WO2024034509A1 - 廃液処理設備の運転方法、処理後廃液の性質を予測する方法、運転システム及び予測システム - Google Patents

廃液処理設備の運転方法、処理後廃液の性質を予測する方法、運転システム及び予測システム Download PDF

Info

Publication number
WO2024034509A1
WO2024034509A1 PCT/JP2023/028396 JP2023028396W WO2024034509A1 WO 2024034509 A1 WO2024034509 A1 WO 2024034509A1 JP 2023028396 W JP2023028396 W JP 2023028396W WO 2024034509 A1 WO2024034509 A1 WO 2024034509A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste liquid
data
properties
predicted value
production process
Prior art date
Application number
PCT/JP2023/028396
Other languages
English (en)
French (fr)
Inventor
知世 福田
貴子 岩見
直樹 池川
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2024034509A1 publication Critical patent/WO2024034509A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing

Definitions

  • the present invention relates to a method of operating a waste liquid treatment facility, a method of predicting the properties of treated waste liquid, an operation system, and a prediction system.
  • water is used for various purposes such as dissolving raw materials, cleaning production lines, and cooling, and this water is usually subjected to specific treatment when disposed of.
  • the properties of the water to be treated change with changes in the raw materials to be treated, as well as in production items and production volumes, so it may be necessary to devise measures for the wastewater treatment process.
  • Patent Document 1 discloses that a plurality of different prediction models, operation record data of plant equipment, data related to current operating status, weather observation data, and data related to weather forecasts are used to calculate the primary monitoring target amount of plant equipment.
  • a primary prediction step that calculates a plurality of predicted values, a weight that is assigned to each primary predicted value predicted in the primary prediction step according to the execution timing of a secondary prediction step, and a plurality of weighted primary predicted values.
  • a monitoring target quantity prediction method characterized by including a secondary prediction step of calculating a secondary predicted value of a monitoring target quantity of plant equipment as a predicted value of a monitoring target quantity of plant equipment.
  • the present invention provides a method of operating a waste liquid treatment facility that can flexibly respond to changes in the properties of waste liquid.
  • a method of operating a waste liquid treatment facility for treating waste liquid from a product production process comprising: Comprising a data acquisition process, a waste liquid predicted value output process, and an operating condition setting process, In the data acquisition step, first data including product production process data in the product production process at a first time is acquired; In the waste liquid predicted value output step, based on the first data and a prediction model that predicts the properties of the waste liquid, the predicted value outputting process calculates the property of the waste liquid from the product production process at a second time after the first time.
  • the prediction model is a model created by associating past product production process data in the product production process with data regarding the properties of waste liquid discharged at that time,
  • a method for operating a waste liquid treatment facility wherein in the operating condition setting step, operating condition parameters of the waste liquid treatment facility are set based on the predicted value regarding the properties of the waste liquid output in the waste liquid predicted value output step.
  • the prediction model is a model created by further associating predetermined parameters of the product produced in the product production process, The method for operating a waste liquid treatment facility, wherein the first data acquired in the data acquisition step further includes information regarding a predetermined parameter of the product.
  • a method for predicting properties of waste liquid after treatment of waste liquid treatment equipment that processes waste liquid from a product production process comprising: comprising a data acquisition step and a post-treatment waste liquid predicted value output step, In the data acquisition step, second data including product production process data in the product production process at a first time and operating condition parameters to be executed by the waste liquid treatment equipment is obtained; In the post-treatment waste liquid predicted value outputting step, based on the second data and a prediction model that predicts the properties of the post-treatment waste liquid, the post-processing waste liquid treatment equipment prediction value is calculated at a second time after the first time.
  • the prediction model includes past product production process data in the product production process, data regarding the properties of waste liquid discharged at that time, and an operation in which the waste liquid treatment equipment treated the waste liquid discharged at that time.
  • a method for predicting the properties of post-processing waste liquid which is a model created by associating condition parameters and properties of post-processing waste liquid.
  • the method for predicting the properties of the treated waste liquid described in (4) further comprising a data re-acquisition step and a post-treatment waste liquid predicted value re-output step
  • the data re-acquisition step if the predicted value regarding the properties of the treated waste liquid output in the treated waste liquid predicted value output step does not fall within a predetermined range, the operating condition parameters that the waste liquid treatment equipment is to execute are adjusted.
  • the waste liquid at the second time is calculated based on the second data acquired in the data re-acquisition process and the prediction model that predicts the properties of the post-treatment waste liquid.
  • a method for predicting the properties of treated waste liquid that re-outputs predicted values regarding the properties of treated waste liquid from treatment equipment.
  • (6) In the method for predicting the properties of the treated waste liquid according to (4) or (5), The method for predicting the properties of treated waste liquid, wherein the prediction model is a model configured to be updatable before the process of outputting the predicted value of treated waste liquid is executed.
  • the predictive model is a model created by further correlating the temperature and/or temperature transition of the waste liquid and the corresponding biological treatment capacity,
  • the second data acquired in the data acquisition step further includes information regarding the temperature of the waste liquid and/or the change in temperature.
  • the data acquisition step is a method for predicting the properties of the treated waste liquid, in which constraints on some of the operating condition parameters to be executed by the waste liquid treatment equipment can be set.
  • the prediction model is a model created by further associating predetermined parameters of the product produced in the product production process, The method for predicting properties of treated waste liquid, wherein the second data acquired in the data acquisition step further includes information regarding a predetermined parameter of the product.
  • An operation system for waste liquid treatment equipment that processes waste liquid from a product production process, Comprising a data acquisition section, a waste liquid predicted value output section, and an operating condition setting section,
  • the data acquisition unit acquires first data including product production process data in the product production process at a first time
  • the waste liquid predicted value output unit is configured to generate information regarding the properties of the waste liquid from the product production process at a second time after the first time based on the first data and a prediction model that predicts the properties of the waste liquid.
  • the prediction model is a model created by associating past product production process data in the product production process with data regarding the properties of waste liquid discharged at that time
  • the operating condition setting section is an operating system in which the operating condition setting section sets operating condition parameters of the waste liquid treatment equipment based on the predicted value regarding the properties of the waste liquid outputted by the waste liquid predicted value output section.
  • a prediction system that predicts the properties of waste liquid after treatment of waste liquid treatment equipment that processes waste liquid from a product production process, comprising a data acquisition unit and a post-processing waste liquid predicted value output unit,
  • the data acquisition unit acquires second data including product production process data in the product production process at a first time and operating condition parameters to be executed by the waste liquid treatment equipment
  • the post-processing waste liquid predicted value output unit is configured to predict the post-processing waste liquid treatment equipment at a second time after the first time based on the second data and a prediction model that predicts the properties of the post-process waste liquid.
  • the prediction model includes past product production process data in the product production process, data regarding the properties of waste liquid discharged at that time, and information on when the waste liquid treatment equipment treated the waste liquid discharged at that time.
  • a prediction system that is a model created by linking the operating condition parameters and the properties of the treated waste liquid.
  • Patent Document 1 The technology disclosed in Patent Document 1 mentioned above focuses only on the operating status of the plant itself that processes wastewater.
  • data regarding the product production process located upstream of waste liquid generation is utilized, thereby optimizing the operating conditions of the waste liquid treatment facility. More specifically, by associating product production process data with waste liquid treatment data, it is possible to predict changes in the properties of the waste liquid and to optimize the operating conditions of the waste liquid treatment equipment. Moreover, this makes it possible to minimize the operating cost and environmental load of the waste liquid treatment equipment.
  • even within the limited processing capacity of waste liquid treatment equipment by adjusting parameters related to waste liquid treatment data linked to the product production process, it is possible to achieve the target waste liquid without making additional capital investment. properties (wastewater quality standards, etc.).
  • the above aspect provides a method of operating a waste liquid treatment facility, etc. that can flexibly respond to changes in the properties of waste liquid.
  • FIG. 1 is a diagram showing the overall configuration of an information processing system 100.
  • FIG. 1 is a diagram showing a hardware configuration of an information processing device 1.
  • FIG. FIG. 2 is a functional block diagram showing the functions of the information processing device 1.
  • FIG. FIG. 2 is an activity diagram showing the flow of information processing using the information processing device 1 and the like.
  • FIG. 2 is an activity diagram showing the flow of information processing using the information processing device 1 and the like.
  • the program for realizing the software appearing in this embodiment may be provided as a non-transitory computer-readable medium, or may be downloaded from an external server.
  • the program may be provided in a manner that allows the program to be started on an external computer and the function thereof is realized on the client terminal (so-called cloud computing).
  • the term "unit” may include, for example, a combination of hardware resources implemented by circuits in a broad sense and software information processing that can be concretely implemented by these hardware resources.
  • various types of information are handled in this embodiment, and these information include, for example, the physical value of a signal value representing voltage and current, and the signal value as a binary bit collection consisting of 0 or 1. It is expressed by high and low levels or quantum superposition (so-called quantum bits), and communication and calculations can be performed on circuits in a broad sense.
  • a circuit in a broad sense is a circuit realized by at least appropriately combining a circuit, a circuit, a processor, a memory, and the like. That is, Application Specific Integrated Circuit (ASIC), programmable logic device (for example, Simple Programmable Logic Device (SPLD)), complex programmable logic Device (Complex Programmable Logic Device: CPLD) and field This includes a field programmable gate array (FPGA) and the like.
  • ASIC Application Specific Integrated Circuit
  • SPLD Simple Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA field programmable gate array
  • FIG. 1 is a diagram showing the overall configuration of an information processing system 100.
  • the information processing system 100 of the present embodiment includes an operating method (sometimes simply referred to as an "operating method") of a waste liquid treatment facility that processes waste liquid from a product production process, and a waste liquid treatment facility that processes waste liquid from a product production process.
  • This system is configured to be able to execute a method (sometimes simply referred to as a "prediction method") for predicting the properties of waste liquid after treatment in a treatment facility.
  • the information processing system 100 of this embodiment may be referred to as a "driving system” or a "prediction system.”
  • the information processing system 100 of this embodiment includes an information processing device 1 and a communication line 2.
  • the communication line 2 includes the Internet, etc., and mediates the exchange of data between devices connected to the communication line.
  • the information processing device 1 is connected to a plant PL1 and a plant PL2 via a communication line 2.
  • a system exemplified by the information processing system 100 is composed of one or more devices or components. Therefore, even the information processing device 1 alone is an example of a system.
  • the plant PL1 is a plant that executes a product production process
  • the plant PL2 is a plant that functions as a waste liquid treatment facility that processes waste liquid from the product production process. That is, as for the flow of waste liquid, the plant PL1 is located upstream of the plant PL2, and typically, the waste liquid generated in the plant PL1 is transferred to the plant PL2 via the liquid line LL1.
