又は第1推測部
 24  第2推測部
 25  関係性モデル情報作成部又は第1関係性モデル情報作成部
 26  第2関係性モデル作成部
 27  第2関係性モデル情報取得部
 51  通信部
 52  記憶部
 53  制御部
 54  通信バス

Claims (9)

  1.  水系において又は前記水系から派生して今後生じ得る見込結果を推測するための推測装置であって、
     パラメータ情報取得部と、関係性モデル情報取得部と、推測部とを備え、
     前記パラメータ情報取得部は、前記水系の水質に関する水質パラメータ、前記水系、前記水系に関連する設備又は前記水系に添加する原料の制御条件に関する制御パラメータ、及び前記見込結果と異なる意味を持つパラメータであって前記水系、前記水系に関連する設備若しくは前記水系に添加する原料において又は前記水系、前記水系に関連する設備若しくは前記水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得し、
     前記関係性モデル情報取得部は、事前に作成した、前記見込結果又は前記見込結果に関連する指標と、2つ以上の前記パラメータとの関係を示す関係性モデル情報を取得し、
     前記推測部は、前記パラメータ情報及び前記関係性モデル情報に基づいて、前記見込結果又は前記見込結果に関連する指標を推測する
     推測装置。
  2.  請求項1に記載の推測装置において、
     前記関係性モデルは、前記見込結果に相当する事前確認結果又は前記事前確認結果に関連する指標と、2つ以上の前記パラメータとの回帰分析、時系列分析、決定木、ニューラルネットワーク、ベイズ、クラスタリング又はアンサンブル学習により求められるモデルである
     推測装置。
  3.  請求項1又は請求項2に記載の推測装置において、
     前記水系は紙製品を製造する工程における水系である
     推測装置。
  4.  請求項3に記載の推測装置において、
     前記水質パラメータは、前記水系のpH、電気伝導率、酸化還元電位、ゼータ電位、濁度、温度、泡高さ、生物化学的酸素要求量(BOD)、化学的酸素要求量(COD)、吸光度、色、粒度分布、凝集度合い、異物量、水面の発泡面積、水中の汚れ面積、気泡の量、グルコースの量、有機酸の量、デンプンの量、カルシウムの量、全塩素の量、遊離塩素の量、溶存酸素量、カチオン要求量、硫化水素の量、過酸化水素の量及び系内の微生物の呼吸速度からなる群から選択される1種以上である、
     推測装置。
  5.  請求項3又は請求項4に記載の推測装置において、
     前記制御パラメータは、抄紙機の運転速度(抄速)、原料脱水機のろ布回転速度、洗浄機のろ布回転速度、前記水系に対する薬品添加量、前記水系に添加する原料に対する薬品添加量、前記水系に関連する設備に対する薬品添加量、加熱用の蒸気量、加熱用の蒸気温度、加熱用の蒸気圧力、種箱からの流量、プレスパートのニップ圧、プレスパートのフェルトバキューム圧、製紙原料の配合比率、製紙原料の損紙配合量、製紙原料のスクリーンの目開き、叩解機のローターとステーターの間の隙間距離、フリーネス及び叩解度からなる群から選択される1種以上である
     推測装置。
  6.  請求項3~請求項5のいずれか1項に記載の推測装置において、
     前記結果パラメータは、前記紙製品の単位重量(米坪)、歩留率、白水濃度、前記紙製品の含水率、前記紙製品を製造する設備内の蒸気量、前記紙製品を製造する設備内の蒸気温度、前記紙製品を製造する設備内の蒸気圧力、紙製品の厚さ、前記紙製品中の灰分濃度、前記紙製品の欠点の種類、前記紙製品の欠点の数、工程内における断紙の時期、フリーネス、叩解度及び曝気量からなる群から選択される1種以上である
     推測装置。
  7.  水系において又は前記水系から派生して今後生じ得る見込結果を推測するための推測システムであって、
     パラメータ情報取得部と、関係性モデル情報取得部と、推測部とを備え、
     前記パラメータ情報取得部は、前記水系の水質に関する水質パラメータ、前記水系、前記水系に関連する設備又は前記水系に添加する原料の制御条件に関する制御パラメータ、及び前記見込結果と異なる意味を持つパラメータであって前記水系、前記水系に関連する設備若しくは前記水系に添加する原料において又は前記水系、前記水系に関連する設備若しくは前記水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得し、
     前記関係性モデル情報取得部は、事前に作成した、前記見込結果又は前記見込結果に関連する指標と、2つ以上の前記パラメータとの関係を示す関係性モデル情報を取得し、
     前記推測部は、前記パラメータ情報及び前記関係性モデル情報に基づいて、前記見込結果又は前記見込結果に関連する指標を推測する
     推測システム。
  8.  水系において又は前記水系から派生して今後生じ得る見込結果を推測するための推測プログラムであって、
     コンピュータを、パラメータ情報取得部、関係性モデル情報取得部及び推測部として機能させ、
     前記パラメータ情報取得部は、前記水系の水質に関する水質パラメータ、前記水系、前記水系に関連する設備又は前記水系に添加する原料の制御条件に関する制御パラメータ、及び前記見込結果と異なる意味を持つパラメータであって前記水系、前記水系に関連する設備若しくは前記水系に添加する原料において又は前記水系、前記水系に関連する設備若しくは前記水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得し、
     前記関係性モデル情報取得部は、事前に作成した、前記見込結果又は前記見込結果に関連する指標と、2つ以上の前記パラメータとの関係を示す関係性モデル情報を取得し、
     前記推測部は、前記パラメータ情報及び前記関係性モデル情報に基づいて、前記見込結果又は前記見込結果に関連する指標を推測する
     推測プログラム。
  9.  水系において又は前記水系から派生して今後生じ得る見込結果を推測するための推測方法であって、
     パラメータ情報取得工程と、関係性モデル情報取得工程と、推測工程とを備え、
     前記パラメータ情報取得工程では、前記水系の水質に関する水質パラメータ、前記水系、前記水系に関連する設備又は前記水系に添加する原料の制御条件に関する制御パラメータ、及び前記見込結果と異なる意味を持つパラメータであって前記水系、前記水系に関連する設備若しくは前記水系に添加する原料において又は前記水系、前記水系に関連する設備若しくは前記水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得し、
     前記関係性モデル情報取得工程では、事前に作成した、前記見込結果又は前記見込結果に関連する指標と、2つ以上の前記パラメータとの関係を示す関係性モデル情報を取得し、
     前記推測工程では、前記パラメータ情報及び前記関係性モデル情報に基づいて、前記見込結果又は前記見込結果に関連する指標を推測する
     推測方法。
PCT/JP2022/004611 2021-02-12 2022-02-07 推測装置、推測システム、推測プログラム及び推測方法 WO2022172882A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22752706.6A EP4286583A4 (en) 2021-02-12 2022-02-07 ESTIMATION DEVICE, ESTIMATION SYSTEM, ESTIMATION PROGRAM AND ESTIMATION METHOD
CN202280014302.7A CN116829785A (zh) 2021-02-12 2022-02-07 推测装置、推测系统、推测程序以及推测方法
KR1020237027836A KR20230133886A (ko) 2021-02-12 2022-02-07 추측장치, 추측 시스템, 추측 프로그램 및 추측방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021021053 2021-02-12
JP2021-021053 2021-02-12

