WO2022172882A1 - 推測装置、推測システム、推測プログラム及び推測方法 - Google Patents
推測装置、推測システム、推測プログラム及び推測方法 Download PDFInfo
- Publication number
- WO2022172882A1 WO2022172882A1 PCT/JP2022/004611 JP2022004611W WO2022172882A1 WO 2022172882 A1 WO2022172882 A1 WO 2022172882A1 JP 2022004611 W JP2022004611 W JP 2022004611W WO 2022172882 A1 WO2022172882 A1 WO 2022172882A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water system
- parameter
- parameters
- relationship model
- water
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 61
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 342
- 239000002994 raw material Substances 0.000 claims abstract description 76
- 230000007547 defect Effects 0.000 claims description 150
- 238000004519 manufacturing process Methods 0.000 claims description 44
- 230000008569 process Effects 0.000 claims description 35
- 230000006870 function Effects 0.000 claims description 25
- 239000000126 substance Substances 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000000611 regression analysis Methods 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 8
- 239000000460 chlorine Substances 0.000 claims description 8
- 229910052801 chlorine Inorganic materials 0.000 claims description 8
- 238000010009 beating Methods 0.000 claims description 7
- 239000006260 foam Substances 0.000 claims description 7
- 239000004744 fabric Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 238000003066 decision tree Methods 0.000 claims description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 4
- 238000002835 absorbance Methods 0.000 claims description 4
- 238000013528 artificial neural network Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 4
- 244000005700 microbiome Species 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 238000012731 temporal analysis Methods 0.000 claims description 4
- 238000000700 time series analysis Methods 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 3
- 238000005273 aeration Methods 0.000 claims description 3
- 230000002776 aggregation Effects 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 150000001768 cations Chemical class 0.000 claims description 3
- 239000008103 glucose Substances 0.000 claims description 3
- 150000007524 organic acids Chemical class 0.000 claims description 3
- 239000010893 paper waste Substances 0.000 claims description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 3
- 239000008107 starch Substances 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- 240000001931 Ludwigia octovalvis Species 0.000 claims 1
- 238000005054 agglomeration Methods 0.000 claims 1
- 239000000123 paper Substances 0.000 description 124
- 239000000047 product Substances 0.000 description 66
- 238000005259 measurement Methods 0.000 description 26
- 238000012795 verification Methods 0.000 description 14
- 238000004891 communication Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 230000033116 oxidation-reduction process Effects 0.000 description 8
- 239000013054 paper strength agent Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- 241000721671 Ludwigia Species 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000000701 coagulant Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 239000011087 paperboard Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000009993 causticizing Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000009285 membrane fouling Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- APTZNLHMIGJTEW-UHFFFAOYSA-N pyraflufen-ethyl Chemical compound C1=C(Cl)C(OCC(=O)OCC)=CC(C=2C(=C(OC(F)F)N(C)N=2)Cl)=C1F APTZNLHMIGJTEW-UHFFFAOYSA-N 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000002455 scale inhibitor Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/34—Paper
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/008—Control or steering systems not provided for elsewhere in subclass C02F
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F1/00—Wet end of machines for making continuous webs of paper
- D21F1/66—Pulp catching, de-watering, or recovering; Re-use of pulp-water
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F7/00—Other details of machines for making continuous webs of paper
- D21F7/02—Mechanical driving arrangements
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21G—CALENDERS; ACCESSORIES FOR PAPER-MAKING MACHINES
- D21G9/00—Other accessories for paper-making machines
- D21G9/0009—Paper-making control systems
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21J—FIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
- D21J7/00—Manufacture of hollow articles from fibre suspensions or papier-mâché by deposition of fibres in or on a wire-net mould
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/1806—Biological oxygen demand [BOD] or chemical oxygen demand [COD]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/26—Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
- C02F2103/28—Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/001—Upstream control, i.e. monitoring for predictive control
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/003—Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/005—Processes using a programmable logic controller [PLC]
- C02F2209/006—Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/02—Temperature
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/04—Oxidation reduction potential [ORP]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/05—Conductivity or salinity
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/05—Conductivity or salinity
- C02F2209/055—Hardness
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/08—Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/09—Viscosity
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/10—Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/10—Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
- C02F2209/105—Particle number, particle size or particle characterisation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/11—Turbidity
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/23—O3
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/26—H2S
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/29—Chlorine compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/36—Biological material, e.g. enzymes or ATP
Definitions
- the present invention relates to a guessing device, guessing system, guessing program, and guessing method.
- Patent Document 1 proposes a method of measuring two or more water quality parameters related to water quality in a water system for manufacturing paper and performing water treatment of the water system based on the measured values. And according to the method shown in this patent document 1, high-quality paper can be manufactured.
- Patent Document 1 does not disclose the occurrence of troubles in the water system used to manufacture paper and the quantitative estimation of the quality of paper products. On the other hand, it is necessary to quantitatively estimate the occurrence of troubles and the quality of paper products in the water system in order to control the operating conditions and the amount of chemicals added to the system more precisely.
- the present invention provides an estimation device, an estimation system, an estimation program, and an estimation method that can quantitatively estimate the occurrence of troubles in water systems and the quality of products manufactured through water systems. .
- an inferring device for inferring probable future outcomes in or derived from a water system.
- This estimating device includes a parameter information acquiring section, a relationship model information acquiring section, and an estimating section.
- the parameter information acquisition unit acquires water quality parameters related to the water quality of the water system, control parameters related to the control conditions of equipment related to the water system or raw materials added to the water system, and parameters that have different meanings from the expected results and are related to the water system and the water system Parameter information that includes two or more parameters that are any one of the result parameters related to the results generated in the equipment or raw materials added to the water system, or derived from the water system, the equipment related to the water system, or the raw materials added to the water system get.
- the relationship model information acquisition unit acquires relationship model information indicating a relationship between an expected result or an index related to the expected result and two or more parameters created in advance.
- the estimation unit estimates an expected result or an indicator related to the expected result based on the parameter information and the relationship model information.
- the relationship model is a regression analysis, a time series analysis, a decision tree, and a prior confirmation result corresponding to the expected result or an index related to the prior confirmation result and two or more of the parameters.
- a guesser that is a model determined by neural network, Bayesian, clustering or ensemble learning.
- the water system is a water system in the process of manufacturing paper products.
- the water quality parameters are pH, electrical conductivity, redox potential, zeta potential, turbidity, temperature, foam height, biochemical oxygen demand (BOD), chemical oxygen demand of the water system.
- control parameters are the operating speed (papermaking speed) of the paper machine, the rotation speed of the filter cloth of the raw material dehydrator, the rotation speed of the filter cloth of the washer, the amount of chemical added to the water system, and the raw material to be added to the water system.
- Amount of chemical added to water system, amount of chemical added to equipment related to the water system, amount of steam for heating, steam temperature for heating, steam pressure for heating, flow rate from seed box, nip pressure of press part, felt of press part One type selected from the group consisting of vacuum pressure, blending ratio of raw materials for paper manufacturing, waste paper blending amount of raw materials for manufacturing paper, opening of screen for raw materials for manufacturing paper, gap distance between rotor and stator of beater, freeness and degree of beating.
- a guessing device that is more than that.
- the result parameters are the unit weight of the paper product (weight per square meter), the yield rate, the concentration of white water, the moisture content of the paper product, the amount of steam in the equipment for manufacturing the paper product, and the paper product.
- An estimation system for estimating expected results that may occur in the water system or derived from the water system comprising a parameter information acquisition unit, a relationship model information acquisition unit, and an estimation unit, wherein the parameter information acquisition unit is a water quality parameter related to the water quality of the water system, a control parameter related to the water system, equipment related to the water system, or a control condition of raw materials added to the water system, and a parameter having a meaning different from the expected result, wherein the water system, the A parameter that is any one of a result parameter related to a result that occurs in a facility associated with a water system or a raw material added to said water system, or derived from said water system, equipment associated with said water system, or raw material added to said water system.
- the relationship model information acquisition unit creates a relationship indicating a relationship between the expected result or an index related to the expected result created in advance and the two or more parameters
- An inference system that acquires model information, and in which the estimation unit estimates the expected result or an index related to the expected result based on the parameter information and the relationship model information.
- An estimation program for estimating expected results that may occur in the water system or derived from the water system wherein the computer functions as a parameter information acquisition unit, a relationship model information acquisition unit, and an estimation unit, and the parameter information acquisition
- the part is a water quality parameter related to the water quality of the water system, a control parameter related to the control condition of the water system, equipment related to the water system, or a raw material to be added to the water system, and a parameter having a meaning different from the expected result, the water system,
- a parameter that is any one of result parameters relating to a result generated in equipment associated with said water system or raw materials added to said water system or derived from said water system, equipment associated with said water system or raw materials added to said water system and the relationship model information acquisition unit creates a relationship indicating the relationship between the expected result or an index related to the expected result and the two or more parameters
- a guessing program that acquires sex model information, and the guessing unit guesses the expected result or an index related to the expected result based on the parameter information
- An estimation method for estimating expected results that may occur in a water system or derived from the water system comprising a parameter information acquisition step, a relationship model information acquisition step, and an estimation step, wherein the parameter information acquisition step.
- a water quality parameter related to the water quality of the water system a control parameter related to the control conditions of the water system, equipment related to the water system, or raw materials to be added to the water system, and a parameter having a meaning different from the expected result
- the water system the A parameter that is any one of a result parameter relating to a result that occurs in equipment related to a water system or raw materials added to said water system or derived from said water system, equipment related to said water system or raw materials added to said water system.
- Acquiring parameter information including two or more, and in the relationship model information acquiring step, a relationship indicating a relationship between the expected result or an index related to the expected result created in advance and two or more of the parameters
- An estimation method for acquiring model information and, in the estimation step, estimating the expected result or an indicator related to the expected result based on the parameter information and the relationship model information is not limited to this.
- FIG. 1 is a schematic diagram of an inference system according to this embodiment;
- FIG. It is a schematic diagram which shows the functional structure of the inference apparatus which concerns on this embodiment.
- It is a schematic diagram showing the hardware constitutions of the guessing device concerning this embodiment.
- 10 is a plot of the number of trouble occurrences A for a total of 30 sets of data sets versus an index a related to the likely outcome;
- FIG. 10 is a graph showing the degree of influence of each parameter on index a related to expected results;
- 1 is a schematic diagram of equipment for manufacturing paper in Example 1.