  • the equipment and the like arranged in the plant PL2 can be appropriately set according to the type of waste liquid. For example, if the waste liquid is water-based, a biological treatment device or the like may be provided within the plant PL2. Note that microorganisms or the like that can purify wastewater may be applied to this biological treatment device.
  • a sensor may be attached to the liquid line LL1, and this sensor and the information processing device 1 may be connected via the communication line 2.
  • FIG. 2 is a diagram showing the hardware configuration of the information processing device 1.
  • the information processing device 1 includes a control section 11, a storage section 12, an input section 13, a display section 14, and a communication section 15, and a communication bus 10 electrically connects these sections. Consists of. Each section provided in the information processing device 1 will be explained below.
  • Control unit 11 The control unit 11 is, for example, a central processing unit (CPU) not shown.
  • the control unit 11 implements various functions related to the information processing device 1 by reading predetermined programs stored in the storage unit 12. That is, information processing by software stored in the storage unit 12 is specifically implemented by the control unit 11, which is an example of hardware, so that it can be executed as each functional unit included in the control unit 11. These will be explained in more detail in the next section.
  • the control section 11 is not limited to a single control section, and may be implemented so as to have a plurality of control sections 11 for each function. It may also be a combination thereof.
  • the storage unit 12 stores various information defined by the above description. This may be used, for example, as a storage device such as a solid state drive (SSD) that stores various programs related to the information processing device 1 executed by the control unit 11, or as a temporary storage device related to program calculations. It can be implemented as a memory such as a random access memory (RAM) that stores information (arguments, arrays, etc.) necessary for the process.
  • the storage unit 12 stores various programs, variables, etc. related to the information processing device 1 executed by the control unit 11.
  • the input unit 13 may be included in the casing of the information processing device 1 or may be externally attached.
  • the input unit 13 may be integrated with the display unit 14 and implemented as a touch panel. With a touch panel, the user can input tap operations, swipe operations, and the like. Of course, a switch button, a mouse, a QWERTY keyboard, etc. may be used instead of the touch panel. That is, the input unit 13 accepts operation inputs made by the user.
  • the input is transferred as a command signal to the control unit 11 via the communication bus 10, and the control unit 11 can perform predetermined control or calculation as necessary.
  • the display unit 14 may be included in the casing of the information processing device 1, or may be attached externally, for example.
  • the display unit 14 displays a graphical user interface (GUI) screen that can be operated by a user. This is preferably carried out by using display devices such as a CRT display, a liquid crystal display, an organic EL display, and a plasma display depending on the type of information processing apparatus 1, for example.
  • GUI graphical user interface
  • the communication unit 15 is configured to be capable of transmitting various electrical signals from the information processing device 1 to external components. Furthermore, the communication unit 15 is configured to be able to receive various electrical signals from external components to the information processing device 1 . Note that the communication unit 15 may have a network communication function so that various information can be communicated between the information processing device 1 and external devices via the communication line 2.
  • the plant PL1 and the plant PL2 which are connected to the information processing device 1 via the communication line 2, are also equipped with devices having the same hardware configuration as the information processing device 1 described above. Good too.
  • FIG. 3 is a functional block diagram showing the functions of the information processing device 1. As shown in FIG. As described above, the information processing by software (stored in the storage unit 12) is concretely realized by the hardware (control unit 11), so that it can be executed as each functional unit included in the control unit 11.
  • the information processing device 1 (control unit 11) includes a data acquisition unit 111, a waste liquid predicted value output unit 112, an operating condition setting unit 113, and a post-processed waste liquid predicted value output unit 114 as each functional unit. , a data re-acquisition section 115, a post-treatment waste liquid predicted value re-output section 116, a prediction model creation section 117, and a storage management section 118. Note that the number of such functional units may be increased or omitted as appropriate depending on the application to which the information processing device 1 is applied.
  • the data acquisition unit 111 is configured to be able to execute a data acquisition process.
  • the data acquisition unit 111 acquires first data including product production process data in the product production process at the first time.
  • the data acquisition unit 111 acquires second data including product production process data in the product production process at the first time and operating condition parameters to be executed by the waste liquid treatment equipment.
  • the data acquisition unit 111 is configured to acquire various information (analytical data, etc.) via the communication unit 15, for example, from sensors and instruments arranged in the plant PL1.
  • the waste liquid predicted value output unit 112 is configured to be able to execute a waste liquid predicted value output step.
  • the waste liquid predicted value output unit 112 outputs the product production process at the second time after the first time based on the above-mentioned first data and the prediction model that predicts the properties of the waste liquid. Outputs predicted values regarding the properties of waste liquid from.
  • the predictive model is a model created by associating past product production process data in the product production process with data regarding the properties of waste liquid discharged during the process. Details of this information processing will be described later.
  • the operating condition setting unit 113 is configured to be able to execute an operating condition setting step.
  • the operating condition setting section 113 sets operating condition parameters of the waste liquid treatment equipment based on the predicted value regarding the properties of the waste liquid outputted by the waste liquid predicted value output section.
  • the operating condition setting section 113 is configured to transmit various information (signals, etc.) via the communication section 15 to various devices typically arranged in the plant PL2.
  • the post-processing waste liquid predicted value output unit 114 is configured to be able to execute the post-processing waste liquid predicted value output process.
  • the post-processing waste liquid predicted value output unit 114 outputs the second predicted value after the first time based on the above-mentioned second data and the prediction model that predicts the properties of the post-processed waste liquid.
  • a predicted value regarding the properties of the waste liquid after treatment of the waste liquid treatment equipment at the time of is output.
  • the prediction model is based on past product production process data in the product production process, data regarding the properties of the waste liquid discharged at that time, and operating conditions when the waste liquid treatment equipment treated the waste liquid discharged at that time. This is a model created by associating parameters with the properties of the treated waste liquid. Details of this information processing will be described later.
  • the data reacquisition unit 115 is configured to be able to execute a data reacquisition step. In the data reacquisition step, the data reacquisition unit 115 determines whether the predicted value regarding the properties of the treated waste liquid output in the treated waste liquid predicted value output step does not fall within a predetermined range, the operation that the waste liquid treatment equipment is about to perform. After resetting the condition parameters, the second data is acquired. Specific aspects will be explained later.
  • the post-processing waste liquid predicted value re-output unit 116 is configured to be able to execute the process of re-outputting the post-processing waste liquid predicted value.
  • the post-processing waste liquid predicted value re-output unit 116 outputs the second predicted value based on the second data acquired in the data re-acquisition process and the prediction model that predicts the properties of the post-processing waste liquid. The predicted value regarding the properties of the waste liquid after treatment of the waste liquid treatment equipment at time 2 is re-outputted.
  • the predictive model creation unit 117 is configured to be able to execute a predictive model creation process. In the predictive model creation step, the predictive model creation unit 117 creates or updates a predictive model used in the aforementioned waste liquid predicted value output process, post-treatment waste liquid predicted value output process, and the like.
  • the storage management unit 118 is configured to be able to execute a storage management process. In the storage management process, the storage management unit 118 is configured to manage various information to be stored related to the information processing system 100 of this embodiment. Typically, the storage management unit 118 is configured to store information inputted to the information processing device 1 from the plant PL1 or the plant PL2 in a storage area. Examples of this storage area include the storage unit 12 of the information processing device 1 and storage units of various terminals, but this storage area does not necessarily have to be within the information processing system 100, and the storage management unit 118 It is also possible to manage various information by storing it in an external storage device or the like.
  • the information processing system 100 (information processing device 1) of the present embodiment is used for the method of operating waste liquid treatment equipment and the method of predicting the waste liquid after treatment of the waste liquid treatment equipment.
  • the waste liquid supplied from the product production process depends on the type of the product production process, and may be water-based or oil-based.
  • the plant PL1 that executes the product production process in this embodiment is not limited in its manufacturing items, and may be various known plants such as a paper manufacturing plant, a steel plant, a power plant, a petroleum plant, a chemical plant, etc. Cases are expected.
  • the waste liquid from the product production process is aqueous
  • FIG. 4 is an activity diagram showing the flow of information processing using the information processing device 1 and the like.
  • the data acquisition unit 111 acquires first data including product production process data in the product production process at a first time (activity A101).
  • the first data here includes product production process data in the product production process at the first time, and this product production process data includes the production amount of the product, the production brand, the chemicals used and their amounts, and the exposure.
  • the amount of treated waste liquid, control parameters within the plant PL1, etc. are included.
  • Acquisition of this data is achieved by acquiring various information (analytical data, etc.) via the communication unit 15, for example, from sensors and instruments arranged in the plant PL1. That is, in the case of the production amount of a product, this activity is achieved by the data acquisition unit 111 acquiring the weight when weighing the produced product as at least part of the first data.
  • the data (data group) constituting the first data may be quantitative or qualitative. When using qualitative parameters, numerical values may be assigned and treated as quantitative data.
  • Water quality parameters include, for example, aqueous pH, electrical conductivity, redox potential, zeta potential, turbidity, temperature, bubble height, biochemical oxygen demand (BOD), chemical oxygen demand (COD) Mn , COD Cr )), absorbance (e.g. UV absorbance), color (e.g. RGB value), residual concentration of chemicals, particle size distribution, degree of aggregation, amount of foreign matter, foaming area on water surface, area of dirt in water, amount of bubbles, Amount of glucose, amount of organic acid, amount of starch, amount of calcium, amount of total chlorine, amount of free chlorine, amount of dissolved oxygen, amount of cations required, amount of hydrogen sulfide, amount of hydrogen peroxide, and microorganisms in the system. Examples include breathing rate.
  • Control parameters include, for example, the operating speed (papermaking speed) of the paper machine, the rotation speed of the filter cloth of the raw material dehydrator, the rotation speed of the filter cloth of the washer, the amount of chemicals added to the water system, the amount of chemicals added to the raw materials added to the water system, and the amount of chemicals added to the raw materials added to the water system.
  • Amount of chemicals added to related equipment includes, for example, equipment such as paper machine wire and felt that directly adds chemicals.
  • the result parameters include, for example, white water concentration, the amount of steam in the equipment for manufacturing paper products, the amount of steam in the equipment for manufacturing paper products, the temperature of steam in the equipment for manufacturing paper products, and the amount of steam in the equipment for manufacturing paper products.
  • Examples include steam pressure, timing of paper break in the process, freeness, degree of beating, and amount of aeration.
  • the amount of steam in the equipment for manufacturing paper products includes, for example, the amount of steam in the paper machine dryer, the amount of steam in the kraft pulp black liquor evaporator, the amount of steam in the black liquor heater of the kraft pulp digester, the amount of steam in the paper machine dryer, the amount of steam in the black liquor heater of the kraft pulp digester, and the amount of steam added to pulp raw materials and white water.
