WO2022172843A1 - 負極バインダー組成物、負極、及び二次電池 - Google Patents

負極バインダー組成物、負極、及び二次電池 Download PDF

Info

Publication number
WO2022172843A1
WO2022172843A1 PCT/JP2022/004168 JP2022004168W WO2022172843A1 WO 2022172843 A1 WO2022172843 A1 WO 2022172843A1 JP 2022004168 W JP2022004168 W JP 2022004168W WO 2022172843 A1 WO2022172843 A1 WO 2022172843A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
weight
binder composition
electrode binder
parts
Prior art date
Application number
PCT/JP2022/004168
Other languages
English (en)
French (fr)
Inventor
信洋 小江
正浩 梶川
隆 向井
巌 福地
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022580589A priority Critical patent/JP7311059B2/ja
Priority to EP22752670.4A priority patent/EP4293053A1/en
Priority to KR1020237025065A priority patent/KR20230145324A/ko
Priority to US18/262,279 priority patent/US20240105949A1/en
Priority to CN202280011038.1A priority patent/CN116830318A/zh
Publication of WO2022172843A1 publication Critical patent/WO2022172843A1/ja
Priority to JP2023096841A priority patent/JP2023116666A/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode binder composition, a negative electrode and a secondary battery using the same.
  • binder for the negative electrode of lithium-ion secondary batteries it is common to use a combination of water-soluble polymer carboxymethylcellulose sodium salt (CMC) and water-based latex resin styrene-butadiene copolymer (SBR).
  • CMC carboxymethylcellulose sodium salt
  • SBR water-based latex resin styrene-butadiene copolymer
  • the main functions of the binder during the electrode fabrication process are: 1) a function to uniformly disperse components such as active materials and conductive aids, 2) a function to adjust the rheology of the electrode mixture slurry, and 3) a function to apply and dry the slurry. and 4) a function of binding the mixture component and the current collector, and the like.
  • a function related to battery performance 5) a function to suppress electrode expansion due to volume change of the active material generated during charge / discharge cycles and 6) a function to maintain the binding between the active material and the current collector and improve electronic conductivity. and 7) the function of ensuring ionic conductivity by moderately swelling with the electrolyte.
  • Lithium-ion secondary batteries are widely used as a rechargeable power source for notebook computers and mobile phones, but in recent years, they have been used in power tools such as electric tools, as well as medium-sized equipment such as automobiles and stationary power storage equipment. is expanding rapidly. With the rapid expansion of the application range, the performance required for batteries in a wider temperature range varies, but the three performances of capacity, output and life are the main performances that are emphasized, and improvements in these are particularly important. Desired.
  • new negative electrode active materials are being studied to replace conventionally widely used carbon-based active materials (for example, graphite) in an effort to increase the capacity.
  • New negative electrode active materials include tin alloys, silicon alloys, and silicon oxides. These new negative electrode active materials have a capacity several times as large as that of the carbon-based active material, and can increase the negative electrode capacity even by adding a small amount.
  • the SEI film formed on the surface of the active material is destroyed because it cannot follow the volume change, the surface of the active material not covered with the SEI film is exposed, and the electrolytic solution is decomposed due to a new SEI film formation reaction. is also progressing.
  • the SEI film is formed on the surface of the active material during the initial charge, and is mainly composed of decomposition products of the electrolyte. It is believed that the binder resin in contact with the surface of the active material also participates in the film formation.
  • This SEI film is thought to play a role in mediating the intercalation/deintercalation reaction of lithium ions, and at the same time, it is believed that it contributes to the improvement of battery performance by, for example, suppressing the further decomposition reaction of the electrolytic solution. If the SEI film is too thin, the decomposition reaction of the electrolyte will not stop.
  • Patent Document 1 As an effort to solve the problem caused by the volume change of the new negative electrode active material, for example, in Patent Document 1 below, by using a high-strength aromatic polyimide as a binder, the swelling of the electrode layer due to the volume change of the negative electrode active material is suppressed. Techniques for suppressing them have been proposed. Further, Patent Document 2 proposes a method of suppressing volume change of the negative electrode active material by using partially crosslinked polyacrylic acid as a binder. Further, Patent Literature 3 proposes a method of suppressing the volume change of the negative electrode active material by using a copolymer of acrylic acid and polyvinyl alcohol as a binder. However, with the binder of Document 1, the initial charge/discharge efficiency was poor, and the capacity of the active material could not be fully exhibited. Further, the binders of Documents 2 and 3 did not necessarily have sufficient high-temperature and low-temperature cycle characteristics.
  • an object of the present invention is to provide a negative electrode and a secondary battery that can provide good battery performance even when using a novel active material.
  • a negative electrode binder composition containing a copolymer containing a hydroxyl group-containing monomer (a) and an acid group-containing monomer (b) as essential components, the copolymer measured using an aqueous GPC measuring device has a weight average molecular weight of 700,000 or more, and the dried polymer film of the negative electrode binder composition is placed in a carbonate-based mixed solvent (EC (ethylene carbonate) / DEC (diethylene carbonate) 50/50 (wt)) at 45 ° C.
  • EC ethylene carbonate
  • DEC diethylene carbonate
  • the hydroxyl group-containing monomer (a) is 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate. , 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, and 4-hydroxybutyl methacrylate according to any one or more of the group consisting of [1] A negative electrode binder composition.
  • the acid group-containing monomer (b) is acrylic acid, methacrylic acid, maleic acid, monomethyl maleic acid, 2-carboxyethyl acrylate, 2-carboxyethyl methacrylate, maleic acid, and itaconic acid
  • the negative electrode binder composition according to [1] or [2] which is one or more.
  • the negative electrode binder composition of the present invention has good slurry stability even without a thickening agent such as cellulose, and a negative electrode produced using this composition suppresses expansion of the electrode during charging. Therefore, the negative electrode produced from the negative electrode binder composition of the present invention has high peel strength, and as a result, when the battery is evaluated, it exhibits good charge-discharge characteristics even at a high number of cycles. performance can be achieved.
  • the negative electrode binder composition of the present invention is a negative electrode binder composition containing a copolymer containing a hydroxyl group-containing monomer (a) and an acid group-containing monomer (b) as essential components, and was measured using an aqueous GPC measurement device.
  • the weight average molecular weight of the copolymer is 700,000 or more, and the swelling rate after immersing the dried polymer film of the negative electrode binder composition in a carbonate-based mixed solvent at 45 ° C. for 72 hours is 0 to 10. % by weight.
  • the weight-average molecular weight of the copolymer measured using an aqueous GPC measuring device is 700,000 or more, preferably 750,000 to 1,500,000, more preferably 800,000 to 1,000. 200,000.
  • the weight-average molecular weight is 700,000 or more, as described in the effects of the invention, the slurry stability is good, and the negative electrode produced using this is suppressed from swelling during charging.
  • a polymer-based filler such as general polyhydroxymethacrylate can be used as a column filler.
  • the column for example, Shodex OHpak series SB-806 HQ and SB-806M HQ manufactured by Showa Denko KK can be used.
  • a neutral salt solution such as an aqueous sodium nitrate solution, an aqueous sodium hydrogen chloride solution, an aqueous sodium sulfate solution, or a phosphate buffer solution can be used.
  • the concentration of these eluents is preferably about 0.1 to 0.3 mol/L, for example.
  • a Shimadzu/L20 system or the like can be used as a GPC measurement device.
  • Polystyrene or pullulan can be used as a standard substance in GPC measurement.
  • STANDARD P-82 (Pullulan) manufactured by Showa Denko KK can be used as a standard substance.
  • the swelling ratio after immersing the dried polymer film of the negative electrode binder composition in the carbonate-based mixed solvent at 45° C. for 72 hours is 0 to 10% by weight. 6% by weight, more preferably 0.1 to 4% by weight.
  • a lower swelling rate is preferable, and when the swelling rate is within the above range, the peel strength when used as a negative electrode is high, and as a result, when a battery is evaluated, good charge-discharge characteristics are exhibited even at a high number of cycles. be able to.
  • a high swelling ratio means that the negative electrode binder composition contains a solvent and is easily plasticized, and the adhesive strength tends to decrease when used as a negative electrode.
  • Examples of the hydroxyl group-containing monomer (a) in the copolymer include hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, and 2,3-dihydroxypropyl acrylate. Among them, hydroxyethyl acrylate (especially 2-hydroxyethyl acrylate) is preferable as the hydroxyl group-containing monomer (a).
  • the content of the hydroxyl group-containing monomer (a) is, for example, 20 to 80% by weight, preferably 30 to 70% by weight, based on the total amount of monomers constituting the copolymer. When the content of the hydroxyl group-containing monomer (a) is within the above range, both the slurry stability and the electrolyte swelling resistance at high temperatures when formed into a film tend to be good.
  • Examples of the acid group-containing monomer (b) in the copolymer include acrylic acid, methacrylic acid, 2-carboxyethyl acrylate, maleic acid, and itaconic acid.
  • Carboxylic acid is preferred as the acid group in the acid group-containing monomer (b).
  • Acrylic acid is particularly preferred as the acid group-containing monomer (b).
  • the content of the acid group-containing monomer (b) is, for example, 10 to 60% by weight, preferably 20 to 50% by weight, based on the total amount of monomers constituting the copolymer. When the content of the acid group-containing monomer (b) is within the above range, both the slurry stability and the electrolyte swelling resistance at high temperatures when formed into a film tend to be good.
  • the monomers constituting the copolymer may contain monomers other than the hydroxyl group-containing monomer (a) and the acid group-containing monomer (b) (hereinafter referred to as "other monomers (c)").
  • Other monomers (c) include, for example, acrylamide, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide and N-hydroxymethylacrylamide.
  • acrylamide is particularly preferable, and the inclusion of acrylamide has the effect of increasing toughness when formed into a film.
  • their content is, for example, 5 to 40% by weight, preferably 5 to 20% by weight.
  • the content of the other monomer (c) is within the above range, the electrolyte swelling resistance at high temperatures tends to be good.
  • the copolymer in the negative electrode binder composition of the present invention is a structural unit derived from each of the hydroxyl group-containing monomer (a), the acid group-containing monomer (b), and other monomers (c) added as necessary. have units.
  • the copolymer can be obtained by appropriately preparing a hydroxyl group-containing monomer (a) and an acid group-containing monomer (b), as described later, and other monomers (c) to be added as necessary, and copolymerizing them by a known and commonly used method. can get.
  • the negative electrode binder composition of the present invention contains, in addition to the above copolymer, components necessary for forming a negative electrode, such as SiO negative electrode material, graphite, acetylene black, and solvent.
  • components necessary for forming a negative electrode such as SiO negative electrode material, graphite, acetylene black, and solvent.
  • any type of SiO negative electrode material or graphite can be used.
  • the ratio of the copolymer (nonvolatile content) in the negative electrode binder composition is, for example, 3 to 50% by weight, preferably 3 to 40% by weight.
  • the above SiO negative electrode material is a material containing SiO (silicon monoxide) as a main component that expresses the charge/discharge characteristics of the negative electrode.
  • SiO silicon monoxide
  • it may also contain silicon particles, carbon, and the like that similarly exhibit charge-discharge characteristics.