- FIG. 4 is a plot of the number of defects versus defect index ⁇ for a total of 572 data sets for Example 1; 7 is a graph showing the degree of influence of each parameter on the defect index; 4 is a plot of strength agent usage intensity vs. strength index value for a total of 60 data sets for Example 2; 4 is a graph showing the degree of influence of each parameter on the paper strength index; 4 is a graph showing the occurrence of paper breakage and changes over time in the paper breakage index. 4 is a graph showing the occurrence of paper breakage and changes over time in the paper breakage index.
- FIG. 4 is a schematic diagram of equipment for manufacturing paper in Example 4.
- FIG. 11 is a plot of the number of defects versus defect index ⁇ values for a total of 647 sets of data sets for relationship modeling in Example 4;
- FIG. 11 is a plot of the number of defects versus defect index ⁇ values for a total of 255 sets of data sets for accuracy verification in Example 4;
- FIG. 10 is a plot showing changes over time in defect indexes calculated from a total of 255 sets of data sets for accuracy verification in Example 4.
- FIG. 4 is a graph showing the degree of influence of each parameter on defect index ⁇ .
- FIG. 11 is a plot of the number of defects versus the defect index ⁇ value for a total of 631 sets of data sets for relationship modeling in Example 5;
- FIG. 10 is a plot of the number of defects versus defect index ⁇ values for a total of 255 sets of data sets for accuracy verification in Example 5; 10 is a plot showing changes over time in defect indexes calculated from a total of 271 sets of data sets for accuracy verification in Example 5.
- FIG. 4 is a graph showing the degree of influence of each parameter on defect index ⁇ .
- FIG. 11 is a plot of the number of defects versus the defect index ⁇ value for a total of 1216 sets of data sets for relationship modeling in Example 6;
- FIG. 10 is a plot of the number of defects versus the defect index ⁇ value for a total of 490 sets of data sets for accuracy verification in Example 6; 4 is a graph showing the degree of influence of each parameter on defect index ⁇ .
- FIG. 11 is a plot of the number of defects versus the defect index ⁇ value for a total of 1216 sets of data sets for relationship modeling in Example 6;
- FIG. 10 is a plot of the number of defects versus the defect index ⁇ value for
- FIG. 11 is a plot of defect count versus defect index ⁇ for a total of 1503 sets of data sets for relationship modeling in Example 7;
- FIG. 11 is a plot of the number of defects versus defect index ⁇ for a total of 537 sets of data sets for accuracy verification in Example 7;
- 4 is a graph showing the degree of influence of each parameter on defect index ⁇ .
- the program for realizing the software of this embodiment may be provided as a computer-readable non-transitory recording medium (Non-Transitory Computer-Readable Medium), or may be provided downloadably from an external server. Alternatively, it may be provided so that the program is activated by an external computer and the function is realized by the client terminal (so-called cloud computing).
- the term “unit” may include, for example, a combination of hardware resources implemented by circuits in a broad sense and software information processing that can be specifically realized by these hardware resources.
- various information is handled in the present embodiment, and these information are, for example, physical values of signal values representing voltage and current, and signal values as binary bit aggregates composed of 0 or 1. It is represented by high and low, or quantum superposition (so-called quantum bit), and communication and operation can be performed on a circuit in a broad sense.
- a circuit in a broad sense is a circuit realized by at least appropriately combining circuits, circuits, processors, memories, and the like.
- Application Specific Integrated Circuit ASIC
- Programmable Logic Device for example, Simple Programmable Logic Device (SPLD), Complex Programmable Logic Device (CPLD), and field It includes a programmable gate array (Field Programmable Gate Array: FPGA)).
- the estimating system is an estimating system for estimating possible future outcomes in or derived from a water system.
- this estimation system includes a parameter information acquisition section, a relationship model information acquisition section, and an estimation section.
- the parameter information acquisition unit obtains a water quality parameter related to the water quality of the water system, a control parameter related to the control condition of the water system, equipment related to the water system, or the raw material to be added to the water system, and a parameter having a meaning different from the expected result and the water system
- Two or more parameters that are any one of the following: , result parameters related to results generated in equipment related to water systems or raw materials added to water systems, or derived from water systems, equipment related to water systems, or raw materials added to water systems It acquires parameter information including
- the relationship model information acquisition unit acquires relationship model information indicating a relationship between an expected result or an index related to the expected result created in advance and two or more parameters.
- the estimation unit estimates an expected result or an index related to the expected result based on the parameter information and the relationship model information.
- the inference system may include one or both of the relationship model creation unit and the output unit. Note that FIG. 1, which will be described below, mainly describes an inference system that includes all of these.
- FIG. 1 is a schematic diagram of an inference system according to this embodiment.
- This guessing system 1 comprises a guessing device 2 and an output device 3 .
- FIG. 2 is a schematic diagram showing the functional configuration of the guessing device according to this embodiment.
- the estimating device 2 according to the present embodiment is an estimating device for estimating expected results that may occur in the future in the water system W or derived from the water system W, and includes a parameter information acquisition unit 21, A relationship model information acquisition unit 22 and an estimation unit 23 are provided.
- the estimation device 2 according to this embodiment further includes a second estimation unit 24 , a relationship model creation unit 25 , a second relationship model creation unit 26 , and a second relationship model information acquisition unit 27 . Although each of these units is described here as being included inside one device, each unit may be included as a separate device.
- the output device 3 is an example of an output unit
- the parameter information measurement device 4 is an example of a parameter information measurement unit.
- expected results that may occur in the water system or derived from the water system are the results that will occur in the water system when the water system is operated.
- BOD biochemical oxygen demand
- COD increase in
- SS suspended solids
- turbidity increase increase in chromaticity increase
- transparency decrease dehydrated sludge amount increase
- heat exchanger efficiency decrease chiller efficiency decrease
- chiller efficiency decrease Reduced efficiency of cooling towers, increased frequency of backwashing filter media and activated carbon, increased frequency of replacement of filter media and activated carbon, increased frequency of cleaning membranes (MF membrane, UF membrane, RO membrane, etc.), Increased replacement frequency, increased regeneration frequency of ion exchange resin, increased replacement frequency of ion exchange resin, corrosion of equipment and piping (due
- expected results that may occur in the future derived from water systems are the results that occur in relation to water systems other than those water systems when such water systems are operated and operated. performance deterioration, product yield reduction, unwanted by-products increase, and changes in product odor.
- the "index related to the expected result” may be any index that has a certain correlation with the expected result (for example, a function of two or more parameters), and is not a generally known index but a speculation It may be created independently by the system user (operator, etc.).
- the "expected results that may occur in the future in the water system" of the paper manufacturing process include, for example, contamination of the paper machine, contamination of the papermaking approach system, contamination of the white water recovery system, pump air entrapment, screen blockage, reduction in papermaking speed, wire part Poor drainage, poor dehydration in the press part, poor drying in the dryer part, bad odor in the water system, poor peeling in the dryer process, dirt on the block system, dirt on the raw material system, and the like.
- the "expected results that may occur in the future derived from the water system" of the paper manufacturing process are, for example, those related to paper products produced from such water system (number of defects, paper strength, joint ratio, sizing degree, air permeability, smoothness degree, ash content, color tone, whiteness, formation, odor, causticization rate, firing rate, kappa number, freeness, moisture content, etc.), and events that can occur outside of water systems (paper breakage in the press part to dryer part, etc.) is mentioned.
- the parameter information acquisition unit 21 obtains a water quality parameter related to the water quality of the water system W, a control parameter related to the control condition of the water system W, equipment related to the water system W, or a raw material to be added to the water system W, and a parameter having a different meaning from the expected result, Any one of the result parameters related to the result generated in the water system W, the equipment related to the water system W, or the raw material added to the water system W, or derived from the water system W, the equipment related to the water system W, or the raw material added to the water system W This is to acquire parameter information including two or more parameters.
- the water system here is not limited to those existing in one tank or channel or those in which a continuous flow exists, but those having a plurality of tanks or channels, specifically, A water system in which branching or confluence of a plurality of flow paths exists, or in which water is transferred from tank to tank in units of batches, or in which treatment is performed in the middle, is also considered as one water system.
- the water system related to the water quality parameters, control parameters or result parameters is divided by tanks, etc., the water quality parameters, control parameters or result parameters for a part of the water system may be used, and the water quality parameters for the entire water system may be used. , control parameters or outcome parameters may be used.
- the water quality parameter is not particularly limited as long as it relates to the water quality of the water system W.
- the control parameter is not particularly limited as long as it relates to the control condition of the water system W, equipment related to the water system W, or raw material added to the water system W.
- a parameter that has a different meaning from the expected result and is derived from the water system W, the equipment related to the water system W, or the raw material added to the water system W, or from the water system W, the equipment related to the water system W, or the raw material added to the water system W It is not particularly limited as long as it relates to the results produced by Note that “has a different meaning from the expected result” means that if the evaluation index (e.g., physical quantity) is different (e.g., one is length and the other is mass), the evaluation index is the same but the evaluation results are different. Including cases where the target is different (e.g. the mass of paper and the mass of additives) and cases where the measurement points are different (e.g.
- Water quality parameters include, for example, water system pH, electrical conductivity, redox potential, zeta potential, turbidity, temperature, foam height, biochemical oxygen demand (BOD), chemical oxygen demand (COD), absorbance (e.g., UV absorbance), color (e.g., RGB value), particle size distribution, degree of aggregation, amount of foreign matter, foamed area on water surface, soiled area in water, amount of air bubbles, amount of glucose, amount of organic acid, amount of starch , the amount of calcium, the amount of total chlorine, the amount of free chlorine, the amount of dissolved oxygen, the amount of cation demand, the amount of hydrogen sulfide, the amount of hydrogen peroxide, and the respiration rate of microorganisms in the system. It is preferable to use the above.
- Control parameters include, for example, the operating speed (papermaking speed) of the paper machine, the rotation speed of the filter cloth of the raw material dehydrator, the rotation speed of the filter cloth of the washer, the amount of chemical added to the water system, the amount of chemical added to the raw material added to the water system, the water system Amount of chemical added to the equipment related to , Steam volume for heating, Steam temperature for heating, Steam pressure for heating, Flow rate from seed box, Press part nip pressure, Press part felt vacuum pressure, Mixing of papermaking raw materials It is preferable to use one or more selected from the group consisting of ratio, waste paper blending amount of papermaking raw material, screen opening of papermaking raw material, gap distance between rotor and stator of beating machine, freeness and beating degree.
- the water system W is a water system in the process of manufacturing paper products
- equipment related to the water system include equipment such as paper machine wires and felts that directly add chemicals.