  • the amount of steam being blown can be used for warmth.
  • the first data may further include information regarding predetermined parameters of the product.
  • the predetermined parameter of the product is typically an analytical value related to the product, and examples thereof include the workmanship and quality of the product (product purity, contained impurities, analytical value by equipment, etc.).
  • Such predetermined parameters of a product can be acquired from various sensors placed in the plant PL1 via the communication unit 15, or can be acquired based on the contents of a quality guarantee certificate etc. issued by the plant PL1. You can also.
  • the predetermined parameters for such products include the unit weight of the paper product (unit weight (meters per tsubo), yield rate, paper Examples include the moisture content of the product, the thickness of the paper product, the ash concentration in the paper product, the types of defects in the paper product, and the number of defects in the paper product.
  • the operation method at the second time after the first time is Output predicted values regarding the properties of waste liquid from the product production process (activity A102).
  • the predictive model is a model created by associating past product production process data in the product production process with data regarding the properties of waste liquid discharged during the process.
  • this prediction model is a model that models the relationship between the performance of the product production process and the properties of the waste liquid discharged at that time. , a lookup table, or a trained model that has learned the relationship between the two.
  • regression analysis methods linear model, generalized linear model, generalized linear mixed model, ridge regression, lasso regression, elastic net, support vector regression, projection pursuit regression, etc.
  • time series analysis VAR model, SVAR model, ARIMAX model, SARIMAX model, state space model, etc.
  • decision trees decision tree, regression tree, random forest, XGBoost, etc.
  • neural networks sparse perceptron, multilayer perceptron, DNN, CNN, RNN, LSTM, etc.
  • a desired prediction model can be obtained by analysis using Bayes (Naive Bayes, etc.), clustering (k-means, k-means++, etc.), ensemble learning (Boosting, Adaboost, etc.), and the like.
  • the prediction model is created by the prediction model creation unit 117, but is not necessarily limited to this. Such a prediction model is created outside the information processing system 100, and the created product is converted into information.
  • the operating method of this embodiment may be performed by installing it in the processing device 1 or the like.
  • the prediction model may be a model configured to be updatable before the waste liquid predicted value output step is executed.
  • the predictive model creation unit 117 may be configured to update the predictive model sequentially in accordance with accumulation of waste liquid treatment results and the like.
  • this prediction model outputs a predicted value regarding the properties of waste liquid at a second time after the first time, but this prediction model is configured to predict changes (alteration) of waste liquid over time. may have been done. Note that when predicting such changes over time (deterioration), the environment in which the information processing system 100 exists (temperature, weather), etc. may be taken into consideration as reference information to improve prediction accuracy. Note that depending on the application scene of the information processing system 100 of this embodiment, the first time and the second time may be substantially simultaneous.
  • the properties of the discharged waste liquid associated with the prediction model can be set as appropriate, but in the case where the waste liquid is water-based, various items of the water quality parameters mentioned above can be mentioned.
  • the predictive model may be a model created by further associating predetermined parameters of the product produced in the product production process.
  • predetermined parameters of the product produced in the product production process are further associated to create a predictive model. may have been created. If the first data acquired by the data acquisition unit 111 includes a predetermined parameter of the product, applying a prediction model to which the predetermined parameter of the product is associated will contribute to improving the prediction accuracy in this activity. Can be done.
  • operating condition parameters for the waste liquid treatment equipment are set based on the predicted value regarding the properties of the waste liquid output in the waste liquid predicted value output step (activity A103).
  • this activity is performed by the operating condition setting unit 113 of the information processing device 1 transmitting various information (signals, etc.) to various devices arranged in the plant PL2 via the communication unit 15. achieved. More specifically, the operating condition setting unit 113 sets conditions such that the properties of the waste liquid are at a level that can be discharged from the plant PL2, and controls the plant PL2 to operate under the conditions. For example, if it is predicted that the pH of the waste liquid supplied from plant PL1 is different from normal, the amount of neutralizing agent used in plant PL2 can be adjusted to be appropriate.
  • the sludge Conditions such as control concentration can be set within an appropriate range.
  • the operating condition setting unit 113 can set various conditions such as processing temperature conditions within the plant PL2, humidity conditions within the plant, and stirring conditions of the stirring tank.
  • the waste liquid treated in this way is discharged from the plant PL2 as appropriate.
  • the treated waste liquid processed in the plant PL2 is water, it may be discharged into a river or the like after a final inspection of water quality and the like is performed.
  • FIG. 5 is an activity diagram showing the flow of information processing using the information processing device 1 and the like. Note that this prediction method has some parts that overlap with the explanation of the driving method described above, so the following explanation will focus on the differences.
  • the data acquisition unit 111 acquires second data including product production process data in the product production process at a first time and operating condition parameters to be executed by the waste liquid treatment equipment. (Activity A201).
  • the product production process data included in this second data may have the same content as the product production process data in the prediction method described above, and will not be described here. Further, the operating condition parameters included in the second data may have the same contents as the operating condition parameters in the above-described prediction method, and will not be described here.
  • the data acquisition unit 111 may be configured to be able to set constraints on some of the operating condition parameters that the waste liquid treatment equipment attempts to execute.
  • the constraint conditions include conditions such as the operating limit value of the waste liquid treatment equipment, cost, and environmental load constraints, and the prediction method of this embodiment It can be said that it is possible to propose the optimal processing specifications even though this is imposed. Specifically, when setting operating condition parameters in accordance with target values, cost conditions such as the amount of chemicals used, and environmental load conditions such as dilution water usage, chemical usage, pump operating conditions, and aeration. It is possible to set constraints such as quantity and propose optimal operating conditions within the range of the constraints.
  • the second data may further include information regarding predetermined parameters of the product.
  • the predetermined parameters of the product that may be included in this second data may be the same as the predetermined parameters of the product in the above-described prediction method, and will not be described here.
  • the second data may further include information regarding the temperature of the waste liquid and/or the transition of the temperature. That is, by increasing the number of parameters that can be included in the second data in this way, it is possible to improve the accuracy of predicting the properties of the treated waste liquid, but the details of this process will be explained later.
  • the treated waste liquid predicted value output unit 114 outputs the predicted value based on the second data and the prediction model that predicts the properties of the treated waste liquid. , output a predicted value regarding the properties of the treated waste liquid of the waste liquid treatment equipment at a second time after the first time (activity A202).
  • the prediction model is based on past product production process data in the product production process, data on the properties of the waste liquid discharged at that time, and operating condition parameters under which the waste liquid treatment equipment treated the waste liquid discharged at that time. This is a model created by associating this with the properties of the waste liquid after treatment.
  • the prediction model used in this embodiment uses past product production process data in the product production process, data regarding the properties of waste liquid discharged at that time, and It is characterized in that the operating condition parameters under which the waste liquid discharged by the waste liquid treatment equipment was treated are associated with the properties of the treated waste liquid.
  • this prediction model is a model in which at least these four parameters are associated, it is easy to predict with high accuracy the properties of the treated waste liquid after the waste liquid is actually treated by the waste liquid treatment equipment. I can say that.
  • this prediction model may also be a model that can be updated before the post-treatment waste liquid predicted value output step is executed.
  • a model may be created in which predetermined parameters of products produced in the product production process are further associated with each other. In this case, it becomes easier to predict the properties of the treated waste liquid with higher accuracy.
  • this predictive model may be a model created by further associating the temperature of the waste liquid and/or the transition of the temperature with the biological treatment capacity corresponding thereto.
  • the above-mentioned second data may include information regarding the temperature of the waste liquid and/or temperature changes
  • the operating status of biological treatment equipment may become insufficient due to a rise in waste liquid temperature (especially water temperature).
  • Optimal operating condition parameters for the biological treatment device can be set by taking into consideration the operating conditions of the management equipment.
  • waste liquid (wastewater) temperature data associated as a prediction model is the waste liquid temperature in the plant PL1 and/or the plant PL2, the waste liquid temperature data in the biological treatment device (and the processes before and after it), or It may be based on weather data.
  • the waste liquid treated in this way may be discharged from the plant PL2 as appropriate, similar to the explanation in the above operating method. For example, if the treated waste liquid processed in the plant PL2 is water, it may be discharged into a river or the like after a final inspection of water quality and the like is performed.
  • the data re-acquisition unit 115 may be acquired after resetting the desired operating condition parameters (this process may be referred to as a "data reacquisition process"). Further, the post-processing waste liquid predicted value re-output unit 116 calculates the expected value of the waste liquid treatment equipment at the second time based on the second data acquired in the data re-acquisition process and the prediction model that predicts the properties of the post-process waste liquid. The predicted value regarding the properties of the treated waste liquid may be re-outputted (this step may be referred to as the "post-treated waste liquid predicted value re-output step").
  • the second data can be acquired again. That is, it can be configured to perform the same operation as the activity A201 described above, but in this specification, for convenience, this operation will be referred to as a "data reacquisition step.”
  • this operation will be referred to as a "data reacquisition step.”
  • this data reacquisition step can be performed while changing operating condition parameters related to waste liquid treatment. That is, repeating the process until the managed parameters fall within a predetermined range essentially has the aspect that the operating condition parameters related to this waste liquid treatment can be optimized.
  • parameters that do not fall within this predetermined range include the aforementioned water quality parameters, which can be set as appropriate depending on the type of waste liquid.
  • the present embodiment provides a method of operating a waste liquid treatment facility, etc. that can flexibly respond to changes in the properties of waste liquid. According to such an embodiment, the degree of investment in waste liquid treatment equipment can be reduced, and effects such as a reduction in environmental load can also be expected.
  • the information processing device 1 is applied to the plants PL1 and PL2 connected by the liquid line LL1, but the two plants do not necessarily need to be connected by the liquid line LL1, and can be connected by a rotary or the like. It is also possible to adopt a mode in which the waste liquid is transported from the plant PL1 to the plant PL2. Note that the business entity that owns the plant PL1 and the business entity that owns the plant PL2 may be the same or different.
  • the prediction model used in this embodiment may be associated with various other conditions such as weather conditions, conditions regarding the region, and conditions regarding the age of the equipment.
  • Information processing device 2 Communication line 10: Communication bus 11: Control unit 12: Storage unit 13: Input unit 14: Display unit 15: Communication unit 100: Information processing system 111: Data acquisition unit 112: Waste liquid predicted value output unit 113: Operating condition setting unit 114: Post-processing waste liquid predicted value output unit 115: Data re-acquisition unit 116: Post-processing waste liquid predicted value re-output unit 117: Prediction model creation unit 118: Storage management unit LL1: Liquid line PL1: Plant PL2 :plant

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Processing Of Solid Wastes (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】廃液の性質の変動に柔軟に対応することができる廃液処理設備の運転方法等を提供すること。 【解決手段】本発明の一態様によれば、製品生産プロセスからの廃液を処理する廃液処理設備の運転方法が提供される。この運転方法は、データ取得工程と、廃液予測値出力工程と、運転条件設定工程と、を備える。データ取得工程では、第1の時間における製品生産プロセスでの製品生産プロセスデータを含む第1のデータを取得する。廃液予測値出力工程では、第1のデータと、廃液の性質を予測する予測モデルと、に基づき、第1の時間以降の第2の時間における製品生産プロセスからの廃液の性質に関する予測値を出力する。ここで、予測モデルは、製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、が関連付けられて作成されたモデルである。運転条件設定工程では、廃液予測値出力工程で出力された廃液の性質に関する予測値に基づき、廃液処理設備の運転条件パラメータを設定する。

Description

廃液処理設備の運転方法、処理後廃液の性質を予測する方法、運転システム及び予測システム
 本発明は、廃廃液処理設備の運転方法、処理後廃液の性質を予測する方法、運転システム及び予測システムに関する。
 工場の生産プロセスにおいては、原料の溶解、生産ラインの洗浄、冷却等の様々な用途で水が使用されており、これらの水は、通常、廃棄時に特定の処理が施されることとなる。ここで、処理対象となる水は、処理原料の変化、生産品目や生産量の変化に伴い、その性質も変わってくるため、排水処理工程に対する工夫が必要となることがある。
 これに関連する技術として、特許文献1に開示された技術が知られている。特許文献1には、互いに異なる複数の予測モデルと、プラント設備の稼働実績データ、現在の稼働状況に関するデータ、気象観測データ、及び天気予報に関するデータとを用いて、プラント設備の監視対象量の一次予測値を複数算出する一次予測ステップと、前記一次予測ステップにおいて予測された各一次予測値に二次予測ステップの実行タイミングに応じた重みを付与し、重みが付与された複数の一次予測値を用いてプラント設備の監視対象量の二次予測値をプラント設備の監視対象量の予測値として算出する二次予測ステップと、を含むことを特徴とする監視対象量予測方法が開示されている。
特開2013-161336号公報
 しかしながら、本発明者らが検討したところ、廃液処理の条件を最適化させるという点については、依然として改善の余地があることがわかってきた。
 本発明では上記事情に鑑み、廃液の性質の変動に柔軟に対応することができる廃液処理設備の運転方法等を提供することとした。
 具体的に、本発明は以下のものを提供する。
(1)
 製品生産プロセスからの廃液を処理する廃液処理設備の運転方法であって、
 データ取得工程と、廃液予測値出力工程と、運転条件設定工程と、を備え、
 前記データ取得工程では、第1の時間における前記製品生産プロセスでの製品生産プロセスデータを含む第1のデータを取得し、
 前記廃液予測値出力工程では、前記第1のデータと、廃液の性質を予測する予測モデルと、に基づき、前記第1の時間以降の第2の時間における前記製品生産プロセスからの廃液の性質に関する予測値を出力し、
  ここで、前記予測モデルは、前記製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、が関連付けられて作成されたモデルであり、
 前記運転条件設定工程では、前記廃液予測値出力工程で出力された前記廃液の性質に関する予測値に基づき、前記廃液処理設備の運転条件パラメータを設定する、廃液処理設備の運転方法。
(2)
 (1)に記載の廃液処理設備の運転方法において、
 前記予測モデルは、前記廃液予測値出力工程が実行される前に更新可能に構成されるモデルである、廃液処理設備の運転方法。
(3)
 (1)又は(2)に記載の廃液処理設備の運転方法において、
 前記予測モデルは、前記製品生産プロセスで生産される製品の所定のパラメータ、がさらに関連付けられて作成されたモデルであり、
 前記データ取得工程で取得される前記第1のデータは、前記製品の所定のパラメータに関する情報をさらに含む、廃液処理設備の運転方法。
(4)
 製品生産プロセスからの廃液を処理する廃液処理設備の処理後廃液の性質を予測する方法であって、
 データ取得工程と、処理後廃液予測値出力工程と、を備え、
 前記データ取得工程では、第1の時間における前記製品生産プロセスでの製品生産プロセスデータ及び前記廃液処理設備が実行しようとする運転条件パラメータを含む第2のデータを取得し、
 前記処理後廃液予測値出力工程では、前記第2のデータと、処理後廃液の性質を予測する予測モデルと、に基づき、前記第1の時間以降の第2の時間における廃液処理設備の処理後廃液の性質に関する予測値を出力し、
  ここで、前記予測モデルは、前記製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、その際に前記廃液処理設備が排出された廃液を処理した運転条件パラメータと、処理後廃液の性質と、が関連付けられて作成されたモデルである、処理後廃液の性質を予測する方法。
(5)
 (4)に記載の処理後廃液の性質を予測する方法において、
 データ再取得工程と、処理後廃液予測値再出力工程と、をさらに備え、
 前記データ再取得工程では、前記処理後廃液予測値出力工程で出力された前記処理後廃液の性質に関する予測値が所定の範囲に属さない場合、前記廃液処理設備が実行しようとする運転条件パラメータを再設定の上、前記第2のデータを取得し、
 前記処理後廃液予測値再出力工程では、前記データ再取得工程で取得した前記第2のデータと、処理後廃液の性質を予測する前記予測モデルと、に基づき、前記第2の時間における前記廃液処理設備の処理後廃液の性質に関する予測値を再出力する、処理後廃液の性質を予測する方法。
(6)
 (4)又は(5)に記載の処理後廃液の性質を予測する方法において、
 前記予測モデルは、前記処理後廃液予測値出力工程が実行される前に更新可能に構成されるモデルである、処理後廃液の性質を予測する方法。
(7)
 (4)ないし(6)のいずれか1項に記載の処理後廃液の性質を予測する方法において、
 前記予測モデルは、前記廃液の温度及び/又は温度の推移と、これらに対応した生物処理能力と、がさらに関連付けられて作成されたモデルであり、
 前記データ取得工程で取得される前記第2のデータは、前記廃液の温度及び/又は温度の推移に関する情報をさらに含む、処理後廃液の性質を予測する方法。
(8)
 (4)ないし(7)のいずれか1項に記載の処理後廃液の性質を予測する方法において、
 前記データ取得工程は、前記廃液処理設備が実行しようとする運転条件パラメータの一部に対する制約条件が設定可能に構成される、処理後廃液の性質を予測する方法。
(9)
 (4)ないし(7)のいずれか1項に記載の処理後廃液の性質を予測する方法において、
 前記予測モデルは、前記製品生産プロセスで生産される製品の所定のパラメータ、がさらに関連付けられて作成されたモデルであり、
 前記データ取得工程で取得される前記第2のデータは、前記製品の所定のパラメータに関する情報をさらに含む、処理後廃液の性質を予測する方法。
(10)
 製品生産プロセスからの廃液を処理する廃液処理設備の運転システムであって、
 データ取得部と、廃液予測値出力部と、運転条件設定部と、を備え、
 前記データ取得部は、第1の時間における前記製品生産プロセスでの製品生産プロセスデータを含む第1のデータを取得し、
 前記廃液予測値出力部は、前記第1のデータと、廃液の性質を予測する予測モデルと、に基づき、前記第1の時間以降の第2の時間における前記製品生産プロセスからの廃液の性質に関する予測値を出力し、
  ここで、前記予測モデルは、前記製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、が関連付けられて作成されたモデルであり、
 前記運転条件設定部は、前記廃液予測値出力部が出力した前記廃液の性質に関する予測値に基づき、前記廃液処理設備の運転条件パラメータを設定する、運転システム。
(11)
 製品生産プロセスからの廃液を処理する廃液処理設備の処理後廃液の性質を予測する予測システムであって、
 データ取得部と、処理後廃液予測値出力部と、を備え、
 前記データ取得部は、第1の時間における前記製品生産プロセスでの製品生産プロセスデータ及び前記廃液処理設備が実行しようとする運転条件パラメータを含む第2のデータを取得し、
 前記処理後廃液予測値出力部は、前記第2のデータと、処理後廃液の性質を予測する予測モデルと、に基づき、前記第1の時間以降の第2の時間における廃液処理設備の処理後廃液の性質に関する予測値を出力し、
  ここで、前記予測モデルは、前記製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、その際に前記廃液処理設備が排出された廃液を処理したときの運転条件パラメータと、処理後廃液の性質と、が関連付けられて作成されたモデルである、予測システム。
 前述の特許文献1に開示された技術は、あくまで排水の処理を行うプラントそれ自体の稼働状況にしか着目がされていない。これに対し、本願の廃液処理設備の運転方法においては、廃液発生の上流に位置付けられる製品生産プロセスに関するデータを活用し、これによって廃液処理設備の運転条件を最適化し得るものである。
 より詳細には、製品生産プロセスデータと、廃液処理データとを関連付けることにより、廃液の性質の変動等を予測し、廃液処理設備の運転条件を最適化することができる。また、これにより廃液処理設備の運転コストや環境負荷の最小化を行うことが可能である。
 また、廃液処理設備の限られた処理能力の中であっても、製品生産プロセスに紐づく廃液処理データに関するパラメータを調整することで、追加の設備投資等を行うことなく、目標とする廃液の性質(廃水水質基準値等)を達成することができる。
 このことから、上記態様によれば、廃液の性質の変動に柔軟に対応することができる廃液処理設備の運転方法等が提供されるといえる。
情報処理システム100の全体構成を示す図である。 情報処理装置1のハードウェア構成を示す図である。 情報処理装置1の機能を示す機能ブロック図である。 情報処理装置1等を用いた情報処理の流れを表すアクティビティ図である。 情報処理装置1等を用いた情報処理の流れを表すアクティビティ図である。