  • silicon oxycarbide (SiOC) may be included as the SiO negative electrode material. These components may be used singly or in combination.
  • the ratio of the SiO negative electrode material in the negative electrode binder composition is, for example, 3 to 40% by weight, preferably 5 to 30% by weight.
  • the above graphite may be natural graphite or artificial graphite that is artificially synthesized.
  • Examples of graphite include carbon materials such as natural graphite, artificial graphite, hard carbon, and soft carbon.
  • Graphite like the SiO negative electrode material, is also a component that exhibits charge-discharge characteristics.
  • the proportion of graphite in the negative electrode binder composition is, for example, 3 to 40% by weight, preferably 5 to 30% by weight.
  • the acetylene black acts as a conductive aid in the negative electrode, and may be carbon black, ketjen black, or the like, which is a component other than acetylene black.
  • the proportion of these components acting as conductive aids in the negative electrode binder composition is, for example, 0.5 to 10% by weight, preferably 0.5 to 5% by weight.
  • the solvent is not particularly limited as long as it can disperse the components necessary for forming the negative electrode, but a water-based solvent can be used, and ion-exchanged water is preferable.
  • the proportion of the solvent in the negative electrode binder composition is, for example, 50-95% by weight, preferably 60-90% by weight.
  • the ratio of the nonvolatile components excluding the solvent in the negative electrode binder composition of the present invention is, for example, 5 to 30% by weight, preferably 10 to 20% by weight.
  • the negative electrode binder composition of the present invention may contain conventionally used components other than the above as binder (binder) components within a range that does not impair the effects of the present invention.
  • binder components include styrene-butadiene rubber copolymer (SBR); ethylenically unsaturated carboxylic acid esters (eg, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate); , (meth)acrylonitrile, and hydroxyethyl (meth)acrylate, etc.), and (meth)acrylic copolymers consisting of ethylenically unsaturated carboxylic acids (e.g., acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, etc.) Coalescing; Polymer compounds such as polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonit
  • the negative electrode binder composition of the present invention may contain an organic solvent such as N-methyl-2-pyrrolidone (NMP) in order to dissolve the polymer compound.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode binder composition of the present invention may contain components necessary as negative electrode components.
  • a copolymer which is an essential component of the negative electrode binder composition, is synthesized.
  • the copolymer is prepared by charging a solvent such as water into a reaction vessel and heating to 50 to 80° C., followed by addition of a hydroxyl group-containing monomer (a), an acid group-containing monomer (b), and other optional monomers (c). and a mixture of a polymerization initiator such as ammonium persulfate to allow the polymerization reaction to proceed.
  • the polymerization reaction may be performed under an inert gas atmosphere such as nitrogen.
  • the polymerization reaction can be carried out at a temperature of 50-80° C. for 1-10 hours. After completion of the reaction, it is cooled and pH is adjusted.
  • SiO negative electrode material, graphite, acetylene black, solvent, and other components necessary for forming a negative electrode are added to the obtained copolymer, and dispersed in an aqueous solvent such as ion-exchanged water.
  • a dispersing device such as a stirrer, ball mill, super sand mill, pressure kneader, or the like may be used.
  • it may be prepared by performing kneading with a kneader.
  • a negative electrode binder composition can be manufactured through such dispersion and kneading.
  • the negative electrode of the present invention contains the negative electrode binder composition as a component.
  • the negative electrode of the present invention can be obtained by applying the slurry, which is the negative electrode binder composition obtained above, onto a current collector copper foil to form a negative electrode layer as a thin film. Further, as described below, the negative electrode may be obtained by forming a slurry, which is a negative electrode binder composition, into a shape such as a sheet or pellet, and integrating this with a current collector.
  • the material and shape of the current collector are not particularly limited.
  • copper, nickel, titanium, stainless steel, or the like may be used in the form of a foil, a perforated foil, or a mesh.
  • Porous materials such as porous metal (foamed metal) and carbon paper can also be used.
  • the method for applying the negative electrode material slurry to the current collector is not particularly limited, but examples include a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, and a gravure coating. well-known methods such as a method, a screen printing method, and the like. After coating, it is preferable to carry out a rolling treatment using a flat plate press, calendar rolls, or the like, if necessary.
  • the integration of the negative electrode material slurry formed into a sheet-like, pellet-like shape, etc., and the current collector can be performed by a known method such as roll, press, or a combination thereof.
  • the electrode density after integration is, for example, 1.0 to 1.8 g/cm 3 , preferably 1.1 to 1.7 g/cm 3 .
  • the negative electrode layer formed on the current collector and the negative electrode layer integrated with the current collector are preferably heat-treated.
  • the heat treatment conditions are, for example, 80 to 150° C. for 5 to 20 hours. This heat treatment removes the solvent and hardens the binder to increase the strength, thereby improving the adhesion between the particles and between the particles and the current collector.
  • These heat treatments are preferably performed in an inert atmosphere such as helium, argon, or nitrogen, or in a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.
  • a secondary battery of the present invention includes the negative electrode of the present invention.
  • the positive electrode and the negative electrode of the present invention can be arranged facing each other with a separator interposed therebetween, and an electrolytic solution is injected. can.
  • the positive electrode can be obtained by forming a positive electrode layer on the surface of the current collector in the same manner as the negative electrode.
  • the current collector may be a strip-shaped one made of a metal or alloy such as aluminum, titanium, or stainless steel in the form of foil, foil with holes, mesh, or the like.
  • the positive electrode material used for the positive electrode layer is not particularly limited.
  • secondary batteries when producing a lithium ion secondary battery, for example, if a metal compound, metal oxide, metal sulfide, or a conductive polymer material capable of doping or intercalating lithium ions is used, Well, not particularly limited.
  • lithium cobaltate LiCoO 2
  • lithium nickelate LiNiO 2
  • lithium manganate LiMnO 2
  • lithium manganese spinel LiMn 2 O 4
  • lithium vanadium compounds V2O5 , V6O13 , VO2 , MnO2
  • TiO2 , MoV2O8 TiS2 , V2S5 , VS2
  • olivine-type LiMPO 4 M: Co, Ni, Mn, Fe
  • conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene, etc., porous carbon, etc. are used singly or in combination. be able to.
  • the separator for example, a non-woven fabric, cloth, microporous film, or a combination of them can be used, the main component of which is polyolefin such as polyethylene or polypropylene.
  • the positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery to be manufactured are structured such that they do not come into direct contact with each other, there is no need to use a separator.
  • electrolytes examples include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 and LiSO 3 CF 3 , ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, and sulfolane.
  • the structure of the secondary battery of the present invention is not particularly limited, but usually, a positive electrode, a negative electrode, and an optional separator are wound into a flat spiral to form a wound electrode plate group. It is common to have a structure in which flat plates are laminated to form a laminated electrode plate group, and these electrode plate groups are enclosed in an outer package.
  • the secondary battery of the present invention is not particularly limited, it can be used as a paper-type battery, a button-type battery, a coin-type battery, a laminate-type battery, a cylindrical battery, a square-type battery, or the like.
  • the negative electrode active material of the present invention described above can also be applied to general electrochemical devices having a charging/discharging mechanism of intercalating and deintercalating lithium ions, such as hybrid capacitors and solid lithium secondary batteries.
  • a copolymer was synthesized by the method of Synthesis Example 1-7 below, and a negative electrode was produced by the method of Example 1-3 and Comparative Example 1-4 using the obtained copolymer.
  • Secondary batteries were fabricated by the methods of Examples 4-6 and Comparative Examples 5-10 using the obtained negative electrode and a separately fabricated positive electrode.
  • the copolymer thus obtained had a non-volatile content of 14.8% by weight, a pH of 6.8, a viscosity of 3080 mPa ⁇ s, and a weight average molecular weight of 850,000 as measured by aqueous GPC.
  • the resulting copolymer had a non-volatile content of 15.1% by weight, a pH of 7.1, a viscosity of 3100 mPa ⁇ s, and a weight average molecular weight of 730,000 as measured by aqueous GPC. Moreover, the degree of swelling with respect to the carbonate mixed solvent was 2.9%.
  • Synthesis Example 7 A polymerization reaction was carried out in the same manner as in Synthesis Example 5 except that a 5 mol/L sodium hydroxide aqueous solution was used instead of the 25% aqueous ammonia.
  • the resulting copolymer had a non-volatile content of 15.0% by weight, a pH of 7.0, a viscosity of 13200 mPa ⁇ s, and a weight average molecular weight of 780,000 as measured by aqueous GPC. Further, the degree of swelling with respect to the carbonate mixed solvent was 3.7%.
  • the resulting copolymer had a non-volatile content of 15.0% by weight, a pH of 7.0, a viscosity of 17100 mPa ⁇ s, and a weight average molecular weight of 830,000 as measured by aqueous GPC. Further, the degree of swelling with respect to the carbonate mixed solvent was 3.2%.
  • Synthesis Example 14 Synthesis Example 1 was repeated except that 20.0 parts by weight of acrylic acid, 80.0 parts by weight of 2-hydroxyethyl acrylate, and 0.340 parts by weight of ammonium persulfate (1500 ppm based on the total number of moles of monomers) were used. A polymerization reaction was carried out. The copolymer thus obtained had a non-volatile content of 14.9% by weight, a pH of 7.0, a viscosity of 2800 mPa ⁇ s, and a weight average molecular weight of 750,000 as measured by aqueous GPC. Further, the degree of swelling with respect to the carbonate mixed solvent was 18.8%.
  • the resulting copolymer had a non-volatile content of 15.0% by weight, a pH of 7.0, a viscosity of 4300 mPa ⁇ s, and a weight average molecular weight of 750,000 as measured by aqueous GPC. Further, the degree of swelling with respect to the carbonate mixed solvent was 12.3%.
  • the resulting copolymer had a non-volatile content of 15.0% by weight, a pH of 7.0, a viscosity of 8900 mPa ⁇ s, and a weight average molecular weight of 820,000 as measured by aqueous GPC. Further, the degree of swelling with respect to the carbonate mixed solvent was 3.5%.
  • the polymer shown in Synthesis Example 1 (non-volatile content: 14.8% by weight) was diluted with distilled water and adjusted to a non-volatile content concentration of 8.0%. 16 parts by weight) and 19.0 parts by weight of distilled water were added and mixed until the whole became a paste. Then, the mixture was stirred for 2 minutes with a rotation/revolution mixer (ARE-310 manufactured by Thinky) under the conditions of 1000 rpm of rotation and 2000 rpm of revolution. After stirring again for 2 minutes under the conditions of 1000 rpm of rotation and 2000 rpm of revolution, the mixture was cooled to room temperature with ice water.
  • ARE-310 manufactured by Thinky
  • the mixture layer density was measured again and found to be 1.50 g/cm 3 (the thickness of the mixture layer was 68.6 ⁇ m).
  • the initial charge capacity per unit area of this electrode is 4.95 mAh/cm 2 .
  • the negative electrode of Example 1 surface density of 8.8 gm/cm 2 , mixture layer density of 1.5 g/cm 3 , mixture layer thickness of 68.6 ⁇ m, unit area initial charge capacity of 4.95 mAh/cm 2 ) was obtained. Got.
  • a peel strength test sample was mounted on a peel tester (Autograph AG-X Plus, manufactured by Shimadzu Corporation), and a 180° peel test was performed. Peel strength was 34.5 N/m. Then, the state of peeling (destruction) of the negative electrode coating film was observed. Further, the negative electrode coating film was wound around a core of ⁇ 5 mm, and it was visually observed whether or not cracks occurred in the coating film. No cracks were generated at this time.