- Result parameters include, for example, the unit weight of paper products (weight per square meter), yield rate, white water concentration, moisture content of paper products, amount of steam in the facility that manufactures paper products, and amount of steam in the facility that manufactures paper products. , steam temperature in equipment for manufacturing paper products, steam pressure in equipment for manufacturing paper products, thickness of paper products, ash concentration in paper products, types of defects in paper products, number of defects in paper products, It is preferable to use one or more selected from the group consisting of time of paper breakage in the process, freeness, beating degree and aeration amount.
- the amount of steam in equipment for manufacturing paper products includes, for example, the amount of steam in paper machine dryers, the amount of steam in kraft pulp black liquor evaporators, the amount of steam in black liquor heaters in kraft pulp digesters, the amount of steam in pulp raw materials and white water Steam volume blowing for temperature can be used.
- two or more parameters acquired by the parameter information acquisition unit should not be substantially the same.
- the two parameters are:
- the use of process steam generated from black liquor as a result parameter and the amount of steam used to warm (concentrate) concentrated black liquor as a control parameter shall be excluded. This is because in such a case, the process steam generated from the black liquor as the result parameter and the amount of steam used for warming (concentrating) the concentrated black liquor as the control parameter are substantially the same.
- the two parameters are the process steam generated from black liquor as a result parameter and , and the amount of steam used for warming (concentrating) the concentrated black liquor as control parameters. This is because in such cases, the process steam generated from the black liquor as the result parameter and the amount of steam used to warm (concentrate) the concentrated black liquor as the control parameter are not substantially the same.
- the two parameters are the process steam generated from the black liquor as a result parameter , and the amount of steam used for heating (concentrating) the concentrated black liquor as a control parameter, in addition to other parameters such as the pH of the water system as a water quality parameter. may be substantially the same.
- freeness and freeness are the same parameters, but can be included in both the control parameters and the result parameters.
- the water quality parameter, control parameter, and result parameter are concepts that each include multiple parameters.
- parameter information including two or more parameters two or more parameters included in the parameter information can be independently selected from the water quality parameters, the control parameters, and the result parameters.
- a combination of two or three of the water quality parameters, the control parameters and the result parameters e.g. pH and the press pressure and thickness of the paper product.
- exactly the same parameter for example, the pH of water at location A and the pH of water at location A
- should not be selected (however, for example, the pH of water at location A and the water at location B, which are different measurement locations) ).
- the relationship model information acquisition unit 22 acquires relationship model information indicating the relationship between an expected result or an index related to the expected result, which has been created in advance, and two or more parameters.
- a relationship model is created in advance and shows the relationship between expected results or indicators related to expected results and two or more parameters.
- "preliminary" refers to the expected result or before estimating the index related to the expected result, and whether the expected result or the expected result is Any prior to estimating indices related to .
- the relationship model is not particularly limited, but for example, an expected result or an index related to the expected result, a function indicating the relationship between two or more parameters, a lookup table or an expected result or an index related to the expected result, Examples include a trained model of the relationship between two or more parameters.
- Two or more parameters included in the parameter information acquired by the parameter information acquisition unit 21 and parameters included in the parameter information used in the relationship model shall have two or more in common.
- the water quality parameter, control parameter, and result parameter are concepts that each include a plurality of parameters. "Two or more of the parameters are common" means that two or more of the water quality parameters, control parameters, and result parameters (e.g., two or more only water quality parameters; water pH and temperature) are common.
- a combination of water quality parameters, control parameters, and result parameters may be common, or water quality parameters, All control parameters and result parameters (eg, one water quality parameter, one control parameter and one result parameter) may be common.
- the estimation unit 23 estimates an expected result or an index related to the expected result based on the parameter information and the relationship model information.
- the estimating unit 23 inputs the current parameter information of the water system W into the relationship model created in advance, substitutes or compares it with the relationship model, and obtains an expected result or an index related to the expected result. to estimate (calculate).
- the second estimation unit 24 estimates an expected result from the index when the estimation unit 23 estimates an index related to the expected result instead of the expected result itself.
- the estimation unit 23 is called a "first estimation unit" for convenience.
- the first estimation unit 23 estimates an index related to the expected result (hereinafter also referred to as "related indicator"), it is necessary to estimate the expected result from the related indicator. Specifically, this related index is input to a second relationship model prepared in advance, and an expected result is estimated. In addition, when using a 2nd relationship model, the relationship model used by the 1st estimation part 23 is called a “1st relationship model" for convenience.
- a threshold can be set for the related index, and it can be inferred that trouble will occur if the related index is greater (or smaller) than the threshold.
- the related indicator When estimating the possibility of trouble occurring, for example, by setting multiple thresholds for the related indicators, for example, dividing them into three stages, when the related indicator is in the first stage, the occurrence of trouble will certainly occur, and the related indicator will When it is in the second stage, it can be assumed that trouble may occur, and when the related index is in the third stage, it can be inferred that trouble will not occur. Also, the relationship between the related index and the probability of occurrence of trouble can be converted into a function or a learned model from the statistical data of actual operation, and the probability of occurrence of trouble can be calculated.
- the relationship model creating unit 25 creates a relationship model. This relationship model may be acquired by the relationship model information acquisition unit 22 and used by the estimation unit 23 to estimate the expected result or an index related to the expected result.
- a relationship model is created, for example, as follows. Prior to inferring a prospective outcome or related metric, a pre-measured outcome corresponding to the prospective outcome or a pre-measured metric associated with the pre-result is measured. Also, in the same water system, two or more parameters that are any one of the water quality parameter, the control parameter and the result parameter are measured. A plurality of data sets of these pre-measurement results or pre-measurement indicators and parameters are prepared so that the pre-measurement results or pre-measurement indicators and parameters are varied by, for example, changing the day or time of measurement.
- the pre-measured result or pre-measured index is assumed to be a function of two or more parameters, compared with the pre-measured result or pre-measured index to determine the form and coefficients of the function, and build a relationship model.
- regression analysis methods linear model, generalized linear model, generalized linear mixed model, ridge regression , Lasso regression, elastic net, support vector regression, projection pursuit regression, etc.
- time series analysis VAR model, SVAR model, ARIMAX model, SARIMAX model, state space model, etc.
- decision tree decision tree, regression tree, random forest, XGBoost, etc.
- neural networks simple perceptron, multilayer perceptron, DNN, CNN, RNN, LSTM, etc.
- Bayes naive Bayes, etc.
- clustering k-means, k-means++, etc
- the relationship model is preferably a model obtained by regression analysis of the pre-confirmation result corresponding to the expected result or the index related to the pre-confirmation result and two or more parameters. Note that the number of sample sets for regression analysis is not particularly limited.
- the relationship model in the same water system as the one for estimating the expected results. Also, for example, when the water quality of the water system changes greatly even within the same apparatus (for example, when the pulp that is the raw material for paper manufacturing is changed in the papermaking system of a paper mill), the water system after the water quality changes It is preferable to create and use a relationship model for .
- the expected results or related indicators and two or more parameters are measured regularly or irregularly, and a relationship model is created each time, or data is added to the relationship model. may be updated.
- the relationship model creation unit 25 is not an essential component, the relationship model may be created manually (manually) by, for example, an operator.
- the second relationship model creating section 26 creates a second relationship model.
- This second relationship model may be acquired by the second relationship model information acquisition unit 26 (to be described later) and may be used for estimating expected results by the second estimating unit 24 .
- the second relationship model is a model that shows the relationship between the related index and the expected result.
- the relationship model creation unit 25 will be called the "first relationship model creation unit" for convenience.
- the second relationship model is not particularly limited, but includes, for example, a function indicating the relationship between the related index and the expected result, a lookup table, or a learned model of the relationship between the related index and the expected result.
- the second relationship model is created, for example, as follows. Prior to inferring a prospective outcome, a prior measurement corresponding to the prospective outcome and a prior measurement indicator associated with the prior outcome are measured. A plurality of data sets of these preliminary measurement results and preliminary measurement indices are prepared so that the preliminary measurement results and the preliminary measurement indices are varied by, for example, changing the day and time of the measurement. An inferential model is then constructed using the pre-measured results as a function of the pre-measured index. Alternatively, for example, after preparing multiple data sets of pre-measurement results and pre-measurement indicators, thresholds are set for related indicators at points (pre-measurement indicators) where the pre-measurement results change significantly, and the second relationship model is generated. may be constructed.
- the second relationship model in the same water system as the one for estimating the expected results. Also, for example, when the water quality of the water system changes greatly even within the same apparatus (for example, when the pulp that is the raw material for paper manufacturing is changed in the papermaking system of a paper mill), the water system after the water quality changes Preferably, a second relationship model for is created and used.
- the second relationship model creating unit 26 is not an essential component, and the second relationship model may be created manually (manually) by, for example, an operator.
- the second relationship model information acquisition unit 27 acquires the second relationship model.
- the second relationship model may be one created by the second relationship model creating unit 26 .
- the relationship model acquisition unit 22 is called the "first relationship model acquisition unit" for convenience.
- the inference system 1 and the inference device 2 may include a relationship model evaluation unit (not shown).
- the relationship model evaluation unit evaluates the relationship model created by the relationship model creation unit 25, and evaluates the degree of influence of each parameter information on the expected result or related index.
- the relationship model evaluation unit evaluates the magnitude of the impact of each parameter information.
- the method of evaluating the magnitude of the influence of each parameter information is not particularly limited. For example, when the expected result is expressed as a linear function of each parameter, the absolute value of the coefficient can be compared and evaluated.
- the parameter information may be arranged in order of influence on the relationship model, and other than a predetermined number of parameter information may be excluded in descending order of influence, or a predetermined number of parameter information may be excluded in descending order of influence. may be provided, and parameters below this threshold may be excluded by the relationship model adjustment unit.
- the inference system 1 and the inference device 2 may include a relationship model information adjustment unit (not shown).
- the relationship model information adjustment unit performs adjustment to exclude parameter information that has a small impact on the relationship model, and then again instructs the relationship model information creation unit 25 to create relationship model information.
- the evaluation of the relationship model evaluation unit and the adjustment of the relationship model information adjustment unit may be performed only once, or may be repeated twice or more. you can go
- the output unit 3 is configured to output at least one of the expected result or related index calculated by the estimating unit 23 and the expected result estimated by the second estimating unit 24 .
- the output unit 3 may, for example, display expected results or related indicators over time (expected results or related indicators vs. time graph, etc.).