 以下、本発明の実施形態について説明する。なお、以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。
 ところで、本実施形態に登場するソフトウェアを実現するためのプログラムは、コンピュータが読み取り可能な非一時的な記録媒体(Non-Transitory Computer-Readable Medium)として提供されてもよいし、外部のサーバからダウンロード可能に提供されてもよいし、外部のコンピュータで当該プログラムを起動させてクライアント端末でその機能を実現(いわゆるクラウドコンピューティング)するように提供されてもよい。
 また、本実施形態において「部」とは、例えば、広義の回路によって実施されるハードウェア資源と、これらのハードウェア資源によって具体的に実現されうるソフトウェアの情報処理とを合わせたものも含みうる。また、本実施形態においては様々な情報を取り扱うが、これら情報は、例えば電圧・電流を表す信号値の物理的な値、0または1で構成される2進数のビット集合体としての信号値の高低、または量子的な重ね合わせ(いわゆる量子ビット)によって表され、広義の回路上で通信・演算が実行されうる。
 また、広義の回路とは、回路(Circuit)、回路類(Circuitry)、プロセッサ(Processor)、およびメモリ(Memory)等を少なくとも適当に組み合わせることによって実現される回路である。すなわち、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、およびフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等を含むものである。
1.ハードウェア構成
 本節では、本実施形態に係る情報処理システム100のハードウェア構成について説明する。図1は、情報処理システム100の全体構成を示す図である。
 本実施形態の情報処理システム100は、製品生産プロセスからの廃液を処理する廃液処理設備の運転方法(単に「運転方法」と称することもある。)や、製品生産プロセスからの廃液を処理する廃液処理設備の処理後廃液の性質を予測する方法(単に「予測方法」と称することもある。)を実行可能に構成されるシステムである。また、このような観点から、本実施形態の情報処理システム100を、「運転システム」や「予測システム」と称することもある。
 ここで、本実施形態の情報処理システム100は、情報処理装置1と、通信回線2と、を備える。通信回線2は、インターネット等を含み、自回線に接続する装置同士のデータのやり取りを仲介する。なお、本実施形態の情報処理システム100において、情報処理装置1は、通信回線2を介して、プラントPL1と、プラントPL2とに接続されている。
 なお、情報処理システム100に例示されるシステムとは、1つ又はそれ以上の装置又は構成要素からなるものである。したがって、情報処理装置1単体であってもシステムの一例となる。
 ここで、プラントPL1は製品生産プロセスを実行するプラントであり、プラントPL2は製品生産プロセスからの廃液を処理する廃液処理設備として機能するプラントである。すなわち、廃液の流れとしては、プラントPL1はプラントPL2に対して上流に位置するものであり、典型的には、プラントPL1で生じた廃液が液体ラインLL1を介してプラントPL2に移送される。
 プラントPL2内に配置される機器などは、廃液の種類に応じて適宜設定できる。たとえば、廃液が水系である場合は、生物処理装置等がプラントPL2内に備えられていてもよい。なお、この生物処理装置には廃水を浄化しうる微生物等が適用されていてもよい。
 なお、図1には図示しないが、液体ラインLL1に対してセンサが取り付けられ、このセンサと情報処理装置1とが通信回線2を介して接続されていてもよい。
 図2は、情報処理装置1のハードウェア構成を示す図である。情報処理装置1は、制御部11と、記憶部12と、入力部13と、表示部14と、通信部15とを有しており、これらの各部を通信バス10が電気的に接続することで構成される。以下、情報処理装置1に備えられる各部について説明を行う。
(制御部11)
 制御部11は、例えば不図示の中央処理装置(Central Processing Unit:CPU)である。制御部11は、記憶部12に記憶された所定のプログラムを読み出すことによって、情報処理装置1に係る種々の機能を実現する。すなわち、記憶部12に記憶されているソフトウェアによる情報処理が、ハードウェアの一例である制御部11によって具体的に実現されることで、制御部11に含まれる各機能部として実行されうる。これらについては、次節においてさらに詳述する。なお、制御部11は単一であることに限定されず、機能ごとに複数の制御部11を有するように実施してもよい。またそれらの組合せであってもよい。
(記憶部12)
 記憶部12は、前述の記載により定義される様々な情報を記憶する。これは、例えば、制御部11によって実行される情報処理装置1に係る種々のプログラム等を記憶するソリッドステートドライブ(Solid State Drive:SSD)等のストレージデバイスとして、あるいは、プログラムの演算に係る一時的に必要な情報(引数、配列等)を記憶するランダムアクセスメモリ(Random Access Memory:RAM)等のメモリとして実施されうる。記憶部12は、制御部11によって実行される情報処理装置1に係る種々のプログラムや変数等を記憶している。
(入力部13)
 入力部13は、情報処理装置1の筐体に含まれるものであってもよいし、外付けされるものであってもよい。例えば、入力部13は、表示部14と一体となってタッチパネルとして実施されてもよい。タッチパネルであれば、ユーザは、タップ操作、スワイプ操作等を入力することができる。もちろん、タッチパネルに代えて、スイッチボタン、マウス、QWERTYキーボード等を採用してもよい。すなわち、入力部13がユーザによってなされた操作入力を受け付ける。当該入力が命令信号として、通信バス10を介して制御部11に転送され、制御部11が必要に応じて所定の制御や演算を実行しうる。
(表示部14)
 表示部14は、例えば、情報処理装置1の筐体に含まれるものであってもよいし、外付けされるものであってもよい。表示部14は、ユーザが操作可能なグラフィカルユーザインターフェース(Graphical User Interface:GUI)の画面を表示する。これは例えば、CRTディスプレイ、液晶ディスプレイ、有機ELディスプレイ及びプラズマディスプレイ等の表示デバイスを、情報処理装置1の種類に応じて使い分けて実施することが好ましい。
(通信部15)
 通信部15は、情報処理装置1から種々の電気信号を外部の構成要素に送信可能に構成される。また、通信部15は、外部の構成要素から情報処理装置1への種々の電気信号を受信可能に構成される。なお、通信部15がネットワーク通信機能を有し、これにより通信回線2を介して、情報処理装置1と外部機器との間で種々の情報を通信可能に実施してもよい。
 また、図示はしないが、通信回線2を介して情報処理装置1と接続されているプラントPL1と、プラントPL2とについても、前述の情報処理装置1と同様のハードウェア構成の装置を備えていてもよい。
2.機能構成
 本節では、本実施形態の機能構成について説明する。図3は、情報処理装置1の機能を示す機能ブロック図である。前述の通り、ソフトウェア(記憶部12に記憶されている)による情報処理がハードウェア(制御部11)によって具体的に実現されることで、制御部11に含まれる各機能部として実行されうる。
 具体的には、情報処理装置1(制御部11)は、各機能部としてデータ取得部111と、廃液予測値出力部112と、運転条件設定部113と、処理後廃液予測値出力部114と、データ再取得部115と、処理後廃液予測値再出力部116と、予測モデル作成部117と、記憶管理部118と、を備えうる。なお、このような各機能部については、情報処理装置1を適用する用途等に応じて適宜増加又は省略されていてもよい。
(データ取得部111)
 データ取得部111は、データ取得工程を実行可能に構成される。データ取得工程において、データ取得部111は、第1の時間における製品生産プロセスでの製品生産プロセスデータを含む第1のデータを取得する。また、データ取得工程において、データ取得部111は、第1の時間における製品生産プロセスでの製品生産プロセスデータ及び廃液処理設備が実行しようとする運転条件パラメータを含む第2のデータを取得する。この取得に際して、データ取得部111は、例示的にはプラントPL1に配置されたセンサや計器から、通信部15を介して種々の情報(分析データ等)を取得するように構成される。
(廃液予測値出力部112)
 廃液予測値出力部112は、廃液予測値出力工程を実行可能に構成される。廃液予測値出力工程において、廃液予測値出力部112は、前述した第1のデータと、廃液の性質を予測する予測モデルと、に基づき、第1の時間以降の第2の時間における製品生産プロセスからの廃液の性質に関する予測値を出力する。ここで、予測モデルは、製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、が関連付けられて作成されたモデルである。この情報処理の詳細は追って述べることとする。
(運転条件設定部113)
 運転条件設定部113は、運転条件設定工程を実行可能に構成される。運転条件設定工程において、運転条件設定部113は、廃液予測値出力部が出力した廃液の性質に関する予測値に基づき、廃液処理設備の運転条件パラメータを設定する。この運転条件設定に際して、運転条件設定部113は、典型的にはプラントPL2に配置された各種機器に対し、通信部15を介して種々の情報(信号等)を送信するように構成される。
(処理後廃液予測値出力部114)
 処理後廃液予測値出力部114は、処理後廃液予測値出力工程を実行可能に構成される。処理後廃液予測値出力工程において、処理後廃液予測値出力部114は、前述した第2のデータと、処理後廃液の性質を予測する予測モデルと、に基づき、第1の時間以降の第2の時間における廃液処理設備の処理後廃液の性質に関する予測値を出力する。ここで、予測モデルは、製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、その際に廃液処理設備が排出された廃液を処理したときの運転条件パラメータと、処理後廃液の性質と、が関連付けられて作成されたモデルである。この情報処理の詳細は追って述べることとする。
(データ再取得部115)
 データ再取得部115は、データ再取得工程を実行可能に構成される。データ再取得工程において、データ再取得部115は、処理後廃液予測値出力工程で出力された処理後廃液の性質に関する予測値が所定の範囲に属さない場合、廃液処理設備が実行しようとする運転条件パラメータを再設定の上、第2のデータを取得する。具体的な態様については追って説明することとする。
(処理後廃液予測値再出力部116)
 処理後廃液予測値再出力部116は、処理後廃液予測値再出力工程を実行可能に構成される。処理後廃液予測値再出力工程において、処理後廃液予測値再出力部116は、データ再取得工程で取得した第2のデータと、処理後廃液の性質を予測する予測モデルと、に基づき、第2の時間における廃液処理設備の処理後廃液の性質に関する予測値を再出力する。
(予測モデル作成部117)
 予測モデル作成部117は、予測モデル作成工程を実行可能に構成される。予測モデル作成工程においては、予測モデル作成部117は、前述した廃液予測値出力工程や、処理後廃液予測値出力工程等の際に用いられる予測モデルを作成又は更新する。
(記憶管理部118)
 記憶管理部118は、記憶管理工程を実行可能に構成される。記憶管理工程において、記憶管理部118は、本実施形態の情報処理システム100に関連する、記憶すべき種々の情報について管理するように構成される。典型的には、記憶管理部118は、プラントPL1や、プラントPL2から情報処理装置1に入力した情報等を記憶領域に記憶させるように構成される。この記憶領域は、たとえば情報処理装置1の記憶部12や各種端末の記憶部が例示されるが、この記憶領域は必ずしも情報処理システム100のシステム内である必要はなく、記憶管理部118は、種々の情報を外部記憶装置などに記憶するように管理することもできる。
3.情報処理の詳細
 第3節では、アクティビティ図等を参照しながら、情報処理装置1等が実行する情報処理方法について説明する。
(適用対象)
 まず、本実施形態の情報処理装置1の適用対象について説明する。前述の通り、本実施形態の情報処理システム100(情報処理装置1)は、廃液処理設備の運転方法や、廃液処理設備の処理後廃液を予測する方法に用いられるが、ここでの廃液の種類は適宜設定することができる。
 すなわち、製品生産プロセスから供給される廃液は、当該製品生産プロセスの種類に応じるものであって、水系のものであっても、油系のものでもあってもよい。すなわち、本実施形態における製品生産プロセスを実行するプラントPL1は、その製造品目が限定されることはなく、製紙プラント、鉄鋼プラント、発電プラント、石油プラント、化学プラント等、公知の種々のプラントである場合が想定される。
 以下、製品生産プロセスからの廃液が水系である場合を想定して、廃液処理設備の運転方法、廃液処理設備の処理後廃液を予測する方法のそれぞれについての情報処理の流れを説明していくこととする。
(情報処理の流れ(廃液処理設備の運転方法))
 本実施形態の情報処理装置1等の行う情報処理の流れについて、図4等を用いて説明する。図4は、情報処理装置1等を用いた情報処理の流れを表すアクティビティ図である。
 まず、本実施形態の運転方法では、データ取得部111が、第1の時間における製品生産プロセスでの製品生産プロセスデータを含む第1のデータを取得する(アクティビティA101)。
 ここでの第1のデータは、第1の時間における製品生産プロセスでの製品生産プロセスデータを含むが、この製品生産プロセスデータとは、製品の生産量、生産銘柄、使用薬品およびその量、被処理廃液の量、プラントPL1内における制御パラメータ等が包含される。
 このデータの取得は、例示的にはプラントPL1に配置されたセンサや計器から、通信部15を介して種々の情報(分析データ等)を取得することで達成される。すなわち、製品の生産量であれば、生産された製品を秤量する際の重量を、データ取得部111が第1のデータの少なくとも一部として取得することによって本アクティビティは達成される。
 なお、第1のデータを構成するデータ(データ群)は、定量的なものであっても、定性的なものであってもよい。定性的なパラメータを用いる場合、数値を割り振って、定量的なデータとして扱ってもよい。
 このような製品生産プロセスデータに関し、以下、製品生産プロセス中に水系を用いる製紙工程における各種パラメータの具体例について説明する。この各種パラメータとしては水質パラメータ、制御パラメータ及び結果パラメータが例示される。
 水質パラメータとしては、例えば水系のpH、電気伝導率、酸化還元電位、ゼータ電位、濁度、温度、泡高さ、生物化学的酸素要求量(BOD)、化学的酸素要求量(COD(例えばCODMn、CODCr))、吸光度(例えば、UV吸光度)、色(例えば、RGB値)、薬品残留濃度、粒度分布、凝集度合い、異物量、水面の発泡面積、水中の汚れ面積、気泡の量、グルコースの量、有機酸の量、デンプンの量、カルシウムの量、全塩素の量、遊離塩素の量、溶存酸素量、カチオン要求量、硫化水素の量、過酸化水素の量及び系内の微生物の呼吸速度等が挙げられる。
 制御パラメータとしては、例えば抄紙機の運転速度(抄速)、原料脱水機のろ布回転速度、洗浄機のろ布回転速度、水系に対する薬品添加量、水系に添加する原料に対する薬品添加量、水系に関連する設備に対する薬品添加量、加熱用の蒸気量、加熱用の蒸気温度、加熱用の蒸気圧力、種箱からの流量、プレスパートのニップ圧、プレスパートのフェルトバキューム圧、製紙原料の配合比率、製紙原料の損紙配合量、製紙原料のスクリーンの目開き、叩解機のローターとステーターの間の隙間距離、フリーネス及び叩解度等が挙げられる。なお、「水系に関連する設備」としては、例えば薬品を直接添加する抄紙機のワイヤーやフェルト等の設備が挙げられる。
 結果パラメータとしては、例えば白水濃度、紙製品を製造する設備内の蒸気量、紙製品を製造する設備内の蒸気量、紙製品を製造する設備内の蒸気温度、紙製品を製造する設備内の蒸気圧力、工程内における断紙の時期、フリーネス、叩解度及び曝気量等が挙げられる。このうち、紙製品を製造する設備内の蒸気量としては、例えば抄紙機ドライヤーの蒸気量、クラフトパルプ黒液エバポレータの蒸気量、クラフトパルプ蒸解釜の黒液ヒーターの蒸気量、パルプ原料や白水加温のために吹き込んでいる蒸気量を用いることができる。
 なお、第1のデータは、製品の所定のパラメータに関する情報をさらに含んでもよい。ここで製品の所定のパラメータとは、典型的には製品に関する分析値であり、製品の出来栄えや品質(製品純度や、含有される不純物、機器による分析値等)である場合が例示される。このような製品の所定のパラメータは、プラントPL1内に配置された各種センサから、通信部15を介して取得することもできるし、また、プラントPL1が発行する品質保証書等の内容を元に取得することもできる。
 前述に倣い、製品生産プロセス中に水系を用いる製紙工程における各種パラメータの具体例について説明すると、このような製品の所定のパラメータとしては、紙製品の単位重量(米坪)、歩留率、紙製品の含水率、紙製品の厚さ、紙製品中の灰分濃度、紙製品の欠点の種類、紙製品の欠点の数等が挙げられる。
 本実施形態の運転方法では、このように第1のデータを取得した後、第1のデータと、廃液の性質を予測する予測モデルと、に基づき、第1の時間以降の第2の時間における製品生産プロセスからの廃液の性質に関する予測値を出力する(アクティビティA102)。
 本アクティビティにおいて、予測モデルは、製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、が関連付けられて作成されたモデルである。
 ここで本予測モデルは、事前に製品生産プロセスの実績と、その際に排出された廃液の性質との関係性をモデル化したものであるが、このモデルとしては、例えば両者の関係を示す関数、ルックアップテーブルであってもよく、両者の関係を学習させた学習済モデルであってもよい。
 このような予測モデルに関して、製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、の関係性については、公知の解析手法に基づき解析することができる。典型的には、回帰分析法(線形モデル、一般化線形モデル、一般化線形混合モデル、リッジ回帰、ラッソ回帰、エラスティックネット、サポートベクター回帰、射影追跡回帰等)、時系列分析(VARモデル、SVARモデル、ARIMAXモデル、SARIMAXモデル、状態空間モデル等)、決定木(決定木、回帰木、ランダムフォレスト、XGBoost等)、ニューラルネットワーク(単純パーセプトロン、多層パーセプトロン、DNN、CNN、RNN、LSTM等)、ベイズ(ナイーブベイズ等)、クラスタリング(k-means、k-means++等)、アンサンブル学習(Boosting、Adaboost等)等を用いて解析し、所望の予測モデルを得ることができる。
 なお、予測モデルの作成は、予測モデル作成部117が実行する場合が例示されるが、必ずしもこれには限定されず、情報処理システム100外でこのような予測モデルが作成され、作成物を情報処理装置1等にインストールすることで、本実施形態の運転方法が行われてもよい。また、予測モデルは、廃液予測値出力工程が実行される前に更新可能に構成されるモデルであってもよい。この場合は、予測モデル作成部117は、廃液処理の実績の蓄積等に応じて、逐次予測モデルを更新するように構成される態様であってもよい。
 また、この予測モデルは第1の時間以降の第2の時間における廃液の性質に関する予測値を出力するものであるが、この予測モデルは廃液の経時的な変化(変質)を予測するように構成されていてもよい。なお、このような経時的な変化(変質)を予測するにあたっては、情報処理システム100の存在する環境(温度、天候)等を参照情報として加味し、予測精度を高めてもよい。
 なお、本実施形態の情報処理システム100の適用場面によっては、第1の時間と第2の時間は、実質的に同時であってもよい。
 ここで、予測モデルで関連付けられた排出された廃液の性質は適宜設定することができるが、廃液が水系である場合としては、前述した水質パラメータの各種項目等が挙げられる。
 なお、予測モデルは、製品生産プロセスで生産される製品の所定のパラメータ、がさらに関連付けられて作成されたモデルであってもよい。すなわち、製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、に加え、製品生産プロセスで生産される製品の所定のパラメータ、がさらに関連付けられて予測モデルが作成されていてもよい。データ取得部111で取得する第1のデータが製品の所定のパラメータを含む場合は、この製品の所定のパラメータが関連付けられた予測モデルを適用することにより、本アクティビティにおける予測精度の向上に資することができる。
 続いて、本実施形態の運転方法では、廃液予測値出力工程で出力された廃液の性質に関する予測値に基づき、廃液処理設備の運転条件パラメータを設定する(アクティビティA103)。
 典型的な態様では、情報処理装置1の運転条件設定部113が、プラントPL2に配置された各種機器に対し、通信部15を介して種々の情報(信号等)を送信することでこのアクティビティは達成される。
 より具体的には、運転条件設定部113は、廃液の性質についてプラントPL2から排出可能な水準となるような条件を設定し、当該条件でプラントPL2が稼働するように制御する。たとえば、プラントPL1から供給される廃液のpHが通常とは異なることが予測される場合は、プラントPL2で用いる中和剤の量を適正化するように調整することができる。同様に、プラントPL1から供給される廃液の化学的酸素要求量(COD)の数値が通常より高い水準となることが予測される場合は、プラントPL2で行われる生物処理工程における溶存酸素濃度、汚泥管理濃度等の条件を適切な範囲に設定することができる。その他、運転条件設定部113は、プラントPL2内での処理温度条件、プラント内の湿度条件、撹拌槽の撹拌条件等、種々の条件を設定することができる。
 このようにして処理された廃液は、適宜、プラントPL2から排出される。たとえば、プラントPL2で処理された処理後廃液が水である場合は、水質等の最終検査を行った上で、河川などに放流されてもよい。
(情報処理の流れ(処理後廃液の性質を予測する方法))
 本実施形態の情報処理装置1等の行う情報処理の流れについて、図5等を用いて説明する。図5は、情報処理装置1等を用いた情報処理の流れを表すアクティビティ図である。なお、本予測方法は、前述の運転方法の説明と重複する部分もあるため、以下では、相違点を中心に説明していくこととする。
 まず、本実施形態の予測方法では、データ取得部111が、第1の時間における製品生産プロセスでの製品生産プロセスデータ及び廃液処理設備が実行しようとする運転条件パラメータを含む第2のデータを取得する(アクティビティA201)。
 この第2のデータに含まれる製品生産プロセスデータは、前述の予測方法における製品生産プロセスデータと同様の内容であってもよく、ここでの説明を割愛する。また、第2のデータに含まれる運転条件パラメータは、前述の予測方法における運転条件パラメータと同様の内容であってもよく、ここでの説明を割愛する。
 なお、本実施形態の予測方法においては、データ取得部111が、廃液処理設備が実行しようとする運転条件パラメータの一部に対する制約条件が設定可能に構成されてもよい。典型的な例を交えて説明すると、この制約条件とは、廃液処理設備の運転限界値、コスト、環境負荷制約等の条件が挙げられ、本実施形態の予測方法は、このような一定の制約が課されながらも、最適な処理仕様を提案できるものといえる。具体的には、目標値に合わせた運転条件パラメータを設定する際に、コスト条件として、例えば薬品の使用量、環境負荷条件として、例えば希釈水使用量や、薬品使用量、ポンプ運転条件、曝気量などの制約条件を設定し、その制約がある範囲内で、最適な運転条件を提案することができる。
 なお、第2のデータは、製品の所定のパラメータに関する情報をさらに含んでもよい。この第2のデータに含まれ得る製品の所定のパラメータは、前述の予測方法における製品の所定のパラメータと同様の内容であってもよく、ここでの説明を割愛する。
 また、第2のデータは、廃液の温度及び/又は温度の推移に関する情報をさらに含んでもよい。すなわち、このように第2のデータに含ませることのできるパラメータを増加させることで処理後廃液の性質を予測する精度を向上させることができるが、この処理の詳細は追って説明することとする。
 本実施形態の予測方法では、このように第2のデータを取得した後、処理後廃液予測値出力部114が、第2のデータと、処理後廃液の性質を予測する予測モデルと、に基づき、第1の時間以降の第2の時間における廃液処理設備の処理後廃液の性質に関する予測値を出力する(アクティビティA202)。
 本アクティビティにおいて、予測モデルは、製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、その際に廃液処理設備が排出された廃液を処理した運転条件パラメータと、処理後廃液の性質と、が関連付けられて作成されたモデルである。
 前述の運転方法との相違点について説明すると、本実施形態で用いられる予測モデルは、製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、に加え、廃液処理設備が排出された廃液を処理した運転条件パラメータと、処理後廃液の性質と、が関連付けられているという特徴を有する。
 すなわち、このような予測モデルにおいては、少なくともこれら4つのパラメータ等が関連付けられたモデルであるため、実際に廃液処理設備が廃液を処理した後の、処理後廃液の性質を精度高く予測しやすいといえる。
 なお、この予測モデルも、処理後廃液予測値出力工程が実行される前に更新可能に構成されるモデルであってもよい。
 また、前述の運転方法と同様に、製品生産プロセスで生産される製品の所定のパラメータ、がさらに関連付けられて作成されたモデルであってもよい。この場合、処理後廃液の性質をより精度高く予測しやすくなる。
 さらに、この予測モデルは、廃液の温度及び/又は温度の推移と、これらに対応した生物処理能力と、がさらに関連付けられて作成されたモデルであってもよい。
 すなわち、前述の第2のデータには、廃液の温度及び/又は温度の推移に関する情報が含まれうるため、このような予測モデルを用いることによって、季節ごとの生物処理能力の変化を考慮した予測を行うことが可能となる。典型的な例では、夏場は廃液温度(特には水温)の上昇により生物処理装置の稼働状況が不十分になることがあるが、このときの廃液温度(特には水温)の推移や前後の温度管理設備の稼働条件などを考慮して、生物処理装置にとって最適な運転条件パラメータを設定することができる。なお、予測モデルとして関連付けられた、廃液(廃水)の温度のデータは、プラントPL1及び/又はプラントPL2内における廃液の温度、生物処理装置(およびその前後の工程)における廃液の温度のデータ、または気象データに基づくものであってよい。
 以上の処理後廃液予測値出力により、プラントPL2で処理された後の廃液の管理が可能となる。このようにして処理された廃液は、前述の運転方法での説明と同様に、適宜、プラントPL2から排出されてもよい。たとえば、プラントPL2で処理された処理後廃液が水である場合は、水質等の最終検査を行った上で、河川などに放流されてもよい。
 なお、本実施形態の予測方法では、データ再取得部115が、処理後廃液予測値出力工程で出力された処理後廃液の性質に関する予測値が所定の範囲に属さない場合、廃液処理設備が実行しようとする運転条件パラメータを再設定の上、第2のデータを取得するように構成されてもよい(この工程を「データ再取得工程」と称してもよい)。また、処理後廃液予測値再出力部116が、データ再取得工程で取得した第2のデータと、処理後廃液の性質を予測する予測モデルと、に基づき、第2の時間における廃液処理設備の処理後廃液の性質に関する予測値を再出力するように構成してもよい(この工程を「処理後廃液予測値再出力工程」と称してもよい)。
 図5のアクティビティ図で示されるように、いったん処理後廃液予測値を出力した場合において、あるパラメータが所定の範囲にない場合(たとえば、河川などに放流することが適切ではない数値となる場合)、改めて第2のデータを取得するように構成することができる。すなわち、前述のアクティビティA201と同様の操作を行うように構成することができるが、本明細書では、便宜上、この操作を「データ再取得工程」と呼ぶこととする。
 また、データ再取得工程で取得した第2のデータに基づいて、処理後廃液予測値を出力することができるのは前述の通りであるが、この処理の繰り返しについては、管理するパラメータが所定の範囲内となるまで繰り返して行うことができる。
 典型的には、このデータ再取得工程は、廃液処理に関する運転条件パラメータを変更しながら行うことができる。すなわち、管理するパラメータが所定の範囲内となるまで繰り返して行うことは、実質的には、この廃液処理に関する運転条件パラメータを適正化することができる、という側面を有する。
 なお、この所定の範囲に属さないパラメータの例としては、前述の水質パラメータ等が例示されるが、廃液の種類に応じて適宜設定できるものである。
 以上の通り、本実施形態によれば、廃液の性質の変動に柔軟に対応することができる廃液処理設備の運転方法等が提供されるといえる。このような実施形態によれば、廃液処理設備への投資の程度も軽減され、また、環境負荷の低減などの効果も見込むことができる。
4.変形例
 第4節では、前述した情報処理装置1等の情報処理方法の変形例について説明する。
 前述の実施形態は、情報処理装置1の構成として説明したが、コンピュータを、情報処理装置の各部として機能させるプログラムが提供されてもよい。
 前述の実施形態では、液体ラインLL1で接続されたプラントPL1とPL2とに対して情報処理装置1が適用されたが、両プラントは必ずしも液体ラインLL1で接続されている必要はなく、ロータリー等でプラントPL1からプラントPL2まで廃液を搬送する態様なども採用することができる。なお、プラントPL1を所有する事業体と、プラントPL2を所有する事業体は、同一でも異なっていてもよい。
 前述の実施形態では、予測モデルを用いた運転方法や予測方法を示したが、予測モデルを作成するにあたって関連付けられる情報は、上述のものに限らない。すなわち、本実施形態で用いられる予測モデルは、他に、気象条件、地域に関する条件、設備の築年数に関する条件等の各種条件が関連付けられていてもよい。
 最後に、本発明に係る種々の実施形態を説明したが、これらは、例として提示したものであり、発明の範囲を限定することは意図していない。当該新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。当該実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1    :情報処理装置
2    :通信回線
10   :通信バス
11   :制御部
12   :記憶部
13   :入力部
14   :表示部
15   :通信部
100  :情報処理システム
111  :データ取得部
112  :廃液予測値出力部
113  :運転条件設定部
114  :処理後廃液予測値出力部
115  :データ再取得部
116  :処理後廃液予測値再出力部
117  :予測モデル作成部
118  :記憶管理部
LL1  :液体ライン
PL1  :プラント
PL2  :プラント

Claims (11)

  1.  製品生産プロセスからの廃液を処理する廃液処理設備の運転方法であって、
     データ取得工程と、廃液予測値出力工程と、運転条件設定工程と、を備え、
     前記データ取得工程では、第1の時間における前記製品生産プロセスでの製品生産プロセスデータを含む第1のデータを取得し、
     前記廃液予測値出力工程では、前記第1のデータと、廃液の性質を予測する予測モデルと、に基づき、前記第1の時間以降の第2の時間における前記製品生産プロセスからの廃液の性質に関する予測値を出力し、
      ここで、前記予測モデルは、前記製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、が関連付けられて作成されたモデルであり、
     前記運転条件設定工程では、前記廃液予測値出力工程で出力された前記廃液の性質に関する予測値に基づき、前記廃液処理設備の運転条件パラメータを設定する、廃液処理設備の運転方法。
  2.  請求項1に記載の廃液処理設備の運転方法において、
     前記予測モデルは、前記廃液予測値出力工程が実行される前に更新可能に構成されるモデルである、廃液処理設備の運転方法。
  3.  請求項1又は請求項2に記載の廃液処理設備の運転方法において、
     前記予測モデルは、前記製品生産プロセスで生産される製品の所定のパラメータ、がさらに関連付けられて作成されたモデルであり、
     前記データ取得工程で取得される前記第1のデータは、前記製品の所定のパラメータに関する情報をさらに含む、廃液処理設備の運転方法。
  4.  製品生産プロセスからの廃液を処理する廃液処理設備の処理後廃液の性質を予測する方法であって、
     データ取得工程と、処理後廃液予測値出力工程と、を備え、
     前記データ取得工程では、第1の時間における前記製品生産プロセスでの製品生産プロセスデータ及び前記廃液処理設備が実行しようとする運転条件パラメータを含む第2のデータを取得し、
     前記処理後廃液予測値出力工程では、前記第2のデータと、処理後廃液の性質を予測する予測モデルと、に基づき、前記第1の時間以降の第2の時間における廃液処理設備の処理後廃液の性質に関する予測値を出力し、
      ここで、前記予測モデルは、前記製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、その際に前記廃液処理設備が排出された廃液を処理した運転条件パラメータと、処理後廃液の性質と、が関連付けられて作成されたモデルである、処理後廃液の性質を予測する方法。
  5.  請求項4に記載の処理後廃液の性質を予測する方法において、
     データ再取得工程と、処理後廃液予測値再出力工程と、をさらに備え、
     前記データ再取得工程では、前記処理後廃液予測値出力工程で出力された前記処理後廃液の性質に関する予測値が所定の範囲に属さない場合、前記廃液処理設備が実行しようとする運転条件パラメータを再設定の上、前記第2のデータを取得し、
     前記処理後廃液予測値再出力工程では、前記データ再取得工程で取得した前記第2のデータと、処理後廃液の性質を予測する前記予測モデルと、に基づき、前記第2の時間における前記廃液処理設備の処理後廃液の性質に関する予測値を再出力する、処理後廃液の性質を予測する方法。
  6.  請求項4又は請求項5に記載の処理後廃液の性質を予測する方法において、
     前記予測モデルは、前記処理後廃液予測値出力工程が実行される前に更新可能に構成されるモデルである、処理後廃液の性質を予測する方法。
  7.  請求項4ないし請求項6のいずれか1項に記載の処理後廃液の性質を予測する方法において、
     前記予測モデルは、前記廃液の温度及び/又は温度の推移と、これらに対応した生物処理能力と、がさらに関連付けられて作成されたモデルであり、
     前記データ取得工程で取得される前記第2のデータは、前記廃液の温度及び/又は温度の推移に関する情報をさらに含む、処理後廃液の性質を予測する方法。
  8.  請求項4ないし請求項7のいずれか1項に記載の処理後廃液の性質を予測する方法において、
     前記データ取得工程は、前記廃液処理設備が実行しようとする運転条件パラメータの一部に対する制約条件が設定可能に構成される、処理後廃液の性質を予測する方法。
  9.  請求項4ないし請求項8のいずれか1項に記載の処理後廃液の性質を予測する方法において、
     前記予測モデルは、前記製品生産プロセスで生産される製品の所定のパラメータ、がさらに関連付けられて作成されたモデルであり、
     前記データ取得工程で取得される前記第2のデータは、前記製品の所定のパラメータに関する情報をさらに含む、処理後廃液の性質を予測する方法。
  10.  製品生産プロセスからの廃液を処理する廃液処理設備の運転システムであって、
     データ取得部と、廃液予測値出力部と、運転条件設定部と、を備え、
     前記データ取得部は、第1の時間における前記製品生産プロセスでの製品生産プロセスデータを含む第1のデータを取得し、
     前記廃液予測値出力部は、前記第1のデータと、廃液の性質を予測する予測モデルと、に基づき、前記第1の時間以降の第2の時間における前記製品生産プロセスからの廃液の性質に関する予測値を出力し、
      ここで、前記予測モデルは、前記製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、が関連付けられて作成されたモデルであり、
     前記運転条件設定部は、前記廃液予測値出力部が出力した前記廃液の性質に関する予測値に基づき、前記廃液処理設備の運転条件パラメータを設定する、運転システム。
  11.  製品生産プロセスからの廃液を処理する廃液処理設備の処理後廃液の性質を予測する予測システムであって、
     データ取得部と、処理後廃液予測値出力部と、を備え、
     前記データ取得部は、第1の時間における前記製品生産プロセスでの製品生産プロセスデータ及び前記廃液処理設備が実行しようとする運転条件パラメータを含む第2のデータを取得し、
     前記処理後廃液予測値出力部は、前記第2のデータと、処理後廃液の性質を予測する予測モデルと、に基づき、前記第1の時間以降の第2の時間における廃液処理設備の処理後廃液の性質に関する予測値を出力し、
      ここで、前記予測モデルは、前記製品生産プロセスにおける過去の製品生産プロセスデータと、その際に排出された廃液の性質に関するデータと、その際に前記廃液処理設備が排出された廃液を処理したときの運転条件パラメータと、処理後廃液の性質と、が関連付けられて作成されたモデルである、予測システム。
     
PCT/JP2023/028396 2022-08-08 2023-08-03 廃液処理設備の運転方法、処理後廃液の性質を予測する方法、運転システム及び予測システム WO2024034509A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-126045 2022-08-08
JP2022126045A JP2024022741A (ja) 2022-08-08 2022-08-08 廃液処理設備の運転方法、処理後廃液の性質を予測する方法、運転システム及び予測システム

Publications (1)

Publication Number Publication Date
WO2024034509A1 true WO2024034509A1 (ja) 2024-02-15

Family

ID=89851697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028396 WO2024034509A1 (ja) 2022-08-08 2023-08-03 廃液処理設備の運転方法、処理後廃液の性質を予測する方法、運転システム及び予測システム

Country Status (2)

Country Link
JP (1) JP2024022741A (ja)
WO (1) WO2024034509A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218263A (ja) * 1999-02-01 2000-08-08 Meidensha Corp 水質制御方法及びその装置
JP2002126721A (ja) * 2000-10-20 2002-05-08 Meidensha Corp 薬品注入率制御方法及びその装置
WO2017022113A1 (ja) * 2015-08-05 2017-02-09 三菱重工業株式会社 水処理システム、発電プラント及び水処理システムの制御方法
CN108910976A (zh) * 2018-07-23 2018-11-30 江苏景源泓科技有限公司 一种用于处理从工厂设施排出的废水的水处理系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218263A (ja) * 1999-02-01 2000-08-08 Meidensha Corp 水質制御方法及びその装置
JP2002126721A (ja) * 2000-10-20 2002-05-08 Meidensha Corp 薬品注入率制御方法及びその装置
WO2017022113A1 (ja) * 2015-08-05 2017-02-09 三菱重工業株式会社 水処理システム、発電プラント及び水処理システムの制御方法
CN108910976A (zh) * 2018-07-23 2018-11-30 江苏景源泓科技有限公司 一种用于处理从工厂设施排出的废水的水处理系统

Also Published As

Publication number Publication date
JP2024022741A (ja) 2024-02-21

Similar Documents

Publication Publication Date Title
Corominas et al. Transforming data into knowledge for improved wastewater treatment operation: A critical review of techniques
Asadi et al. Wastewater treatment aeration process optimization: A data mining approach
US5282131A (en) Control system for controlling a pulp washing system using a neural network controller
Oliveira-Esquerre et al. Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis
US5111531A (en) Process control using neural network
EP1658534B1 (en) Method and device arrangement for automatic dose control of chemicals
Zamarreno et al. State-space neural network for modelling, prediction and control
WO2024034509A1 (ja) 廃液処理設備の運転方法、処理後廃液の性質を予測する方法、運転システム及び予測システム
Ragab et al. Decision fusion for reliable fault classification in energy-intensive process industries
John et al. An application of integrated EPC–SPC methodology for simultaneously monitoring multiple output characteristics
Jayaweera et al. An efficient neural network model for aiding the coagulation process of water treatment plants
Thirugnanasambandham et al. Performance evaluation and optimization of electrocoagulation process to treat grey wastewater
Shen et al. On-line chemical oxygen demand estimation models for the photoelectrocatalytic oxidation advanced treatment of papermaking wastewater
WO2021074491A1 (en) A method and system for monitoring a process
JP2024086874A (ja) 廃液処理設備の運転方法、処理後廃液の性質を予測する方法、運転システム及び予測システム
TW202414321A (zh) 廢液處理設備的運轉方法、預測處理後廢液的性質的方法、運轉系統以及預測系統
WO2022172882A1 (ja) 推測装置、推測システム、推測プログラム及び推測方法
Hart et al. Kraft ECF pulp bleaching: A review of the development and use of techno-economic models to optimize cost, performance, and justify capital expenditures
Lin et al. ARX/NARX modeling and PID controller in a UV/H2O2 tubular photoreactor for aqueous PVA degradation
Juuso Integration of intelligent systems in development of smart adaptive systems: linguistic equation approach
US20210333172A1 (en) Contextual data modeling and dynamic process intervention for industrial plants
US20070168075A1 (en) Method and installation for processing waste paper
Tomperi et al. Early warning of changing drinking water quality by trend analysis
Niu et al. SBR-Extended Kalman Filter model-based fault diagnosis and signal reconstruction for the papermaking wastewater treatment process
Juuso Intelligent multimodel simulation in decomposed systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852475

Country of ref document: EP

Kind code of ref document: A1