  • Example 1 was the same as Example 1, except that the polymer shown in Synthesis Example 2 was used as the binder mixture for preparing the slurry.
  • the peel strength at this time was 27.8 N/m. Also, no cracks were generated.
  • Example 1 was the same as Example 1, except that the polymer shown in Synthesis Example 3 was used as the binder mixture for preparing the slurry.
  • the peel strength at this time was 28.9 N/m. Also, no cracks were generated.
  • Example 4 Example 1 was the same as Example 1, except that the polymer shown in Synthesis Example 4 was used as the binder mixture for preparing the slurry. The peel strength at this time was 24.5 N/m. Also, no cracks were generated.
  • Example 5 The procedure was the same as in Example 1 except that the polymer shown in Synthesis Example 5 was used as the binder mixture used to prepare the slurry. The peel strength at this time was 30.7 N/m. Also, no cracks were generated.
  • Example 6 The procedure was the same as in Example 1, except that the polymer shown in Synthesis Example 6 was used as the binder mixture for preparing the slurry.
  • the peel strength at this time was 29.5 N/m. Also, no cracks were generated.
  • Example 7 Example 1 was the same as Example 1, except that the polymer shown in Synthesis Example 7 was used as the binder mixture for preparing the slurry. The peel strength at this time was 34.6 N/m. Also, no cracks were generated.
  • Example 1 was the same as Example 1, except that the polymer shown in Synthesis Example 8 was used as the binder mixture for preparing the slurry.
  • the peel strength at this time was 28.4 N/m. Also, no cracks were generated.
  • Example 9 Example 1 was the same as Example 1, except that the polymer shown in Synthesis Example 9 was used as the binder mixture for preparing the slurry. The peel strength at this time was 29.1 N/m. Also, no cracks were generated.
  • Example 10 Example 1 was the same as Example 1 except that the polymer shown in Synthesis Example 10 was used as the binder mixture used to prepare the slurry. The peel strength at this time was 30.5 N/m. Also, no cracks were generated.
  • Example 11 Example 1 was the same as Example 1, except that the polymer shown in Synthesis Example 11 was used as the binder mixture for preparing the slurry. The peel strength at this time was 28.6 N/m. Also, no cracks were generated.
  • Example 1 was the same as Example 1, except that the polymer shown in Synthesis Example 12 was used as the binder mixture for preparing the slurry.
  • the peel strength at this time was 28.4 N/m. Also, no cracks were generated.
  • Example 1 was the same as Example 1, except that the polymer shown in Synthesis Example 13 was used as the binder mixture for preparing the slurry.
  • the peel strength at this time was 17.4 N/m. Also, no cracks were generated.
  • Example 1 was the same as Example 1, except that the polymer shown in Synthesis Example 14 was used as the binder mixture for preparing the slurry.
  • the peel strength at this time was 14.5 N/m. Also, no cracks were generated.
  • Example 1 was the same as Example 1 except that the polymer shown in Synthesis Example 15 was used as the binder mixture for preparing the slurry.
  • the peel strength at this time was 15.2 N/m. Also, no cracks were generated.
  • Example 1 was the same as Example 1 except that the polymer shown in Synthesis Example 16 was used as the binder mixture for preparing the slurry.
  • the peel strength at this time was 14.5 N/m. Also, no cracks were generated.
  • Example 5 The procedure was the same as in Example 1, except that the above sodium polyacrylate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., degree of polymerization: 22,000 to 70,000) was used as the binder mixture used to prepare the slurry. The peel strength at this time was 8.1 N/m. Also, no cracks were generated.
  • the above sodium polyacrylate manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., degree of polymerization: 22,000 to 70,000
  • the peel strength at this time was 8.1 N/m. Also, no cracks were generated.
  • Carboxymethyl cellulose Na salt (CMC, Sunrose MAC350HC manufactured by Nippon Paper Industries Co., Ltd.) is dissolved in distilled water, and an aqueous solution adjusted to a nonvolatile concentration of 2.0% is added to 48.0 parts by weight (0.96 weight in terms of solid content Part) was added and mixed until the whole became a paste. Then, the mixture was stirred for 2 minutes with a rotation/revolution mixer (ARE-310 manufactured by Thinky) under the conditions of 1000 rpm of rotation and 2000 rpm of revolution. After stirring again for 2 minutes under the conditions of 1000 rpm of rotation and 2000 rpm of revolution, the mixture was cooled to room temperature with ice water.
  • ARE-310 manufactured by Thinky
  • the binder resin, peel strength, and 5 ⁇ bending crack resistance used in the negative electrodes produced in Examples 1-12 and Comparative Examples 1-6 are shown in Table 2 below.
  • the viscosity was measured with a B-type viscometer, and anhydrous N-methylpyrrolidone was appropriately added so that the viscosity was within the range of 2000 to 4000 Pa ⁇ s at 30 rpm.
  • the mixture was stirred for 30 seconds with a rotation/revolution mixer (ARE-310 manufactured by Thinky) under the conditions of 1000 rpm of rotation and 2000 rpm of revolution to prepare a positive electrode mixture slurry.
  • ARE-310 manufactured by Thinky
  • the initial charge capacity per unit area of this electrode is 4.49 mAh/cm 2 .
  • a positive electrode surface density of 25.0 gm/cm 2 , mixture layer density of 3.4 g/cm 3 , mixture layer thickness of 73.3 ⁇ m, unit area initial charge capacity of 4.49 mAh/cm 2 ) was obtained.
  • Example 13 “Fabrication of secondary batteries” [Example 13] First, the negative electrode shown in Example 1 was cut into a 24 mm ⁇ 24 mm square with a tab, and the positive electrode shown in the positive electrode preparation example was cut into a 22 mm ⁇ 22 mm square with a tab using a Thomson blade. A tab lead made of nickel for the negative electrode and an aluminum tab lead for the positive electrode were welded to the tab portions of the cut electrodes. Next, the separator (25 micron thick polyethylene microporous membrane) was cut into 28 mm ⁇ 3.8 cm rectangles using a Thomson blade. The positive electrode and the negative electrode were opposed to each other with a separator interposed therebetween, wrapped with a laminate film, and the tab portion was fixed by thermocompression bonding.
  • the separator 25 micron thick polyethylene microporous membrane
  • the secondary battery produced above was attached to a charging/discharging device, left at 25° C. for 3 hours, and then charged/discharged once at 0.1C.
  • the initial charge/discharge efficiency at this time was 81.2%.
  • charging and discharging were repeated 50 times at 0.2C.
  • the discharge capacity retention rate at the 50th discharge was 85.0% when the discharge capacity at the 0.2C first discharge was taken as 100%.
  • Electrode swelling rate After the first charge and discharge, the battery was held at 45° C. and charged once at 0.5 C. After that, the secondary battery was disassembled in a dry room, and the fully charged negative electrode was taken out. After washing with dimethyl carbonate and air drying, the electrode thickness was measured with a micrometer. As a result of calculating the electrode swelling rate from the following (formula 2), it was 32.0%.
  • Electrode swelling rate (%) (thickness of dismantled electrode - thickness of electrode when manufacturing battery) / (thickness of mixture layer when manufacturing battery) x 100 (Formula 2)
  • Example 14 Everything was carried out in the same manner as in Example 13 except that the negative electrode prepared in Example 2 was used.
  • the initial charge/discharge efficiency at this time was 81.5%.
  • the discharge capacity retention rate was 86.4%.
  • the electrode expansion rate was 30.4%.
  • Example 15 Everything was carried out in the same manner as in Example 13 except that the negative electrode prepared in Example 3 was used.
  • the initial charge/discharge efficiency at this time was 81.4%.
  • the discharge capacity retention rate was 84.9%.
  • the electrode expansion rate was 30.2%.
  • Example 16 Everything was carried out in the same manner as in Example 13 except that the negative electrode prepared in Example 4 was used.
  • the initial charge/discharge efficiency at this time was 81.6%.
  • the discharge capacity retention rate was 84.7%.
  • the electrode expansion rate was 31.1%.
  • Example 17 Everything was carried out in the same manner as in Example 13 except that the negative electrode prepared in Example 5 was used.
  • the initial charge/discharge efficiency at this time was 81.6%.
  • the discharge capacity retention rate was 85.3%.
  • the electrode expansion rate was 30.7%.
  • Example 18 Everything was carried out in the same manner as in Example 13 except that the negative electrode prepared in Example 6 was used.
  • the initial charge/discharge efficiency at this time was 82.7%.
  • the discharge capacity retention rate was 85.3%.
  • the electrode expansion rate was 30.6%.
  • Example 19 Everything was carried out in the same manner as in Example 13 except that the negative electrode prepared in Example 7 was used.
  • the initial charge/discharge efficiency at this time was 81.7%.
  • the discharge capacity retention rate was 85.4%.
  • the electrode expansion rate was 30.2%.
  • Example 20 Everything was carried out in the same manner as in Example 13 except that the negative electrode prepared in Example 8 was used.
  • the initial charge/discharge efficiency at this time was 81.5%.
  • the discharge capacity retention rate was 85.0%.
  • the electrode expansion rate was 30.0%.
  • Example 21 Everything was carried out in the same manner as in Example 13 except that the negative electrode prepared in Example 9 was used.
  • the initial charge/discharge efficiency at this time was 81.4%.
  • the discharge capacity retention rate was 84.7%.
  • the electrode expansion rate was 30.6%.
  • Example 22 Everything was carried out in the same manner as in Example 13 except that the negative electrode prepared in Example 10 was used.
  • the initial charge/discharge efficiency at this time was 81.4%.
  • the discharge capacity retention rate was 84.9%.
  • the electrode expansion rate was 30.0%.
  • Example 23 Everything was carried out in the same manner as in Example 13 except that the negative electrode prepared in Example 11 was used.
  • the initial charge/discharge efficiency at this time was 81.5%.
  • the discharge capacity retention rate was 84.7%.
  • the electrode expansion rate was 29.8%.
  • Example 24 Everything was carried out in the same manner as in Example 13 except that the negative electrode prepared in Example 12 was used.
  • the initial charge/discharge efficiency at this time was 81.4%.
  • the discharge capacity retention rate was 84.9%.
  • the electrode expansion rate was 30.2%.
  • Example 7 The procedure of Example 13 was repeated except that the negative electrode prepared in Comparative Example 1 was used. The initial charge/discharge efficiency at this time was 81.4%. Moreover, the discharge capacity retention rate was 80.4%. Furthermore, the electrode expansion rate was 35.2%.
  • Example 8 The procedure of Example 13 was repeated except that the negative electrode prepared in Comparative Example 2 was used. The initial charge/discharge efficiency at this time was 80.9%. Moreover, the discharge capacity retention rate was 72.0%. Furthermore, the electrode expansion rate was 40.3%.
  • Example 9 The procedure of Example 13 was repeated except that the negative electrode prepared in Comparative Example 3 was used. The initial charge/discharge efficiency at this time was 81.3%. Moreover, the discharge capacity retention rate was 74.0%. Furthermore, the electrode expansion rate was 45.9%.
  • Example 10 The procedure of Example 13 was repeated except that the negative electrode prepared in Comparative Example 4 was used. The initial charge/discharge efficiency at this time was 81.2%. Moreover, the discharge capacity retention rate was 78.5%. Furthermore, the electrode expansion rate was 36.4%.
  • Example 11 The procedure of Example 13 was repeated except that the negative electrode prepared in Comparative Example 5 was used. The initial charge/discharge efficiency at this time was 80.9%. Moreover, the discharge capacity retention rate was 76.0%. Furthermore, the electrode expansion rate was 36.8%.
  • Example 12 The procedure of Example 13 was repeated except that the negative electrode prepared in Comparative Example 6 was used. The initial charge/discharge efficiency at this time was 81.1%. Moreover, the discharge capacity retention rate was 79.0%. Furthermore, the electrode expansion rate was 39.3%.
  • the initial charge retention rate (%), the 100th cycle capacity retention rate (%), and the electrode swelling rate (%) of the secondary batteries produced in Examples 13-24 and Comparative Examples 7-12 are shown in Table 3 below. It is as follows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