- the output unit 3 may output a warning when, for example, the expected result or related index exceeds a certain threshold.
- the parameter information measurement unit 4 measures water quality parameters, control parameters, or result parameters.
- parameter information measuring device 4 Although only one parameter information measuring device 4 is shown in FIG. 1 for convenience, it is not limited to this example, and two or more parameter information measuring devices may be used.
- Various sensors can be selected as the measuring device, depending on the content of the parameters to be measured.
- Examples of measuring devices include pH meter, electrical conductivity meter, oxidation-reduction potential meter, turbidity meter, thermometer, level meter for measuring foam height, COD meter, UV meter, particle size distribution meter, cohesion sensor, digital Camera (or digital video camera), internal bubble sensor, absorption photometer, freeness meter, dissolved oxygen meter, zeta potential meter, residual chlorine meter, hydrogen sulfide meter, retention/freeness meter, color sensor, hydrogen peroxide meter, etc. can be used.
- Control parameters and the like may be directly input for controlling the device and may be used as they are. Such data may be communicated and received from the device. For this purpose, it may be recorded on a device other than the device.
- the target water system of the estimation system is not particularly limited, and may be, for example, a water system in the process of manufacturing paper products. Specifically, if it is a process for manufacturing paper products, it includes a cooking process, a washing process, a black liquor concentration process, a causticizing process, and the like.
- the target water system may be any water system other than the process of manufacturing paper products, such as various pipes, heat exchangers, storage tanks, kilns, washing equipment, and the like.
- FIG. 3 is a schematic diagram showing the hardware configuration of the inference device according to this embodiment.
- the guessing device 2 has a communication unit 51 , a storage unit 52 and a control unit 53 , and these components are electrically connected via a communication bus 54 inside the guessing device 2 . It is connected to the. These components are further described below.
- the communication unit 51 is preferably a wired communication means such as USB, IEEE1394, Thunderbolt, wired LAN network communication, etc., but wireless LAN network communication, mobile communication such as 3G/LTE/5G, Bluetooth (registered trademark) communication, etc. is required. can be included depending on That is, it is more preferable to implement as a set of these communication means. As a result, information and instructions are exchanged between the guessing device 2 and other devices that can communicate with each other.
- the storage unit 52 stores various information defined by the above description. This can be, for example, a storage device such as a solid state drive (SSD), or a random access memory (Random Access Memory: RAM) or the like. Moreover, the memory
- the storage unit 52 also stores various programs that can be read by the control unit 53, which will be described later.
- the control unit 53 processes and controls overall operations related to the inferring device 2 .
- the control unit 53 is, for example, a central processing unit (CPU, not shown).
- the control unit 53 implements various functions related to the guessing device 2 by reading a predetermined program stored in the storage unit 52 .
- information processing by software stored in the storage unit 52
- hardware control unit 53
- FIG. 3 shows a single control unit 53, the present invention is not limited to this in practice, and a plurality of control units 53 may be provided for each function.
- a single controller and multiple controllers may be combined.
- the water quality parameter x, water quality parameter y, and control parameter z shown in Table 1 below are measured, and the number of trouble occurrences A is also measured to obtain a total of 30 sets of data. The data obtained are shown in Table 1 below.
- the index a related to the expected result is represented by the following formula (1), where x, y, and z are the “parameters”, bn is the coefficient of x, y, and z, and a 0 and b 0 are constants.
- FIG. 4 is a plot of the number of occurrences of trouble A for a total of 30 sets of data sets versus an index a related to the expected results.
- FIG. 5 is a graph showing the magnitude of the influence of each parameter on the index a related to the expected result.
- the control parameter z, the water quality parameter x, and the water quality parameter y have a greater influence on the index a related to the expected result in that order.
- a negative binomial regression analysis using the standardized scores for each parameter yields the results in FIG.
- the standardized score can be obtained by (individual numerical value ⁇ average value)/standard deviation.
- the function of the index a related to the expected result used in the regression analysis, the water quality parameter x, the water quality parameter y, and the control parameter z is not limited to the above formula (1), and the general formula (2) can be used. can.
- the estimation system 1 and the estimation device 2 as described above, it is possible to quantitatively estimate the occurrence of troubles in the water system W and the quality of products manufactured through the water system W. In particular, even if there are many parameters that affect the occurrence of troubles and product quality, it is possible to predict the occurrence of troubles and product quality by more accurately considering the respective influences.
- the speculation program according to the present embodiment is a speculation program for estimating expected results that may occur in the water system or derived from the water system. Specifically, this estimation program causes a computer to function as a parameter information acquisition section, a relationship model information acquisition section, and an estimation section.
- the parameter information acquisition unit acquires water quality parameters related to the water quality of the water system, control parameters related to the control conditions of equipment related to the water system or raw materials added to the water system, and parameters that have different meanings from the expected results and are related to the water system and the water system Parameter information that includes two or more parameters that are any one of the result parameters related to the results generated in the equipment or raw materials added to the water system, or derived from the water system, the equipment related to the water system, or the raw materials added to the water system to obtain.
- the relationship model information acquisition unit acquires relationship model information indicating a relationship between an expected result or an index related to the expected result created in advance and two or more parameters.
- the estimation unit estimates an expected result or an index related to the expected result based on the parameter information and the relationship model information.
- parameter information acquisition unit the relationship model information acquisition unit, and the estimation unit can be similar to those of the estimation system described above, so descriptions thereof will be omitted here.
- the estimating method is an estimating method for estimating expected results that may occur in the future in or derived from the water system.
- this estimation method includes a parameter information acquisition process, a relationship model information acquisition process, and an estimation process.
- the parameter information acquisition process water quality parameters related to the water quality of the water system, control parameters related to the control conditions of equipment related to the water system or raw materials added to the water system, and parameters that have different meanings from the expected results and are related to the water system
- Parameter information that includes two or more parameters that are any one of the result parameters related to the results generated in the equipment or raw materials added to the water system, or derived from the water system, the equipment related to the water system, or the raw materials added to the water system get.
- relationship model information acquisition step relationship model information indicating the relationship between the expected result created in advance or an index related to the expected result and two or more parameters is acquired.
- estimating step an expected result or an index associated with the expected result is estimated based on the parameter information and the relationship model information.
- FIG. 6 is a flowchart of the estimation method according to this embodiment.
- parameter information is acquired (parameter information acquisition step S1)
- relationship model information is acquired (relationship model information acquisition step S2)
- these are input.
- an expected result or an index related to the expected result is guessed (estimating step S3).
- Example 1 In the water system of the paper production facility (a continuous water system consisting of the raw material system, the papermaking system, and the recovery system), the redox potential of the raw material system 1, the redox potential of the raw material system 2, and the redox potential, turbidity, and pH of the papermaking system. , water temperature, and foam height in the recovery system were measured as water quality parameters, respectively, and the average values for 24 hours before the production of the corresponding paper products were used.
- 7 is a schematic diagram of equipment for manufacturing paper in Example 1.
- defect index (sometimes called “ ⁇ ”)
- ⁇ the number of defects occurring within 24 hours
- seven water quality parameters and one result parameter function (hereinafter referred to as "defect index (sometimes called “ ⁇ ”)) relationship model was created. More specifically, as a procedure for creating the defect index ⁇ , after excluding parameters that are two standard deviations or more away from the average value as outliers, regression analysis was performed using IBM's SPSS Modeler. The correlation coefficient between the defect index ⁇ obtained by regression analysis and the number of defects was 0.71 (p ⁇ 0.05), indicating a strong correlation.
- the water quality parameters and parameters are applied to the above-mentioned relationship model was applied to calculate the defect index ⁇ , and the correlation coefficient with the number of defects was calculated to be 0.71 (p ⁇ 0.05). From this, it was confirmed that there is a strong correlation between the number of defects and the defect index ⁇ , and that the defect index ⁇ is effective in predicting the number of defects that will occur in the future.
- FIG. 8 is a plot of the number of defects versus defect index ⁇ for a total of 572 data sets in Example 1.
- FIG. 8 372 sets of data sets for relationship model creation are indicated by circles, and 200 sets of data sets for accuracy verification are indicated by rectangles.
- FIG. 9 is a graph showing the degree of influence of each parameter on the defect index ⁇ .
- Raw material system 1 to 3 of the corrugated board (liner) production facility pH, electrical conductivity, raw material system 2 pH, oxidation-reduction potential, raw material system 3 pH, electrical conductivity, papermaking system: water temperature, electrical conductivity were measured as water quality parameters, respectively (see FIG. 7).
- water quality parameter measurement we also measured the basic unit of paper strength agent usage of manufactured paper products, and prepared 60 sets of these data sets. These data sets were randomly divided into 7:3, and 70% (42 pairs) were used as relationship model creation data and 30% (18 pairs) as model validation data.
- a relationship model that indicates the reciprocal of the paper strength agent usage unit was created as a "paper strength index" as a function of the eight water quality parameters described above. More specifically, as a procedure for creating a paper strength index, after excluding parameters that are two standard deviations or more away from the average value as outliers, regression analysis was performed using IBM's SPSS Modeler. The correlation coefficient between the paper strength index obtained by regression analysis and the basic unit of paper strength agent usage was ⁇ 0.58 (p ⁇ 0.05), indicating a correlation.
- FIG. 10 is a plot of paper strength agent usage intensity vs. paper strength index value for a total of 60 sets of data sets in Example 2.
- 42 sets of data sets for relationship model creation are indicated by circles, and 18 sets of data sets for accuracy verification are indicated by rectangles.
- FIG. 11 is a graph showing the magnitude of the influence of each parameter on the paper strength index.
- the paper strength index proportional to the amount of paper strength used per unit
- Example 3 Temperature, pH, oxidation-reduction potential, electrical conductivity, turbidity, standing turbidity, pH, Oxidation-reduction potential, electrical conductivity, turbidity, and recovery system turbidity were measured as water quality parameters (see FIG. 7). Operation timing, papermaking speed, amount of internal additives added, felt moisture content, ash content in paper, product basis weight, and product brand were used as control parameters. Furthermore, the paper break timing was measured, and 138,276 sets of these data sets were prepared. The same water quality parameters, control parameters, and paper break timing were used.
- paper breakage index a relationship model for Specifically, as a procedure for creating a paper break occurrence index, parameters that are two standard deviations or more away from the average value are excluded as outliers, and regression analysis is performed using IBM's SPSS Modeler to determine the relationship created a gender model. Since the number of data sets is enormous, plot diagrams are omitted.