Publications (1)

Publication Number Publication Date
WO2022172882A1 true WO2022172882A1 (ja) 2022-08-18

Family

ID=82837547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004611 WO2022172882A1 (ja) 2021-02-12 2022-02-07 推測装置、推測システム、推測プログラム及び推測方法

Country Status (6)

Country Link
EP (1) EP4286583A4 (ja)
JP (2) JP7544085B2 (ja)
KR (1) KR20230133886A (ja)
CN (1) CN116829785A (ja)
TW (1) TW202302960A (ja)
WO (1) WO2022172882A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117303518A (zh) * 2023-09-08 2023-12-29 深圳市伊科赛尔环保科技有限公司 一种电离子交换超纯水设备及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238346A (ja) * 1990-02-16 1991-10-24 Nippon Kamiparupu Kenkyusho:Kk パルプまたは紙の製造工程におけるピッチの定量法
US20030045962A1 (en) * 2001-08-30 2003-03-06 Evren Eryurek Control system using process model
WO2003074784A1 (en) * 2002-03-07 2003-09-12 University Of Manchester Institute Of Science & Technology A method of dynamically modelling a paper manufacturing plant using pca (principal component analysis)
WO2012070644A1 (ja) 2010-11-25 2012-05-31 栗田工業株式会社 紙を製造する方法
JP2019193916A (ja) * 2018-05-01 2019-11-07 株式会社東芝 凝集剤注入制御装置、凝集剤注入制御方法及びコンピュータプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4063100B2 (ja) 2003-02-13 2008-03-19 王子製紙株式会社 抄紙機の制御方法、制御装置、プログラム及び記憶媒体
JP4560772B2 (ja) * 2004-04-13 2010-10-13 王子製紙株式会社 抄紙機紙切れ予測装置、抄紙機紙切れ予測方法およびコンピュータプログラム
KR20120070644A (ko) 2010-12-22 2012-07-02 두산인프라코어 주식회사 건설중장비의 원격관리를 위한 다중 스케줄링 방법
US20130233796A1 (en) * 2012-03-06 2013-09-12 Narasimha M. Rao Treatment of industrial water systems
JP6079542B2 (ja) 2013-10-04 2017-02-15 王子ホールディングス株式会社 パルプ白色度の推定装置およびその推定方法
WO2017115686A1 (ja) * 2015-12-28 2017-07-06 日本電気株式会社 予測システム、情報処理装置、予測方法および予測プログラム
JP6422901B2 (ja) * 2016-02-12 2018-11-14 株式会社東芝 管理支援システム、管理支援方法及び管理支援プログラム
JP7172153B2 (ja) 2018-06-12 2022-11-16 栗田工業株式会社 抄紙工程におけるワイヤ及び/又はフェルトの汚れ蓄積量推定方法
CN108862549A (zh) * 2018-07-12 2018-11-23 李泓 一种基于人工智能的污水处理系统
TWI841605B (zh) 2018-10-01 2024-05-11 日商明答克股份有限公司 監視系統
CN109879410B (zh) * 2019-03-27 2022-05-13 上海西派埃智能化系统有限公司 一种污水处理曝气控制系统
CN112062179A (zh) * 2020-08-24 2020-12-11 华南理工大学 用于造纸污水处理ghg减排的溶解氧分层优化控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238346A (ja) * 1990-02-16 1991-10-24 Nippon Kamiparupu Kenkyusho:Kk パルプまたは紙の製造工程におけるピッチの定量法
US20030045962A1 (en) * 2001-08-30 2003-03-06 Evren Eryurek Control system using process model
WO2003074784A1 (en) * 2002-03-07 2003-09-12 University Of Manchester Institute Of Science & Technology A method of dynamically modelling a paper manufacturing plant using pca (principal component analysis)
WO2012070644A1 (ja) 2010-11-25 2012-05-31 栗田工業株式会社 紙を製造する方法
JP2019193916A (ja) * 2018-05-01 2019-11-07 株式会社東芝 凝集剤注入制御装置、凝集剤注入制御方法及びコンピュータプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4286583A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117303518A (zh) * 2023-09-08 2023-12-29 深圳市伊科赛尔环保科技有限公司 一种电离子交换超纯水设备及其控制方法
CN117303518B (zh) * 2023-09-08 2024-06-04 深圳市伊科赛尔环保科技有限公司 一种电离子交换超纯水设备及其控制方法