LIB二次電池の負極活物質においてセルロース等増粘剤なしでもスラリー安定性が良好で且つ耐溶剤膨潤性が抑制される負極バインダー組成物及び、それを用いた負極及び二次電池を提供することである。 水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合体を含む負極バインダー組成物であって、水系GPC測定装置を用いて測定したときの前記共重合体の重量平均分子量が700,000以上であり、且つ前記負極バインダー組成物の乾燥ポリマーフィルムをカーボネート系混合溶剤に45℃で72時間浸漬させた後の膨潤率が0~10重量%である負極バインダー組成物。

Description

負極バインダー組成物、負極、及び二次電池
 本発明は、負極バインダー組成物、それを用いた負極及び二次電池に関する。
 リチウムイオン二次電池の負極におけるバインダーとしては、水溶性高分子のカルボキシメチルセルロースナトリウム塩(CMC)と水性ラテックス樹脂のスチレン‐ブタジエン共重合体(SBR)の併用が一般的である。バインダーの主な機能としては、電極作製プロセス時に、1)活物質や導電助剤等の成分を均一に分散させる機能、2)電極合剤スラリーのレオロジーを調整する機能、3)スラリー塗布乾燥時に合剤層を平坦化させるレベリング機能、及び4)合剤成分及び集電体を結着させる機能などが挙げられる。更に電池性能に関与する機能として、5)充放電サイクルで発生する活物質の体積変化による電極膨張抑制を抑制する機能及び6)活物質及び集電体間の結着を維持し、電子伝導性を確保する機能、7)電解液を含んで適度に膨潤することにより、イオン伝導性を確保する機能等が挙げられる。
 リチウムイオン二次電池は、ノートパソコンや携帯電話などの充電可能な電源として広く普及しているが、近年、電動工具等のパワーツールや、自動車及び定置型蓄電設備等の中大型機器での利用が急速に拡大している。適用範囲の急速な拡大に伴い、より広い温度範囲で電池に要求される性能も様々ではあるが、容量、出力及び寿命の3点が主に重要視される性能であり、これらの改善が特に望まれている。
 このような状況の中、電池高性能化の要求を満たすために、様々な取り組みがなされている。例えば負極材においては、高容量化の取り組みとして、従来から広く用いられている炭素系活物質(例えば黒鉛)に代わる新規負極活物質が検討されている。新規負極活物質としては、錫合金、シリコン合金、シリコン酸化物等が挙げられる。これらの新規負極活物質は、炭素系活物質よりも容量が数倍程度と非常に大きく、少量添加するだけでも負極容量を高めることが可能である。
 しかしながら、これらの新規負極活物質は、充放電サイクルにおける容量維持率が炭素系活物質よりも劣っていることが問題となっている。その理由として新規負極活物質は、炭素系活物質に比べて充放電に伴う体積膨張収縮が大きいため、電極の活物質層が大きく膨張し、電極構造の破壊による活物質の欠落や電子伝導性の低下が起こることが挙げられる。
 また、活物質表面に形成されているSEI被膜が体積変化に追従できずに破壊されると、SEI被膜に覆われていない活物質表面が露出し、新たなSEI被膜形成反応による電解液の分解が進行することも挙げられる。SEI被膜は、初回充電時に活物質表面に形成され、主に、電解液の分解物から成る被膜であるが、活物質表面に接しているバインダー樹脂も被膜形成に関与していると考えられる。このSEI被膜はリチウムイオンの挿入脱離反応を仲介する役割を果たすと同時に、さらなる電解液の分解反応を抑制するなど、電池の性能向上に寄与していると考えられている。SEI被膜が薄すぎると電解液の分解反応が止まらず、逆に厚くなりすぎると電気抵抗が高くなり、電池の寿命や効率に悪影響を及ぼす結果となる。
 上記新規負極活物質の体積変化による問題点を解決する取り組みとしては、例えば下記特許文献1では、高強度な芳香族ポリイミドをバインダーに用いることで、負極活物質の体積変化による電極層の膨れを抑制する手法が提案されている。また、特許文献2では、一部架橋したポリアクリル酸をバインダーに用いることで、負極活物質の体積変化を抑制する手法が提案されている。更に特許文献3では、アクリル酸とポリビニルアルコールの共重合体をバインダーに用いることで、負極活物質の体積変化を抑制する手法が提案されている。しかしながら、文献1のバインダーでは、初回充放電効率が悪く活物質の容量を十分に発揮することが出来なかった。また、文献2及び3のバインダーでは高温及び低温のサイクル特性が必ずしも十分ではなかった。
特許06648854号公報 特許06457043号公報 特許06888139号公報
 上記のように従来のリチウムイオン二次電池の負極におけるバインダーでは、新規活物質の体積膨張等によって生じる電池性能の低下を抑制する能力が不足していた。よって、本発明の課題は、新規活物質の使用時においても良好な電池性能が得られる負極及び二次電池を提供することにある。
 これらの課題を解決するため本発明者らが鋭意検討した結果、水酸基と酸基を含む重合バインダーを従来にない高い分子量で調整することで、セルロース等の増粘剤なしでもスラリー安定性が非常に良好で、かつ塗膜としたときの耐溶剤膨潤性が抑制されることを発見した。そして、このバインダーを用いて作製した負極は、ピール強度が強く、充電に対する電極膨張率も低いため、その結果、電池評価を実施した場合に高サイクル回数でも良好な充放電特性を発現することを見出し、本発明に至った。
 すなわち本発明は、以下に関する。
[1] 水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合体を含む負極バインダー組成物であって、水系GPC測定装置を用いて測定したときの前記共重合体の重量平均分子量が700,000以上であり、且つ前記負極バインダー組成物の乾燥ポリマーフィルムをカーボネート系混合溶剤(EC(エチレンカーボネート)/DEC(ジエチレンカーボネート)=50/50(wt))に45℃で72時間浸漬させた後の膨潤率が0~10重量%である負極バインダー組成物。
[2] 前記水酸基含有モノマー(a)が、前記水酸基含有モノマー(a)が、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、及び4-ヒドロキシブチルメタクリレートからなる群のうち、いずれか1種以上である[1]に記載の負極バインダー組成物。
[3] 前記酸基含有モノマー(b)が、アクリル酸、メタクリル酸、マレイン酸、モノメチルマレイン酸、2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート、マレイン酸、及びイタコン酸からなる群のうち、いずれか1種以上である[1]又は[2]に記載の負極バインダー組成物。
[4] 前記酸基含有モノマー(b)が、塩基性組成物若しくは軽金属塩で中和されたものである[1]~[3]のいずれか一項に記載の負極バインダー組成物。
[5] 前記水酸基含有モノマー(a)の含有量が10~80重量%、且つ前記酸基含有モノマー(b)の含有量が10~80重量%である[1]~[4]のいずれか一項に記載の負極バインダー組成物。
[6] その他のモノマー(c)としてアクリルアミド、メタクリルアミド、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、及びN-ヒドロキシメチルアクリルアミドからなる群のうち、いずれか1種以上を含む[1]~[5]のいずれか一項に記載の負極バインダー組成物。
[7] 前記その他のモノマー(c)の含有量が0~80%である[6]記載の負極バインダー組成物を成分として含む負極
[8] [1]~[7]のいずれか一項に記載の負極バインダー組成物を成分として含む負極。
[9] [8]に記載の負極から構成される二次電池。
 本発明の負極バインダー組成物は、セルロース等の増粘剤なしでもスラリー安定性が良好で、これを用いて作製した負極は、充電時の電極膨張が抑制される。よって、本発明の負極バインダー組成物にて作製した負極は、ピール強度が高く、その結果、電池評価を実施した場合に高サイクル回数でも良好な充放電特性を発現し、近年のLIB負極に求められる性能を達成できる。
<負極バインダー組成物>
 本発明の負極バインダー組成物は、水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合体を含む負極バインダー組成物であって、水系GPC測定装置を用いて測定したときの前記共重合体の重量平均分子量が700,000以上であり、且つ前記負極バインダー組成物の乾燥ポリマーフィルムをカーボネート系混合溶剤に45℃で72時間浸漬させた後の膨潤率が0~10重量%である。
 上記共重合体における水系GPC測定装置を用いて測定したときの重量平均分子量は、700,000以上であるが、好ましくは750,000~1,500,000、より好ましくは800,000~1,200,000である。重量平均分子量が700,000以上であると、上記発明の効果で述べたとおり、スラリー安定性が良好で、これを用いて作製した負極は、充電時の電極膨張が抑制される。
 上記水系GPC測定装置では、カラムの充填剤として一般的なポリヒドロキシメタクリレートなどポリマー系充填剤を用いることができる。カラムとしては、例えば昭和電工株式会社製Shodex OHpakシリーズのSB-806 HQ,SB-806M HQなどを使用することができる。また溶離液としては、硝酸ナトリウム水溶液、塩酸水素ナトリウム水溶液、硫酸ナトリウム水溶液、リン酸塩緩衝液などの中性塩溶液を用いることができる。これらの溶離液の濃度としては、例えば0.1~0.3mol/L程度が好ましい。GPC測定装置としては、Shimadzu/L20システムなどを使用することができる。GPC測定における標準物質としては、ポリスチレン若しくはプルランを使用することができる。具体的には標準物質として昭和電工株式会社製STANDARD P-82(Pullulan)などを使用することができる。
 上記のとおり、負極バインダー組成物の乾燥ポリマーフィルムをカーボネート系混合溶剤に45℃で72時間浸漬させた後の膨潤率が0~10重量%であるが、膨潤率は、好ましくは0.1~6重量%、より好ましくは0.1~4重量%である。膨潤率は低い方が好ましく、膨潤率が上記範囲であると、負極としたときのピール強度が強いため、その結果、電池評価を実施した場合に高サイクル回数でも良好な充放電特性を発現することができる。
 上記膨潤率は、負極バインダー組成物を、例えば常温72時間、150℃で30分間乾燥して膜厚150μの乾燥ポリマーフィルム(乾燥被膜)を作製し、この乾燥ポリマーフィルムをカーボネート系混合溶剤(例えば、EC(エチレンカーボネート)/DEC(ジエチレンカーボネート)=50/50(wt.r))に60℃、72時間浸漬させ、浸漬後のフィルムの重量を測定し、浸漬前後での重量の変化率として求めることができる。膨潤率が高いということは、負極バインダー組成物が溶剤を含み可塑化されやすく、負極としたときに接着強度が低下しやすいことを意味する。
 上記共重合体における水酸基含有モノマー(a)としては、例えばヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、ヒドロキシブチルアクリレート、2,3-ジヒドロキシプロピルアクリレートが挙げられる。なかでも水酸基含有モノマー(a)としては、ヒドロキシエチルアクリレート(特に2-ヒドロキシエチルアクリレート)が好ましい。共重合体を構成するモノマー全量に対する水酸基含有モノマー(a)の含有量は、例えば20~80重量%、好ましくは30~70重量%である。水酸基含有モノマー(a)の含有量が上記範囲であると、スラリー安定性および被膜としたときの高温での耐電解質膨潤性がともに良好となる傾向がある。
 上記共重合体における酸基含有モノマー(b)としては、例えばアクリル酸、メタクリル酸、アクリル酸2-カルボキシエチル、マレイン酸、イタコン酸が挙げられる。酸基含有モノマー(b)における酸基としては、カルボン酸が好ましい。なかでも酸基含有モノマー(b)としては、アクリル酸が特に好ましい。共重合体を構成するモノマー全量に対する酸基含有モノマー(b)の含有量は、例えば10~60重量%、好ましくは20~50重量%である。酸基含有モノマー(b)の含有量が上記範囲であると、スラリー安定性および被膜としたときの高温での耐電解質膨潤性がともに良好となる傾向がある。
 共重合体を構成するモノマーとしては、水酸基含有モノマー(a)及び酸基含有モノマー(b)以外のモノマー(以下、「その他のモノマー(c)」と称する)を含んでいてもよい。その他のモノマー(c)としては、例えばアクリルアミド、メタクリルアミド、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、N-ヒドロキシメチルアクリルアミドが挙げられる。その他のモノマー(c)としては、なかでもアクリルアミドが好ましく、アクリルアミドを含むことで被膜としたときの強靭性が増すという効果がある。その他のモノマー(c)を含む場合のその含有量は、例えば5~40重量%、好ましくは5~20重量%である。その他のモノマー(c)の含有量が上記範囲であると、高温での耐電解質膨潤性が良好となる傾向がある。