- FIGS. 12 and 13 are graphs showing the occurrence of paper breakage and the temporal change of the paper breakage index.
- the vertical axis indicates occurrence of paper breakage and the paper breakage index
- the horizontal axis indicates time. Circles indicate the presence or absence of actual paper breakage (0 indicates no paper breakage, 1 indicates paper breakage occurrence) (left axis of ordinate), and squares indicate the index of paper breakage (right axis of ordinate). ). From FIGS. 12 and 13, it is clear that a paper break actually occurs when the paper break index approaches one. It was found that a paper break can be predicted by appropriately setting a threshold value for the paper break index.
- Example 4 In the water system of the paper production facility (continuous water system consisting of raw material system, papermaking system, recovery system, and drainage system), the pH and turbidity of the raw material system 1, the redox potential of the papermaking system, and the electrical conductivity of the drainage system are measured. It was measured as a water quality parameter, and the value measured 16 hours before the production of the corresponding paper product was used. 14 is a schematic diagram of equipment for manufacturing paper in Example 4. FIG. In addition, the speed of paper products was measured as a control parameter. In addition, the basis weight of the paper product was measured as a result parameter. In addition, the number of defects in paper products was measured, and 647 sets of these data sets were prepared.
- defect index ⁇ a relationship model of the number of defects and functions of four water quality parameters, one control parameter and one result parameter (hereinafter sometimes referred to as "defect index ⁇ ") was created. More specifically, as a procedure for creating the defect index ⁇ , after excluding parameters that are two standard deviations or more away from the average value as outliers, use the R language package KFAS, which is a programming language for statistical analysis. Then, we performed an analysis using a state-space model. The correlation coefficient between the defect index ⁇ obtained by the state space model and the number of defects was 0.62 (p ⁇ 0.05), confirming that there is a correlation.
- FIG. 15 is a plot of the number of defects versus the defect index ⁇ value of the data set for creating the data of the total of 647 sets in Example 4.
- FIG. 16 is a plot of the number of defects in the total 255 data sets for accuracy verification in Example 4 versus the defect index ⁇ value for data creation.
- FIG. 17 is a plot showing changes over time in defect indices calculated from a total of 255 sets of data sets for accuracy verification in Example 4.
- FIG. 18 is a graph showing the degree of influence of each parameter on the defect index ⁇ .
- Example 5 The pH and turbidity of the water system of the paper production facility (a continuous water system consisting of the raw material system, the papermaking system, the recovery system, and the drainage system), the redox potential of the papermaking system, and the electrical conductivity of the wastewater system are measured. It was measured and used as a parameter (see FIG. 14). In addition, the speed of paper products was measured as a control parameter. In addition, the basis weight of the paper product was measured as a result parameter. In addition, the number of defects in paper products was measured, and 631 sets of these data sets were prepared.
- defect index ⁇ a relationship model of the number of defects and functions of four water quality parameters, one control parameter and one result parameter (hereinafter sometimes referred to as "defect index ⁇ ") was created. More specifically, as a procedure for creating the defect index ⁇ , after excluding parameters that are two standard deviations or more away from the average value as outliers, the R language package vars, which is a programming language for statistical analysis, is used. We conducted an analysis using the VAR model, which is a type of time series analysis. It was confirmed that the defect index ⁇ obtained by the VAR model and the number of actually generated defects are linked.
- FIG. 19 is a plot of the number of defects versus the defect index ⁇ value of a total of 631 sets of data sets for relationship model creation.
- FIG. 20 is a plot of defect count versus defect index ⁇ value for a total of 255 datasets for accuracy verification in Example 5;
- FIG. 21 is a plot showing changes over time in defect indices calculated from a total of 271 sets of data sets for accuracy verification in Example 5.
- FIG. 21 is a plot showing changes over time in defect indices calculated from a total of 271 sets of data sets for accuracy verification in Example 5.
- FIG. 22 is a graph showing the degree of influence of each parameter on the defect index ⁇ . Note that FIG. 22 shows only parameters that are significant (p ⁇ 0.10) at a significance level of 10%. When considering a process to reduce the number of defects, it is necessary to specify parameters that have a large effect on the defect index ⁇ (proportional to the number of defects), and to prioritize investigation and improvement of the causes of fluctuations. It is also possible to effectively reduce the number of defects.
- Example 6 Measure the pH and turbidity of the raw material system, the oxidation-reduction potential of the papermaking system, and the electrical conductivity of the drainage system as water quality parameters in the water system of the paper production facility (a continuous water system consisting of the raw material system, the papermaking system, and the drainage system). 16 hours before production of the corresponding paper product was used (see FIG. 14). In addition, the speed of paper products was measured as a control parameter. In addition, as result parameters, the basis weight of paper products and the number of defects of paper products were measured, and 1706 sets of these data sets were prepared.
- the number of defects that occur after 16 hours, four water quality parameters, one control parameter and one result parameter function (below , sometimes called “defect index ⁇ ”). More specifically, as a procedure for creating the defect index ⁇ , after excluding parameters that are two standard deviations or more away from the average value as outliers, IBM's SPSS Modeler is used to create a multi-layer perceptron, which is a type of neural network. Analysis was performed by The correlation coefficient between the defect index ⁇ obtained by the multi-layer perceptron and the number of defects was 0.73 (p ⁇ 0.05), indicating a strong correlation.
- the water quality parameters and parameters are applied to the above-mentioned relationship model was applied to calculate the defect index ⁇ , and the correlation coefficient with the number of defects was calculated to be 0.73 (p ⁇ 0.05). From this, it was confirmed that there is a strong correlation between the number of defects and the defect index ⁇ , and that it is effective for predicting the number of defects that will occur in the future.
- FIG. 23 is a plot of the number of defects versus the defect index ⁇ value of a total of 1216 sets of data sets for relationship model creation in Example 6.
- FIG. 24 is a plot of the number of defects versus the defect index ⁇ value for a total of 490 sets of data sets for accuracy verification in Example 6;
- FIG. 11 is a plot of the number of defects versus the defect index ⁇ value for the data set of Example 6;
- FIG. 23 is a plot of the number of defects versus the defect index ⁇ value of a total of 1216 sets of data sets for relationship model creation in Example 6.
- FIG. 24 is a plot of the number of defects versus the defect index ⁇ value for a total of 490 sets of data sets for accuracy verification in Example 6;
- FIG. 11 is a plot of the number of defects versus the defect index ⁇ value for the data set of Example 6;
- FIG. 25 is a graph showing the degree of influence of each parameter on the defect index ⁇ .
- Example 7 Measure the pH and turbidity of the raw material system, the oxidation-reduction potential of the papermaking system, and the electrical conductivity of the drainage system as water quality parameters in the water system of the paper production facility (a continuous water system consisting of the raw material system, the papermaking system, and the drainage system). 16 hours before production of the corresponding paper product was used (see FIG. 14). In addition, the flow rate of the seed box and the speed of the paper product were measured as control parameters. In addition, as result parameters, the basis weight of the paper product and the number of defects of the paper product were measured, and 2040 sets of these data sets were prepared.
- the number of defects occurring after 16 hours four water quality parameters, two control parameters and one result parameter function (below , sometimes called “defect index ⁇ ”). More specifically, as a procedure for creating the defect index ⁇ , after excluding parameters that are two standard deviations or more away from the average value as outliers, IBM's SPSS Modeler is used to determine a decision tree and a kind of ensemble learning. An XGBoost analysis was performed. The correlation coefficient between the defect index ⁇ obtained by XGBoost and the number of defects was 0.95 (p ⁇ 0.05), indicating a strong correlation.
- the water quality parameters and parameters are applied to the above-mentioned relationship model was applied to calculate the defect index ⁇ , and the correlation coefficient with the number of defects was calculated to be 0.57 (p ⁇ 0.05). From this, it was confirmed that there is a correlation between the number of defects and the defect index ⁇ , and that it is effective for predicting the number of defects that will occur in the future.
- FIG. 26 is a plot of the number of defects versus the defect index ⁇ of a total of 1503 sets of data sets for relationship model creation in Example 7.
- FIG. FIG. 27 is a plot of defect number versus defect index ⁇ for a total of 537 datasets for accuracy verification in Example 7;
- FIG. 28 is a graph showing the degree of influence of each parameter on the defect index ⁇ .