Also Published As

Publication number Publication date
EP4286583A1 (en) 2023-12-06
JP2024037736A (ja) 2024-03-19
JP7544085B2 (ja) 2024-09-03
JP2022123880A (ja) 2022-08-24
CN116829785A (zh) 2023-09-29
EP4286583A4 (en) 2024-08-14
KR20230133886A (ko) 2023-09-19
TW202302960A (zh) 2023-01-16

Similar Documents

Publication Publication Date Title
JP2024037736A (ja) 推測装置、推測システム、推測プログラム及び推測方法
AU2018379543B2 (en) Method for predicting or controlling microbial status of a paper or board making process
US7181308B2 (en) Method for monitoring and analyzing a paper production process
JP2022121356A (ja) 汚泥処理設備運転支援ナビゲーションシステム、汚泥処理設備運転支援方法
WO2023127748A1 (ja) 異常検知装置、異常検知方法及び異常検知プログラム
WO2022163549A1 (ja) 推定装置、予測装置、制御装置、推定システム、予測システム、制御システム、推定プログラム、予測プログラム、制御プログラム、推定方法、予測方法及び制御方法
WO2022168965A1 (ja) 汚泥処理設備運転支援ナビゲーションシステム、汚泥処理設備運転支援方法
JP2022123880A5 (ja)
CN115508322A (zh) 一种水污染源多维度溯源方法及装置
JP5541790B2 (ja) プラント運転監視装置およびシステムならびにプログラム
Tomperi et al. Early warning of changing drinking water quality by trend analysis
WO2024034509A1 (ja) 廃液処理設備の運転方法、処理後廃液の性質を予測する方法、運転システム及び予測システム
JPS6047958B2 (ja) 懸濁液の連続洗浄方法
US20220251781A1 (en) Process to optimize brown stock washing unit operations
Moguel-Castañeda et al. Diagnosis of the Cane Sugar Crystallization Process by Multifractal Analysis of Temperature Time Series
FI130085B (en) Monitoring method and device
WO2020189301A1 (ja) 運転方針評価装置、運転方針評価方法、およびプログラム
Heikkinen et al. SOM-based modelling for an activated sludge treatment process
US20240192676A1 (en) A method for estimating disturbances and giving recommendations for improving process performance
US20220326685A1 (en) Estimating risk level in an aqueous process
JP2023180657A (ja) 白液処理方法、白液酸化監視システム
CN118410390A (zh) 反渗透系统的智能诊断方法及系统
JP2024082653A (ja) 情報処理装置、脱水機、含水率推定方法、および含水率推定プログラム
MIC 1. Predictive Microbiology
JPH06116888A (ja) クラフトパルプ未晒洗浄装置におけるプロセス同定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752706

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280014302.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237027836

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237027836

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2022752706

Country of ref document: EP

Effective date: 20230831

NENP Non-entry into the national phase

Ref country code: DE