WO2022170841A1 - 一种面向大部件群孔加工孔位误差最小的基准选取方法 - Google Patents

一种面向大部件群孔加工孔位误差最小的基准选取方法 Download PDF

Info

Publication number
WO2022170841A1
WO2022170841A1 PCT/CN2021/136932 CN2021136932W WO2022170841A1 WO 2022170841 A1 WO2022170841 A1 WO 2022170841A1 CN 2021136932 W CN2021136932 W CN 2021136932W WO 2022170841 A1 WO2022170841 A1 WO 2022170841A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
hole
axis
benchmark
hole position
Prior art date
Application number
PCT/CN2021/136932
Other languages
English (en)
French (fr)
Inventor
李�杰
刘大炜
马振博
刘元吉
勾江洋
谢颖
帅朝林
陈雪梅
卢大伟
陈清良
Original Assignee
成都飞机工业(集团)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都飞机工业(集团)有限责任公司 filed Critical 成都飞机工业(集团)有限责任公司
Publication of WO2022170841A1 publication Critical patent/WO2022170841A1/zh
Priority to US18/447,291 priority Critical patent/US11914339B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/402Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for positioning, e.g. centring a tool relative to a hole in the workpiece, additional detection means to correct position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/408Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by data handling or data format, e.g. reading, buffering or conversion of data
    • G05B19/4086Coordinate conversions; Other special calculations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35356Data handling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36201Hole machining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the technical field of mechanical processing, in particular to a method for selecting a benchmark with the smallest hole position error for large component group hole processing.
  • connection holes In the process of aircraft assembly, the assembly between structural parts is mainly based on mechanical connections.
  • the processing quality of the connection holes has a very important impact on improving the connection accuracy, improving the performance and service life of the aircraft.
  • the processing quality and processing efficiency of the connection holes can be improved to a certain extent, but it also cannot meet the requirements of assembly quality and efficiency. Therefore, in order to improve the assembly quality and efficiency of the aircraft , Multi-axis linkage CNC machine tools are more and more widely used in the field of aircraft assembly and manufacturing.
  • the methods for selecting common product processing benchmarks are: 1) Take the origin of the CNC machine tool as the benchmark; 2) Take the starting point on the product as the benchmark.
  • the position accuracy of group hole machining is mainly affected by the position accuracy of the tool nose point of the manufacturing equipment tool.
  • the position accuracy of the tool nose point is determined by the ability of the machine tool to determine the orientation of the rotating axis and the positioning ability of the translation axis.
  • the multi-axis CNC machine tool will produce problems during the installation and debugging process. Geometric error, positioning error and assembly error, and error factors such as positioning accuracy and straightness are closely related to the motion stroke, that is, the longer the stroke, the greater the existing error.
  • the motion of the motion axis is based on the selected datum, and then relative motion is carried out, and the selection of the process datum during the machining process will have a direct impact on the motion stroke of the motion axis, and ultimately affect the machining accuracy of multi-axis CNC machine tools.
  • the large component group hole machining task requires high machining quality and the component contour is too large.
  • the purpose of the present invention is to provide a method to effectively improve the positional accuracy of the skeleton or skin group hole machining, and to select the datum with the smallest hole position error for large component group hole machining more reasonably for the large component group hole machining datum selection. method.
  • the present invention is achieved through the following technical solutions: a method for selecting a benchmark with the smallest hole position error for large component group hole processing, comprising the following steps:
  • the specific content of establishing the topology structure of the CNC machine tool is to simplify the topology structure of the machine tool according to the low-order body array method, and to The low-order body numbering is performed on the corresponding motion unit.
  • the CNC machine tool is selected as an AC swing angle five-axis CNC machine tool, and the CNC machine tool is composed of a machine bed, an X-axis motion unit, and a Y-axis motion.
  • the topology structure of the CNC machine tool is: machine bed ⁇ X-axis motion unit ⁇ Y-axis motion unit ⁇ Z-axis motion unit ⁇ C-axis motion unit ⁇ A-axis motion unit, wherein the C-axis motion unit is pivotally connected to the Z-axis motion unit On the unit, the A-axis motion unit is pivotally connected to the C-axis motion unit, the machining spindle is fixedly connected with the A-axis, and the tool is placed and clamped on the machining spindle.
  • the theoretical pose model of the tool tip point in the motion process is based on the multi-body system theory and the pose error and geometry of each motion axis. error is established.
  • the hole position error model is based on the distance between the actual position and the theoretical position of the tool tip point during the hole making process, and is determined by the difference between the actual position and the ideal position.
  • the projection relationship of the axis vertical plane is constructed.
  • step (4) the specific process of establishing the average error model of the group hole processing hole position is as follows:
  • the processing forms of the component group holes include frame group hole processing and skin group hole processing.
  • the selection of the reference is to select the upward origin coordinate value of the group hole processing product
  • the selection principle of the skeleton group hole machining datum is: select the coordinate value of the skeleton group hole machining origin through the machining range in the direction of the group hole machining product;
  • the selection principle of the skin group hole machining reference selection is: the origin coordinate value of the skin group hole machining is determined by the maximum value of the machined product direction of the group hole and the safety distance reserved between the tool tip and the skin.
  • the corresponding component group holes are skeleton group holes
  • the process of obtaining the machining reference is as follows: by establishing a Lagrangian function, and calculating its variables Partial derivation to obtain the benchmark with the smallest hole position error for skeleton group hole machining.
  • the corresponding component group holes are skin group holes
  • the process of obtaining the machining datum is as follows: by taking the partial derivative of the variables of the average error model of the machining hole position of the skin group holes to obtain The benchmark with the smallest hole position error for skin group hole processing.
  • the present invention takes an AC swing angle five-axis CNC machine tool as an example.
  • the five-axis CNC machine tool is composed of the following parts: a machine tool bed, an X-axis motion unit, a Y-axis motion unit, a Z-axis motion unit, a C-axis motion unit, and an A-axis motion unit.
  • the axis movement unit is composed of the negative direction of the Z axis movement unit as the processing product direction.
  • the topology structure of the machine tool is simplified by the low-order body array method, and the corresponding motion units are numbered with low-order bodies.
  • the motion state of any rigid body in space can be expressed by the transformation relationship between the corresponding direction and the secondary coordinate matrix, in which the linear feed axis U and the rotary feed axis V of the machine tool indicate that this error is a static error.
  • X, Y, Z respectively represent the direction of the linear error
  • ⁇ , ⁇ , ⁇ represent the direction of the rotation error around the X, Y, Z directions, respectively.
  • u represents the displacement of the linear motion axis U
  • v represents the rotation of the rotational axis V.