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Food Science & Technology (AREA)
- Emergency Medicine (AREA)
- Biomedical Technology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Molecular Biology (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Paper (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
前記推測装置において、前記関係性モデルは、前記見込結果に相当する事前確認結果又は前記事前確認結果に関連する指標と、2つ以上の前記パラメータとの回帰分析、時系列分析、決定木、ニューラルネットワーク、ベイズ、クラスタリング又はアンサンブル学習により求められるモデルである推測装置。
前記推測装置において、前記水系は紙製品を製造する工程における水系である推測装置。
前記推測装置において、前記水質パラメータは、前記水系のpH、電気伝導率、酸化還元電位、ゼータ電位、濁度、温度、泡高さ、生物化学的酸素要求量(BOD)、化学的酸素要求量(COD)、吸光度、色、粒度分布、凝集度合い、異物量、水面の発泡面積、水中の汚れ面積、気泡の量、グルコースの量、有機酸の量、デンプンの量、カルシウムの量、全塩素の量、遊離塩素の量、溶存酸素量、カチオン要求量、硫化水素の量、過酸化水素の量及び系内の微生物の呼吸速度からなる群から選択される1種以上である、推測装置。
前記推測装置において、前記制御パラメータは、抄紙機の運転速度(抄速)、原料脱水機のろ布回転速度、洗浄機のろ布回転速度、前記水系に対する薬品添加量、前記水系に添加する原料に対する薬品添加量、前記水系に関連する設備に対する薬品添加量、加熱用の蒸気量、加熱用の蒸気温度、加熱用の蒸気圧力、種箱からの流量、プレスパートのニップ圧、プレスパートのフェルトバキューム圧、製紙原料の配合比率、製紙原料の損紙配合量、製紙原料のスクリーンの目開き、叩解機のローターとステーターの間の隙間距離、フリーネス及び叩解度からなる群から選択される1種以上である推測装置。
前記推測装置において、前記結果パラメータは、前記紙製品の単位重量(米坪)、歩留率、白水濃度、前記紙製品の含水率、前記紙製品を製造する設備内の蒸気量、前記紙製品を製造する設備内の蒸気温度、前記紙製品を製造する設備内の蒸気圧力、紙製品の厚さ、前記紙製品中の灰分濃度、前記紙製品の欠点の種類、前記紙製品の欠点の数、工程内における断紙の時期、フリーネス、叩解度及び曝気量からなる群から選択される1種以上である推測装置。
水系において又は前記水系から派生して今後生じ得る見込結果を推測するための推測システムであって、パラメータ情報取得部と、関係性モデル情報取得部と、推測部とを備え、前記パラメータ情報取得部は、前記水系の水質に関する水質パラメータ、前記水系、前記水系に関連する設備又は前記水系に添加する原料の制御条件に関する制御パラメータ、及び前記見込結果と異なる意味を持つパラメータであって前記水系、前記水系に関連する設備若しくは前記水系に添加する原料において又は前記水系、前記水系に関連する設備若しくは前記水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得し、前記関係性モデル情報取得部は、事前に作成した、前記見込結果又は前記見込結果に関連する指標と、2つ以上の前記パラメータとの関係を示す関係性モデル情報を取得し、前記推測部は、前記パラメータ情報及び前記関係性モデル情報に基づいて、前記見込結果又は前記見込結果に関連する指標を推測する推測システム。
水系において又は前記水系から派生して今後生じ得る見込結果を推測するための推測プログラムであって、コンピュータを、パラメータ情報取得部、関係性モデル情報取得部及び推測部として機能させ、前記パラメータ情報取得部は、前記水系の水質に関する水質パラメータ、前記水系、前記水系に関連する設備又は前記水系に添加する原料の制御条件に関する制御パラメータ、及び前記見込結果と異なる意味を持つパラメータであって前記水系、前記水系に関連する設備若しくは前記水系に添加する原料において又は前記水系、前記水系に関連する設備若しくは前記水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得し、前記関係性モデル情報取得部は、事前に作成した、前記見込結果又は前記見込結果に関連する指標と、2つ以上の前記パラメータとの関係を示す関係性モデル情報を取得し、前記推測部は、前記パラメータ情報及び前記関係性モデル情報に基づいて、前記見込結果又は前記見込結果に関連する指標を推測する推測プログラム。
水系において又は前記水系から派生して今後生じ得る見込結果を推測するための推測方法であって、パラメータ情報取得工程と、関係性モデル情報取得工程と、推測工程とを備え、前記パラメータ情報取得工程では、前記水系の水質に関する水質パラメータ、前記水系、前記水系に関連する設備又は前記水系に添加する原料の制御条件に関する制御パラメータ、及び前記見込結果と異なる意味を持つパラメータであって前記水系、前記水系に関連する設備若しくは前記水系に添加する原料において又は前記水系、前記水系に関連する設備若しくは前記水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得し、前記関係性モデル情報取得工程では、事前に作成した、前記見込結果又は前記見込結果に関連する指標と、2つ以上の前記パラメータとの関係を示す関係性モデル情報を取得し、前記推測工程では、前記パラメータ情報及び前記関係性モデル情報に基づいて、前記見込結果又は前記見込結果に関連する指標を推測する推測方法。
もちろん、この限りではない。
本実施形態に係る推測システムは、水系において又は水系から派生して今後生じ得る見込結果を推測するための推測システムである。具体的に、この推測システムは、パラメータ情報取得部と、関係性モデル情報取得部と、推測部とを備えるものである。これらのうち、パラメータ情報取得部は、水系の水質に関する水質パラメータ、水系、水系に関連する設備又は水系に添加する原料の制御条件に関する制御パラメータ、及び見込結果と異なる意味を持つパラメータであって水系、水系に関連する設備若しくは水系に添加する原料において又は水系、水系に関連する設備若しくは水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得するものである。関係性モデル情報取得部は、事前に作成した、見込結果又は見込結果に関連する指標と、2つ以上のパラメータとの関係を示す関係性モデル情報を取得するものである。推測部は、パラメータ情報及び関係性モデル情報に基づいて、見込結果又は見込結果に関連する指標を推測するものである。
図1は、本実施形態に係る推測システムの概略図である。この推測システム1は、推測装置2と、出力装置3とを備える。
以下、推測システム1の各部の機能について具体的に説明する。
パラメータ情報取得部21は、水系Wの水質に関する水質パラメータ、水系W、水系Wに関連する設備又は水系Wに添加する原料の制御条件に関する制御パラメータ、及び見込結果と異なる意味を持つパラメータであって水系W、水系Wに関連する設備若しくは水系Wに添加する原料において又は水系W、水系Wに関連する設備若しくは水系Wに添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得するものである。
関係性モデル情報取得部22は、事前に作成した、見込結果又は見込結果に関連する指標と、2つ以上のパラメータとの関係を示す関係性モデル情報を取得するものである。
推測部23は、パラメータ情報及び関係性モデル情報に基づいて、見込結果又は見込結果に関連する指標を推測するものである。
第2推測部24は、推測部23において、見込結果そのものではなく、見込結果に関連する指標を推測した場合において、その指標から、見込結果を推測するものである。なお、第2推測部24を設ける場合において、便宜上、推測部23を「第1推測部」と呼ぶ。
関係性モデル作成部25は、関係性モデルを作成するものである。この関係性モデルは、関係性モデル情報取得部22で取得し、かつ推測部23で見込結果又は見込結果に関連する指標の推測に用いるものであってよい。
第2関係性モデル作成部26は、第2関係性モデルを作成するものである。この第2関係性モデルは、後述する第2関係性モデル情報取得部26で取得し、かつ第2推測部24で見込結果を推測するためのものであってよい。
第2関係性モデル情報取得部27は、第2関係性モデルを取得するものである。第2関係性モデルは、第2関係性モデル作成部26で作成したものであってよい。
推測システム1、推測装置2は、関係性モデル評価部(図示せず。)を備えてもよい。
推測システム1、推測装置2は、関係性モデル情報調整部(図示せず。)を備えてもよい。
出力部3は、推測部23が算出した見込結果若しくは関連指標又は第2推測部24が推測した見込結果の少なくともいずれかを出力するように構成されるものである。
パラメータ情報測定部4は、水質パラメータ、制御パラメータ又は結果パラメータを測定するものである。
図3は、本実施形態に係る推測装置のハードウェア構成を示す概略図である。図3に示されるように、推測装置2は、通信部51と、記憶部52と、制御部53とを有し、これらの構成要素が推測装置2の内部において通信バス54を介して電気的に接続されている。以下、これらの構成要素についてさらに説明する。
以下、関係性モデル作成の例について説明する。具体的には、水質パラメータx、水質パラメータy及び制御パラメータzを用いて、見込結果に関連する指標aを算出し、この見込結果に関連する指標aと見込結果としてのトラブル発生回数A(回数/日)を算出する場合について説明する。
本実施形態に係る推測プログラムは、推測プログラムは、水系において又は水系から派生して今後生じ得る見込結果を推測するための推測プログラムである。具体的に、この推測プログラムは、コンピュータを、パラメータ情報取得部、関係性モデル情報取得部及び推測部として機能させるものである。パラメータ情報取得部は、水系の水質に関する水質パラメータ、水系、水系に関連する設備又は水系に添加する原料の制御条件に関する制御パラメータ、及び見込結果と異なる意味を持つパラメータであって水系、水系に関連する設備若しくは水系に添加する原料において又は水系、水系に関連する設備若しくは水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得するものである。関係性モデル情報取得部は、事前に作成した、見込結果又は見込結果に関連する指標と、2つ以上のパラメータとの関係を示す関係性モデル情報を取得するものである。推測部は、パラメータ情報及び関係性モデル情報に基づいて、見込結果又は見込結果に関連する指標を推測するものである。
本実施形態に係る推測方法は、水系において又は水系から派生して今後生じ得る見込結果を推測するための推測方法である。具体的に、この推測方法は、パラメータ情報取得工程と、関係性モデル情報取得工程と、推測工程とを備えるものである。パラメータ情報取得工程では、水系の水質に関する水質パラメータ、水系、水系に関連する設備又は水系に添加する原料の制御条件に関する制御パラメータ、及び見込結果と異なる意味を持つパラメータであって水系、水系に関連する設備若しくは水系に添加する原料において又は水系、水系に関連する設備若しくは水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得する。関係性モデル情報取得工程では、事前に作成した、見込結果又は見込結果に関連する指標と、2つ以上のパラメータとの関係を示す関係性モデル情報を取得する。推測工程では、パラメータ情報及び関係性モデル情報に基づいて、見込結果又は見込結果に関連する指標を推測する。
洋紙生産設備の水系(原料系、抄紙系、回収系からなる連続した水系)の原料系1で酸化還元電位を、原料系2で酸化還元電位を、抄紙系で酸化還元電位、濁度、pH、水温を、回収系で泡高さをそれぞれ水質パラメータとして測定し、対応する紙製品の製造前24時間の平均値を用いた。図7は、実施例1における紙を製造する設備の概略模式図である。また、結果パラメータとして紙製品の米坪を測定した。さらに、紙製品の欠点数を測定し、これらのデータセットを572組用意した。このデータセットのうち時系列順で前半65%(372組)のデータセットを用いて、24時間以内に発生する欠点数と、7つの水質パラメータ及び1つの結果パラメータの関数(以下、「欠点インデックスα」ということもある)の関係性モデルを作成した。より具体的に、欠点インデックスαの作成の手順としては、平均値から2標準偏差以上離れているパラメータを外れ値として除外した上で、IBM社のSPSS Modelerを使用して回帰分析を行った。回帰分析により得られた欠点インデックスαと欠点数との相関係数は0.71(p<0.05)であり強い相関が認められた。
段ボール原紙(ライナー)生産設備の原料系1~3でpH、電気伝導率を、原料系2でpH、酸化還元電位を、原料系3でpH、電気伝導率、抄紙系:水温、電気伝導率をそれぞれ水質パラメータとして測定した(図7参照)。また、水質パラメータ測定と同時間に製造された紙製品の紙力剤使用量原単位を測定し、これらのデータセットを60組用意した。これらのデータセットをランダムに7:3に区分し、70%(42組)を関係性モデル作成用データ、30%(18組)をモデル検証用データとして用いた。