 本発明の負極バインダー組成物における共重合体は、上述の水酸基含有モノマー(a)及び酸基含有モノマー(b)、必要に応じて添加するその他のモノマー(c)の各モノマーに由来する構成ユニット単位を有する。共重合体は、後述のように水酸基含有モノマー(a)及び酸基含有モノマー(b)、必要に応じて添加するその他のモノマー(c)を適宜仕込み、公知慣用の方法で共重合させることで得られる。
 本発明の負極バインダー組成物は、上記共重合体以外に、例えばSiO負極材、黒鉛、アセチレンブラック、溶媒など負極を構成する上で必要な成分を含む。本発明の負極バインダー組成物では、SiO負極材や黒鉛の種類などは問わず何れでも使用することができる。負極バインダー組成物における共重合体の割合(不揮発分)は、例えば3~50重量%、好ましくは3~40重量%である。
 上記SiO負極材は、負極における充放電特性を発現する主成分としてSiO(一酸化ケイ素)を含む材料である。SiO負極材以外にも同様に充放電特性を発現するシリコン粒子、炭素などを含んでいてもよい。また、SiO負極材としてシリコンオキシカーバイド(SiOC)を含んでいてもよい。これらの成分は、単独ではなく、複数有していてもよい。負極バインダー組成物におけるSiO負極材の割合は、例えば3~40重量%、好ましくは5~30重量%である。
 上記黒鉛としては、天然黒鉛であっても人工的に合成された人造黒鉛であってもよく、黒鉛としては、天然黒鉛、人工黒鉛、ハードカーボン、ソフトカーボンなどの炭素材料が挙げられる。黒鉛もSiO負極材などと同様に充放電特性を発現する成分である。負極バインダー組成物における黒鉛の割合は、例えば3~40重量%、好ましくは5~30重量%である。
 上記アセチレンブラックは、負極において導電助剤として作用し、アセチレンブラック以外成分のカーボンブラック、ケッチェンブラックなどであってもよい。負極バインダー組成物におけるこれらの導電助剤として作用する成分の割合は、例えば0.5~10重量%、好ましくは0.5~5重量%である。
 上記溶媒としては、負極を構成する上で必要な成分を分散できれば特に制限ないが、水系の溶媒を使用でき、イオン交換水が好ましい。負極バインダー組成物における溶媒の割合は、例えば50~95重量%、好ましくは60~90重量%である。また、本発明の負極バインダー組成物における溶媒を除いた不揮発成分の割合は、例えば5~30重量%、好ましくは10~20重量%である。
 本発明の負極バインダー組成物は、バインダー(結合剤)成分として、上記以外に従来から使用されている成分を、本発明の効果を損なわない範囲で含んでいても良い。このようなバインダー(結合剤)成分としては、スチレン-ブタジエンゴム共重合体(SBR);エチレン性不飽和カルボン酸エステル(例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、およびヒドロキシエチル(メタ)アクリレート等)、およびエチレン性不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等)からなる(メタ)アクリル共重合体;ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミド、カルボキシメチルセルロース(CMC)などの高分子化合物が挙げられる。
 本発明の負極バインダー組成物は、上記の高分子化合物を溶解させるためにN-メチル-2-ピロリドン(NMP)などの有機溶剤を含んでいてもよい。その他、本発明の負極バインダー組成物は、上記以外に負極の成分として必要な成分を含んでいても良い。
 本発明の負極バインダー組成物を製造する方法の一例を以下説明する。
 まず、負極バインダー組成物の必須成分である共重合体を合成する。共重合体は、反応容器中に水などの溶剤を仕込み50~80℃まで加熱した後、水酸基含有モノマー(a)及び酸基含有モノマー(b)、任意の成分であるその他のモノマー(c)と、過硫酸アンモニウムなどの重合開始剤の混合物を添加し、重合反応を進行することにより得られる。重合反応は、窒素などの不活性ガス雰囲気下で行っても良い。重合反応は、温度50~80℃、1~10時間で行うことができる。反応終了後、冷却してpH調整を行う。
 次に、得られた共重合体に、SiO負極材、黒鉛、アセチレンブラック、溶媒など負極を構成する上で必要な成分を加え、イオン交換水などの水性溶剤に分散させる。分散は、撹拌機、ボールミル、スーパーサンドミル、加圧ニーダ等の分散装置を用いてもよい。また、混錬機で混錬を行い、調製をしてもよい。このような分散や混錬を経て負極バインダー組成物を製造することができる。
<負極>
 本発明の負極は、上記負極バインダー組成物を成分として含む。本発明の負極は、上記で得られた負極バインダー組成物であるスラリーを集電体銅箔上へ塗布して薄膜として負極層を形成することで得られる。また、後述のように負極バインダー組成物であるスラリーをシート状、ペレット状等の形状に成形し、これを集電体と一体化することで負極を得てもよい。
 上記集電体の材質および形状については、特に限定されず、例えば、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いればよい。また、多孔性材料、たとえばポーラスメタル(発泡メタル)やカーボンペーパーなども使用可能である。
 上記負極材スラリーを集電体に塗布する方法としては、特に限定されないが、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法など公知の方法が挙げられる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行うことが好ましい。
 また、シート状、ペレット状等の形状に成形された負極材スラリーと集電体との一体化は、例えば、ロール、プレス、もしくはこれらの組み合わせ等、公知の方法により行うことができる。一体化後の電極密度は、例えば1.0~1.8g/cmであり、好ましくは1.1~1.7g/cmである。
 上記集電体上に形成された負極層および集電体と一体化した負極層は、熱処理をすることが好ましい。熱処理条件は、例えば、80~150℃で5~20時間である。この熱処理により溶媒の除去、バインダーの硬化による高強度化が進み、粒子間及び粒子と集電体間の密着性が向上できる。尚、これらの熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気、真空雰囲気で行うことが好ましい。
<二次電池>
 本発明の二次電池は、上記本発明の負極を含む。本発明の二次電池は、例えば、湿式電解質二次電池に用いる場合、正極と、本発明の負極とを、セパレータを介して対向して配置し、電解液を注入することにより構成することができる。
 正極は、負極と同様にして、集電体表面上に正極層を形成することで得ることができる。この場合の集電体はアルミニウム、チタン、ステンレス鋼等の金属や合金を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。
 正極層に用いる正極材料としては、特に制限されない。二次電池の中でも、リチウムイオン二次電池を作製する場合には、例えば、リチウムイオンをドーピングまたはインターカレーション可能な金属化合物、金属酸化物、金属硫化物、または導電性高分子材料を用いればよく、特に限定されない。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、およびこれらの複合酸化物(LiCoxNiyMnzO、x+y+z=1)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素等などを単独或いは混合して使用することができる。
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを使用することができる。なお、作製する非水電解質二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用する必要はない。
 電解液としては、例えば、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル等の単体もしくは2成分以上の混合物の非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。
 本発明の二次電池の構造は、特に限定されないが、通常、正極および負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群としたりし、これら極板群を外装体中に封入した構造とするのが一般的である。
 本発明の二次電池は、特に限定されないが、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池などとして使用される。上述した本発明の負極活物質は、リチウムイオンを挿入脱離することを充放電機構とする電気化学装置全般、例えば、ハイブリッドキャパシタ、固体リチウム二次電池などにも適用することが可能である。
 以下、本発明を実施例により詳細に説明する。以下の合成例1-7の方法で共重合体を合成し、得られた共重合体を使用して実施例1-3及び比較例1-4の方法で負極を作製した。得られた負極と別に作製した正極とを用いて、実施例4-6及び比較例5-10の方法で二次電池を作製した。
[水系GPC測定]
 水系GPC測定は、HPLC装置としてShimadzu/L20システムを用い、カラムはShodex OHpak SB-806MHQ(8.0mmI.D. ×300mmL.×2本)を使用した。溶離液は0.2mol/L硝酸ナトリウム水溶液を用い、試料を0.5%となるよう溶解し、φ0.45フィルターでろ過した後に測定した。試料を50μL投入し0.70mL/minの流量で流しながらRI検出器を用いて重量平均分子量を決定した。標準物質は、昭和電工製STANDARD P-82(Pullulan)を使用して検量線を作成した。
「共重合体の合成」
〔合成例1〕
 攪拌機、温度計および冷却器、窒素ブロー装置を取り付けた1.0Lの反応容器中に、イオン交換水500.0重量部を仕込み、3時間のNブロー後に75℃まで加熱した。これにアクリル酸40.0重量部、2-ヒドロキシエチルアクリレート60.0重量部、過硫酸アンモニウム0.367重量部(モノマー全モル数に対して1500ppm)、イオン交換水50.0重量部の混合物を3時間かけて滴下投入し、重合反応を行った。滴下終了後同温度で2時間保った後、冷却を行った。温度40℃以下にて5mol/L水酸化ナトリウム水溶液と蒸留水加えて、pHを6.8~7.2の範囲、不揮発分を14.8重量%~15.2重量%の範囲に調整を行った。これにより得られた共重合体は、不揮発分14.8重量%、pH6.8、粘度3080mPa・s、水系GPCで測定した重量平均分子量850,000であった。
(45℃のカーボネート系混合溶剤に対する膨潤度の測定)
 得られた共重合体溶液をPETフィルム上に塗布後、室温で3日間放置して乾燥させ、共重合体の被膜を形成した。これを剥離後1.0cm×1.0cmの正方形に切断したのち、80℃の送風乾燥機で1時間、更に110℃の真空乾燥機で10時間乾燥させた。得られた被膜の厚みは100から150μmであった。この被膜の重量を測定後、カーボネート系混合溶媒(EC(エチレンカーボネート)/DEC(ジエチレンカーボネート)=50/50(wt))に45℃、72時間浸漬したのち、再度被膜の重量を測定した。下記式(1)より算出したカーボネート混合溶剤に対する膨潤度は3.7%であった。
カーボネート混合溶剤に対する膨潤度(%)=(浸漬後の被膜重量-浸漬前の被膜重量)/(浸漬前の被膜重量) ×100 (式1)
〔合成例2〕
 2-ヒドロキシエチルアクリレート60.0重量部の代わりに4-ヒドロキシブチルアクリレート60.0重量部、過硫酸アンモニウム0.332重量部(モノマー全モル数に対して1500ppm)を用いた以外は、全て合成例1と同様にして重合反応を行った。これにより得られた共重合体は、不揮発分15.1重量%、pH6.9、粘度3000mPa・s、水系GPCで測定した重量平均分子量800,000であった。また、カーボネート混合溶媒に対する膨潤度は4.3%であった。
〔合成例3〕
 アクリル酸40.0重量部の代わりに2-カルボキシエチルアクリレート40.0重量部、過硫酸アンモニウム0.272重量部(モノマー全モル数に対して1500ppm)を用いた以外は、全て合成例1と同様にして重合反応を行った。これにより得られた共重合体は、不揮発分14.9重量%、pH6.9、粘度3000mPa・s、水系GPCで測定した重量平均分子量840,000であった。また、カーボネート混合溶媒に対する膨潤度は3.9%であった。
〔合成例4〕
 攪拌機、温度計および冷却器、窒素ブローを取り付けた1.0Lの反応容器中に、イオン交換水500.0重量部、を仕込み、3時間のNブロー後に75℃まで加熱した。これにアクリル酸30.0重量部、2-ヒドロキシエチルアクリレート60.0重量部、アクリルアミド10.0重量部、過硫酸アンモニウム0.443重量部(モノマー全モル数に対して1500ppm)、イオン交換水の50.0重量部の混合物を3時間かけて滴下投入し、重合反応を行った。滴下終了後同温度で2時間保った後、冷却を行った。温度40℃以下にて5mol/L水酸化ナトリウム水溶液と蒸留水加えて、pHを6.8~7.2の範囲、不揮発分を14.8重量%~15.2重量%の範囲に調整を行った。得られた共重合体は、不揮発分15.1重量%、pH7.1、粘度3100mPa・s、水系GPCで測定した重量平均分子量730,000であった。また、カーボネート混合溶媒に対する膨潤度は2.9%であった。
〔合成例5〕
 アクリル酸20.0重量部、2-ヒドロキシエチルアクリレートの20.0重量部、アクリルアミドの60.0重量部、過硫酸アンモニウム0.405重量部(モノマー全モル数に対して1500ppm)、5mol/L水酸化ナトリウム水溶液の代わりに25%アンモニア水を用いた以外は全て合成例4と同様にして重合反応を行った。得られた共重合体は、不揮発分15.0重量%、pH7.0、粘度12500mPa・s、水系GPCで測定した重量平均分子量780,000であった。また、カーボネート混合溶媒に対する膨潤度は3.2%であった。
〔合成例6〕
 5mol/L水酸化ナトリウム水溶液の代わりに5mol/L水酸化リチウム水溶液を用いた以外は全て合成例5と同様にして重合反応を行った。得られた共重合体は、不揮発分15.0重量%、pH7.0、粘度13700mPa・s、水系GPCで測定した重量平均分子量780,000であった。また、カーボネート混合溶媒に対する膨潤度は3.7%であった。
〔合成例7〕
 25%アンモニア水の代わりに5mol/L水酸化ナトリウム水溶液を用いた以外は全て合成例5と同様にして重合反応を行った。得られた共重合体は、不揮発分15.0重量%、pH7.0、粘度13200mPa・s、水系GPCで測定した重量平均分子量780,000であった。また、カーボネート混合溶媒に対する膨潤度は3.7%であった。
〔合成例8〕
 アクリル酸20.0重量部、2-ヒドロキシエチルアクリレートの20.0重量部、アクリルアミドの代わりにヒドロキシメチルアクリルアミド、過硫酸アンモニウムの0.357重量部(モノマー全モル数に対して1500ppm)、5mol/L水酸化ナトリウム水溶液の代わりに25%アンモニア水を用いた以外は全て合成例4と同様にして重合反応を行った。得られた共重合体は、不揮発分15.0重量%、pH7.0、粘度17100mPa・s、水系GPCで測定した重量平均分子量830,000であった。また、カーボネート混合溶媒に対する膨潤度は3.2%であった。
〔合成例9〕
 アクリル酸10.0重量部、2-ヒドロキシエチルアクリレートの10.0重量部、アクリルアミドの80.0重量部、過硫酸アンモニウム0.438重量部(モノマー全モル数に対して1500ppm)、5mol/L水酸化ナトリウム水溶液の代わりに25%アンモニア水を用いた以外は全て合成例4と同様にして重合反応を行った。得られた共重合体は、不揮発分14.9重量%、pH7.0、粘度15200mPa・s、水系GPCで測定した重量平均分子量860,000であった。また、カーボネート混合溶媒に対する膨潤度は4.3%であった。
〔合成例10〕
 アクリル酸35.0重量部、2-ヒドロキシエチルアクリレートの35.0重量部、アクリルアミドの30.0重量部、過硫酸アンモニウム0.414重量部(モノマー全モル数に対して1500ppm)、5mol/L水酸化ナトリウム水溶液の代わりに25%アンモニア水を用いた以外は全て合成例4と同様にして重合反応を行った。得られた共重合体は、不揮発分15.0重量%、pH7.0、粘度13300mPa・s、水系GPCで測定した重量平均分子量840,000であった。また、カーボネート混合溶媒に対する膨潤度は4.2%であった。
〔合成例11〕
 アクリル酸20.0重量部、2-ヒドロキシエチルアクリレートの40.0重量部、アクリルアミドの40.0重量部、過硫酸アンモニウム0.442重量部(モノマー全モル数に対して1500ppm)、5mol/L水酸化ナトリウム水溶液の代わりに25%アンモニア水を用いた以外は全て合成例4と同様にして重合反応を行った。得られた共重合体は、不揮発分15.1重量%、pH7.0、粘度14500mPa・s、水系GPCで測定した重量平均分子量830,000であった。また、カーボネート混合溶媒に対する膨潤度は5.8%であった。
〔合成例12〕
 アクリル酸30.0重量部、2-ヒドロキシエチルアクリレートの20.0重量部、アクリルアミドの50.0重量部、過硫酸アンモニウム0.424重量部(モノマー全モル数に対して1500ppm)、5mol/L水酸化ナトリウム水溶液の代わりに25%アンモニア水を用いた以外は全て合成例4と同様にして重合反応を行った。得られた共重合体は、不揮発分15.1重量%、pH7.0、粘度13000mPa・s、水系GPCで測定した重量平均分子量840,000であった。また、カーボネート混合溶媒に対する膨潤度は3.7%であった。
〔合成例13〕
 3時間のNブロー行わなかった以外は、全て合成例1と同様にして重合反応を行った。これにより得られた共重合体は、不揮発分15.0重量%、pH6.8、粘度1380mPa・s、水系GPCで測定した重量平均分子量480,000であった。また、カーボネート混合溶媒に対する膨潤度は6.9%であった。
〔合成例14〕
 アクリル酸20.0重量部、2-ヒドロキシエチルアクリレート80.0重量部、過硫酸アンモニウム0.340重量部(モノマー全モル数に対して1500ppm)を用いた以外は、全て合成例1と同様にして重合反応を行った。これにより得られた共重合体は、不揮発分14.9重量%、pH7.0、粘度2800mPa・s、水系GPCで測定した重量平均分子量750,000であった。また、カーボネート混合溶媒に対する膨潤度は18.8%であった。
〔合成例15〕
 攪拌機、温度計および冷却器、窒素ブローを取り付けた1.0Lの反応容器中に、イオン交換水500.0重量部、を仕込み、3時間のNブロー後に75℃まで加熱した。これに2-ヒドロキシエチルアクリレート70.0重量部、アクリルアミド30.0重量部、過硫酸アンモニウム0.351重量部(モノマー全モル数に対して1500ppm)、イオン交換水の50.0重量部の混合物を3時間かけて滴下投入し、重合反応を行った。滴下終了後同温度で2時間保った後、冷却を行った。得られた共重合体は、不揮発分15.0重量%、pH7.0、粘度4300mPa・s、水系GPCで測定した重量平均分子量750,000であった。また、カーボネート混合溶媒に対する膨潤度は12.3%であった。
〔合成例16〕
 攪拌機、温度計および冷却器、窒素ブローを取り付けた1.0Lの反応容器中に、イオン交換水500.0重量部、を仕込み、3時間のNブロー後に75℃まで加熱した。これに2-ヒドロキシエチルアクリレート70.0重量部、アクリルアミド30.0重量部、過硫酸アンモニウム0.351重量部(モノマー全モル数に対して1500ppm)、イオン交換水の50.0重量部の混合物を3時間かけて滴下投入し、重合反応を行った。滴下終了後同温度で2時間保った後、冷却を行った。温度40℃以下にて5mol/L水酸化ナトリウム水溶液と蒸留水加えて、pHを6.8~7.2の範囲、不揮発分を14.8重量%~15.2重量%の範囲に調整を行った。得られた共重合体は、不揮発分15.0重量%、pH7.0、粘度8900mPa・s、水系GPCで測定した重量平均分子820,000であった。また、カーボネート混合溶媒に対する膨潤度は3.5%であった。
 上記合成例1-16におけるモノマー組成、Nブローの有無、中和塩の種類、不揮発分、pH、粘度、共重合体の重量平均分子量、及び45℃カーボネート混合溶媒に対する膨潤度をまとめると、以下の表1のとおりである。
Figure JPOXMLDOC01-appb-T000001
「負極の作製」
[実施例1]
(負極合剤スラリーの調製)
 SiO負極材(初回充電容量2062mAh/g、初回放電容量1631mAh/g)11.5重量部、人造黒鉛(初回充電容量371mAh/g、初回放電容量346mAh/g)84.5重量部、アセチレンブラック1.0重量部、を秤取り、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒攪拌した。上記合成例1に示す重合体(不揮発分14.8重量%)を蒸留水で希釈し、不揮発分濃度8.0%に調整した水溶液を、27.0重量部(固形分換算重量で2.16重量部)、蒸留水19.0重量部を加え、全体がペースト状になるまで混ぜ合わせた。次いで自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、攪拌により発熱したので氷水で室温まで冷却した。再度、自転1000rpm、公転2000rpmの条件で、2分間攪拌後、氷水で室温まで冷却した。先に不揮発分濃度8%に調製した上記合成例1に示すバインダー組成物の水溶液を、10.5重量部(不揮発分換算重量0.84重量部、)を加え、全体が均一になるまで混ぜ合わせたのち、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、氷水で室温に冷却した。蒸留水5重量部を加え、全体が均一になるまで混ぜ合わせた。次にスラリーの粘度を調整するため、B型粘度計で粘度測定し、30rpmの条件で2000~4000Pa・sの範囲になるように蒸留水を適宜追加した。最後に自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒間攪拌を行って、本発明の負極バインダー組成物を用いた負極合剤スラリーを調製した。
(負極の作製)
 次いで、乾燥後の負極合剤塗工量(面密度)が8.8mg/cmになるようにバーコータのギャップを調整し、このバーコータにより負極合剤スラリーを集電体である銅箔上に塗工した。その後、80℃に設定した送風型乾燥機で8分乾燥した。乾燥した電極を幅40mmの短冊に切断し、ロールプレス機(テスター産業株式会社製 小型卓上ロールプレス SA-602)を用いて、合剤層密度が1.55g/cm(合剤層の厚みで66.7μm)となるようにプレスした。110℃で10時間、真空乾燥したのち、合剤層密度を再度測定したところ、1.50g/cm(合剤層の厚みで68.6μm)であった。この電極の単位面積当たりの初回充電容量は4.95mAh/cmである。これにより、実施例1の負極(面密度8.8gm/cm、合剤層密度1.5g/cm、合剤層厚み68.6μm、単位面積初回充電容量4.95mAh/cm)が得られた。
(ピール強度の測定及び電極の巻回耐性の確認)
 上記で作製した負極を温度25℃、相対湿度50%の恒温恒湿室内に6時間放置後、幅25mm、長さ100mmの短冊状に切り出した。ついで、両面テープ(日東電工社製 Nо5015)を用いてステンレス板に活物質面を被着面として張り合わせ、ピール強度試験用サンプルとした。銅箔端部を10mmほど引き剥がし、そこへポリイミドテープを貼り付け、剥離試験器への取り付け部とした。剥離試験機((株)島津製作所社製 オートグラフ AG-X Plus)にピール強度試験用サンプルを装着し、180度ピール試験を行った。ピール強度は34.5N/mであった。そして、負極塗膜の剥離(破壊)状態を観察した。また、負極塗膜をφ5mmの芯に巻き付け、塗膜にクラックが発生するか否かを目視観察した。このときのクラックの発生は無かった。
[実施例2]
 スラリー作製に使用したバインダー混合物を上記合成例2に示す重合体を用いた以外は実施例1と同様である。このときのピール強度は27.8N/mであった。また、クラックの発生は無かった。
[実施例3]
 スラリー作製に使用したバインダー混合物を上記合成例3に示す重合体を用いた以外は実施例1と同様である。このときのピール強度は28.9N/mであった。また、クラックの発生は無かった。
[実施例4]
 スラリー作製に使用したバインダー混合物を上記合成例4に示す重合体を用いた以外は実施例1と同様である。このときのピール強度は24.5N/mであった。また、クラックの発生は無かった。
[実施例5]
 スラリー作製に使用したバインダー混合物を上記合成例5に示す重合体を用いた以外は実施例1と同様である。このときのピール強度は30.7N/mであった。また、クラックの発生は無かった。
[実施例6]
 スラリー作製に使用したバインダー混合物を上記合成例6に示す重合体を用いた以外は実施例1と同様である。このときのピール強度は29.5N/mであった。また、クラックの発生は無かった。
[実施例7]
 スラリー作製に使用したバインダー混合物を上記合成例7に示す重合体を用いた以外は実施例1と同様である。このときのピール強度は34.6N/mであった。また、クラックの発生は無かった。
[実施例8]
 スラリー作製に使用したバインダー混合物を上記合成例8に示す重合体を用いた以外は実施例1と同様である。このときのピール強度は28.4N/mであった。また、クラックの発生は無かった。
[実施例9]
 スラリー作製に使用したバインダー混合物を上記合成例9に示す重合体を用いた以外は実施例1と同様である。このときのピール強度は29.1N/mであった。また、クラックの発生は無かった。
[実施例10]
 スラリー作製に使用したバインダー混合物を上記合成例10に示す重合体を用いた以外は実施例1と同様である。このときのピール強度は30.5N/mであった。また、クラックの発生は無かった。
[実施例11]
 スラリー作製に使用したバインダー混合物を上記合成例11に示す重合体を用いた以外は実施例1と同様である。このときのピール強度は28.6N/mであった。また、クラックの発生は無かった。
[実施例12]
 スラリー作製に使用したバインダー混合物を上記合成例12に示す重合体を用いた以外は実施例1と同様である。このときのピール強度は28.4N/mであった。また、クラックの発生は無かった。
[比較例1]
 スラリー作成に使用したバインダー混合物を上記合成例13に示す重合体を用いた以外は実施例1と同様である。このときのピール強度は17.4N/mであった。また、クラックの発生は無かった。
[比較例2]
 スラリー作成に使用したバインダー混合物を上記合成例14に示す重合体を用いた以外は実施例1と同様である。このときのピール強度は14.5N/mであった。また、クラックの発生は無かった。
[比較例3]
 スラリー作成に使用したバインダー混合物を上記合成例15に示す重合体を用いた以外は実施例1と同様である。このときのピール強度は15.2N/mであった。また、クラックの発生は無かった。
[比較例4]
 スラリー作成に使用したバインダー混合物を上記合成例16に示す重合体を用いた以外は実施例1と同様である。このときのピール強度は14.5N/mであった。また、クラックの発生は無かった。
[比較例5]
 スラリー作成に使用したバインダー混合物を上記ポリアクリル酸ナトリウム(富士フィルム和光純薬社製、重合度22000~70000)を用いた以外は実施例1と同様である。このときのピール強度は8.1N/mであった。また、クラックの発生は無かった。
[比較例6]
(負極合剤スラリーの調製)
 SiO負極材(初回充電容量2062mAh/g、初回放電容量1631mAh/g)11.5重量部、人造黒鉛(初回充電容量371mAh/g、初回放電容量346mAh/g)84.5重量部、アセチレンブラック1.0重量部、を秤取り、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒攪拌した。カルボキシメチルセルロースNa塩(CMC、日本製紙社製サンローズMAC350HC)を蒸留水に溶解し、不揮発分濃度2.0%に調整した水溶液を、48.0重量部(固形分換算重量で0.96重量部)を加え、全体がペースト状になるまで混ぜ合わせた。次いで自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、攪拌により発熱したので氷水で室温まで冷却した。再度、自転1000rpm、公転2000rpmの条件で、2分間攪拌後、氷水で室温まで冷却した。先に不揮発分濃度2%に調製した上記CMCの水溶液を、27.0重量部(不揮発分換算重量0.54重量部)を加え、全体が均一になるまで混ぜ合わせたのち、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、氷水で室温に冷却した。蒸留水を20重量部と、スチレンブタジエン共重合体(SBR)(DIC社製 DS407H, 不揮発分濃度50.8%)を2.95重量部(不揮発分換算で1.5重量部)加え、再び自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒間攪拌することで負極合剤スラリーを調製した。負極の作製、ピール強度の測定及び、電極の巻回耐性の確認は実施例1と同様にして行った。このときのピール強度は16.8N/mであった。また、クラックの発生は無かった。
 上記実施例1-12及び比較例1-6で作製した負極で用いたバインダー樹脂、ピール強度、及び5φ曲げクラック耐性は、以下の表2のとおりとなる。
Figure JPOXMLDOC01-appb-T000002
 上記表2より実施例は比較例よりもピール強度が高くなっていることが分かる。
「正極の作製」
(正極スラリーの調製)
 湿度30%以下に調整した室内で、正極材LiMn0.6Co0.2Ni0.2 (初回充電容量191mAh/g、初回放電容量171mAh/g)94.0重量部、アセチレンブラック3.0重量部、を秤取り、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒攪拌した。不揮発分濃度8.0%に調整したポリフッ化ビニリデンの無水N-メチルピロリドン溶液を、27.0重量部(固形分換算重量で2.16重量部)、無水N-メチルピロリドン19.0重量部を加え、全体がペースト状になるまで混ぜ合わせた。次いで自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、攪拌により発熱したので氷水で室温まで冷却した。再度、自転1000rpm、公転2000rpmの条件で、2分間攪拌後、氷水で室温まで冷却した。先に不揮発分濃度8%に調製したポリフッ化ビニリデンの無水N-メチルピロリドン溶液を、10.5重量部(不揮発分換算重量0.84重量部、)を加え、全体が均一になるまで混ぜ合わせたのち、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、氷水で室温に冷却した。無水N-メチルピロリドン5重量部を加え、全体が均一になるまで混ぜ合わせた。次にスラリーの粘度を調整するため、B型粘度計で粘度測定し、30rpmの条件で2000~4000Pa・sの範囲になるように無水N-メチルピロリドンを適宜追加した。最後に自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒間攪拌を行って、正極合剤スラリーを調製した。
(正極の作製)
 まず、乾燥後の合剤塗工量(面密度)が25.0mg/cmになるようにバーコータのギャップを調整し、このバーコータにより正極合剤スラリーを集電体であるアルミニウム箔上に塗工した。次に、80℃に設定した送風型乾燥機で10分乾燥した。乾燥した電極を幅40mmの短冊に切断し、ロールプレス機(テスター産業株式会社製 小型卓上ロールプレス SA-602)を用いて、合剤層密度が3.4g/cm(合剤層の厚みで73.3μm)となるようにプレスしたのち、110℃で10時間、真空乾燥した。この電極の単位面積当たりの初回充電容量は4.49mAh/cmである。これにより、正極(面密度25.0gm/cm、合剤層密度3.4g/cm、合剤層厚み73.3μm、単位面積初回充電容量4.49mAh/cm)が得られた。
「二次電池の作製」
[実施例13]
 まず、実施例1で示した負極をTabの付いた24mm×24mmの正方形に、正極作成例で示した正極をTabの付いた22mm×22mmの正方形にトムソン刃を用いて各々カットした。カットした電極のTab部に負極はニッケル、正極はアルミのタブリードを各々溶接した。次に、セパレータ(厚み25ミクロンのポリエチレン製微多孔膜)を28mm×3.8cmの長方形にトムソン刃を用いてカットした。セパレータを介して正極と負極を対向させ、ラミネートフィルムで包装し、Tab部を熱圧着により固定した。そして、電解液(1.0MのLiPF エチレンカーボネート/ジメチルカーボネート/メチルエチルカーボネート=30/30/40混合溶液(体積比)+1%ビニルカーボネート+5%フルオロエチレンカーボネート)を300μL加え、真空ラミネートすることで完全に封じ、ラミネート型二次電池を作製した。
(初回充放電効率及びサイクル特性)
 上記で作製した二次電池を充放電装置に取り付け、25℃で3時間放置後、0.1Cで1回充放電した。このときの初回充放電効率は81.2%であった。次に0.2Cで50回充放電を繰り返した。0.2C1回目の放電容量を100%とした時の50回目の放電容量維持率は85.0%であった。
(電極膨潤率)
 初回充放電後、45℃に保持し、0.5Cで1回充電を行ったのち、ドライルーム内で二次電池を解体し、満充電状態の負極を取り出した。ジメチルカーボネートで洗浄、自然乾燥後、マイクロメータにて電極厚みを測定した。下記(式2)より電極膨潤率を算出した結果、32.0%であった。
電極膨潤率(%)=(解体した電極厚み-電池作製時の電極厚み)/(電池作製時の合剤層厚み) ×100 (式2)
[実施例14]
 上記実施例2で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は81.5%であった。また、放電容量維持率は86.4%であった。さらに電極膨張率は30.4%であった。
[実施例15]
 上記実施例3で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は81.4%であった。また、放電容量維持率は84.9%であった。さらに電極膨張率は30.2%であった。
[実施例16]
 上記実施例4で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は81.6%であった。また、放電容量維持率は84.7%であった。さらに電極膨張率は31.1%であった。
[実施例17]
 上記実施例5で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は81.6%であった。また、放電容量維持率は85.3%であった。さらに電極膨張率は30.7%であった。
[実施例18]
 上記実施例6で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は82.7%であった。また、放電容量維持率は85.3%であった。さらに電極膨張率は30.6%であった。
[実施例19]
 上記実施例7で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は81.7%であった。また、放電容量維持率は85.4%であった。さらに電極膨張率は30.2%であった。
[実施例20]
 上記実施例8で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は81.5%であった。また、放電容量維持率は85.0%であった。さらに電極膨張率は30.0%であった。
[実施例21]
 上記実施例9で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は81.4%であった。また、放電容量維持率は84.7%であった。さらに電極膨張率は30.6%であった。
[実施例22]
 上記実施例10で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は81.4%であった。また、放電容量維持率は84.9%であった。さらに電極膨張率は30.0%であった。
[実施例23]
 上記実施例11で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は81.5%であった。また、放電容量維持率は84.7%であった。さらに電極膨張率は29.8%であった。
[実施例24]
 上記実施例12で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は81.4%であった。また、放電容量維持率は84.9%であった。さらに電極膨張率は30.2%であった。
[比較例7]
 上記比較例1で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は81.4%であった。また、放電容量維持率は80.4%であった。さらに電極膨張率は35.2%であった。
[比較例8]
 上記比較例2で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は80.9%であった。また、放電容量維持率は72.0%であった。さらに電極膨張率は40.3%であった。
[比較例9]
 上記比較例3で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は81.3%であった。また、放電容量維持率74.0%であった。さらに電極膨張率は45.9%であった。
[比較例10]
 上記比較例4で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は81.2%であった。また、放電容量維持率は78.5%であった。さらに電極膨張率は36.4%であった。
[比較例11]
 上記比較例5で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は80.9%であった。また、放電容量維持率は76.0%であった。さらに電極膨張率は36.8%であった。
[比較例12]
 上記比較例6で作製した負極を用いた以外は全て実施例13と同様に行った。このときの初回充放電効率は81.1%であった。また、放電容量維持率は79.0%であった。さらに電極膨張率は39.3%であった。
 上記実施例13-24及び比較例7-12で作製した二次電池の初回充電保持率(%)、100回目の容量維持率(%)、及び電極膨潤率(%)は、以下の表3のとおりである。
Figure JPOXMLDOC01-appb-T000003
 上記表3より、本発明の負極バインダー組成物(実施例1-12)を用いた実施例13-24では、本発明の負極バインダー組成物を用いていない比較例7-12に比べて100回目の容量維持率(%)、及び電極膨潤率(%)ともに優れていることが分かる。

Claims (9)

  1.  水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合体を含む負極バインダー組成物であって、水系GPC測定装置を用いて測定したときの前記共重合体の重量平均分子量が700,000以上であり、且つ前記負極バインダー組成物の乾燥ポリマーフィルムをカーボネート系混合溶剤(EC(エチレンカーボネート)/DEC(ジエチレンカーボネート)=50/50(wt))に45℃で72時間浸漬させた後の膨潤率が0~10重量%である負極バインダー組成物。
  2.  前記水酸基含有モノマー(a)が、前記水酸基含有モノマー(a)が、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、及び4-ヒドロキシブチルメタクリレートからなる群のうち、いずれか1種以上である請求項1に記載の負極バインダー組成物。
  3.  前記酸基含有モノマー(b)が、アクリル酸、メタクリル酸、マレイン酸、モノメチルマレイン酸、2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート、マレイン酸、及びイタコン酸からなる群のうち、いずれか1種以上である請求項1又は2に記載の負極バインダー組成物。
  4.  前記酸基含有モノマー(b)が、塩基性組成物若しくは軽金属塩で中和されたものである請求項1~3のいずれか一項に記載の負極バインダー組成物。
  5.  前記水酸基含有モノマー(a)の含有量が10~80重量%、且つ前記酸基含有モノマー(b)の含有量が10~80重量%である請求項1~4のいずれか一項に記載の負極バインダー組成物。
  6.  さらにその他のモノマー(c)として、アクリルアミド、メタクリルアミド、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、及びN-ヒドロキシメチルアクリルアミドからなる群のうち、いずれか1種以上を含む請求項1~5のいずれか一項に記載の負極バインダー組成物。
  7.  前記その他のモノマー(c)の含有量が0~80%である請求項6記載の負極バインダー組成物。
  8.  請求項1~7のいずれか一項に記載の負極バインダー組成物を成分として含む負極。
  9.  請求項8に記載の負極から構成される二次電池。
PCT/JP2022/004168 2021-02-09 2022-02-03 負極バインダー組成物、負極、及び二次電池 WO2022172843A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022580589A JP7311059B2 (ja) 2021-02-09 2022-02-03 負極バインダー組成物、負極、及び二次電池
EP22752670.4A EP4293053A1 (en) 2021-02-09 2022-02-03 Negative electrode binder composition, negative electrode, and secondary battery
KR1020237025065A KR20230145324A (ko) 2021-02-09 2022-02-03 음극 바인더 조성물, 음극, 및 이차 전지
US18/262,279 US20240105949A1 (en) 2021-02-09 2022-02-03 Negative electrode binder composition, negative electrode, and secondary battery
CN202280011038.1A CN116830318A (zh) 2021-02-09 2022-02-03 负极粘合剂组合物、负极和二次电池
JP2023096841A JP2023116666A (ja) 2021-02-09 2023-06-13 負極バインダー組成物、負極、及び二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021018890 2021-02-09
JP2021-018890 2021-02-09

Publications (1)

Publication Number Publication Date
WO2022172843A1 true WO2022172843A1 (ja) 2022-08-18

Family

ID=82837806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004168 WO2022172843A1 (ja) 2021-02-09 2022-02-03 負極バインダー組成物、負極、及び二次電池

Country Status (6)

Country Link
US (1) US20240105949A1 (ja)
EP (1) EP4293053A1 (ja)
JP (2) JP7311059B2 (ja)
KR (1) KR20230145324A (ja)
CN (1) CN116830318A (ja)
WO (1) WO2022172843A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157851A (ja) * 2001-08-30 2003-05-30 Hitachi Chem Co Ltd 熱硬化性ポリビニルアルコール系バインダ樹脂組成物、合剤スラリー、電極、非水電解液系二次電池及び電極材料用の熱硬化性ポリビニルアルコール系バインダ樹脂
WO2015186363A1 (ja) * 2014-06-04 2015-12-10 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2016067633A1 (ja) * 2014-10-31 2016-05-06 日本ゼオン株式会社 リチウムイオン二次電池負極用ペースト組成物、リチウムイオン二次電池負極用複合粒子、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2016149313A (ja) * 2015-02-13 2016-08-18 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2017056467A1 (ja) * 2015-09-30 2017-04-06 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2018030002A1 (ja) * 2016-08-10 2018-02-15 Necエナジーデバイス株式会社 リチウムイオン電池用電極およびリチウムイオン電池
WO2019167730A1 (ja) * 2018-02-27 2019-09-06 日本ゼオン株式会社 リチウムイオン二次電池用スラリー組成物およびリチウムイオン二次電池用電極

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671940B (zh) 2012-10-26 2019-09-11 日商富士軟片和光純藥股份有限公司 鋰電池用結合劑
JP2016149312A (ja) 2015-02-13 2016-08-18 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6648854B2 (ja) 2019-06-06 2020-02-14 宇部興産株式会社 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157851A (ja) * 2001-08-30 2003-05-30 Hitachi Chem Co Ltd 熱硬化性ポリビニルアルコール系バインダ樹脂組成物、合剤スラリー、電極、非水電解液系二次電池及び電極材料用の熱硬化性ポリビニルアルコール系バインダ樹脂
WO2015186363A1 (ja) * 2014-06-04 2015-12-10 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2016067633A1 (ja) * 2014-10-31 2016-05-06 日本ゼオン株式会社 リチウムイオン二次電池負極用ペースト組成物、リチウムイオン二次電池負極用複合粒子、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2016149313A (ja) * 2015-02-13 2016-08-18 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2017056467A1 (ja) * 2015-09-30 2017-04-06 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2018030002A1 (ja) * 2016-08-10 2018-02-15 Necエナジーデバイス株式会社 リチウムイオン電池用電極およびリチウムイオン電池
WO2019167730A1 (ja) * 2018-02-27 2019-09-06 日本ゼオン株式会社 リチウムイオン二次電池用スラリー組成物およびリチウムイオン二次電池用電極

Also Published As

Publication number Publication date
JPWO2022172843A1 (ja) 2022-08-18
JP7311059B2 (ja) 2023-07-19
EP4293053A1 (en) 2023-12-20
KR20230145324A (ko) 2023-10-17
CN116830318A (zh) 2023-09-29
JP2023116666A (ja) 2023-08-22
US20240105949A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
JP2022140477A (ja) 非水系電池電極用バインダー用共重合体、非水系電池電極用スラリー、非水系電池電極、および非水系電池
JP7170330B2 (ja) 二次電池用負極及び二次電池
EP4024533B1 (en) Binder composition and preparation method for secondary battery
JP2971451B1 (ja) リチウム二次電池
KR102230563B1 (ko) 전극 바인더용 공중합체 및 리튬 이온 이차 전지
WO2022141508A1 (zh) 一种电化学装置和电子装置
WO2019156031A1 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
TWI795390B (zh) 非水電解質電池用黏合劑組成物、以及使用其之非水電解質電池用黏合劑水溶液、非水電解質電池用漿體組成物、非水電解質電池用電極、及非水電解質電池
JP2019175657A (ja) リチウムイオン二次電池。
WO2015115201A1 (ja) 電気化学素子用電極及び電気化学素子
JP5707804B2 (ja) 非水電解質二次電池正極用スラリー組成物
KR20110047175A (ko) 폴리아크릴로니트릴-아크릴산 공중합체 및 바인더를 포함한 음극 재료 조성물의 제조방법 및 그 음극 재료 조성물을 포함하는 리튬 이차 전지용 음극의 제조방법
JP5232353B2 (ja) 非水電解質二次電池用電極組成物、これを用いた電極および電池
KR20210032386A (ko) 비수계 전지 전극용 바인더용 공중합체, 및 비수계 전지 전극 제조용 슬러리
US10431813B2 (en) Carbon-silicon composite structure and method of preparing the same
JP7311059B2 (ja) 負極バインダー組成物、負極、及び二次電池
US20230223540A1 (en) Binder for nonaqueous secondary battery electrode and slurry for nonaqueous secondary battery electrode
KR101623637B1 (ko) 전극용 슬러리 조성물 및 리튬이온 이차전지
JP7359337B1 (ja) 負極バインダー組成物およびその製造方法、負極、及び二次電池
KR101616721B1 (ko) 접착력이 향상된 바인더 및 상기 바인더를 포함하는 리튬 이차전지
WO2023199657A1 (ja) 負極バインダー組成物およびその製造方法、負極、及び二次電池
JP7245100B2 (ja) リチウムイオン二次電池
WO2024077507A1 (zh) 粘结组合物、电极浆料、电极极片、二次电池及用电装置
JPH0927313A (ja) 非水電解液二次電池
WO2021193665A1 (ja) 二次電池用正極及び二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580589

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18262279

Country of ref document: US

Ref document number: 202280011038.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022752670

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022752670

Country of ref document: EP

Effective date: 20230911