  • i and j respectively represent the low-order body number and the current feed axis number of the corresponding feed axis in the machine tool topology.
  • the error transfer matrix corresponding to the linear feed axis U and the rotary feed axis V can be expressed as:
  • the motion trajectory P ideal of the five-axis CNC machine tool is expressed as:
  • attitude V ideal of the pendulum angle of the five-axis CNC machine tool is expressed as:
  • the calculation expression of the position deviation P error_V at the hole making position can be calculated as:
  • skeleton group hole machining There are usually two forms of group hole machining for large components: skeleton group hole machining and skin group hole machining.
  • the datum selection method will vary.
  • the open area of the skeleton is large, and the machining positions of the group holes are different along the Z-axis direction, that is, the group holes are not necessarily on the same Z plane. Therefore, the skeleton group hole datum can be selected in the open area in the middle of the skeleton, and finally the model is selected through the skeleton group hole machining datum to obtain the best datum position in the processing process.
  • the position coordinates (X k1 , Y k1 , Z k1 ) of group hole machining are:
  • the selection principle of Z coordinate in the process of skin group hole machining datum selection is as follows: the Z coordinate value of skin group hole machining is determined by the maximum value of the Z direction of the group hole and the safety distance reserved between the tool tip and the skin. .
  • k2 is a natural number
  • n is a positive integer
  • H the safety distance between the skin and the tool nose point
  • H the Z' 2 coordinate position of the tool nose point for the skin group hole machining benchmark
  • the present invention has the following advantages and beneficial effects:
  • the present invention is oriented to the processing of group holes in the skeleton of aircraft parts and skin, and provides different benchmark selection principles for the processing of group holes in the frame and skin of aircraft parts, which will effectively improve the position of the frame or skin group hole processing. It also provides a more scientific and reasonable method for the selection of the machining datum for large parts group holes;
  • the present invention deduces the minimum datum of the hole position error by calculating the average value of the hole position error between a certain point in the space point and the group of hole points, which is more scientific and reasonable;
  • the benchmark selection method with the smallest hole position error for group hole machining proposed by the present invention is suitable for group hole machining of three-axis and above CNC machine tools, and can also be used in other CNC machining fields, and is suitable for wide popularization and application.
  • Fig. 1 is the concrete flow chart of the method of the present invention
  • Fig. 2 is the topological structure schematic diagram of selecting five-axis CNC machine tool in embodiment 2 of the present invention
  • Fig. 3 is a schematic diagram of hole position error in hole making in the present invention.
  • Fig. 4 is a schematic diagram of establishing a skeleton group hole machining benchmark model in the present invention.
  • Fig. 5 is a schematic diagram of selecting a benchmark with the smallest hole position error for skeleton group hole processing in the present invention
  • FIG. 6 is a schematic diagram of establishing a skin group hole machining benchmark model in the present invention.
  • FIG. 7 is a schematic diagram of the selection of a benchmark with the smallest hole position error in the processing of the skin group holes in the present invention.
  • the present embodiment provides a method for selecting the best benchmark for component group hole processing.
  • skeleton group hole processing There are usually two forms of component group hole processing: skeleton group hole processing and skin group hole processing.
  • the selection principle of Z coordinate in the process of skeleton group hole machining datum selection is: select the skeleton group hole machining Z coordinate value through the machining range of the group hole Z direction.
  • the selection principle of Z coordinate in the process of skin group hole machining datum selection is as follows: the Z coordinate value of skin group hole machining is determined by the maximum value of the Z direction of the group hole and the safety distance reserved between the tool tip and the skin.
  • the average error model of the skeleton and the skin group hole machining hole position is established according to the hole position error model of the hole making
  • the benchmark with the smallest hole position error for skeleton group hole machining is obtained.
  • the skin group hole machining obtains the minimum hole position error benchmark for the skin group hole machining by taking the partial derivation of the variables of the average error model of the skin group hole machining hole position.
  • an AC swing angle five-axis CNC machine tool is used as an example, and the benchmark is selected.
  • the AC swing angle five-axis CNC machine tool as shown in Figure 2, consists of the following parts: the machine bed, the X-axis It consists of motion unit, Y-axis motion unit, Z-axis motion unit, C-axis motion unit and A-axis motion unit.
  • the topology structure of the five-axis CNC machine tool is as follows: machine bed 0 ⁇ X-axis motion unit 1 ⁇ Y-axis motion unit 2 ⁇ Z-axis motion unit 3 ⁇ C-axis motion unit 4 ⁇ A-axis motion Unit 5, wherein the C-axis motion unit 4 is pivotally connected to the Z-axis motion unit 3, the A-axis motion unit 5 is pivotally connected to the C-axis motion unit 4, the machining spindle is fixedly connected to the A-axis 5, and the tool placement device Clamped on the machining spindle.
  • the fixed coordinate systems of all motions have the same position, and the wrist center O is set at the intersection of the rotation axis of the C axis and the rotation axis of the A axis, and this example Take the negative direction of the Z axis as the product processing direction.
  • the motion state of any rigid body in space can be expressed by the transformation relationship between the corresponding direction and the secondary coordinate matrix.
  • the linear feed axis U of the machine tool and the rotational feed axis V indicate that the error is static.
  • X, Y, Z respectively represent the direction of the linear error
  • ⁇ , ⁇ , and ⁇ represent the direction of the rotation error around the X, Y, and Z directions, respectively.
  • u represents the displacement of the linear motion axis U
  • v represents the rotation of the rotational axis V.
  • the error transfer matrix corresponding to the linear feed axis U and the rotary feed axis V can be expressed as:
  • the motion path P ideal of the machine tool is expressed as:
  • attitude V ideal of the AC swing angle is:
  • the motion trajectory is expressed in the form of points
  • the motion of the machine tool feed axis can be regarded as only affected by static errors
  • the actual motion trajectory of the tool nose point is the difference between the ideal motion of the machine tool and the machine tool. The result of the combined effect of error factors.
  • the actual equation of the motion path P actual of the tool nose point of the machine tool is:
  • the open area of the skeleton is large, and the machining positions of the group holes are different along the Z-axis direction, that is, the group holes are not necessarily on the same Z plane.
  • the position coordinates (X k1 , Y k1 , Z k1 ) of the skeleton group hole machining are:
  • k1 is a natural number
  • n is a positive integer
  • the range of the skeleton group hole machining along the Z-axis direction is:
  • the skeleton group hole machining datum must fall in a certain plane within the range along the Z-axis, and r is a constant, then the plane can be assumed as:
  • the relative positional relationship of the tool nose point movement during the machining process is x k1 , y k1 , and z k1 , where:
  • the relative positional relationship of the tool nose point movement during the machining process is x k2 , y k2 , and z k2 , where:
  • the hole position error R Ek1 generated in the process of skin group hole processing is as follows:

Abstract

一种面向大部件群孔加工孔位误差最小的基准选取方法,包括以下步骤:1)确定数控机床类型,建立数控机床的拓扑结构;2)建立运动过程中刀尖点的理论位姿模型;3)建立孔位误差模型;4)建立群孔加工的孔位平均误差模型;5)获得相应部件群孔的加工基准。面向飞机部件骨架和蒙皮群孔加工,针对飞机部件骨架和蒙皮的群孔加工分别给出了不同的基准选取原则,将有效的提高骨架或蒙皮群孔加工的位置精度,同时为大部件群孔加工基准的选取提供了一个更加科学合理的办法;通过计算空间点中的某一点与群孔点位孔位误差的平均值,推导出孔位误差最小的基准,更加科学合理;也可用于其它数控加工领域,适宜广泛推广应用。

Description

一种面向大部件群孔加工孔位误差最小的基准选取方法 技术领域
本发明涉及机械加工技术领域,具体是指一种面向大部件群孔加工孔位误差最小的基准选取方法。
背景技术
在飞机装配过程中,结构件之间的装配主要以机械连接为主,连接孔的加工质量对于提高连接精度、提高飞机性能及使用寿命具有非常重要的影响。采用传统的手工钻孔方式,虽然可以结合部分针对性的措施,能一定程度的提高连接孔的加工质量和加工效率,但同样不能满足装配质量和效率要求,因此为提高飞机的装配质量和效率,多轴联动数控机床越来越广泛的应用于飞机装配制造领域。
飞机大部件装配过程中存在大量的骨架和蒙皮群孔加工任务,目前常见产品加工基准选取的方法主要有:1)以数控机床原点作为基准;2)以产品上起始点为基准。群孔加工位置精度主要受制造装备刀具刀尖点的位置精度影响,刀尖点位置精度由机床转动轴定姿能力和平动轴定位能力决定,多轴数控机床在安装和调试过程中将会产生几何误差、定位误差和装配误差,且定位精度、直线度等误差因素与运动行程息息相关,即行程越长,存在的误差越大。数控加工过程中,运动轴运动是以选取的基准为参考,随后进行相对运动,进而加工过程中工艺基准的选取会对运动轴的运动行程产生直接影响,最终影响多轴数控机床的加工精度。大部件群孔加工任务加工质量要求高,且部件轮廓偏大。
发明内容
本发明的目的在于提供一种有效的提高骨架或蒙皮群孔加工的位置精度,更为合理的为大部件群孔加工基准的进行选取的面向大部件群孔加工孔位误差最小的基准选取方法。
本发明通过下述技术方案实现:一种面向大部件群孔加工孔位误差最小的基准选取方法,包括以下步骤:
(1)确定数控机床类型,建立数控机床的拓扑结构;
(2)建立运动过程中刀尖点的理论位姿模型;
(3)建立孔位误差模型;
(4)建立群孔加工的孔位平均误差模型;
(5)获得相应部件群孔的加工基准。
为了更好地实现本发明的方法,进一步地,所述步骤(1)中,所述建立数控机床的 拓扑结构的具体内容为,根据低序体阵列法对机床的拓扑结构进行简化,并对相对应运动单元进行低序体编号。
为了更好地实现本发明的方法,进一步地,所述步骤(1)中,选择数控机床为AC摆角式五轴数控机床,该数控机床由机床床身、X轴运动单元、Y轴运动单元、Z轴运动单元、C轴运动单元和A轴运动单元组成;
该数控机床的拓扑结构为:机床床身→X轴运动单元→Y轴运动单元→Z轴运动单元→C轴运动单元→A轴运动单元,其中C轴运动单元枢转地连接在Z轴运动单元上,A轴运动单元枢转地连接在C轴运动单元上,加工主轴与A轴固连,刀具放置装夹在加工主轴上。
为了更好地实现本发明的方法,进一步地,所述步骤(2)中,所述运动过程中刀尖点的理论位姿模型是通过多体系统理论及各运动轴的位姿误差和几何误差而进行建立。
为了更好地实现本发明的方法,进一步地,所述步骤(3)中,所述孔位误差模型是根据制孔过程中,刀尖点实际位置与理论位置之间距离,并通过与理想轴线垂直平面的投影关系而构建。
为了更好地实现本发明的方法,进一步地,所述步骤(4)中,所述建立群孔加工孔位的平均误差模型的具体过程为,
(4.1)确定部件群孔的加工形式;
(4.2)根据确定的部件群孔的加工形式,选取相应的基准;
(4.3)根据选取的基准以及制孔的孔位误差模型建立相应部件群孔加工孔位平均误差模型。
为了更好地实现本发明的方法,进一步地,其特征在于,所述步骤(4.1)中,所述部件群孔的加工形式包括骨架群孔加工和蒙皮群孔加工。
为了更好地实现本发明的方法,进一步地,所述步骤(4.2)中,所述基准的选取为,选择群孔加工产品向上的原点坐标值;
其中,所述骨架群孔加工基准的选取原则是:通过在群孔加工产品方向的加工范围选取骨架群孔加工原点坐标值;
所述蒙皮群孔加工基准选的选取原则是:通过群孔的加工产品方向最大值和刀尖点与蒙皮之间预留的安全距离来确定蒙皮群孔加工的原点坐标值。
为了更好地实现本发明的方法,进一步地,所述步骤(5)中,相应部件群孔为骨架群孔,其加工基准获得过程为:通过建立拉格朗日函数,并对其变量求偏导,得出骨架群孔加工孔位误差最小的基准。
为了更好地实现本发明的方法,进一步地,相应部件群孔为蒙皮群孔,其加工基准获得过程为:通过对蒙皮群孔加工孔位平均误差模型的变量求偏导,得出蒙皮群孔加工孔位误差最小的基准。
本发明以AC摆角式五轴数控机床为例,该五轴数控机床由以下几部分组成:机床床身、X轴运动单元、Y轴运动单元、Z轴运动单元、C轴运动单元和A轴运动单元组成,其中Z轴运动单元的负方向作为加工产品方向。通过低序体阵列法对机床的拓扑结构进行简化,并对相对应运动单元进行低序体编号。
根据多体运动学理论,任意刚体在空间的运动状态可以通过对应方向其次坐标矩阵的变换关系进行表达,其中机床线性进给轴U和转动进给轴V,表示该项误差为静态误差。X、Y、Z分别表示线性误差的方向,α、β、γ分别表示绕X、Y、Z方向转动误差方向。u表示线性运动轴U的位移量,v表示转动轴V的转动量。i、j分别表示对应进给轴在机床拓扑结构中的低序体编号和当前进给轴编号,线性进给轴U和转动进给轴V对应的误差传递矩阵可以分别表示为:
Figure PCTCN2021136932-appb-000001
Figure PCTCN2021136932-appb-000002
假定刀具中心点与腕心(其中腕心为A轴旋转轴线与C轴旋转轴线的交点)的距离为转心距与刀具长度之和为l,设定各进给轴的运动量分别用x、y、z、c、a。在理想状态时五轴数控机床的运动轨迹P ideal表达为:
Figure PCTCN2021136932-appb-000003
理想情况下五轴数控机床摆角的姿态V ideal表达为:
Figure PCTCN2021136932-appb-000004
在实际工作情况,五轴数控机床群孔加工过程中,运动轨迹是通过点位的形式表现,因此机床进给轴运动可看成仅受到静态误差的影响,刀尖点实际运动轨迹是机床理想运动与误差因素综合作用的结果。最终可得实际情况下机床刀尖点的运动轨迹P actual方程为:
Figure PCTCN2021136932-appb-000005
通过刀尖点实际位置与理论位置之间距离P error,建立孔位误差模型:
P error=P actual-P ideal=[P error_X P error_Y P error_Z 0] T
依据制孔孔位误差在与理想轴线垂直平面的投影关系,可以计算在制孔位置处位置偏差P error_V的计算表达式为:
P error_V=(I 4-V idealV ideal T)P error
并求出该机床制孔时孔位误差R E为:
R E=|P error_V|
大部件群孔加工通常有两种形式:骨架群孔加工和蒙皮群孔加工。根据加工类型的不同,基准选取的方式会有所差异。通常骨架群孔加工过程中,骨架开敞区域较大,且群孔的加工位置沿Z轴方向存在差异,即群孔不一定在同一Z平面上。因此骨架群孔基准可选在骨架中间开敞区域,最终通过骨架群孔加工基准选取模型,求取加工过程中的最佳基准位置。
群孔加工的位置坐标(X k1,Y k1,Z k1)为:
(X k1,Y k1,Z k1),k1=0,1,……,n-1,(n≥3)
其中k1为自然数,n为正整数,那么骨架群孔加工过程中所产生的平均误差P error_Ek1的表达式如下:
Figure PCTCN2021136932-appb-000006
(其中R Ek1为单个孔的孔位误差)
同时根据骨架群孔加工坐标Z′ 1的取值范围,即可设:
Z′ 1=r,其中Z k1min≤r≤Z k1max,k1=0,1,……,n-1,(n≥3)
设拉格朗日函数为:
L(X′ 1,Y′ 1,Z′ 1,λ)=P error_Ek1(X′ 1,Y′ 1,Z′ 1)+λ(Z′ 1-r)
求取L(X′ 1,Y′ 1,Z′ 1,λ)最小值,即为骨架群孔加工最佳基准坐标(X′ 1min,Y′ 1min,Z′ 1min)。
蒙皮群孔加工基准选取过程中Z坐标的选取原则为:通过群孔的Z方向最大值和刀尖点与蒙皮之间预留的安全距离来确定蒙皮群孔加工的Z方向坐标值。
根据蒙皮群孔加工位置(X k2,Y k2,Z k2),k2=0,1,……,n-1,(n≥3)选择最大Z k2值即:
Z k2max=MAX(Z k2),i=0,1,……,n-1,(n≥3)
其中,k2为自然数,n为正整数,设定蒙皮与刀尖点的安全距离为H,即蒙皮群孔加工基准选择刀尖点Z′ 2坐标位置即为:
Z′ 2=Z k2max+H
蒙皮群孔加工过程中所产生的平均误差的表达式如下:
Figure PCTCN2021136932-appb-000007
(其中R Ek2为单个孔的孔位误差),求取P error_Ek2(X′ 2,Y′ 2,Z′ 2)最小值,即为蒙皮群孔加工最佳基准(X′ 2min,Y′ 2min,Z′ 2min)。
本发明与现有技术相比,具有以下优点及有益效果:
(1)本发明面向飞机部件骨架和蒙皮群孔加工,针对飞机部件骨架和蒙皮的群孔加工分别给出了不同的基准选取原则,将有效的提高骨架或蒙皮群孔加工的位置精度,同时为大部件群孔加工基准的选取提供了一个更加科学合理的办法;
(2)本发明通过计算空间点中的某一点与群孔点位孔位误差的平均值,推导出孔位误差最小的基准,更加科学合理;
(3)本发明所提出的孔位误差最小的基准选取方法,将有效的提升群孔加工的孔位精度;
(4)本发明所提出的群孔加工孔位误差最小的基准选择方法,对三轴及以上的数控机床进行群孔加工都适用,也可用于其它数控加工领域,适宜广泛推广应用。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其他特征、目的和优点将会变得更为明显:
图1为本发明所述方法的具体流程图;
图2为本发明中实施例2中选择五轴数控机床的拓扑结构示意图;
图3为本发明中制孔孔位误差示意图;
图4为本发明中骨架群孔加工基准模型进行建立示意图;
图5为本发明中骨架群孔加工孔位误差最小的基准选取示意图;
图6为本发明中蒙皮群孔加工基准模型进行建立示意图;
图7为本发明中蒙皮群孔加工孔位误差最小的基准选取示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
为使本发明的目的、工艺条件及优点作用更加清楚明白,结合以下实施实例,对本发明作进一步详细说明,但本发明的实施方式不限于此,在不脱离本发明上述技术思想情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的范围内,此处所描述的具体实施实例仅用以解释本发明,并不用于限定本发明。
实施例1:
本实施例提供一种部件群孔加工的最佳基准选取方法,具体流程图,如图1所示,具体包括以下步骤:
(1)确定数控机床类型,根据低序体阵列法对机床的拓扑结构进行简化,并对相对应运动单元进行低序体编号。
(2)通过多体系统理论及各运动轴的位姿误差和几何误差,建立运动过程中刀尖点的理论位姿模型。
(3)根据制孔过程中,刀尖点实际位置与理论位置之间距离,并通过与理想轴线垂直平面的投影关系,建立孔位误差模型。
(4)部件群孔加工通常有两种形式:骨架群孔加工和蒙皮群孔加工。根据加工类型的不同,基准选取的方式会有所差异。其中骨架群孔加工基准选取过程中Z坐标的选取原则是:通过群孔Z方向的加工范围选取骨架群孔加工Z坐标值。蒙皮群孔加工基准选取过程中Z坐标的选取原则是:通过群孔的Z方向最大值和刀尖点与蒙皮之间预留的安全距离来确定蒙皮群孔加工的Z坐标值。
确定加工类型后,根据制孔的孔位误差模型建立骨架和蒙皮群孔加工孔位平均误差模型
(5)骨架群孔加工通过建立拉格朗日函数,并对其变量求偏导,得出骨架群孔加工孔位误差最小的基准。蒙皮群孔加工通过对蒙皮群孔加工孔位平均误差模型的变量求偏导,得出蒙皮群孔加工孔位误差最小的基准。
实施例2:
本实施例以AC摆角式五轴数控机床为实例,对其进行基准选取,所述AC摆角式五轴数控机床,如图2所示,由以下几部分组成:机床床身、X轴运动单元、Y轴运动单元、Z轴运动单元、C轴运动单元和A轴运动单元组成。
该五轴数控机床的拓扑结构,如图2所示,具体为:机床床身0→X轴运动单元1→Y轴运动单元2→Z轴运动单元3→C轴运动单元4→A轴运动单元5,其中C轴运动单元4枢转地连接在Z轴运动单元3上,A轴运动单元5枢转地连接在C轴运动单元4上,加工主轴与A轴5固连,刀具放置装夹在加工主轴上。为方便误差建模为每个进给轴固连运动坐标系,所有运动的固连坐标系具有相同位置,腕心O设定在C轴转动轴线与A轴转动轴线的交点处,且本实例以Z轴的负方向作为产品加工方向。
本实施例根据多体运动学理论,任意刚体在空间的运动状态可以通过对应方向其次坐标矩阵的变换关系进行表达,其中机床线性进给轴U和转动进给轴V,表示该项误差为静态误差。X、Y、Z分别表示线性误差的方向,α、β、γ分别表示绕X、Y、Z方向转动误差方向。u表示线性运动轴U的位移量,v表示转动轴V的转动量。i、j分别表示对应进给轴在机床拓扑结构中的低序体编号和当前进给轴编号,那么线性进给轴U和转动进给轴V对应的误差传递矩阵
Figure PCTCN2021136932-appb-000008
Figure PCTCN2021136932-appb-000009
可以分别表示为:
Figure PCTCN2021136932-appb-000010
Figure PCTCN2021136932-appb-000011
式(1)中,
Figure PCTCN2021136932-appb-000012
Figure PCTCN2021136932-appb-000013
Figure PCTCN2021136932-appb-000014
Figure PCTCN2021136932-appb-000015
Figure PCTCN2021136932-appb-000016
Figure PCTCN2021136932-appb-000017
式(2)中,
Figure PCTCN2021136932-appb-000018
Figure PCTCN2021136932-appb-000019
Figure PCTCN2021136932-appb-000020
Figure PCTCN2021136932-appb-000021
Figure PCTCN2021136932-appb-000022
Figure PCTCN2021136932-appb-000023
假定刀具中心点与腕心O的距离为转心距与刀具长度之和为l,设定各进给轴的运动量分别用x、y、z、c、a。在理想状态时机床的运动轨迹P ideal表达为:
Figure PCTCN2021136932-appb-000024
理想情况下AC摆角的姿态V ideal为:
Figure PCTCN2021136932-appb-000025
式(3)和(4)中各轴的运动矩阵为:
Figure PCTCN2021136932-appb-000026
Figure PCTCN2021136932-appb-000027
Figure PCTCN2021136932-appb-000028
Figure PCTCN2021136932-appb-000029
Figure PCTCN2021136932-appb-000030
Figure PCTCN2021136932-appb-000031
为刀尖在主轴坐标系下的齐次坐标,
Figure PCTCN2021136932-appb-000032
为刀轴方向在主轴坐标系下的齐次坐标。
在实际工作情况时,部件群孔加工过程中,运动轨迹是通过点位的形式表现,机床进给轴运动可看成仅受到静态误差的影响,且刀尖点实际运动轨迹是机床理想运动与误差因素综合作用的结果。那么实际情况下机床刀尖点的运动轨迹P actual方程为:
Figure PCTCN2021136932-appb-000033
其中,
Figure PCTCN2021136932-appb-000034
由式(1)计算所得,
Figure PCTCN2021136932-appb-000035
由式(2)计算所得。
其中
Figure PCTCN2021136932-appb-000036
为X轴定位误差、直线对误差及颠摆、偏摆、滚摆误差构成的综合误差矩阵,
Figure PCTCN2021136932-appb-000037
为Y轴定位误差、直线对误差及颠摆、偏摆、滚摆误差构成的综合误差矩阵,
Figure PCTCN2021136932-appb-000038
为Z轴定位误差、直线对误差及颠摆、偏摆、滚摆误差构成的综合误差矩阵,
Figure PCTCN2021136932-appb-000039
为C轴定位误差、直线对误差及颠摆、偏摆、滚摆误差构成的综合误差矩阵,
Figure PCTCN2021136932-appb-000040
为A轴定位误差、直线对误差及颠摆、偏摆、滚摆误差构成的综合误差矩阵。那么刀尖点实际运动轨迹与理想运动轨迹的偏差P error为:
P error=P actual-P ideal=[P error_X P error_Y P error_Z 0] T   (6)
制孔孔位误差在与理想轴线垂直平面的投影关系,如图3所示,可以计算在制孔曲面上孔位置偏差P error_V的计算表达式为:
P error_V=(I 4-V idealV ideal T)P error   (7)
其中(I 4-V idealV ideal T)为投影变换的算子。
那么该机床制孔时孔位误差R E可以表达为:
R E=|P error_V|   (8)
由于群孔加工类型的不同,首先对骨架群孔加工基准模型进行建立,如图4所示:
根据数控机床精度检测及补偿原则,距离机床的检定原点越远,机床的定位精度、直线度等精度指标越差。通常骨架群孔加工过程中,骨架开敞区域较大,且群孔的加工位置沿Z轴方向存在差异,即群孔不一定在同一Z平面上。那么骨架群孔基准可以选在骨架中间开敞区域,且满足在群孔加工位置中Z轴坐标值最小Z=Z k1min所确定的平面与Z轴坐标值最大所确定的平面Z=Z k1max之间,如图5所示。
因此假设骨架群孔加工过程中在该区域选择的基准为(X′ 1,Y′ 1,Z′ 1)。
骨架群孔加工的位置坐标(X k1,Y k1,Z k1)为:
(X k1,Y k1,Z k1),k1=0,1,……,n-1,(n≥3)
其中,k1为自然数,n为正整数,骨架群孔加工沿Z轴方向的范围为:
Z′ 1=Z k1min≤Z′ 1≤Z′ 1=Z k1max,k1=0,1,……,n-1,(n≥3)
骨架群孔加工基准必然落在沿Z轴方向的范围内的某一平面内,r为常数,则该平面可假设为:
Z′ 1=r,Z k1min≤r≤Z k1max   (9)
其中加工过程中刀尖点移动的相对位置关系为x k1、y k1、z k1,其中:
x k1=X′ 1-X k1    (10)
y k1=Y′ 1-Y k1   (11)
z k1=Z′ 1-Z k1     (12)
根据式(6)、(7)和(8),那么骨架群孔加工过程中所产生的孔位误差R Ek1如下:
P errork1=P actualk1-P idealk1    (13)
P error_Vk1=(I 4-V idealk1V idealk1 T)P errork1    (14)
R Ek1=|P error_Vk1|  (15)
根据式(13)、(14)和(15),那么骨架群孔加工过程中所产生的平均误差P error_Ek1的表达式如下:
Figure PCTCN2021136932-appb-000041
(其中R Ek1为单个孔的孔位误差,n为正整数)(16)
同时根据式(9)
设拉格朗日函数为:
L(X′ 1,Y′ 1,Z′ 1,λ)=P error_Ek1(X′ 1,Y′ 1,Z′ 1)+λ(Z′ 1-r)    (17)
对式(17)求偏导数并令其都等零,则有:
Figure PCTCN2021136932-appb-000042
求取L(X′ 1,Y′ 1,Z′ 1,λ)最小值,即为骨架群孔加工孔位误差最小的基准坐标(X′ 1min,Y′ 1min,Z′ 1min)。
其次,对蒙皮群孔加工基准模型进行建立,如图6和图7所示:
假设蒙皮群孔加工基准坐标为:(X′ 2,Y′ 2,Z′ 2)
为保证蒙皮加工过程中的加工安全,防止刀具与蒙皮发生碰撞,根据蒙皮群孔加工位置坐标(X k2,Y k2,Z k2),k2=0,1,……,n-1,(n≥3)(n为正整数)
选择最大Z k值即:Z k2max=MAX(Z k2),k2=0,1,……,n-1,(n≥3)
设定蒙皮与刀尖点的安全距离为H,那么蒙皮群孔加工基准选择刀尖点所在平面如式:Z′ 2=Z k2max+H   (18)
加工过程中刀尖点移动的相对位置关系即为x k2、y k2、z k2,其中:
x k2=X′ 2-X k2    (19)
y k2=Y′ 2-Y k2    (20)
z k2=Z′ 2-Z k2    (21)
根据式(6)、(7)和(8),那么蒙皮群孔加工过程中所产生的孔位误差R Ek1如下:
P errork2=P actualk2-P idealk2   (22)
P error_Vk2=(I 4-V idealk2V idealk2 T)P errork2    (23)
R Ek2=|P error_Vk2|    (24)
根据式(22)、(23)和(24),那么蒙皮群孔加工过程中所产生的平均误差的表达式为:
Figure PCTCN2021136932-appb-000043
(其中R Ek2为单个孔的孔位误差)(25)且蒙皮群孔加工基准选择在平面Z′ 2=Z k2max+H上,其中蒙皮与刀尖点的安全距离为H,对函数P error_Ek2(X′ 2,Y′ 2,Z′ 2)求偏导数并令其等于零,并求取极值,则有:
Figure PCTCN2021136932-appb-000044
求取P error_Ek2(X′ 2,Y′ 2,Z′ 2)最小值,即为蒙皮群孔加工孔位误差最下的基准(X′ 2min,Y′ 2min,Z′ 2min)。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种面向大部件群孔加工孔位误差最小的基准选取方法,其特征在于,包括以下步骤:
    (1)确定数控机床类型,建立数控机床的拓扑结构;
    (2)建立运动过程中刀尖点的理论位姿模型;
    (3)建立孔位误差模型;
    (4)建立群孔加工的孔位平均误差模型;
    (5)获得相应部件群孔的加工基准。
  2. 根据权利要求1所述的一种面向大部件群孔加工孔位误差最小的基准选取方法,其特征在于,所述步骤(1)中,所述建立数控机床的拓扑结构的具体内容为,根据低序体阵列法对机床的拓扑结构进行简化,并对相对应运动单元进行低序体编号。
  3. 根据权利要求2所述的一种面向大部件群孔加工孔位误差最小的基准选取方法,其特征在于,所述步骤(1)中,选择数控机床为AC摆角式五轴数控机床,该数控机床由机床床身、X轴运动单元、Y轴运动单元、Z轴运动单元、C轴运动单元和A轴运动单元组成;该数控机床的拓扑结构为:机床床身→X轴运动单元→Y轴运动单元→Z轴运动单元→C轴运动单元→A轴运动单元,其中C轴运动单元枢转地连接在Z轴运动单元上,A轴运动单元枢转地连接在C轴运动单元,加工主轴与A轴固连,刀具放置装夹在加工主轴上。
  4. 根据权利要求1~3任一项所述的一种面向大部件群孔加工孔位误差最小的基准选取方法,其特征在于,所述步骤(2)中,所述运动过程中刀尖点的理论位姿模型是通过多体系统理论及各运动轴的位姿误差和几何误差而进行建立。
  5. 根据权利要求1~3任一项所述的一种面向大部件群孔加工孔位误差最小的基准选取方法,其特征在于,所述步骤(3)中,所述孔位误差模型是根据制孔过程中,刀尖点实际位置与理论位置之间距离,并通过与理想轴线垂直平面的投影关系而构建。
  6. 根据权利要求1~3任一项所述的一种面向大部件群孔加工孔位误差最小的基准选取方法,其特征在于,所述步骤(4)中,所述建立群孔加工孔位的平均误差模型的具体过程为,
    (4.1)确定部件群孔的加工形式;
    (4.2)根据确定的部件群孔的加工形式,选取相应的基准;
    (4.3)根据选取的基准以及制孔的孔位误差模型建立相应部件群孔加工孔位平均误差模型。
  7. 根据权利要求6所述的一种面向大部件群孔加工孔位误差最小的基准选取方法,其特征在于,所述步骤(4.1)中,所述部件群孔的加工形式包括骨架群孔加工和蒙皮群孔加工。
  8. 根据权利要求7所述的一种面向大部件群孔加工孔位误差最小的基准选取方法,其特征在于,所述步骤(4.2)中,所述基准的选取为,选择群孔加工产品向上的原点坐标值;
    其中,所述骨架群孔加工基准的选取原则是:通过在群孔加工产品方向的加工范围选取骨架群孔加工原点坐标值;
    所述蒙皮群孔加工基准选的选取原则是:通过群孔的加工产品方向最大值和刀尖点与蒙皮之间预留的安全距离来确定蒙皮群孔加工的原点坐标值。
  9. 根据权利要求7所述的一种面向大部件群孔加工孔位误差最小的基准选取方法,其特征在于,所述步骤(5)中,相应部件群孔为骨架群孔,其加工基准获得过程为:通过建立拉格朗日函数,并对其变量求偏导,得出骨架群孔加工孔位误差最小的基准。
  10. 根据权利要求7所述的一种面向大部件群孔加工孔位误差最小的基准选取方法,其特征在于,相应部件群孔为蒙皮群孔,其加工基准获得过程为:通过对蒙皮群孔加工孔位平均误差模型的变量求偏导,得出蒙皮群孔加工孔位误差最小的基准。
PCT/CN2021/136932 2021-02-09 2021-12-10 一种面向大部件群孔加工孔位误差最小的基准选取方法 WO2022170841A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/447,291 US11914339B2 (en) 2021-02-09 2023-08-09 Datum selection methods and systems for minimizing hole position errors in group hole machining of large components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110177385.9A CN112558549B (zh) 2021-02-09 2021-02-09 一种面向大部件群孔加工孔位误差最小的基准选取方法
CN202110177385.9 2021-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/447,291 Continuation-In-Part US11914339B2 (en) 2021-02-09 2023-08-09 Datum selection methods and systems for minimizing hole position errors in group hole machining of large components

Publications (1)

Publication Number Publication Date
WO2022170841A1 true WO2022170841A1 (zh) 2022-08-18

Family

ID=75035920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136932 WO2022170841A1 (zh) 2021-02-09 2021-12-10 一种面向大部件群孔加工孔位误差最小的基准选取方法

Country Status (3)

Country Link
US (1) US11914339B2 (zh)
CN (1) CN112558549B (zh)
WO (1) WO2022170841A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115673382A (zh) * 2022-12-29 2023-02-03 广东中海万泰技术有限公司 一种深孔加工方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112558549B (zh) * 2021-02-09 2021-08-03 成都飞机工业(集团)有限责任公司 一种面向大部件群孔加工孔位误差最小的基准选取方法
CN113420363B (zh) * 2021-08-25 2021-10-29 成都飞机工业(集团)有限责任公司 一种飞机部件蒙皮骨架匹配性预测方法
CN113467372B (zh) * 2021-09-06 2021-11-02 成都飞机工业(集团)有限责任公司 一种飞机部件加工基准确定方法
CN114313300B (zh) * 2022-02-22 2022-07-15 成都飞机工业(集团)有限责任公司 一种预测并提高飞机部件机表连接件安装合格率的方法
CN116700143B (zh) * 2023-08-08 2023-11-10 成都飞机工业(集团)有限责任公司 一种面向大部件群孔加工设备精度指标优化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110178782A1 (en) * 2010-01-19 2011-07-21 Kyungpook National University Industry-Academic Cooperation Foundation Method for Estimating Geometric Error Between Linear Axis and Rotary Axis in a Multi-Axis Machine Tool
CN102266958A (zh) * 2011-07-07 2011-12-07 上海交通大学 基于制孔设备坐标系确定的柔性导轨孔群加工方法
CN102636110A (zh) * 2012-03-26 2012-08-15 南京航空航天大学 飞机部件自动钻铆系统的基准检测装置及其检测方法
CN103279604A (zh) * 2013-05-23 2013-09-04 沈阳黎明航空发动机(集团)有限责任公司 一种电火花打孔中的自动测量定位方法
CN105867309A (zh) * 2016-03-15 2016-08-17 天津大学 一种多类型组合孔群数控加工方法
CN112033331A (zh) * 2020-07-28 2020-12-04 成都飞机工业(集团)有限责任公司 一种基于三坐标测针的群孔测量摆角规划方法
CN112558549A (zh) * 2021-02-09 2021-03-26 成都飞机工业(集团)有限责任公司 一种面向大部件群孔加工孔位误差最小的基准选取方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046925A1 (en) * 1996-06-06 1997-12-11 The Boeing Company Method for improving the accuracy of machines
US6480757B1 (en) * 2000-02-17 2002-11-12 Thermwood Corporation Method of locating a workpiece on a computer numeric controlled machining system
JP3847182B2 (ja) * 2002-03-01 2006-11-15 株式会社ムラキ 基準穴穴開け機
JP4902316B2 (ja) * 2006-11-10 2012-03-21 東芝機械株式会社 斜め加工のための5軸加工機の姿勢保証システム
JP4855327B2 (ja) * 2007-04-23 2012-01-18 耕 山岸 工具及び工具の補正方法
US20110295408A1 (en) * 2010-05-27 2011-12-01 Toyota Motor Engineering & Manufacturing North America, Inc. Process for positioning a workpiece
JP6100647B2 (ja) * 2012-11-30 2017-03-22 三菱重工工作機械株式会社 工作機械
US9952580B2 (en) * 2016-01-29 2018-04-24 The Boeing Company Method and an apparatus for machining a part for an assembly
US9598183B1 (en) * 2016-05-06 2017-03-21 Kellstrom Defense Aerospace, Inc. Aircraft wing repair systems and methods
GB2579762B (en) * 2017-09-05 2022-04-20 Univ Northwestern Polytechnical Apparatus and method for integration of drilling and interference-fit pin insertion
US11609550B2 (en) * 2022-06-22 2023-03-21 Brett Bond System and method for automated precision control of a computer numerical control (CNC) machine
CN115453977A (zh) * 2022-09-26 2022-12-09 沈阳飞机工业(集团)有限公司 机翼部件多交点精加工制孔顺序的优化设计方法
CN115673382B (zh) * 2022-12-29 2023-05-02 广东中海万泰技术有限公司 一种深孔加工方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110178782A1 (en) * 2010-01-19 2011-07-21 Kyungpook National University Industry-Academic Cooperation Foundation Method for Estimating Geometric Error Between Linear Axis and Rotary Axis in a Multi-Axis Machine Tool
CN102266958A (zh) * 2011-07-07 2011-12-07 上海交通大学 基于制孔设备坐标系确定的柔性导轨孔群加工方法
CN102636110A (zh) * 2012-03-26 2012-08-15 南京航空航天大学 飞机部件自动钻铆系统的基准检测装置及其检测方法
CN103279604A (zh) * 2013-05-23 2013-09-04 沈阳黎明航空发动机(集团)有限责任公司 一种电火花打孔中的自动测量定位方法
CN105867309A (zh) * 2016-03-15 2016-08-17 天津大学 一种多类型组合孔群数控加工方法
CN112033331A (zh) * 2020-07-28 2020-12-04 成都飞机工业(集团)有限责任公司 一种基于三坐标测针的群孔测量摆角规划方法
CN112558549A (zh) * 2021-02-09 2021-03-26 成都飞机工业(集团)有限责任公司 一种面向大部件群孔加工孔位误差最小的基准选取方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115673382A (zh) * 2022-12-29 2023-02-03 广东中海万泰技术有限公司 一种深孔加工方法及装置
CN115673382B (zh) * 2022-12-29 2023-05-02 广东中海万泰技术有限公司 一种深孔加工方法及装置

Also Published As

Publication number Publication date
US11914339B2 (en) 2024-02-27
CN112558549B (zh) 2021-08-03
CN112558549A (zh) 2021-03-26
US20230384755A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
WO2022170841A1 (zh) 一种面向大部件群孔加工孔位误差最小的基准选取方法
CN109483322B (zh) 一种五轴数控机床的零点校准方法
CN109454281B (zh) 一种机器人铣削加工中的螺旋桨工件坐标系标定方法
Fu et al. Product-of-exponential formulas for precision enhancement of five-axis machine tools via geometric error modeling and compensation
CN110757504B (zh) 高精度可移动机器人的定位误差补偿方法
CN109822577A (zh) 一种基于视觉伺服的移动式机器人高精度加工方法
WO2022174657A1 (zh) 一种五轴数控机床平动轴几何误差补偿数据快速优化方法
US20120253506A1 (en) Method and program for calculating correction value for machine tool
CN110716497B (zh) 一种基于平面基准约束与余量约束的配准方法
CN111702762A (zh) 一种工业机器人作业姿态优化方法
CN112008492A (zh) 一种龙门数控机床平动轴垂直度误差辨识方法
CN108621162A (zh) 一种机械臂运动规划方法
CN108549319B (zh) 一种双转台五轴数控机床通用后处理方法
CN104460515A (zh) 一种基于后置处理五轴刀具长度补偿方法
CN110161965B (zh) 一种大型航天机匣斜孔的在机测量方法
CN112947298A (zh) 一种机器人曲面加工轨迹优化生成方法、系统及终端
CN110989490B (zh) 一种基于轮廓误差的工件最优安装位置的获取方法
Xu et al. A tool orientation smoothing method based on machine rotary axes for five-axis machining with ball end cutters
CN110850810B (zh) 一种基于双基准约束的精加工配准方法
CN109531205B (zh) 正交式双转台基座可转动数控夹具系统及其调控方法
CN112526925B (zh) 基于三维凸轮型面实体化模型偏差补偿的型面精加工方法
CN107861467B (zh) 环形刀四轴定轴加工刀位确定方法、装置及电子设备
CN112621385B (zh) 一种基于8条位移线测量的直线轴几何误差的快速辨识方法
Yun et al. A geometric postprocessing method for 5-axis machine tools using locations of joint points
CN114833848A (zh) 一种刚度约束的机器人铣削加工刀轴矢量和冗余度集成规划方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925488

Country of ref document: EP

Kind code of ref document: A1