板紙生産設備の水系(原料系、抄紙系、回収水からなる連続した水系)の原料系で温度、pH、酸化還元電位、電気伝導度、濁度、静置上積み濁度、抄紙系でpH、酸化還元電位、電気伝導度、濁度、回収系で濁度をそれぞれ水質パラメータとして測定した(図7参照)。制御パラメータとして操業稼働タイミング、抄紙速度、内添薬品添加量、フェルト含水率、紙中灰分、製品米坪、製品銘柄を用いた。さらに断紙タイミングを測定し、これらのデータセットを138,276組用意した。なお、水質パラメータ、制御パラメータ及び断紙タイミングは、同じ時間のものを用いた。このデータセットを用いて、実施例1及び実施例2と同様にして、24時間以内に発生する断紙と上述した水質パラメータ及び制御パラメータの関数(以下、「断紙インデックス」ということもある)の関係性モデルを作成した。具体的には、断紙発生指標作成の手順としては、平均値から2標準偏差以上離れているパラメータを外れ値として除外した上で、IBM社のSPSS Modelerを使用して回帰分析を行い、関係性モデルを作成した。なお、データセット数が膨大であるため、プロット図は省略する。
洋紙生産設備の水系(原料系、抄紙系、回収系、排水系からなる連続した水系)の原料系1でpH、濁度を、抄紙系で酸化還元電位を、排水系で電気伝導率をそれぞれ水質パラメータとして測定し、対応する紙製品の製造16時間前の測定値を用いた。図14は、実施例4における紙を製造する設備の概略模式図である。また、制御パラメータとして紙製品の抄速を測定した。さらに、結果パラメータとして紙製品の米坪を測定した。あわせて紙製品の欠点数を測定し、これらのデータセットを647組用意した。このデータセットを用いて、欠点数と、4つの水質パラメータ、1つの制御パラメータ及び1つの結果パラメータの関数(以下、「欠点インデックスβ」ということもある)の関係性モデルを作成した。より具体的に、欠点インデックスβ作成の手順としては、平均値から2標準偏差以上離れているパラメータを外れ値として除外した上で、統計解析向けのプログラミング言語であるR言語のパッケージKFASを使用して状態空間モデルによる解析を行った。状態空間モデルにより得られた欠点インデックスβと欠点数との相関係数は0.62(p<0.05)であり、相関があることが確認された。
洋紙生産設備の水系(原料系、抄紙系、回収系、排水系からなる連続した水系)の原料系でpH、濁度を、抄紙系で酸化還元電位を、排水系で電気伝導率をそれぞれ水質パラメータとして測定し用いた(図14参照)。また、制御パラメータとして紙製品の抄速を測定した。さらに、結果パラメータとして紙製品の米坪を測定した。あわせて紙製品の欠点数を測定し、これらのデータセットを631組用意した。このデータセットを用いて、欠点数と、4つの水質パラメータ、1つの制御パラメータ及び1つの結果パラメータの関数(以下、「欠点インデックスγ」ということもある)の関係性モデルを作成した。より具体的に、欠点インデックスγ作成の手順としては、平均値から2標準偏差以上離れているパラメータを外れ値として除外した上で、統計解析向けのプログラミング言語であるR言語のパッケージvarsを使用して時系列分析の一種であるVARモデルによる解析を行った。VARモデルにより得られた欠点インデックスγと実際に発生した欠点数が連動することが確認された。
洋紙生産設備の水系(原料系、抄紙系、排水系からなる連続した水系)の原料系でpH、濁度を、抄紙系で酸化還元電位を、排水系で電気伝導率をそれぞれ水質パラメータとして測定し、対応する紙製品の製造16時間前の数値を用いた(図14参照)。また、制御パラメータとして紙製品の抄速を測定した。また、結果パラメータとして紙製品の米坪と紙製品の欠点数を測定し、これらのデータセットを1706組用意した。このデータセットのうち時系列順で前半71%(1216組)のデータセットを用いて、16時間後に発生する欠点数と、4つの水質パラメータ、1つの制御パラメータ及び1つの結果パラメータの関数(以下、「欠点インデックスδ」ということもある)の関係性モデルを作成した。より具体的に、欠点インデックスδ作成の手順としては、平均値から2標準偏差以上離れているパラメータを外れ値として除外した上で、IBM社のSPSSModelerを使用してニューラルネットワークの一種である多層パーセプトロンによる解析を行った。多層パーセプトロンにより得られた欠点インデックスδと欠点数との相関係数は0.73(p<0.05)であり強い相関が認められた。
洋紙生産設備の水系(原料系、抄紙系、排水系からなる連続した水系)の原料系でpH、濁度を、抄紙系で酸化還元電位を、排水系で電気伝導率をそれぞれ水質パラメータとして測定し、対応する紙製品の製造16時間前の数値を用いた(図14参照)。また、制御パラメータとして種箱の流量と紙製品の抄速を測定した。また、結果パラメータとして紙製品の米坪と紙製品の欠点数を測定し、これらのデータセットを2040組用意した。このデータセットのうち時系列順で前半74%(1503組)のデータセットを用いて、16時間後に発生する欠点数と、4つの水質パラメータ、2つの制御パラメータ及び1つの結果パラメータの関数(以下、「欠点インデックスε」ということもある)の関係性モデルを作成した。より具体的に、欠点インデックスε作成の手順としては、平均値から2標準偏差以上離れているパラメータを外れ値として除外した上で、IBM社のSPSSModelerを使用して決定木及びアンサンブル学習の一種であるXGBoostによる解析を行った。XGBoostにより得られた欠点インデックスεと欠点数との相関係数は0.95(p<0.05)であり強い相関が認められた。
2 推測装置
3 出力装置又は出力部
4 パラメータ情報測定装置又はパラメータ情報測定部
21 パラメータ情報取得部
22 関係性モデル情報取得部又は第1関係性モデル情報取得部
23 推測部又は第1推測部
24 第2推測部
25 関係性モデル情報作成部又は第1関係性モデル情報作成部
26 第2関係性モデル作成部
27 第2関係性モデル情報取得部
51 通信部
52 記憶部
53 制御部
54 通信バス
Claims (9)
- 水系において又は前記水系から派生して今後生じ得る見込結果を推測するための推測装置であって、
パラメータ情報取得部と、関係性モデル情報取得部と、推測部とを備え、
前記パラメータ情報取得部は、前記水系の水質に関する水質パラメータ、前記水系、前記水系に関連する設備又は前記水系に添加する原料の制御条件に関する制御パラメータ、及び前記見込結果と異なる意味を持つパラメータであって前記水系、前記水系に関連する設備若しくは前記水系に添加する原料において又は前記水系、前記水系に関連する設備若しくは前記水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得し、
前記関係性モデル情報取得部は、事前に作成した、前記見込結果又は前記見込結果に関連する指標と、2つ以上の前記パラメータとの関係を示す関係性モデル情報を取得し、
前記推測部は、前記パラメータ情報及び前記関係性モデル情報に基づいて、前記見込結果又は前記見込結果に関連する指標を推測する
推測装置。 - 請求項1に記載の推測装置において、
前記関係性モデルは、前記見込結果に相当する事前確認結果又は前記事前確認結果に関連する指標と、2つ以上の前記パラメータとの回帰分析、時系列分析、決定木、ニューラルネットワーク、ベイズ、クラスタリング又はアンサンブル学習により求められるモデルである
推測装置。 - 請求項1又は請求項2に記載の推測装置において、
前記水系は紙製品を製造する工程における水系である
推測装置。 - 請求項3に記載の推測装置において、
前記水質パラメータは、前記水系のpH、電気伝導率、酸化還元電位、ゼータ電位、濁度、温度、泡高さ、生物化学的酸素要求量(BOD)、化学的酸素要求量(COD)、吸光度、色、粒度分布、凝集度合い、異物量、水面の発泡面積、水中の汚れ面積、気泡の量、グルコースの量、有機酸の量、デンプンの量、カルシウムの量、全塩素の量、遊離塩素の量、溶存酸素量、カチオン要求量、硫化水素の量、過酸化水素の量及び系内の微生物の呼吸速度からなる群から選択される1種以上である、
推測装置。 - 請求項3又は請求項4に記載の推測装置において、
前記制御パラメータは、抄紙機の運転速度(抄速)、原料脱水機のろ布回転速度、洗浄機のろ布回転速度、前記水系に対する薬品添加量、前記水系に添加する原料に対する薬品添加量、前記水系に関連する設備に対する薬品添加量、加熱用の蒸気量、加熱用の蒸気温度、加熱用の蒸気圧力、種箱からの流量、プレスパートのニップ圧、プレスパートのフェルトバキューム圧、製紙原料の配合比率、製紙原料の損紙配合量、製紙原料のスクリーンの目開き、叩解機のローターとステーターの間の隙間距離、フリーネス及び叩解度からなる群から選択される1種以上である
推測装置。 - 請求項3~請求項5のいずれか1項に記載の推測装置において、
前記結果パラメータは、前記紙製品の単位重量(米坪)、歩留率、白水濃度、前記紙製品の含水率、前記紙製品を製造する設備内の蒸気量、前記紙製品を製造する設備内の蒸気温度、前記紙製品を製造する設備内の蒸気圧力、紙製品の厚さ、前記紙製品中の灰分濃度、前記紙製品の欠点の種類、前記紙製品の欠点の数、工程内における断紙の時期、フリーネス、叩解度及び曝気量からなる群から選択される1種以上である
推測装置。 - 水系において又は前記水系から派生して今後生じ得る見込結果を推測するための推測システムであって、
パラメータ情報取得部と、関係性モデル情報取得部と、推測部とを備え、
前記パラメータ情報取得部は、前記水系の水質に関する水質パラメータ、前記水系、前記水系に関連する設備又は前記水系に添加する原料の制御条件に関する制御パラメータ、及び前記見込結果と異なる意味を持つパラメータであって前記水系、前記水系に関連する設備若しくは前記水系に添加する原料において又は前記水系、前記水系に関連する設備若しくは前記水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得し、
前記関係性モデル情報取得部は、事前に作成した、前記見込結果又は前記見込結果に関連する指標と、2つ以上の前記パラメータとの関係を示す関係性モデル情報を取得し、
前記推測部は、前記パラメータ情報及び前記関係性モデル情報に基づいて、前記見込結果又は前記見込結果に関連する指標を推測する
推測システム。 - 水系において又は前記水系から派生して今後生じ得る見込結果を推測するための推測プログラムであって、
コンピュータを、パラメータ情報取得部、関係性モデル情報取得部及び推測部として機能させ、
前記パラメータ情報取得部は、前記水系の水質に関する水質パラメータ、前記水系、前記水系に関連する設備又は前記水系に添加する原料の制御条件に関する制御パラメータ、及び前記見込結果と異なる意味を持つパラメータであって前記水系、前記水系に関連する設備若しくは前記水系に添加する原料において又は前記水系、前記水系に関連する設備若しくは前記水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得し、
前記関係性モデル情報取得部は、事前に作成した、前記見込結果又は前記見込結果に関連する指標と、2つ以上の前記パラメータとの関係を示す関係性モデル情報を取得し、
前記推測部は、前記パラメータ情報及び前記関係性モデル情報に基づいて、前記見込結果又は前記見込結果に関連する指標を推測する
推測プログラム。 - 水系において又は前記水系から派生して今後生じ得る見込結果を推測するための推測方法であって、
パラメータ情報取得工程と、関係性モデル情報取得工程と、推測工程とを備え、
前記パラメータ情報取得工程では、前記水系の水質に関する水質パラメータ、前記水系、前記水系に関連する設備又は前記水系に添加する原料の制御条件に関する制御パラメータ、及び前記見込結果と異なる意味を持つパラメータであって前記水系、前記水系に関連する設備若しくは前記水系に添加する原料において又は前記水系、前記水系に関連する設備若しくは前記水系に添加する原料から派生して生じた結果に関する結果パラメータのうちいずれか1種であるパラメータを2つ以上含むパラメータ情報を取得し、
前記関係性モデル情報取得工程では、事前に作成した、前記見込結果又は前記見込結果に関連する指標と、2つ以上の前記パラメータとの関係を示す関係性モデル情報を取得し、
前記推測工程では、前記パラメータ情報及び前記関係性モデル情報に基づいて、前記見込結果又は前記見込結果に関連する指標を推測する
推測方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22752706.6A EP4286583A4 (en) | 2021-02-12 | 2022-02-07 | ESTIMATION DEVICE, ESTIMATION SYSTEM, ESTIMATION PROGRAM AND ESTIMATION METHOD |
CN202280014302.7A CN116829785A (zh) | 2021-02-12 | 2022-02-07 | 推测装置、推测系统、推测程序以及推测方法 |
KR1020237027836A KR20230133886A (ko) | 2021-02-12 | 2022-02-07 | 추측장치, 추측 시스템, 추측 프로그램 및 추측방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021021053 | 2021-02-12 | ||
JP2021-021053 | 2021-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022172882A1 true WO2022172882A1 (ja) | 2022-08-18 |
Family
ID=82837547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/004611 WO2022172882A1 (ja) | 2021-02-12 | 2022-02-07 | 推測装置、推測システム、推測プログラム及び推測方法 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4286583A4 (ja) |
JP (2) | JP7544085B2 (ja) |
KR (1) | KR20230133886A (ja) |
CN (1) | CN116829785A (ja) |
TW (1) | TW202302960A (ja) |
WO (1) | WO2022172882A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117303518A (zh) * | 2023-09-08 | 2023-12-29 | 深圳市伊科赛尔环保科技有限公司 | 一种电离子交换超纯水设备及其控制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03238346A (ja) * | 1990-02-16 | 1991-10-24 | Nippon Kamiparupu Kenkyusho:Kk | パルプまたは紙の製造工程におけるピッチの定量法 |
US20030045962A1 (en) * | 2001-08-30 | 2003-03-06 | Evren Eryurek | Control system using process model |
WO2003074784A1 (en) * | 2002-03-07 | 2003-09-12 | University Of Manchester Institute Of Science & Technology | A method of dynamically modelling a paper manufacturing plant using pca (principal component analysis) |
WO2012070644A1 (ja) | 2010-11-25 | 2012-05-31 | 栗田工業株式会社 | 紙を製造する方法 |
JP2019193916A (ja) * | 2018-05-01 | 2019-11-07 | 株式会社東芝 | 凝集剤注入制御装置、凝集剤注入制御方法及びコンピュータプログラム |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4063100B2 (ja) | 2003-02-13 | 2008-03-19 | 王子製紙株式会社 | 抄紙機の制御方法、制御装置、プログラム及び記憶媒体 |
JP4560772B2 (ja) * | 2004-04-13 | 2010-10-13 | 王子製紙株式会社 | 抄紙機紙切れ予測装置、抄紙機紙切れ予測方法およびコンピュータプログラム |
KR20120070644A (ko) | 2010-12-22 | 2012-07-02 | 두산인프라코어 주식회사 | 건설중장비의 원격관리를 위한 다중 스케줄링 방법 |
US20130233796A1 (en) * | 2012-03-06 | 2013-09-12 | Narasimha M. Rao | Treatment of industrial water systems |
JP6079542B2 (ja) | 2013-10-04 | 2017-02-15 | 王子ホールディングス株式会社 | パルプ白色度の推定装置およびその推定方法 |
WO2017115686A1 (ja) * | 2015-12-28 | 2017-07-06 | 日本電気株式会社 | 予測システム、情報処理装置、予測方法および予測プログラム |
JP6422901B2 (ja) * | 2016-02-12 | 2018-11-14 | 株式会社東芝 | 管理支援システム、管理支援方法及び管理支援プログラム |
JP7172153B2 (ja) | 2018-06-12 | 2022-11-16 | 栗田工業株式会社 | 抄紙工程におけるワイヤ及び/又はフェルトの汚れ蓄積量推定方法 |
CN108862549A (zh) * | 2018-07-12 | 2018-11-23 | 李泓 | 一种基于人工智能的污水处理系统 |
TWI841605B (zh) | 2018-10-01 | 2024-05-11 | 日商明答克股份有限公司 | 監視系統 |
CN109879410B (zh) * | 2019-03-27 | 2022-05-13 | 上海西派埃智能化系统有限公司 | 一种污水处理曝气控制系统 |
CN112062179A (zh) * | 2020-08-24 | 2020-12-11 | 华南理工大学 | 用于造纸污水处理ghg减排的溶解氧分层优化控制方法 |
-
2022
- 2022-02-07 KR KR1020237027836A patent/KR20230133886A/ko unknown
- 2022-02-07 CN CN202280014302.7A patent/CN116829785A/zh active Pending
- 2022-02-07 EP EP22752706.6A patent/EP4286583A4/en active Pending
- 2022-02-07 WO PCT/JP2022/004611 patent/WO2022172882A1/ja active Application Filing
- 2022-02-10 JP JP2022019974A patent/JP7544085B2/ja active Active
- 2022-02-11 TW TW111105075A patent/TW202302960A/zh unknown
-
2023
- 2023-11-27 JP JP2023199570A patent/JP2024037736A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03238346A (ja) * | 1990-02-16 | 1991-10-24 | Nippon Kamiparupu Kenkyusho:Kk | パルプまたは紙の製造工程におけるピッチの定量法 |
US20030045962A1 (en) * | 2001-08-30 | 2003-03-06 | Evren Eryurek | Control system using process model |
WO2003074784A1 (en) * | 2002-03-07 | 2003-09-12 | University Of Manchester Institute Of Science & Technology | A method of dynamically modelling a paper manufacturing plant using pca (principal component analysis) |
WO2012070644A1 (ja) | 2010-11-25 | 2012-05-31 | 栗田工業株式会社 | 紙を製造する方法 |
JP2019193916A (ja) * | 2018-05-01 | 2019-11-07 | 株式会社東芝 | 凝集剤注入制御装置、凝集剤注入制御方法及びコンピュータプログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP4286583A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117303518A (zh) * | 2023-09-08 | 2023-12-29 | 深圳市伊科赛尔环保科技有限公司 | 一种电离子交换超纯水设备及其控制方法 |
CN117303518B (zh) * | 2023-09-08 | 2024-06-04 | 深圳市伊科赛尔环保科技有限公司 | 一种电离子交换超纯水设备及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4286583A1 (en) | 2023-12-06 |
JP2024037736A (ja) | 2024-03-19 |
JP7544085B2 (ja) | 2024-09-03 |
JP2022123880A (ja) | 2022-08-24 |
CN116829785A (zh) | 2023-09-29 |
EP4286583A4 (en) | 2024-08-14 |
KR20230133886A (ko) | 2023-09-19 |
TW202302960A (zh) | 2023-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024037736A (ja) | 推測装置、推測システム、推測プログラム及び推測方法 | |
AU2018379543B2 (en) | Method for predicting or controlling microbial status of a paper or board making process | |
US7181308B2 (en) | Method for monitoring and analyzing a paper production process | |
JP2022121356A (ja) | 汚泥処理設備運転支援ナビゲーションシステム、汚泥処理設備運転支援方法 | |
WO2023127748A1 (ja) | 異常検知装置、異常検知方法及び異常検知プログラム | |
WO2022163549A1 (ja) | 推定装置、予測装置、制御装置、推定システム、予測システム、制御システム、推定プログラム、予測プログラム、制御プログラム、推定方法、予測方法及び制御方法 | |
WO2022168965A1 (ja) | 汚泥処理設備運転支援ナビゲーションシステム、汚泥処理設備運転支援方法 | |
JP2022123880A5 (ja) | ||
CN115508322A (zh) | 一种水污染源多维度溯源方法及装置 | |
JP5541790B2 (ja) | プラント運転監視装置およびシステムならびにプログラム | |
Tomperi et al. | Early warning of changing drinking water quality by trend analysis | |
WO2024034509A1 (ja) | 廃液処理設備の運転方法、処理後廃液の性質を予測する方法、運転システム及び予測システム | |
JPS6047958B2 (ja) | 懸濁液の連続洗浄方法 | |
US20220251781A1 (en) | Process to optimize brown stock washing unit operations | |
Moguel-Castañeda et al. | Diagnosis of the Cane Sugar Crystallization Process by Multifractal Analysis of Temperature Time Series | |
FI130085B (en) | Monitoring method and device | |
WO2020189301A1 (ja) | 運転方針評価装置、運転方針評価方法、およびプログラム | |
Heikkinen et al. | SOM-based modelling for an activated sludge treatment process | |
US20240192676A1 (en) | A method for estimating disturbances and giving recommendations for improving process performance | |
US20220326685A1 (en) | Estimating risk level in an aqueous process | |
JP2023180657A (ja) | 白液処理方法、白液酸化監視システム | |
CN118410390A (zh) | 反渗透系统的智能诊断方法及系统 | |
JP2024082653A (ja) | 情報処理装置、脱水機、含水率推定方法、および含水率推定プログラム | |
MIC | 1. Predictive Microbiology | |
JPH06116888A (ja) | クラフトパルプ未晒洗浄装置におけるプロセス同定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22752706 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280014302.7 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20237027836 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237027836 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2022752706 Country of ref document: EP Effective date: 20230831 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |