WO2022170763A1 - 轨道交通用橡胶垫板、制备方法及轨道交通路段 - Google Patents

轨道交通用橡胶垫板、制备方法及轨道交通路段 Download PDF

Info

Publication number
WO2022170763A1
WO2022170763A1 PCT/CN2021/118802 CN2021118802W WO2022170763A1 WO 2022170763 A1 WO2022170763 A1 WO 2022170763A1 CN 2021118802 W CN2021118802 W CN 2021118802W WO 2022170763 A1 WO2022170763 A1 WO 2022170763A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesa
shaped protrusions
shaped
row
rail transit
Prior art date
Application number
PCT/CN2021/118802
Other languages
English (en)
French (fr)
Inventor
王博
厉敏辉
王新
林坚勋
Original Assignee
浙江天铁实业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江天铁实业股份有限公司 filed Critical 浙江天铁实业股份有限公司
Publication of WO2022170763A1 publication Critical patent/WO2022170763A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B19/00Protection of permanent way against development of dust or against the effect of wind, sun, frost, or corrosion; Means to reduce development of noise
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B9/00Fastening rails on sleepers, or the like
    • E01B9/68Pads or the like, e.g. of wood, rubber, placed under the rail, tie-plate, or chair
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B9/00Fastening rails on sleepers, or the like
    • E01B9/68Pads or the like, e.g. of wood, rubber, placed under the rail, tie-plate, or chair
    • E01B9/681Pads or the like, e.g. of wood, rubber, placed under the rail, tie-plate, or chair characterised by the material
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B9/00Fastening rails on sleepers, or the like
    • E01B9/68Pads or the like, e.g. of wood, rubber, placed under the rail, tie-plate, or chair
    • E01B9/685Pads or the like, e.g. of wood, rubber, placed under the rail, tie-plate, or chair characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the invention relates to a rubber pad, in particular to a rubber pad for rail traffic, a preparation method and a rail traffic section.
  • the present invention is made in order to solve the above problems, and the purpose is to provide a rubber pad for rail transit which has a simple structure and can be more widely used in various types of rail transit sections.
  • the present invention provides a rubber backing plate for rail transportation, which has the following characteristics: a plate body; Distributed from one edge of the board body to the other edge opposite to one edge, the raw material of the rubber backing plate for rail transit includes the following components in parts by weight: 100 parts of base rubber, 20-100 parts of filler, 0- 5 parts of silane coupling agent, 5-35 parts of active agent, 0-15 parts of plasticizer, 3-10 parts of pigment, 1-3 parts of antioxidant, 3-15 parts of functional additives, 0.3-2.5 parts of vulcanizing agent and 2-8 parts of vulcanization accelerator.
  • the rubber backing plate for rail transit provided by the present invention may also have the feature that the cross-sectional areas of the plurality of groups of protruding parts gradually decrease from one edge of the plate body to the other edge.
  • the protruding part includes: a strip-distributing protruding part, which is arranged on one surface of the plate body;
  • the plate body is formed integrally with the strip distribution protrusion and the dot distribution protrusion.
  • the strip distribution protrusion includes at least one strip protrusion
  • the strip protrusion is formed along one edge of the plate body
  • the point distribution protrusion is formed. It includes a plurality of mesa-shaped protrusions, which are arranged on one side of the long side of the strip-shaped protrusion and distributed to the other edge opposite to one edge.
  • the rubber backing plate for rail transit may also have the following characteristics: wherein, the strip-shaped protrusions are plural, a strip-shaped groove is provided between two adjacent strip-shaped protrusions, and the plurality of table-shaped protrusions are located in the The strip-shaped protrusions are formed in multiple rows along the length direction, and each of the mesa-shaped protrusions in the adjacent two rows is arranged in a staggered manner.
  • the rubber pad for rail transit may also have the following characteristics: wherein, there are more than three strip-shaped protrusions, at least two strip-shaped grooves, and the width of the strip-shaped grooves is from one edge to the other. One edge gradually decreases, the plurality of mesa-shaped protrusions have a cross section, the cross-sectional area of each mesa-shaped protrusion in each row is the same, and the cross-sectional area of each row of mesa-shaped protrusions gradually decreases from one edge to the other edge, the strip The upper surface of the protrusion is flush with the upper surface of the mesa-shaped protrusion.
  • the rubber backing plate for rail transit may also have the following characteristics: wherein, there are three strip protrusions, and starting from one edge, there are a first strip protrusion, a second strip protrusion and a third strip respectively. shaped protrusions,
  • a first groove is provided between the first bar-shaped protrusion and the second bar-shaped protrusion, and a second groove is provided between the second bar-shaped protrusion and the third bar-shaped protrusion,
  • the width of the first bar-shaped protrusion is 10mm-15mm
  • the width of the second bar-shaped protrusion is 19mm-20mm
  • the width of the third bar-shaped protrusion is 21mm-22mm
  • the point distribution protrusion includes a plurality of mesa-shaped protrusions, which are arranged on one side of the long side of the strip-shaped protrusion and distributed to the other edge opposite to one edge,
  • the mesa-shaped protrusions are formed in six rows in the length direction of the strip-shaped protrusions, and one side of the long side of the strip-shaped protrusions is respectively the first row of mesa-shaped protrusions, the second row of mesa-shaped protrusions, the third row of mesa-shaped protrusions, and the fourth row of mesa-shaped protrusions.
  • the distance between the adjacent two rows of table-shaped protrusions is 15mm-20mm
  • the cross-sectional area of the first row of table-shaped protrusions is 100mm 2 -120mm 2
  • the The area of the cross section is 100mm 2 -120mm 2
  • the area of the cross section of the third row of mesa-shaped protrusions is 70mm 2 -90mm 2
  • the area of the cross section of the fourth row of mesa-shaped protrusions is 70mm 2 -90mm 2
  • the area of the cross section of the fifth row of mesa-shaped protrusions is 70mm 2 -90mm 2
  • the area of the cross section is 40mm 2 -60mm 2
  • the area of the cross section of the sixth row of mesa-shaped protrusions is 40mm 2 -60mm 2 .
  • the protruding part is a strip-distributing protruding part
  • the strip-distributing protruding part includes a plurality of strip-shaped protrusions
  • the strip-shaped protrusions extend along one of the plate bodies.
  • the edge extends, a plurality of strip-shaped protrusions are distributed from one edge of the plate body to the other edge opposite to one edge, the width of the strip-shaped protrusion gradually decreases from one edge to the other edge, and the width of the two adjacent strip-shaped protrusions gradually decreases.
  • the rubber backing plate for rail transit provided by the present invention, it may also have the following feature: wherein, the widths of all the strip grooves are equal.
  • the rubber pad for rail transit may also have the following characteristics: wherein, there are 11 strip protrusions, and starting from one edge, there are the first strip protrusion, the second strip protrusion, and the third strip protrusion respectively.
  • the width of the first bar-shaped protrusion is 19mm-21mm
  • the width of the second bar-shaped protrusion is 17mm-19mm
  • the width of the third bar-shaped protrusion is 10mm-12mm
  • the width of the fourth bar-shaped protrusion is 9mm-10mm
  • the width of the fifth bar-shaped protrusion is 8mm-9mm
  • the width of the sixth bar-shaped protrusion is 7mm-8mm
  • the width of the seventh bar-shaped protrusion is 6mm-7mm
  • the width of the eighth bar-shaped protrusion is 5mm-6mm
  • the width of the ninth bar-shaped protrusion is 5mm-6mm.
  • the width of the strip-shaped protrusion is 4mm-5mm
  • the rubber backing plate for rail transit may also have the following characteristics: wherein the protruding portion is a point distribution protruding portion, the point distribution protruding portion includes a plurality of mesa-shaped protrusions, and the plurality of mesa-shaped protrusions are located at the length of the plate body.
  • the direction is formed in multiple rows, a plurality of mesa-shaped protrusions are distributed from one edge of the plate body to another edge opposite to one edge, the multiple mesa-shaped protrusions have a cross section, and the cross-sectional area of each mesa-shaped protrusion in each row is the same, and each The cross-sectional area of the terrace-shaped protrusions gradually decreases from one edge to the other edge.
  • the rubber backing plate for rail transit may also have the following feature: wherein, the two adjacent rows of platform-shaped protrusions are arranged in a staggered position.
  • the rubber backing plate for rail transit may also have the following feature: wherein, the distances between two adjacent rows of platform-shaped protrusions are equal.
  • the rubber backing plate for rail transit may also have the following characteristics: wherein, the mesa-shaped protrusions are formed in 10 rows in the length direction of the plate body, and the first row of mesa-shaped protrusions and the second row of mesa-shaped protrusions are formed along one edge respectively.
  • each row of table-shaped protrusions includes 8 table-shaped protrusions, in the second row of table-shaped protrusions , in the fourth row of mesa-shaped protrusions, the sixth row of mesa-shaped protrusions, the eighth row of mesa-shaped protrusions, and
  • the cross-sectional area of the mesa-shaped protrusion in the mesa-shaped protrusion is 90mm 2 -120mm 2
  • the area of the cross-section of the mesa-shaped protrusion in the fifth row of mesa-shaped protrusions is 60mm 2 -80mm 2
  • the area of the cross-section of the mesa-shaped protrusion in the sixth row of mesa-shaped protrusions 60mm 2 -80mm 2
  • the cross-sectional area of the mesa-shaped protrusion in the seventh row of mesa-shaped protrusions is 40mm 2 -50mm 2
  • the area of the cross-section of the mesa-shaped protrusion in the eighth row of mesa-shaped protrusions is 40mm 2 -50mm 2
  • the ninth row The cross-sectional area of the mesa-shaped protrusions in the mesa-shaped protrusions is 20 mm 2 -30 mm 2
  • the rubber backing plate for rail transit provided by the present invention, it can also have the feature that the upper surfaces of the protruding parts are flush with each other.
  • the rubber backing plate for rail transit provided by the present invention, it can also have such a feature, and also have: a plurality of grooves, which are formed on the other surface of the plate body.
  • the rubber pad for rail transit may also have the following feature: wherein the multiple grooves are multiple parallel strip-shaped grooves, the extending direction of which is consistent with the length direction of the strip-shaped protrusions.
  • the rubber backing plate for rail transit may also have the following feature: wherein, the multi-channel grooves are multi-channel curved grooves.
  • the multiple grooves are multiple strip-shaped grooves that are parallel to each other and evenly distributed, and the extending direction thereof is the same as the length direction of the strip-shaped protrusions. perpendicular.
  • the rubber pad for rail transit may also have the following characteristics: wherein, the track further has a rail bottom bracket, the rail bottom bracket is installed under the rail, and the rail traffic rubber pad is installed on the rail and the rail. Between the rail bottom brackets, the track has two parallel steel rails, and the installation slope of the rail bottom bracket is 1: (30-50).
  • the present invention also provides a method for preparing a rubber backing plate for rail transit, which is used to prepare any of the above-mentioned rubber backing plates for rail transit. It has such characteristics and includes the following steps: Step 1, adding base rubber into Banbury In the machine, after refining for 5min-8min, add active agent, anti-aging agent, functional auxiliary, silane coupling agent, pigment, mix for 1min-2min, add filler that accounts for 30%-40% of the total filler weight and mix 3min-8min, finally add the remaining fillers and plasticizers, mix for 3min-5min, control the internal temperature of the mixer to 95°C-125°C, lift the plug to remove the glue, cool, and park for 8h-24h to get the A section rubber; step 2, add the A-stage material into the open mill for thermal refining, the drum temperature of the open mill is controlled at 40 °C ⁇ 55 °C, add vulcanizing agent and vulcanization accelerator, turn refining, packaging, small roll spacing thin pass Then, the pieces are cooled and
  • the present invention also provides a rail transit section, which has the following features: a steel rail; and a rubber backing plate, which is matched with the rail of the rail, wherein the rubber backing plate is the above-mentioned rubber backing plate for rail transportation.
  • the rail transit section may also have such a feature, and further include: a rail bottom bracket is arranged below the rubber backing plate, wherein the rubber backing plate is the above-mentioned rail transit rubber backing plate.
  • the rubber backing plate for rail transit includes a plate body and a protruding part arranged on the same surface of the plate body, wherein the protruding part comprises multiple sets of protruding parts, and multiple sets of protruding parts
  • the parts are distributed from one edge of the plate body to the other edge opposite to one edge, so it can maintain a uniform amount of deformation even under the condition of uneven pressure, so that the vehicle can maintain smooth.
  • the raw materials include 100 parts of base rubber, 20-100 parts of filler, 0-5 parts of silane coupling agent, 5-35 parts of active agent, and 0-15 parts of additive. plasticizer, 3-10 parts of pigments, 1-3 parts of anti-aging agent, 3-15 parts of functional additives, 0.3-2.5 parts of vulcanizing agent and 2-8 parts of vulcanization accelerator, so the present invention can provide products with different stiffness
  • the rubber pads for rail transit are respectively suitable for various rail transit sections.
  • Embodiment 1 is a schematic structural diagram of a rail transit section in Embodiment 1;
  • Fig. 2 is the sectional view along the A-A sectional line of the rail transit section in Fig. 1;
  • FIG. 3 is a schematic structural diagram of a rubber pad for rail transit in Embodiment 1;
  • Fig. 4 is the top view of the rubber pad for rail transit in the first embodiment
  • Fig. 5 is the side view of the rubber pad for rail transit in the first embodiment
  • Fig. 6 is the bottom view of the rubber pad for rail transit in the first embodiment
  • Fig. 7 is the installation schematic diagram of the rubber pad for rail transit in the rail transit section in the first embodiment
  • Fig. 8 is a partial enlarged view of region B in Fig. 7;
  • Fig. 9 is the structural representation of the rubber pad for rail transit in the fifth embodiment.
  • Fig. 10 is the top view of the rubber backing plate for rail transit in the fifth embodiment
  • FIG. 11 is a side view of a rubber pad for rail transit in the fifth embodiment
  • Fig. 12 is the bottom view of the rubber pad for rail transit in the fifth embodiment
  • Example 13 is a schematic structural diagram of a rubber pad for rail transit in Example 6;
  • Fig. 14 is the top view of the rubber backing plate for rail transit in the sixth embodiment
  • Figure 15 is a side view of the rubber pad for rail transit in the sixth embodiment.
  • FIG. 16 is a bottom view of the rubber pad for rail transit in the sixth embodiment.
  • Natural rubber type NR-1#, produced by Hainan Natural Rubber Industry Group Co., Ltd.
  • EPDM rubber, type 4045M produced by Shanghai Sinopec Mitsui Elastomer Co., Ltd.
  • EPDM rubber type 3092PM, produced by Shanghai Sinopec Mitsui Elastomer Co., Ltd.
  • Paraffin oil type 1968A produced by H&R China (Ningbo) Co., Ltd.
  • Silane coupling agent Si69 produced by Nanjing Aocheng Chemical Co., Ltd.
  • Petroleum resin type TL100, produced by RUTGERS Germany GmbH.
  • Dispersant WB215 manufactured by Schill+Seilacher 'struktol' GmbH.
  • Zinc oxide type TY-100, produced by Luoyang Lantian Chemical Technology Co., Ltd.
  • Polyethylene wax type WB42, manufactured by Struktol Company of America.
  • Polyethylene glycol is polyethylene glycol 4000, namely PEG4000, produced by Far Eastern Petrochemical (Yangzhou) Co., Ltd.
  • Titanium dioxide R960, produced by The Chemous Company, LLC.
  • Chromium oxide green, SGC type produced by Yixing Huayi Yipin Coloring Technology Co., Ltd.
  • Iron oxide red type S103, produced by Yixing Huayi Yipin Coloring Technology Co., Ltd.
  • Carbon black, N330 type produced by Jining Bora Carbon Materials Co., Ltd.
  • Ultramarine, U08 type produced by Yixing Huayi Yipin Coloring Technology Co., Ltd.
  • Anti-aging agent SPC produced by Taizhou Huangyan Donghai Chemical Co., Ltd.
  • Anti-aging agent 2246 produced by Taizhou Huangyan Donghai Chemical Co., Ltd.
  • Anti-aging agent MB produced by BONDTEK CHEMICALS L.L.C.
  • Dibenzothiazole disulfide namely vulcanization accelerator DM, is produced by SOVMER CHEMICAL CO., LTD.
  • N-cyclohexyl-2-benzothiazole sulfenamide namely vulcanization accelerator CZ, produced by Weilin New Material Technology Co., Ltd.
  • Tetramethylthiuram disulfide namely vulcanization accelerator TT, was produced by Zhenjiang Zhenbang Chemical Co., Ltd.
  • Zinc dibutyl dithiocarbamate namely vulcanization accelerator ZDBC-75, produced by Jiaxing Beihua Polymer Additives Co., Ltd.
  • 4,4'-Dimorpholine disulfide namely vulcanization accelerator DTDM-80, produced by Jiaxing Beihua Polymer Additives Co., Ltd.
  • FIG. 1 is a schematic structural diagram of a rail transit section in Embodiment 1
  • FIG. 2 is a cross-sectional view of the rail transit section in FIG. 1 along the line A-A.
  • the present embodiment provides a rail transit section 10 , which is a curve and includes a plurality of sleeper rails 11 , a rail bottom bracket 12 , a rail transit rubber pad 13 and Two rails 14.
  • the rail bottom brackets 12 are respectively installed on both ends of the sleeper 11, each rail bottom bracket 12 is provided with a rail bottom bracket groove, and the size of the rail bottom bracket groove is adapted to the size of the rubber pad 13 for rail transportation.
  • the side of the rail bottom bracket 12 close to the end of the sleeper 11 is slightly higher than the side close to the middle of the sleeper 11 .
  • the installation gradient of the rail bottom bracket 12 is 1:40.
  • the rubber backing plate 13 for rail transportation is installed in the groove of the rail bottom bracket.
  • the specific structure of the rubber pad 13 for rail transit used in this embodiment will be described in detail later.
  • the two steel rails 14 are respectively arranged on the rubber pads 13 for rail transportation at both ends of the sleeper 11 , and the two steel rails 14 are arranged in parallel.
  • Fig. 3 is the structural representation of the rubber pad for rail transit in the first embodiment
  • Fig. 4 is a top view of the rubber pad for rail transit in the first embodiment
  • Fig. 5 is a side view of the rubber pad for rail transit in the first embodiment
  • FIG. 6 is a bottom view of the rubber pad for rail transit in the first embodiment.
  • the rubber backing plate 13 for rail transit has: a plate body 16 , strip distribution protrusions 17 , point distribution protrusions 18 and grooves 19 .
  • the plate body 16 is in the shape of a rectangular parallelepiped, and has a first edge 20 and a second edge 21 disposed opposite to each other.
  • the length of the plate body 16 is 185 mm
  • the width is 150 mm
  • the height is 7 mm.
  • the strip distribution protrusions 17 are disposed on one surface of the plate body 16 and include strip protrusions 22 and strip grooves 23 .
  • the strip protrusions 22 are formed along the first edge 20 of the plate body 11 and formed integrally with the plate body 16 .
  • the number of the bar-shaped protrusions 22 is three, and the three bar-shaped protrusions 22 are sequentially distributed along the first edge 20 of a plate body 16 to the second edge 21 , and the first edge 20 is the first edge
  • the bar-shaped protrusions 22a, the second bar-shaped protrusions 22b, and the third bar-shaped protrusions 22c are sequentially distributed along the first edge 20 of a plate body 16 to the second edge 21 , and the first edge 20 is the first edge
  • the bar-shaped protrusions 22a, the second bar-shaped protrusions 22b, and the third bar-shaped protrusions 22c The width of the first bar-shaped protrusion 22a is 13mm, the length is 185mm, and the height is 3mm; the width of the second bar-shaped protrusion 22b is 20mm, the length is 185mm, and the height is 3mm; the width of the first bar-shaped protrusion 22c is 21mm , the length is 185mm and the height is 3mm
  • the strip-shaped grooves 23 are formed between two adjacent strip-shaped protrusions 22 .
  • the number of the strip grooves 23 is two, which are the first strip groove 23a formed between the first strip protrusion 22a and the second strip protrusion 22b and the second strip groove 23a formed between the first strip protrusion 22a and the second strip protrusion 22b respectively.
  • the second strip-shaped groove 23b between the protrusion 22b and the third strip-shaped protrusion 22c, wherein the width of the first strip-shaped groove 23a is 4mm, and the width of the second strip-shaped groove 23b is 4mm.
  • the dot distribution protrusions 18 and the strip distribution protrusions 17 are provided on the same surface of the plate body 16 and are distributed from one side of the long side of the third strip protrusion 22c to the second edge 21 of the plate body 16 .
  • the point distribution protrusions 18 are also formed integrally with the plate body 16 .
  • the point distribution protrusions 18 include a plurality of rows of mesa-shaped protrusion groups 24. The multiple rows of mesa-shaped protrusion assemblies 24 are formed along the width direction of the bar-shaped protrusions 22.
  • the cross-sectional area of each row of the mesa-shaped protrusion groups 24 gradually decreases from the first edge 20 of the plate body 16 to the second edge 21, and the mesa-shaped protrusions 25 in the adjacent two rows are arranged in a dislocation phase. .
  • the point distribution protrusions 23 include six rows of mesa-shaped protrusion groups 24, and all the mesa-shaped protrusions 25 are cylindrical.
  • the six rows of mesa-shaped protrusion groups 24 are respectively a first row of mesa-shaped protrusion groups 24a, a second row of mesa-shaped protrusion groups 24b, a third row of mesa-shaped protrusion groups 24c, and a fourth row of mesa-shaped protrusion groups from one side of the long side of the bar-shaped protrusions 22.
  • group 24d, fifth row of mesa-shaped protrusion group 24e, and sixth row of mesa-shaped protrusion group 24f The distance between two adjacent rows of mesa-shaped protrusion groups 24 is 17 mm.
  • the upper surfaces of all the mesa-shaped protrusions 25 are flush with the upper surfaces of the bar-shaped protrusions 22 .
  • the first-row mesa-shaped protrusion group 24a includes 8 identical mesa-shaped protrusions 25, the distance between two adjacent mesa-shaped protrusions 25 in the first row mesa-shaped protrusion group 24a is 8.5 mm, and the cross-section of each mesa-shaped protrusion 25 is a diameter of 8.5 mm. 12mm is a circle, and its area is 6 ⁇ mm 2 , which is about 113.4mm 2 .
  • the second-row mesa-shaped protrusion group 24b includes 9 identical mesa-shaped protrusions 25, the distance between two adjacent mesa-shaped protrusions 25 in the first row mesa-shaped protrusion group 24b is 8.5 mm, and the cross-section of each mesa-shaped protrusion 25 is a diameter of 8.5 mm. 12mm is a circle, and its area is 36 ⁇ mm 2 , which is about 113.4mm 2 .
  • the third-row mesa-shaped protrusion group 24c includes 8 identical mesa-shaped protrusions 25, the distance between two adjacent mesa-shaped protrusions 25 in the first row mesa-shaped protrusion group 24c is 10.5 mm, and the cross-section of each mesa-shaped protrusion 25 is a diameter of 10.5 mm. 10mm is a circle, and its area is 25 ⁇ mm 2 , which is about 78.5mm 2 .
  • the fourth row of the mesa-shaped protrusion group 24d includes 9 identical mesa-shaped protrusions 25, the distance between the adjacent two mesa-shaped protrusions 25 in the first row of mesa-shaped protrusion group 24d is 10.5mm, and the cross-section of each mesa-shaped protrusion 25 is a diameter of 10.5 mm. 10mm is a circle, and its area is 25 ⁇ mm 2 , which is about 78.5mm 2 .
  • the fifth-row mesa-shaped protrusion group 24e includes 8 identical mesa-shaped protrusions 25, the distance between two adjacent mesa-shaped protrusions 25 in the first row mesa-shaped protrusion group 24e is 12.3 mm, and the cross-section of each mesa-shaped protrusion 25 is a diameter of 12.3 mm. 8mm is a circle, and its area is 16 ⁇ mm 2 , which is about 50.2mm 2 .
  • the sixth row of mesa-shaped protrusion groups 24f includes 9 identical mesa-shaped protrusions 25, the distance between two adjacent mesa-shaped protrusions 20 in the first row of mesa-shaped protrusion groups 24f is 12.3 mm, and the cross-section of each mesa-shaped protrusion 25 is a diameter of 12.3 mm. 8mm is a circle, and its area is 16 ⁇ mm 2 , which is about 50.2mm 2 .
  • a plurality of grooves 19 are formed on the other surface of the plate body 16 .
  • the grooves 19 are five straight grooves, and the five grooves 19 are evenly distributed on the surface of the plate body 16 .
  • the five grooves 19 are arranged in parallel and the extending direction is consistent with the length direction of the strip protrusions 22 .
  • the five grooves 19 have the same width, which is 4 mm, and the distance between two adjacent grooves 19 is 21 mm.
  • FIG. 7 is a schematic diagram of the installation of the rail transit rubber pad in the rail transit section in the first embodiment.
  • FIG. 8 is a partial enlarged view of area B in FIG. 7 .
  • the installation slope of the rail bottom bracket 12 is 1:40, which conforms to the installation standard of the rail bottom bracket 12 on the rail transit section 10 , in order to provide a better vibration reduction effect
  • the rail transit rubber pad 13 When the rail transit rubber pad 13 is installed, its point distribution protrusion 18 is located on the side close to the middle line of the two rails 14, while the rail transit rubber cushion 13 has strip distribution protrusions 17, point distribution protrusions
  • the side 18 faces the bottom of the rail 14 , but in other embodiments, the rail transit rubber pad 13 has strip distribution protrusions 17 , and the point distribution protrusion 18 side may also be disposed toward the upper surface of the rail bottom bracket 12 .
  • NR-1# natural rubber 100 parts NR-1# natural rubber, 60 parts white carbon black, 5 parts calcium carbonate, 30 parts zinc oxide, 1.5 parts stearic acid, 1.5 parts antioxidant SPC, 1 part antioxidant 2246, 2 parts microcrystalline wax, 1 part parts WB215, 5 parts PEG4000, 5 parts titanium dioxide, 2 parts chromium oxide green, 0.8 parts sulfur, 1.3 parts dibenzothiazole disulfide, 2.5 parts N-cyclohexyl-2-benzothiazole sulfenamide and 1.3 parts dibenzothiazole Tetramethylthiuram sulfide.
  • Step 1 mix 100 parts of NR-1# natural rubber, 60 parts of white carbon black, 5 parts of calcium carbonate, 30 parts of zinc oxide, 1.5 parts of stearic acid, 1.5 parts of antioxidant SPC, 1 part of antioxidant 2246, 2 parts of micro Crystal wax, 1 part of WB215, 5 parts of PEG4000, 5 parts of titanium dioxide and 2 parts of chrome oxide green, mix for 2 minutes, add 40 parts of silica, 3.3 parts of calcium carbonate and mix for 5 minutes, finally add 20 parts of silica, 1.7 Calcium carbonate was mixed for 4 minutes, the internal temperature of the mixer was controlled to be 100°C, the rubber was discharged through the lifting plug, cooled, and parked for 10 hours to obtain the A-stage rubber;
  • step 2 the material of section A is added to the open mill for thermal refining, the drum temperature of the open mill is controlled at 50 ° C, and 0.8 parts of sulfur, 1.3 parts of dibenzothiazole disulfide, 2.5 parts of N-cyclohexyl-2- Benzothiazole sulfenamide and 1.3 parts of tetramethylthiuram disulfide were smelted 4 times, packaged 4 times, and thinly passed 5 times with a small roll distance, and then the sheet was cooled and parked to obtain the B-segment rubber;
  • Step 3 cutting the B-segment glue as required to obtain a glue embryo
  • Step 4 put the rubber embryo into the corresponding mold and vulcanize it, so as to obtain the rubber backing plate for subway rail transit.
  • the performance test is carried out on the rubber pad for rail transit prepared in this example, wherein the test method for Shore hardness is GB/T 531.1-2008, the test method for tensile strength is GB/T 528-2009, and the elongation at break is GB/T 528-2009.
  • the test method is GB/T 528-2009, the test method for tensile stress is GB/T 528-2009, and the test method for static stiffness is carried out according to Appendix A of TB/T 3395.1-2015.
  • the minimum static stiffness refers to the static stiffness of the side with the least stiffness of the rubber pad, the same below.
  • the maximum static stiffness refers to the static stiffness of the side with the highest stiffness of the rubber pad, the same below
  • the rail transit rubber pad since the rail transit rubber pad includes the plate body and the strip distribution protrusions and the point distribution protrusions provided on the same surface of the plate body, the rail The side of the rubber pad for traffic with the strip-shaped protrusions is more rigid than the side with the point-distributed projections.
  • the rubber pad for rail transit is installed on the rail transit section located at the curve, It can balance the centrifugal force generated by the vehicle when driving on the curve, and automatically compensate the deformation amount, so that the deformation amount of each position of the rubber pad for the entire rail transit is similar, which is conducive to the stability of the vehicle driving on the curve of the rail transit section. Vibration and noise reduction.
  • the rubber pad for rail transit uses NR-1# natural rubber, silica, silane coupling agent, zinc oxide, stearic acid, antioxidant SPC, antioxidant 2246, microcrystalline Wax, WB215, PEG4000, titanium dioxide, chromium oxide green, sulfur, dibenzothiazole disulfide, N-cyclohexyl-2-benzothiazole sulfenamide and tetramethylthiuram disulfide as raw materials, so the rubber
  • the minimum static stiffness of the backing plate is 30kN/mm and the maximum static stiffness is 180kN/mm, which matches the static stiffness required at the inner strand of the curve radius of the subway track with a running axle load of 16t or less than 400m. It is suitable for installation in The subway track with a running axle load of 16t has a curve radius of less than or equal to 400m at the inner strand of the curve.
  • the rubber pad for rail transit has strip distribution protrusions and point distribution protrusions. In the case of deformation, it can absorb part of the force to prevent the rubber pad for rail transit from being excessively twisted and deformed; on the other hand, it can guide the stagnant water to drain quickly in rainy days to ensure the smoothness of the rail transit section.
  • step 1 of the preparation step of the rubber pad for rail transit in this embodiment, this can not only ensure the shrinkage stabilizer of the A-section rubber in the subsequent steps, but also It can fully infiltrate and fuse each auxiliary agent with the base rubber bracket, so as to improve the mechanical strength of the rubber pad for subway rail transit.
  • the operation of 5 times of thin rolling with a small roll distance, and the operation of cooling and parking is performed, so this can not only make the powder in the A section.
  • the glue can be fully dispersed and fused, and the scorch caused by excessive processing temperature can also be avoided.
  • This embodiment provides a rubber backing plate for rail transit, the structure of which is exactly the same as that of the rubber backing plate for rail transit in the first embodiment.
  • NR-1# natural rubber 100 parts NR-1# natural rubber, 50 parts white carbon black, 25 parts calcium carbonate, 2 parts silane coupling agent, 2 parts paraffin oil, 5 parts zinc oxide, 1.5 parts stearic acid, 1 part antioxidant SPC, 1 part Parts Antioxidant 2246, 3.5 Parts Microcrystalline Wax, 1 Part WB215, 3.5 Parts PEG4000, 5 Parts Titanium Dioxide, 2 Parts Chromium Oxide Green, 2.3 Parts Sulfur, 1.5 Parts Dibenzothiazole Disulfide, 1 Part N-Cyclohexyl- 2-benzothiazole sulfenamide and 0.3 part of tetramethylthiuram disulfide.
  • Step 1 add 100 parts of NR-1# natural rubber into the mixer, after refining for 7 minutes, add 2 parts of silane coupling agent, 2 parts of paraffin oil, 5 parts of zinc oxide, 1.5 parts of stearic acid, 1 part of anti-aging Agent SPC, 1 part of antioxidant 2246, 3.5 parts of microcrystalline wax, 1 part of WB215, 3.5 parts of PEG4000, 5 parts of titanium dioxide and 2 parts of chrome oxide green, Banbury for 2 minutes, add 33.3 parts of white carbon black, 16.7 parts of calcium carbonate to mix Knead for 5 minutes, finally add 16.7 parts of white carbon black and 8.3 parts of calcium carbonate, mix for 4 minutes, control the internal temperature of the mixer to 100 ° C, lift the plug to discharge the glue, cool, and park for 10 hours to obtain the A-stage rubber;
  • step 2 the A-stage material is added to the open mill for thermal refining, the drum temperature of the open mill is controlled at 50 ° C, and 2.3 parts of sulfur, 1.5 parts of dibenzothiazole disulfide, 1 part of N-cyclohexyl-2- Benzothiazole sulfenamide and 0.3 parts of tetramethylthiuram disulfide were smelted 4 times, packaged 4 times, and thinly passed 5 times with a small roll distance, and then the sheet was cooled and parked to obtain the B-segment rubber;
  • Step 3 cutting the B-segment glue as required to obtain a glue embryo
  • Step 4 put the rubber embryo into the corresponding mold and vulcanize it, so as to obtain the rubber backing plate for subway rail transit.
  • the minimum static stiffness of the rubber pad for rail transit is 25kN/mm and the maximum static stiffness is 160kN/mm, it is compatible with the subway track of the subway with an axle load of 14t.
  • the static stiffness of the rubber pad for rail transit needs to be matched at the inner strand of the curve with a curve radius of less than or equal to 400m, and it is especially suitable for installation in the inner strand of the curve of the subway track with a running axle load of 14t and a curve radius of less than or equal to 400m.
  • This embodiment provides a rubber backing plate for rail transit, the structure of which is exactly the same as that of the rubber backing plate for rail transit in the first embodiment.
  • Step 1 add 30 parts of 4045M EPDM rubber, 70 parts of 3092PM EPDM rubber into the internal mixer, after refining for 7min, add 2 parts of silane coupling agent, 12 parts of paraffin oil, 5 parts of zinc oxide, 1.5 parts stearic acid, 1 part antioxidant MB, 0.6 part antioxidant 2246, 2 parts microcrystalline wax, 2 parts polyethylene wax WB42, 3 parts PEG4000, 3 parts petroleum resin TL-100, 3 parts titanium dioxide and 1.5 parts Chromium oxide green, mix for 2min, add 26.7 parts of white carbon black, 14.7 parts of calcium carbonate and mix for 5min, finally add 13.3 parts of silica, 7.3 parts of calcium carbonate and 12 parts of paraffin oil, mix for 4min, control the internal mixer
  • the temperature is 100 °C, the glue is removed by the lifting bolt, cooled, and parked for 10 hours to obtain the A-section glue;
  • Step 2 adding the A-section material into the open mill for thermal refining, the drum temperature of the open mill is controlled at 50 ° C, and 0.5 parts of sulfur, 2 parts of dibenzothiazole disulfide, and 1.3 parts of dibutyl dithioamino are added.
  • Zinc formate 1.3 parts of 4,4'-dimorpholine disulfide, 0.5 part of tetramethylthiuram disulfide, smelted 4 times, packaged 4 times, thinly passed 5 times with a small roll distance, and then cooled and parked.
  • Get B segment glue 1.3 parts of 4,4'-dimorpholine disulfide, 0.5 part of tetramethylthiuram disulfide, smelted 4 times, packaged 4 times, thinly passed 5 times with a small roll distance, and then cooled and parked.
  • Step 3 cutting the B-segment glue as required to obtain a glue embryo
  • Step 4 put the rubber embryo into the corresponding mold and vulcanize it, so as to obtain the rubber backing plate for subway rail transit.
  • Test content Test content Test Results Shore hardness 70 shore A Tensile Strength 15.5MPa Elongation at break 475% 200% tensile stress 4.6MPa Minimum static stiffness 25kN/mm maximum static stiffness 160kN/mm
  • the minimum static stiffness of the rubber pad for rail transit involved in this embodiment is 25kN/mm, and the maximum static stiffness is 160kN/mm, so the curve radius of the subway track with a running axle load of 14t is less than or equal to 400m.
  • the static stiffness of the rail transit rubber pads required at the strands is matched, and it is especially suitable for installation at the inner strands of the curves of the subway track with a radius of less than or equal to 400m.
  • the matrix rubber in the rubber backing plate composition for rail transportation used in the rubber backing plate for rail transportation used in this embodiment is EPDM rubber
  • the rubber backing plate for rail transportation provided in this embodiment has the following characteristics: Better weather resistance, able to withstand large temperature changes, more suitable for elevated road sections or roadbed sections.
  • This embodiment provides a rubber backing plate for rail transit, the structure of which is exactly the same as that of the rubber backing plate for rail transit in the first embodiment.
  • Step 1 add 30 parts of 4045M EPDM rubber and 70 parts of 3092PM EPDM rubber into the internal mixer, and after refining for 7 minutes, add 2 parts of silane coupling agent, 8 parts of paraffin oil, 5 parts of zinc oxide, 1.5 parts stearic acid, 1 part antioxidant MB, 0.6 part antioxidant 2246, 2 parts microcrystalline wax, 2 parts polyethylene wax WB42, 3 parts PEG4000, 3 parts petroleum resin TL-100, 3 parts titanium dioxide and 1.5 parts Chrome yellow, banbury for 2min, add 30 parts of white carbon black, 16.7 parts of calcium carbonate and mix for 5min, finally add 15 parts of white carbon black, 8.3 parts of calcium carbonate and 8 parts of paraffin oil, mix for 4min, control the internal temperature of the internal mixer At 100 °C, the glue is removed by the lifting bolt, cooled, and parked for 10 hours to obtain the A section of glue;
  • Step 2 adding the A-section material into the open mill for thermal refining, the drum temperature of the open mill is controlled at 50 ° C, and 0.5 parts of sulfur, 2 parts of dibenzothiazole disulfide, and 1.3 parts of dibutyl dithioamino are added.
  • Step 3 cutting the B-segment glue as required to obtain a glue embryo
  • Step 4 put the rubber embryo into the corresponding mold and vulcanize it, so as to obtain the rubber backing plate for subway rail transit.
  • Test content Test content Test Results Shore hardness 75 shore A Tensile Strength 17.7MPa Elongation at break 431% 200% tensile stress 5.4MPa Minimum static stiffness 25kN/mm maximum static stiffness 150kN/mm
  • the rubber backing plate for rail transit involved in this embodiment in addition to having the same technical effect as that in the eighth embodiment, it is also made by using the rubber backing plate composition for rail transit in the sixth embodiment.
  • the stiffness is 25kN/mm, and the most static stiffness is 150kN/mm, so the static stiffness of the rubber pad for rail transit is required at the outer strand of the subway track curve (curve radius less than or equal to 400m) of the subway with a running axle load of 16t. Matching, it is especially suitable for installation at the outer strand of the curve of the subway track with a radius of less than or equal to 400m.
  • the matrix rubber in the rubber backing plate composition for rail transportation used in the rubber backing plate for rail transportation used in this embodiment is EPDM rubber
  • the rubber backing plate for rail transportation provided in this embodiment has the following characteristics: Better weather resistance, able to withstand large temperature changes, more suitable for elevated road sections or roadbed sections.
  • Fig. 9 is the structural schematic diagram of the rubber backing plate for rail transit in the fifth embodiment
  • Fig. 10 is the top view of the rubber backing plate for rail transportation in the fifth embodiment
  • Fig. 11 is the side view of the rubber backing plate for the rail transit in the fifth embodiment
  • FIG. 12 is a bottom view of the rubber pad for rail transit in the fifth embodiment.
  • the rubber backing plate 113 for rail transit provided in this embodiment has: a plate body 116 , a strip-distributing protrusion 117 , legs 118 and grooves 119 .
  • the plate body 116 is in the shape of a rectangular parallelepiped, and has a first edge 120 and a second edge 121 disposed opposite to each other.
  • the length of the plate body 116 is 185 mm
  • the width is 150 mm
  • the height is 10 mm.
  • the strip distribution protrusions 117 are disposed on one surface of the plate body 116 and include strip protrusions 122 and strip grooves 123 .
  • the strip protrusions 122 extend along the first edge 120 of the plate body 111 and are integrally formed with the plate body 116 , and the upper surfaces of all the strip protrusions 122 are flush.
  • the bar distribution protrusions 117 include 11 bar-shaped protrusions 122, and the 11 bar-shaped protrusions are distributed from the first edge 120 of the plate body 111 to the second edge 121 opposite to the first edge 120, along the first edge 120 of the plate body 111.
  • the edges 120 are respectively a first bar-shaped protrusion 122a, a second bar-shaped protrusion 122b, a third bar-shaped protrusion 122c, a fourth bar-shaped protrusion 122d, a fifth bar-shaped protrusion 122e, a sixth bar-shaped protrusion 122f, a seventh bar-shaped protrusion shaped protrusions 122g, eighth strip-shaped protrusions 122h, ninth strip-shaped protrusions 122i, tenth strip-shaped protrusions 122j, and eleventh strip-shaped protrusions 122k.
  • the widths of the 11 bar-shaped protrusions 122 gradually decrease from the first edge 120 to the second edge 121 .
  • the width of the first bar-shaped protrusion 122a is 20 mm
  • the width of the second bar-shaped protrusion 122b is 18.2 mm
  • the width of the third bar-shaped protrusion 122c is 11 mm
  • the width of the fourth bar-shaped protrusion 122d is 9.3 mm mm
  • the width of the fifth bar-shaped protrusion 122e is 8.4mm
  • the width of the sixth bar-shaped protrusion 122f is 7.8mm
  • the width of the seventh bar-shaped protrusion 122f is 6.5mm
  • the width of the eighth bar-shaped protrusion 122g is 5.6mm
  • the width of the ninth bar-shaped protrusion 122h is 4.3 mm
  • the width of the tenth bar-shaped protrusion 122i is 4.3 mm
  • the strip-shaped grooves 123 are disposed between two adjacent strip-shaped protrusions 122 . In this embodiment, there are 10 strip-shaped grooves 123 in total, and all the strip-shaped grooves 123 are equally spaced at 4 mm.
  • the support feet 118 are formed on the other surface of the plate body 116, and are used to cooperate with the grooves of the rail bottom bracket, so that the plate body 116 can be more firmly embedded in the rail bottom bracket.
  • the number of the support legs 118 is four, which are respectively formed at four corners of the other surface of the plate body 116 .
  • a plurality of grooves 119 are formed on the other surface of the plate body 116 .
  • the grooves 119 are five straight grooves, and the five grooves 119 are evenly distributed on the surface of the plate body 116 .
  • the five grooves 119 are arranged in parallel and the extending direction is consistent with the length direction of the strip protrusions 122 .
  • the five grooves 119 have the same width, which is 4 mm, and the distance between two adjacent grooves 119 is 21 mm.
  • the rail transit rubber pad 113 is installed When the second edge 121 is located on the side close to the midline of the two rails, that is, the width of the bar-shaped protrusion 122 on the side close to the midline of the two rails 14 is greater than the width of the side away from the midline of the two rails 114 The width of the strip protrusion 122 .
  • the rubber backing plate 113 for rail transportation has the strip distribution protrusions 117 facing the bottom of the rail.
  • NR-1# natural rubber 100 parts NR-1# natural rubber, 60 parts white carbon black, 5 parts calcium carbonate, 30 parts zinc oxide, 1.5 parts stearic acid, 1.5 parts antioxidant SPC, 1 part antioxidant 2246, 2 parts microcrystalline wax, 1 part Parts WB215, 5 parts PEG4000, 5 parts titanium dioxide, 2 parts ultramarine, 0.8 parts sulfur, 1.3 parts dibenzothiazole disulfide, 2.5 parts N-cyclohexyl-2-benzothiazole sulfenamide, and 1.3 parts tetrakis disulfide Methylthiuram.
  • Step 1 mix 100 parts of NR-1# natural rubber, 60 parts of white carbon black, 5 parts of calcium carbonate, 30 parts of zinc oxide, 1.5 parts of stearic acid, 1.5 parts of antioxidant SPC, 1 part of antioxidant 2246, 2 parts of micro Crystal wax, 1 part of WB215, 5 parts of PEG4000, 5 parts of titanium dioxide and 2 parts of ultramarine blue, Banbury for 2 minutes, add 40 parts of white carbon black, 3.3 parts of calcium carbonate and mix for 5 minutes, and finally add 20 parts of white carbon black and 1.7 parts of carbonic acid Calcium, mix for 4min, control the internal temperature of the mixer to 100°C, lift the plug to remove the glue, cool it, and park it for 10h to obtain the A-stage glue;
  • step 2 the material of section A is added to the open mill for thermal refining, the drum temperature of the open mill is controlled at 50 ° C, and 0.8 parts of sulfur, 1.3 parts of dibenzothiazole disulfide, 2.5 parts of N-cyclohexyl-2- Benzothiazole sulfenamide and 1.3 parts of tetramethylthiuram disulfide were smelted 4 times, packaged 4 times, and thinly passed 5 times with a small roll distance, and then the sheet was cooled and parked to obtain the B-segment rubber;
  • Step 3 cutting the B-segment glue as required to obtain a glue embryo
  • Step 4 put the rubber embryo into the corresponding mold and vulcanize it, so as to obtain the rubber backing plate for subway rail transit.
  • Test content Test results Shore hardness 80 shore A Tensile Strength 18.9MPa Elongation at break 302% 200% tensile stress 11.9MPa Minimum static stiffness 50kN/mm maximum static stiffness 300kN/mm
  • the rubber pad for rail transit includes a plate body and a protruding portion, and the protruding portion is a bar-shaped protruding portion including a plurality of bar-shaped projections, and the plurality of bar-shaped projections
  • the width of the shaped protrusion gradually decreases from the first edge of the plate body to the second edge of the plate body. Therefore, when the vehicle passes through the curve of the rail transit section, due to the centrifugal force, the pressure generated by the vehicle on the outside of the rail will be reduced. The pressure generated on the inner side of the rail is greater than that on the inner side of the rail.
  • the pressure generated by the rail on the side of the rubber pad for rail transit located on the outer side of the rail will be greater than the pressure generated on the side located on the inner side of the rail.
  • the second edge of the plate body is close to one side of the center line of the two rails during installation, so the deformation amount of each position of the entire rail transit rubber pad is similar, which is beneficial to the rail transit section. Vehicles driving on curves remain stable, reducing vibration and noise.
  • the rubber pad for rail transit is composed of NR-1# natural rubber, silica, calcium carbonate, zinc oxide, stearic acid, antioxidant SPC, antioxidant 2246, microcrystalline wax, WB215, PEG4000, titanium It is made of white powder, ultramarine blue, sulfur, dibenzothiazole disulfide, N-cyclohexyl-2-benzothiazole sulfenamide and tetramethylthiuram disulfide. Therefore, the minimum static The stiffness is 50kN/mm, and the maximum static stiffness is 300kN/mm, which matches the static stiffness of the rail transit rubber pad required at the straight track of the heavy-duty railway. Therefore, the rail transit rubber pad provided in this embodiment is particularly It is suitable for straight track of heavy haul railway.
  • the other surface of the rubber pad for rail transit forms five grooves that are parallel to each other and evenly distributed, on the one hand, it can absorb a part of the force when the pad is deformed due to the force, so as to avoid the The plate is over-distorted and deformed; on the other hand, it can guide the stagnant water to drain quickly in rainy days to ensure the smoothness of the rail transit section.
  • the contact area of the strip distribution protrusions near the first edge and the bottom of the rail in the rubber pad for rail transit is larger than the contact area of the strip distribution protrusions close to the second edge with the bottom of the rail, so that the There is a larger lateral friction force between the distribution protrusion and the rail, which makes the installation between the rail and the rubber pad for rail transit more reliable and less prone to displacement.
  • FIG. 13 is a schematic structural diagram of the rubber pad for rail transit in the sixth embodiment
  • FIG. 14 is a top view of the rubber pad for rail transit in the sixth embodiment
  • FIG. 15 is the side view of the rubber pad for the rail transit in the sixth embodiment
  • FIG. 16 is a bottom view of the rubber pad for rail transit in the sixth embodiment.
  • the rubber backing plate 131 for rail transit provided in this embodiment has: a plate body 132 , point distribution protrusions 133 , legs 134 and grooves 135 .
  • the plate body 132 is in the shape of a rectangular parallelepiped, and has a first edge 136 and a second edge 137 disposed opposite to each other.
  • the length of the plate body 132 is 185 mm
  • the width is 150 mm
  • the height is 10 mm.
  • the point distribution protrusions 133 include a plurality of mesa-shaped protrusions 138 whose upper surfaces are flush with each other.
  • the multiple mesa-shaped protrusions 138 are distributed from the first edge 135 of the plate body 132 to the second edge 136 .
  • the plurality of mesa-shaped protrusions 138 form a plurality of rows of mesa-shaped protrusion groups in the longitudinal direction of the plate body 132 , and two adjacent rows of mesa-shaped protrusion groups are staggered.
  • Each of the plurality of mesa-shaped protrusions 138 has a cross section, the cross-sectional area of the mesa-shaped protrusions 138 in each row is the same, and the cross-sectional area of the mesa-shaped protrusions 138 in each row of mesa-shaped protrusion groups is from the first edge 136 to the second edge 137 slowing shrieking.
  • the number of the mesa-shaped protrusions 138 is 95.
  • the 95 mesa-shaped protrusions 138 are all cylindrical, and their cross sections are all circular.
  • the shape of the truncated protrusions can also be other shapes, such as a truncated cone shape, a rectangular parallelepiped shape, a tetrahedron shape, an elliptical cylinder shape, and the like.
  • the 95 mesa-shaped protrusions 138 are formed in 10 rows in the length direction of the plate body 132, and the first row of mesa-shaped protrusions 139a, the second row of mesa-shaped protrusions 139b, the third row of mesa-shaped protrusions 139c, the third row of mesa-shaped protrusions 139c, the The fourth-row mesa-shaped protrusion group 139d, the fifth-row mesa-shaped protrusion group 139e, the sixth-row mesa-shaped protrusion group 139f, the seventh-row mesa-shaped protrusion group 139g, the eighth-row mesa-shaped protrusion group 139h, the ninth row mesa-shaped protrusion group 139i, and the tenth row The mesa-shaped protrusion group 139j.
  • each row mesa-shaped protrusion group 139 has 8 in the second row of mesa-shaped protrusions 139b, the fourth row of mesa-shaped protrusions 139d, the sixth row of mesa-shaped protrusions 139f, the eighth row of mesa-shaped protrusions 139h, and the tenth row of mesas
  • the mesa-shaped protrusion group 139 includes nine mesa-shaped protrusions 138 .
  • the mesa-shaped protrusions 138 in the first row of mesa-shaped protrusion groups 139a have a diameter of 44.04 mm and a cross-sectional area of 154.30 mm 2
  • the mesa-shaped protrusions 138 in the second row of mesa-shaped protrusion groups 139b have a diameter of 44.04 mm and a cross-sectional area of 154.30 mm 2.
  • the diameter of the mesa-shaped protrusions 138 in the third row of mesa-shaped protrusion groups 139c is 36.7mm
  • the cross-sectional area is 107.16mm 2 .
  • the diameter of the mesa-shaped protrusions 138 in the fifth row of mesa-shaped protrusion group 139e is 30.58mm
  • the cross-sectional area is 74.41mm 2
  • the diameter of the mesa-shaped protrusions 138 in the sixth row of mesa-shaped protrusion group 139f is 30.58mm
  • the cross-sectional area is 30.58mm.
  • the area is 74.41 mm 2
  • the diameter of the mesa-shaped protrusions 138 in the seventh row of mesa-shaped protrusions 139g is 24.47 mm
  • the cross-sectional area is 47.64 mm 2
  • the cross-sectional area is 47.64mm 2
  • the diameter of the mesa-shaped protrusions 138 in the ninth row of mesa-shaped protrusion group 139i is 18.32mm
  • the cross-sectional area is 26.70mm 2
  • the diameter of the mesa-shaped protrusions 138 in the tenth row of mesa-shaped protrusion group 139j is 18.32mm
  • the cross-sectional area is 26.70mm 2 .
  • the support feet 134 are formed on the other surface of the board body 132 for mutual cooperation with the grooves of the rail bottom bracket, so as to insert the board body 132 into the rail bottom bracket 112 more stably.
  • the number of the support legs 134 is four, which are respectively formed at four corners of the other surface of the plate body 132 .
  • a plurality of grooves 135 are formed on the other surface of the plate body 132 .
  • the grooves 135 are five straight grooves, and the five grooves 135 are evenly distributed on the surface of the plate body 132 .
  • the five grooves 135 are arranged in parallel, and the directions of the arrangement of each row of mesa-shaped protrusions in the extending direction are consistent.
  • the five grooves 135 have the same width, which is 4 mm, and the distance between two adjacent grooves 135 is 21 mm.
  • the installation slope of the rail bottom bracket is 1:40, it conforms to the installation standard of the rail bottom bracket in the rail traffic section.
  • the second edge 136 is located on the side close to the middle line of the two rails, that is, the table-shaped side close to the middle line of the two rails.
  • the cross-sectional area of the protrusions 138 is larger than the cross-sectional area of the mesa-shaped protrusions 138 on the side away from the midline of the two rails.
  • the rubber backing plate 131 for rail transportation has the point distribution protrusions 133 facing the bottom of the rail.
  • NR-1# natural rubber 100 parts of NR-1# natural rubber, 25 parts of white carbon black, 1 part of silane coupling agent, 30 parts of zinc oxide, 1.5 parts of stearic acid, 1.5 parts of antioxidant SPC, 1 part of antioxidant 2246, 2 parts of microcrystalline wax , 1 part WB215, 1.5 parts PEG4000, 5 parts titanium dioxide, 0.3 part carbon black, 0.8 part sulfur, 1 part dibenzothiazole disulfide, 2 parts N-cyclohexyl-2-benzothiazole sulfenamide and 2 parts Tetramethylthiuram disulfide.
  • Step 1 add 100 parts of NR-1# natural rubber into the mixer, after refining for 7 minutes, add 1 part of silane coupling agent, 30 parts of zinc oxide, 1.5 parts of stearic acid, 1.5 parts of antioxidant SPC, 1 part of Anti-aging agent 2246, 2 parts of microcrystalline wax, 1 part of WB215, 1.5 parts of PEG4000, 5 parts of titanium dioxide and 0.3 parts of carbon black, Banbury for 2 minutes, add 16.7 parts of white carbon black and mix for 5 minutes, and finally add 8.3 parts of white carbon black, Mixing for 4 minutes, control the internal temperature of the mixer to be 100 °C, remove the glue through the lifting bolt, cool it, and park it for 10 hours to obtain the A-stage glue;
  • Step 2 add the A-stage material into the open mill for thermal refining, the drum temperature of the open mill is controlled at 50 ° C, the roll distance is adjusted to 1.0 mm, 0.8 parts of sulfur, 1 part of dibenzothiazole disulfide, 2 parts of N-Cyclohexyl-2-benzothiazole sulfenamide and 2 parts of tetramethylthiuram disulfide were rolled 4 times, packaged 4 times, and thinly passed 5 times with a small roll distance, and then the sheet was cooled and parked to obtain B segment glue;
  • Step 3 cutting the B-segment glue as required to obtain a glue embryo
  • Step 4 put the rubber embryo into a corresponding mold and vulcanize it, to obtain a rubber backing plate composition for subway rail transit.
  • the rubber pad for rail transit includes a plate body and a protruding portion, the protruding portion is a point-distributed protruding portion including a plurality of mesa-shaped protrusions, and the plurality of mesa-shaped protrusions are arranged
  • Ten rows of platform-shaped protrusion groups are formed.
  • the cross-sectional area of the upper surface of the platform-shaped protrusions gradually decreases from the first edge of the plate body to the second edge of the plate body. Therefore, the stiffness of the rubber pad for rail transit increases from The first edge of the plate body gradually decreases toward the second edge of the plate body.
  • the pressure generated by the vehicle on the outside of the rail will be greater than the pressure on the inside of the rail.
  • the pressure generated on the outer side will be greater than the pressure generated on the side located on the inner side of the rail, because the rubber pad for rail transit provided in this embodiment has a larger cross-sectional area.
  • One side of the platform-shaped protrusion with a smaller cross-sectional area has greater rigidity, so it can undergo smaller deformation under the condition of a larger force, which is beneficial to the smoothness of the vehicle driving on the curve of the rail transit section , vibration reduction and noise reduction.
  • the contact area of the point distribution protrusion in the rail transit rubber pad near the first edge and the bottom of the rail is greater than the contact area of the point distribution protrusion near the second edge and the bottom of the rail, so that the point distribution There is a larger lateral friction force between the distribution protrusion and the rail, which makes the installation between the rail and the rubber pad for rail transit more reliable and less prone to displacement.
  • This embodiment provides a rubber backing plate for rail transit, the structure of which is exactly the same as that of the rubber backing plate for rail transit in the sixth embodiment.
  • Step 1 add 30 parts of 4045M EPDM rubber, 70 parts of 3092PM EPDM rubber into the mixer, after refining for 7min, add 2 parts of silane coupling agent, 9 parts of paraffin oil, 5 parts of zinc oxide, 1.5 parts of stearic acid, 1 part of antioxidant MB, 0.6 part of antioxidant 2246, 2 parts of microcrystalline wax, 2 parts of polyethylene wax WB42, 3 parts of PEG4000, 3 parts of petroleum resin TL-100, 3 parts of titanium dioxide, 1.5 parts of Iron oxide red, banbury for 2 minutes, add 36.7 parts of white carbon black, 13.3 parts of calcium carbonate and mix for 5 minutes, finally add 18.3 parts of white carbon black, 6.7 parts of calcium carbonate and 9 parts of paraffin oil, mix for 4 minutes, control the internal mixer
  • the temperature is 100 °C
  • the glue is removed by the lifting bolt, cooled, and parked for 10 hours to obtain the A-section glue;
  • step 2 the material of section A is added to the open mill for thermal refining, the drum temperature of the open mill is controlled at 50 ° C, and 0.5 parts of sulfur, 2 parts of dibenzothiazole disulfide, 1.3 parts of dibutyldithioamino are added.
  • Get B segment glue
  • Step 3 cutting the B-segment glue as required to obtain a glue embryo
  • Step 4 put the rubber embryo into the corresponding mold and vulcanize it, so as to obtain the rubber backing plate for subway rail transit.
  • Test content Test content Test Results Shore hardness 79 shore A Tensile Strength 17.3MPa Elongation at break 352% 200% tensile stress 6.8MPa Minimum static stiffness 20kN/mm maximum static stiffness 160kN/mm
  • the minimum static stiffness of the rubber pad for rail transit is 20kN/mm and the maximum static stiffness is 160kN/mm, it is different from the one used for the subway with an axle load of 16t.
  • the static stiffness of the rubber pad for rail transit required at the curve of the subway track (curve radius is greater than 400 meters) is matched, and it is especially suitable for installation in the curve of the subway track with a radius of more than 400 meters.
  • the matrix rubber in the rubber backing plate composition for rail transportation used in the rubber backing plate for rail transportation used in this embodiment is EPDM rubber
  • the rubber backing plate for rail transportation provided in this embodiment has the following characteristics: Better weather resistance, able to withstand large temperature changes, more suitable for elevated road sections or roadbed sections.
  • more grooves or less grooves may be provided according to actual needs.
  • the multi-channel grooves may also be configured as multi-channel curved grooves.
  • the extending direction of the groove is not limited to be consistent with the longitudinal direction of the bar-shaped protrusion, and may also be perpendicular to or at any angle with the longitudinal direction of the bar-shaped protrusion.
  • the widths of the multi-channel grooves may be different, and may be set in a state of gradual change from one edge of the board body to the other edge of the board body.
  • the rail transit rubber pad is installed, its point The distribution protrusions are located on the side away from the middle line of the two rails, but it is not limited that the rubber pads for rail transit have strip distribution protrusions and point distribution protrusions. It can be set toward the bottom of the rails or toward the bottom of the rails.
  • the upper surface of the rail bottom bracket is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Railway Tracks (AREA)

Abstract

本发明提供了一种轨道交通用橡胶垫板、制备方法以及轨道交通路段。本发明中的轨道交通路段具有若干个枕轨、轨底托、轨道交通用橡胶垫板以及两条钢轨,其中,轨道交通用橡胶垫板包括板体以及设置在板体一个表面上的突起部,突起部包括多组突起部件,多组突起部件从所述板体的一个边缘分布至与所述一个边缘相对的另一个边缘,同时,轨道交通用橡胶垫板的原料包括下述组分:基体橡胶、填充剂、硅烷偶联剂、活性剂、增塑剂、颜料、防老剂、功能助剂、硫化剂以及硫化促进剂,所以,该轨道交通用橡胶垫板能够根据实际路况吸收车辆对轨道交通路段的压力,使得整个垫板的变形量相近,从而有利于在轨道交通路段上行驶的车辆保持平稳。

Description

轨道交通用橡胶垫板、制备方法及轨道交通路段 技术领域
本发明涉及一种橡胶垫板,具体涉及一种轨道交通用橡胶垫板、制备方法及轨道交通路段。
背景技术
随着轨道交通的迅速发展,大量的轨道交通减振降噪方案在城市轨道交通中得到应用,其中,应用最广泛的技术方案是在钢轨和混凝土轨枕之间设置橡胶垫板,用于缓冲车辆通过路轨时所产生的高速振动和冲击,从而保护路基和轨枕。
在实际应用中,由于环境的限制,轨道交通路段并不都是直道,轨道交通路段的安装路面或用于安装钢轨的轨底托表面也不都是平坦的。然而,车辆在经过轨道交通路段的弯道处或者不平坦的区域时,对钢轨以及设置在钢轨下方的橡胶垫板会产生不均匀的压力,这会导致现有技术中的橡胶垫板发生不均匀变形,甚至损坏失效,进一步导致轨道位移,从而影响线路正常运行。
发明内容
本发明是为了解决上述问题而进行的,目的在于提供一种结构简单、能够更广泛地应用于各种类型的轨道交通路段的轨道交通用橡胶垫板。
本发明提供了一种轨道交通用橡胶垫板,具有这样的特征,具有:板体;以及突起部,设置在板体的一个表面上,其中,突起部包括多组突起部件,多组突起部件从板体的一个边缘分布至与一个边缘相对的另一个边缘,轨道交通用橡胶垫板的原料包括下述按重量份计的组分:100份基体橡胶、20-100份填充剂、0-5份硅烷偶联剂、5-35份活性剂、0-15份增塑剂、3-10份颜料、1-3份防老剂、3-15份功能助剂、0.3-2.5份硫化剂以及2-8份硫化促进剂。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,多组突起部件的横截面面积从板体的一个边缘到另一个边缘逐渐减小。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,突起部包括:条分布突起部,设置在板体的一个表面上;以及点分布突起部,与条分布突起部设置在同一个表面上,条分布突起部与点分布突起部邻接形成,板体与条分布突起部以及点分布突起部一体形成。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,条分布突起部包括至少一个条形突起,该条形突起沿板体的一个边缘延伸形成,点分布突起部包括复数个台形突起,该复数个台形突起设置在条形突起的长侧边的一侧并分布至与一个边缘相对的另一个边缘。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,条形突起为复数个,相邻两个条形突起之间设有条形凹槽,复数个台形突起在条形突起的长度方向形成有多排,相邻两排中的各个台形突起相错位设置。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,条形突起为三个以上,条形凹槽至少为两个,条形凹槽的宽度从一个边缘朝另一个边缘逐渐减小,复数个台形突起具有横截面,每一排中各个台形突起的横截面的面积相同,各排台形突起的横截面的面积从一个边缘朝另一个边缘逐渐减小,条形突起的上表面与台形突起的上表面相平齐。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,条形突起为三 个,沿一个边缘开始分别为第一条形突起、第二条形突起以及第三条形突起,
第一条形突起与第二条突起之间设有第一凹槽,第二条形突起与第三条突起之间设有第二凹槽,
第一条形突起的宽度为10mm-15mm,第二条形突起的宽度为19mm-20mm,第三条形突起的宽度为21mm-22mm,
点分布突起部包括复数个台形突起,该多个台形突起设置在条形突起的长侧边的一侧并分布至与一个边缘相对的另一个边缘,
台形突起在条形突起的长度方向形成有六排,条形突起的长侧边的一侧开始分别为第一排台形突起、第二排台形突起、第三排台形突起、第四排台形突起、第五排台形突起以及第六排台形突起,相邻两排的台形突起的距离为15mm-20mm,第一排台形突起的横截面的面积为100mm 2-120mm 2,第二排台形突起的横截面的面积为100mm 2-120mm 2,第三排台形突起的横截面的面积为70mm 2-90mm 2,第四排台形突起的横截面的面积为70mm 2-90mm 2,第五排台形突起的横截面的面积为40mm 2-60mm 2,第六排台形突起的横截面的面积为40mm 2-60mm 2
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,突起部为条分布突起部,条分布突起部包括复数个条形突起,该条形突起沿板体的一个边缘延伸,复数个条形突起从板体的一个边缘分布至与一个边缘相对的另一个边缘,条形突起的宽度从一个边缘朝另一个边缘逐渐减小,相邻的两个条形突起之间设有条形凹槽。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,所有条形凹槽的宽度相等。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,条形突起为11个,沿一个边缘开始分别为第一条形突起、第二条形突起、第三条形突起、第四条形突起、第五条形突起、第六条形突起、第七条形突起、第八条形突起、第九条形突起、第十条形突起以及第十一条形突起,第一条形突起的宽度为19mm-21mm,第二条形突起的宽度为17mm-19mm,第三条形突起的宽度为10mm-12mm,第四条形突起的宽度为9mm-10mm,第五条形突起的宽度为8mm-9mm,第六条形突起的宽度为7mm-8mm,第七条形突起的宽度为6mm-7mm,第八条形突起的宽度为5mm-6mm,第九条形突起的宽度为4mm-5mm,第十条形突起的宽度为4mm-5mm,第十一条形突起的宽度为2mm-3mm。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,突起部为点分布突起部,点分布凸起部包括复数个台形突起,复数个台形突起在板体的长度方向形成有多排,复数个台形突起从板体的一个边缘分布至与一个边缘相对的另一个边缘,复数个台形突起具有横截面,每一排中各个台形突起的横截面的面积相同,各排台形突起的横截面的面积从一个边缘朝另一个边缘逐渐减小。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,相邻两排台型突起的错位设置。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,相邻两排台型突起的间距相等。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,台形突起在板体的长度方向形成有10排,沿一个边缘开始分别为第一排台形突起、第二排台形突起、第三排台形突起、第四排台形突起、第五排台形突起、第六排台形突起、第七排台形突起、第八排台形突起、第九排台形突起以及第十排台形突起,在第一排台形突起、第三排台形突起、第五排台形突起、第七排台形突起以及第九排台形突起中,每排台形突起包括8个台型突起,在第二排台形突起、第四排台形突起、第六排台形突起、第八排台形突起以及第十排台形突 起中,每排台形突起包括9个台型突起,第一排台形突起中台形突起的横截面的面积为130mm 2-160mm 2,第二排台形突起中台形突起的横截面的面积为130mm 2-160mm 2,第三排台形突起中台形突起的横截面的面积为90mm 2-120mm 2,第四排台形突起中台形突起的横截面的面积为90mm 2-120mm 2,第五排台形突起中台形突起的横截面的面积为60mm 2-80mm 2,第六排台形突起中台形突起的横截面的面积为60mm 2-80mm 2,第七排台形突起中台形突起的横截面的面积为40mm 2-50mm 2,第八排台形突起中台形突起的横截面的面积为40mm 2-50mm 2,第九排台形突起中台形突起的横截面的面积为20mm 2-30mm 2,第十排台形突起中台形突起的横截面的面积为20mm 2-30mm 2
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,突起部的上表面相平齐。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征,还具有:多道沟槽,形成在板体的另一个表面上。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,多道沟槽为相互平行的多道条形沟槽,其延伸方向与条形突起的长度方向一致。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,多道沟槽的宽度从一个边缘朝另一个边缘渐变。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,多道沟槽为多道曲线沟槽。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,多道沟槽为相互平行且均匀分布的多道条形沟槽,其延伸方向与条形突起的长度方向相垂直。
在本发明提供的轨道交通用橡胶垫板中,还可以具有这样的特征:其中,,轨道还具有轨底托,该轨底托安装在钢轨的下方,轨道交通用橡胶垫板安装在钢轨与轨底托之间,轨道具有两条平行设置的钢轨,轨底托的安装坡度为1:(30-50)。
在本发明还提供了一种轨道交通用橡胶垫板的制备方法,用于制备上述任意一种轨道交通用橡胶垫板,具有这样的特征,包括如下步骤:步骤1,将基体橡胶加入密炼机中,炼制5min-8min后,加入活性剂、防老剂、功能助剂、硅烷偶联剂、颜料,密炼1min-2min,加入占总填充剂重量30%-40%的填充剂混炼3min-8min,最后加入剩余的填充剂以及增塑剂,混炼3min-5min,控制密炼机内部温度为95℃-125℃,通升栓排胶,冷却,停放8h-24h,得A段胶;步骤2,将A段料加入开炼机中进行热炼,开炼机的滚筒温度控制在40℃~55℃,加入硫化剂以及硫化促进剂,翻炼,打包,小辊距薄通后,出片冷却停放,得B段胶;步骤3,将B段胶按需求进行裁切,得胶胚;步骤4,将胶胚放入对应的模具中,进行硫化,即得地铁轨道交通用橡胶垫板。
在本发明还提供了一种轨道交通路段,具有这样的特征,具有:钢轨;以及橡胶垫板,与轨道的钢轨相匹配使用,其中,橡胶垫板为上述的轨道交通用橡胶垫板。
在本发明提供的轨道交通路段中,还可以具有这样的特征,还具有:轨底托,设置在橡胶垫板的下方,其中,橡胶垫板为上述的轨道交通用橡胶垫板。
发明的作用与效果
根据本发明所涉及的轨道交通用橡胶垫板以及轨道交通路段,因为轨道交通用橡胶垫板包括板体以及设置在板体同一表面上突起部,其中突起部包括多组突起部件,多组突起部件从板体的一个边缘分布至与一个边缘相对的另一个边缘,因此能够在承受了不均匀的压力的情况下,也能保持均匀一致的变形量,从而使得车辆在通过轨道交通路段时保持平稳。
根据本发明所涉及的轨道交通用橡胶垫板,由于其原料包括100份基体橡胶、20-100 份填充剂、0-5份硅烷偶联剂、5-35份活性剂、0-15份增塑剂、3-10份颜料、1-3份防老剂、3-15份功能助剂、0.3-2.5份硫化剂以及2-8份硫化促进剂,所以,本发明能够提供具有多种刚度不同的、分别适用于多种不同轨道交通路段的轨道交通用橡胶垫板。
附图说明
图1是实施例一中轨道交通路段的结构示意图;
图2是图1中轨道交通路段沿A-A剖视线的剖视图;
图3是实施例一中轨道交通用橡胶垫板的结构示意图;
图4是实施例一中轨道交通用橡胶垫板的俯视图;
图5是实施例一中轨道交通用橡胶垫板的侧视图;
图6是实施例一中轨道交通用橡胶垫板的仰视图;
图7是实施例一中轨道交通用橡胶垫板在轨道交通路段中的安装示意图;
图8是图7中B区域的局部放大图;
图9是实施例五中轨道交通用橡胶垫板的结构示意图;
图10是实施例五中轨道交通用橡胶垫板的俯视图;
图11是实施例五中轨道交通用橡胶垫板的侧视图;
图12是实施例五中轨道交通用橡胶垫板的仰视图;
图13是实施例六中轨道交通用橡胶垫板的结构示意图;
图14是实施例六中轨道交通用橡胶垫板的俯视图;
图15是实施例六中轨道交通用橡胶垫板的侧视图;以及
图16是实施例六中轨道交通用橡胶垫板的仰视图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,以下结合实施例及附图对本发明作具体阐述。
下述实施例中使用的各个原料来源如下:
天然橡胶,NR-1#型,海南天然橡胶产业集团股份有限公司生产。
三元乙丙橡胶,4045M型,上海中石化三井弹性体有限公司生产。
三元乙丙橡胶,3092PM型,上海中石化三井弹性体有限公司生产。
白炭黑,VN3GR型,赢创嘉联白炭黑(南平)有限公司生产。
碳酸钙,轻质型,常山县恒大钙业有限公司生产。
石蜡油,H&R China(Ningbo)Co.,Ltd生产的1968A型。
硅烷偶联剂,南京奥诚化工有限公司生产的Si69。
石油树脂,TL100型,RUTGERS Germany GmbH公司生产。
微晶蜡,H&R China(Fushun)Co.,Ltd生产的9332F型。
分散剂WB215,Schill+Seilacher‘struktol’GmbH生产。
氧化锌,TY-100型,洛阳市蓝天化工科技有限公司生产。
硬脂酸,SA1840型,杭州油脂化工有限公司生产。
聚乙烯蜡,WB42型,Struktol Company of America公司生产。
聚乙二醇,为聚乙二醇4000,即PEG4000,远东联石化(扬州)有限公司生产。
钛白粉,R960,The Chemous Company,LLC生产。
氧化铬绿,SGC型,宜兴华谊一品着色科技有限公司生产。
铬黄,603H型,宜兴华谊一品着色科技有限公司生产。
氧化铁红,S103型,宜兴华谊一品着色科技有限公司生产。
炭黑,N330型,济宁博拉碳材料有限公司生产。
群青,U08型,宜兴华谊一品着色科技有限公司生产。
防老剂SPC,台州市黄岩东海化工有限公司生产。
防老剂2246,台州市黄岩东海化工有限公司生产
防老剂MB,BONDTEK CHEMICALS L.L.C公司生产。
硫磺,安庆市鑫泉硫化剂厂生产的粉体硫磺。
二硫化二苯并噻唑,即硫化促进剂DM,SOVMER CHEMICAL CO.,LTD公司生产。
N-环己基-2-苯并噻唑次磺酰胺,即硫化促进剂CZ,蔚林新材料科技股份生产。
二硫化四甲基秋兰姆,即硫化促进剂TT,镇江振邦化工有限公司生产。
二丁基二硫代氨基甲酸锌,即硫化促进剂ZDBC-75,嘉兴北化高分子助剂有限公司生产。
4,4’-二硫化二吗啉,即硫化促进剂DTDM-80,嘉兴北化高分子助剂有限公司生产。
<实施例一>
图1是实施例一中轨道交通路段的结构示意图,图2是图1中轨道交通路段沿A-A剖视线的剖视图。
如图1-2所示,本实施例提供了一种轨道交通路段10,该轨道交通路段10为弯道,包括:若干个枕轨11、轨底托12、轨道交通用橡胶垫板13以及两条钢轨14。
若干个轨枕11沿轨道交通路段10的延伸方向铺设,每个轨枕11的两端高于中部。
轨底托12分别安装在轨枕11的两端,每个轨底托12的设置有一个轨底托凹槽,轨底托凹槽的大小与轨道交通用橡胶垫板13的大小相适应。在安装轨底托12时,轨底托12靠近轨枕11端部的一侧稍高于靠近轨枕11中部的一侧。在本实施例中,轨底托12的安装坡度为1:40。
轨道交通用橡胶垫板13安装在轨底托凹槽中。本实施例中采用的轨道交通用橡胶垫板13的具体结构将在后文中进行详细介绍。
两条钢轨14分别设置在轨枕11两端的轨道交通用橡胶垫板13上且两条钢轨14平行设置。
图3是实施例一中轨道交通用橡胶垫板的结构示意图,图4是实施例一中轨道交通用橡胶垫板的俯视图,图5是实施例一中轨道交通用橡胶垫板的侧视图,图6是实施例一中轨道交通用橡胶垫板的仰视图。
如图3-6所示,轨道交通用橡胶垫板13具有:板体16、条分布突起部17、点分布突起部18以及沟槽19。
板体16呈长方体,其具有相对设置的第一边缘20以及第二边缘21。在本实施例中,板体16的长度为185mm,宽度为150mm,高度为7mm。
条分布突起部17设置在板体16的一个表面上,包括条形突起22以及条形凹槽23。
条形突起22沿板体11的第一边缘20延伸形成,并与板体16一体形成。
在本实施例中,条形突起22的数量为三个,三个条形突起22沿一个板体16的第一边缘20向第二边缘21依次分布,从第一边缘20开始分别为第一条形突起22a、第二条形突起22b以及第三条形突起22c。其中,第一条形突起22a的宽度为13mm,长度为185mm,高度为3mm;第二条形突起22b的宽度为20mm,长度为185mm,高度为3mm;第一条形突起22c的宽度为21mm,长度为185mm,高度为3mm。
条形凹槽23形成在相邻的两条条形突起22之间。在本实施例中,条形凹槽23的数量 为两个,分别为形成在第一条形突起22a和第二条形突起22b之间的第一条形凹槽23a以及形成在第二条形突起22b和第三条形突起22c之间的第二条形凹槽23b,其中,第一条形凹槽23a的宽度为4mm,第二条形凹槽23b的宽度为4mm。
点分布突起部18与条分布突起部17设置在板体16的同一个表面上并从第三条形突起22c的长侧边的一侧分布至板体16的第二边缘21。点分布突起部18也与板体16一体形成。点分布突起部18包括多排台形突起组24,多排台型突起组件24沿条形突起22的宽度方向形成,每排台型突起组件24包括多个台形突起25,同一排中的台形突起25的横截面的面积相同,各排台形突起组24的横截面的面积从板体16的第一边缘20朝第二边缘21逐渐减小,相邻两排中的各个台形突起25相错位设置。
在本实施例中,点分布突起部23包括六排台形突起组24,所有台形突起25均为圆柱体。六排台形突起组24从条形突起22的长侧边的一侧开始分别为第一排台形突起组24a、第二排台形突起组24b、第三排台形突起组24c、第四排台形突起组24d、第五排台形突起组24e以及第六排台形突起组24f。相邻两排台形突起组24之间的距离为17mm。所有台形突起25的上表面与条形突起22的上表面相平齐。
第一排台形突起组24a包括8个相同的台型突起25,第一排台形突起组24a中相邻的两个台型突起25的距离为8.5mm,每一个台形突起25的横截面为直径12mm的为圆形,其面积为6πmm 2,约为113.4mm 2
第二排台形突起组24b包括9个相同的台型突起25,第一排台形突起组24b中相邻的两个台型突起25的距离为8.5mm,每一个台形突起25的横截面为直径12mm的为圆形,其面积为36πmm 2,约为113.4mm 2
第三排台形突起组24c包括8个相同的台型突起25,第一排台形突起组24c中相邻的两个台型突起25的距离为10.5mm,每一个台形突起25的横截面为直径10mm的为圆形,其面积为25πmm 2,约为78.5mm 2
第四排台形突起组24d包括9个相同的台型突起25,第一排台形突起组24d中相邻的两个台型突起25的距离为10.5mm,每一个台形突起25的横截面为直径10mm的为圆形,其面积为25πmm 2,约为78.5mm 2
第五排台形突起组24e包括8个相同的台型突起25,第一排台形突起组24e中相邻的两个台型突起25的距离为12.3mm,每一个台形突起25的横截面为直径8mm的为圆形,其面积为16πmm 2,约为50.2mm 2
第六排台形突起组24f包括9个相同的台型突起25,第一排台形突起组24f中相邻的两个台型突起20的距离为12.3mm,每一个台形突起25的横截面为直径8mm的为圆形,其面积为16πmm 2,约为50.2mm 2
多道沟槽19形成在板体16的另一个表面上。在本实施例中,沟槽19的为五道直型沟槽,五道沟槽19均匀地分布在板体16的表面上。五道沟槽19平行设置且延伸方向与条形突起22的长度方向保持一致。五道沟槽19的宽度相同,均为4mm,相邻两道沟槽19的距离均为21mm。
图7是实施例一中轨道交通用橡胶垫板在轨道交通路段中的安装示意图。图8是图7中B区域的局部放大图。
为了更好地展示轨道交通用橡胶垫板13在轨道交通路段10中的安装状态,在图7中省略了部分设置在轨道交通用橡胶垫板13正上方的钢轨14。
如图7-8所示,在本实施例中,由于轨底托12的安装坡度为1:40,符合轨底托12在轨道交通路段10的安装标准,所以为了提供更好的减振效果,轨道交通用橡胶垫板13在安装时,其点分布突起部18位于靠近两条钢轨14的中间线的一侧,同时轨道交通用橡胶垫板 13具有条分布突起部17、点分布突起部18一面朝向钢轨14的底部,但是在其他一些实施方式中,轨道交通用橡胶垫板13具有条分布突起部17、点分布突起部18一面也可以朝向轨底托12的上表面设置。
本实施例中的轨道交通用橡胶垫板由下述按重量份计的原料制备而成:
100份NR-1#天然橡胶、60份白炭黑、5份碳酸钙、30份氧化锌、1.5份硬脂酸、1.5份防老剂SPC、1份防老剂2246、2份微晶蜡、1份WB215、5份PEG4000、5份钛白粉、2份氧化铬绿、0.8份硫磺、1.3份二硫化二苯并噻唑、2.5份N-环己基-2-苯并噻唑次磺酰胺以及1.3份二硫化四甲基秋兰姆。
本实施例中地铁轨道交通用橡胶垫板组合物的制备方法如下:
步骤1,将100份NR-1#天然橡胶、60份白炭黑、5份碳酸钙、30份氧化锌、1.5份硬脂酸、1.5份防老剂SPC、1份防老剂2246、2份微晶蜡、1份WB215、5份PEG4000、5份钛白粉以及2份氧化铬绿,密炼2min,加入40份白炭黑、3.3份碳酸钙混炼5min,最后加入20份白炭黑、1.7份碳酸钙,混炼4min,控制密炼机内部温度为100℃,通升栓排胶,冷却,停放10h,得A段胶;
步骤2,将A段料加入开炼机中进行热炼,开炼机的滚筒温度控制在50℃,加入0.8份硫磺、1.3份二硫化二苯并噻唑、2.5份N-环己基-2-苯并噻唑次磺酰胺以及1.3份二硫化四甲基秋兰姆,翻炼4次,打包4次,小辊距薄通5次后,出片冷却停放,得B段胶;
步骤3,将B段胶按需求进行裁切,得胶胚;
步骤4,将胶胚放入对应的模具中,进行硫化,即得地铁轨道交通用橡胶垫板。
对本实施例制得的轨道交通用橡胶垫板进行性能测试,其中邵氏硬度的测试方法为GB/T 531.1-2008,拉伸强度的测试方法为GB/T 528-2009,拉断伸长率的测试方法为GB/T 528-2009,定伸应力的测试方法为GB/T 528-2009,静刚度的测试方法为按TB/T 3395.1-2015附录A进行。
测试结果如表1所示。
表1实施例一中橡胶垫板的测试结果
测试内容 测试结果
邵氏硬度 81 shore A
拉伸强度 19.3MPa
拉断伸长率 315%
200%定伸应力 11.5MPa
最小静刚度 * 30kN/mm
最大静刚度 ** 180kN/mm
*注:最小静刚度是指橡胶垫板刚度最小的一侧的静刚度,下同。
**注:最大静刚度是指橡胶垫板刚度最大的一侧的静刚度,下同
实施例一的作用与效果
根据本实施例所涉及的轨道交通路段以及轨道交通用橡胶垫板,因为轨道交通用橡胶垫板包括板体以及设置在板体同一表面上的条分布突起部和点分布突起部,所以,轨道交通用橡胶垫板具有条形突起凸起部的一侧较具有点分布凸起部的一侧的刚度更大,当轨道交通用橡胶垫板被安装在位于弯道处的轨道交通路段时,可以平衡车辆在弯道处行驶时产生的离心力,自动补偿变形量,使得整个轨道交通用橡胶垫板各位置的变形量相近,从而有利于在轨道交通路段弯道处上行驶的车辆保持平稳,减振降噪。
与此同时,本实施例提供的轨道交通用橡胶垫板采用了NR-1#天然橡胶、白炭黑、硅烷 偶联剂、氧化锌、硬脂酸、防老剂SPC、防老剂2246、微晶蜡、WB215、PEG4000、钛白粉、氧化铬绿、硫磺、二硫化二苯并噻唑、N-环己基-2-苯并噻唑次磺酰胺以及二硫化四甲基秋兰姆为原料,所以该橡胶垫板的最小静刚度为30kN/mm,最大静刚度为180kN/mm,与运行轴重为16t的地铁的地铁轨道曲线半径小于等于400m的弯道内股处需求的静刚度相匹配,适合安装在运行轴重为16t的地铁的地铁轨道曲线半径小于等于400m的弯道内股处。
进一步地,因为轨道交通用橡胶垫板的另一个表面形成五道相互平行且均匀分布的沟槽,所以一方面在轨道交通用橡胶垫板具有条分布突起部和点分布突起部表面发生剧烈表面变形的情况下能够吸收一部分力从而避免轨道交通用橡胶垫板被过度的扭曲变形;另一方面,可以在雨天引导积水快速排出,保证轨道交通路段的通畅。
进一步地,因为在本实施例中的轨道交通用橡胶垫板的制备步骤的步骤一中进行了冷却停放10h的操作,所以这不仅能在后续的步骤中保证A段胶的收缩稳定剂,还能让各个助剂与基体橡胶支架充分浸润融合,从而能够提升地铁轨道交通用橡胶垫板的机械强度。
进一步地,因为在本实施例中的轨道交通用橡胶垫板的制备步骤的步骤二中进行了小辊距薄通5次,出片冷却停放的操作,所以这不仅能够使得粉料在A段胶中能够充分地分散融合,还能避免加工温度过高引发的焦烧。
<实施例二>
本实施例提供了一种轨道交通用橡胶垫板,其结构与实施例一中的轨道交通用橡胶垫板的结构完全相同。
本实施例提供的轨道交通用橡胶垫板由下述按重量份计的原料制备而成:
100份NR-1#天然橡胶、50份白炭黑、25份碳酸钙、2份硅烷偶联剂、2份石蜡油、5份氧化锌、1.5份硬脂酸、1份防老剂SPC、1份防老剂2246、3.5份微晶蜡、1份WB215、3.5份PEG4000、5份钛白粉、2份氧化铬绿、2.3份硫磺、1.5份二硫化二苯并噻唑、1份N-环己基-2-苯并噻唑次磺酰胺以及0.3份二硫化四甲基秋兰姆。
本实施例中地铁轨道交通用橡胶垫板的制备方法如下:
步骤1,将100份NR-1#天然橡胶加入密炼机中,炼制7min后,加入2份硅烷偶联剂、2份石蜡油、5份氧化锌、1.5份硬脂酸、1份防老剂SPC、1份防老剂2246、3.5份微晶蜡、1份WB215、3.5份PEG4000、5份钛白粉以及2份氧化铬绿,密炼2min,加入33.3份白炭黑、16.7份碳酸钙混炼5min,最后加入16.7份白炭黑、8.3份碳酸钙,混炼4min,控制密炼机内部温度为100℃,通升栓排胶,冷却,停放10h,得A段胶;
步骤2,将A段料加入开炼机中进行热炼,开炼机的滚筒温度控制在50℃,加入2.3份硫磺、1.5份二硫化二苯并噻唑、1份N-环己基-2-苯并噻唑次磺酰胺以及0.3份二硫化四甲基秋兰姆,翻炼4次,打包4次,小辊距薄通5次后,出片冷却停放,得B段胶;
步骤3,将B段胶按需求进行裁切,得胶胚;
步骤4,将胶胚放入对应的模具中,进行硫化,即得地铁轨道交通用橡胶垫板。
对本实施例制得的地铁轨道交通用橡胶垫板组合物进行性能测试,测试方法与实施例一中相同。
测试结果如表2所示。
表2实施例二中橡胶垫板的测试结果
测试内容 测试结果
邵氏硬度 69 shore A
拉伸强度 20.9MPa
拉断伸长率 480%
200%定伸应力 6.0MPa
最小静刚度 25kN/mm
最大静刚度 160kN/mm
实施例二的作用与效果
根据本实施例所涉及的轨道交通用橡胶垫板,因为轨道交通用橡胶垫板的最小静刚度为25kN/mm,最大静刚度为160kN/mm,所以与运行轴重为14t的地铁的地铁轨道曲线半径小于等于400m的弯道内股处所需的轨道交通用橡胶垫板的静刚度相匹配,特别适合安装在运行轴重为14t的地铁的地铁轨道曲线半径小于等于400m的弯道内股处。
<实施例三>
本实施例提供了一种轨道交通用橡胶垫板,其结构与实施例一中的轨道交通用橡胶垫板的结构完全相同。
本实施例中的轨道交通用橡胶垫板由下述按重量份计的原料制备而成:
30份4045M三元乙丙橡胶、70份3092PM三元乙丙橡胶、40份白炭黑、22份碳酸钙、2份硅烷偶联剂、12份石蜡油、5份氧化锌、1.5份硬脂酸、1份防老剂MB、0.6份防老剂2246、2份微晶蜡、2份聚乙烯蜡WB42、3份PEG4000、3份石油树脂TL-100、3份钛白粉、1.5份氧化铬绿、0.5份硫磺、2份二硫化二苯并噻唑、1.3份二丁基二硫代氨基甲酸锌、1.3份4,4’-二硫化二吗啉、0.5份二硫化四甲基秋兰姆。
本实施例中地铁轨道交通用橡胶垫板组合物的制备方法如下:
步骤1,将30份4045M三元乙丙橡胶、70份3092PM三元乙丙橡胶加入密炼机中,炼制7min后,加入2份硅烷偶联剂、12份石蜡油、5份氧化锌、1.5份硬脂酸、1份防老剂MB、0.6份防老剂2246、2份微晶蜡、2份聚乙烯蜡WB42、3份PEG4000、3份石油树脂TL-100、3份钛白粉以及1.5份氧化铬绿,密炼2min,加入26.7份白炭黑、14.7份碳酸钙混炼5min,最后加入13.3份白炭黑、7.3份碳酸钙以及12份石蜡油,混炼4min,控制密炼机内部温度为100℃,通升栓排胶,冷却,停放10h,得A段胶;
步骤2,将A段料加入开炼机中进行热炼,开炼机的滚筒温度控制在50℃,加入0.5份硫磺、2份二硫化二苯并噻唑、1.3份二丁基二硫代氨基甲酸锌、1.3份4,4’-二硫化二吗啉、0.5份二硫化四甲基秋兰姆,翻炼4次,打包4次,小辊距薄通5次后,出片冷却停放,得B段胶;
步骤3,将B段胶按需求进行裁切,得胶胚;
步骤4,将胶胚放入对应的模具中,进行硫化,即得地铁轨道交通用橡胶垫板。
对本实施例制得的地铁轨道交通用橡胶垫板组合物进行性能测试,测试方法与实施例一中相同。
测试结果如表3所示。
表3实施例三中橡胶垫板的测试结果
测试内容 测试结果
邵氏硬度 70 shore A
拉伸强度 15.5MPa
拉断伸长率 475%
200%定伸应力 4.6MPa
最小静刚度 25kN/mm
最大静刚度 160kN/mm
实施例三的作用与效果
根据本实施例所涉及的轨道交通用橡胶垫板的最小静刚度为25kN/mm,最大静刚度为160kN/mm,所以与运行轴重为14t的地铁的地铁轨道曲线半径小于等于400m的弯道内股处所需的轨道交通用橡胶垫板的静刚度相匹配,特别适合安装在地铁轨道曲线半径小于等于400m的弯道内股处。
进一步地,因为本实施例采用的轨道交通用橡胶垫板使用的轨道交通用橡胶垫板组合物中的基质橡胶为三元乙丙橡胶,所以,本实施例提供的轨道交通用橡胶垫板具有更好的耐候性,能够承受较大的温差变化,更加适用于高架路段或路基段。
<实施例四>
本实施例提供了一种轨道交通用橡胶垫板,其结构与实施例一中的轨道交通用橡胶垫板的结构完全相同。
本实施例中的轨道交通用橡胶垫板由下述按重量份计的原料制备而成:
30份4045M三元乙丙橡胶、70份3092PM三元乙丙橡胶、45份白炭黑、25份碳酸钙、2份硅烷偶联剂、8份石蜡油、5份氧化锌、1.5份硬脂酸、1份防老剂MB、0.6份防老剂2246、2份微晶蜡、2份聚乙烯蜡WB42、3份PEG4000、3份石油树脂TL-100、3份钛白粉、1.5份铬黄、0.5份硫磺、2份二硫化二苯并噻唑、1.3份二丁基二硫代氨基甲酸锌、0.5份二硫化四甲基秋兰姆以及1.3份4,4’-二硫化二吗啉。
本实施例中地铁轨道交通用橡胶垫板的制备方法如下:
步骤1,将30份4045M三元乙丙橡胶、70份3092PM三元乙丙橡胶加入密炼机中,炼制7min后,加入2份硅烷偶联剂、8份石蜡油、5份氧化锌、1.5份硬脂酸、1份防老剂MB、0.6份防老剂2246、2份微晶蜡、2份聚乙烯蜡WB42、3份PEG4000、3份石油树脂TL-100、3份钛白粉以及1.5份铬黄,密炼2min,加入30份白炭黑、16.7份碳酸钙混炼5min,最后加入15份白炭黑、8.3份碳酸钙以及8份石蜡油,混炼4min,控制密炼机内部温度为100℃,通升栓排胶,冷却,停放10h,得A段胶;
步骤2,将A段料加入开炼机中进行热炼,开炼机的滚筒温度控制在50℃,加入0.5份硫磺、2份二硫化二苯并噻唑、1.3份二丁基二硫代氨基甲酸锌、、0.5份二硫化四甲基秋兰姆以及1.3份4,4’-二硫化二吗啉,翻炼4次,打包4次,小辊距薄通5次后,出片冷却停放,得B段胶;
步骤3,将B段胶按需求进行裁切,得胶胚;
步骤4,将胶胚放入对应的模具中,进行硫化,即得地铁轨道交通用橡胶垫板。
对本实施例制得的地铁轨道交通用橡胶垫板组合物进行性能测试,测试方法与实施例一中相同。
测试结果如表4所示。
表4实施例四中橡胶垫板的测试结果
测试内容 测试结果
邵氏硬度 75 shore A
拉伸强度 17.7MPa
拉断伸长率 431%
200%定伸应力 5.4MPa
最小静刚度 25kN/mm
最大静刚度 150kN/mm
实施例四的作用与效果
根据本实施例所涉及的轨道交通用橡胶垫板,除了具有与实施例八中相同的技术效果外,还因为采用了实施例六中的轨道交通用橡胶垫板组合物制成,其最静刚度为25kN/mm,最静刚度为150kN/mm,所以与运行轴重为16t的地铁的地铁轨道弯道(曲线半径小于等于400m)外股处所需的轨道交通用橡胶垫板的静刚度相匹配,特别适合安装在地铁轨道曲线半径小于等于400m的弯道外股处。
进一步地,因为本实施例采用的轨道交通用橡胶垫板使用的轨道交通用橡胶垫板组合物中的基质橡胶为三元乙丙橡胶,所以,本实施例提供的轨道交通用橡胶垫板具有更好的耐候性,能够承受较大的温差变化,更加适用于高架路段或路基段。
<实施例五>
图9是实施例五中轨道交通用橡胶垫板的结构示意图,图10是实施例五中轨道交通用橡胶垫板的俯视图,图11是实施例五中轨道交通用橡胶垫板的侧视图,图12是实施例五中轨道交通用橡胶垫板的仰视图。
如图9-12所示,本实施例提供的轨道交通用橡胶垫板113具有:板体116、条分布突起部117、支脚118以及沟槽119。
板体116呈长方体,其具有相对设置的第一边缘120以及第二边缘121。在本实施例中,板体116的长度为185mm,宽度为150mm,高度为10mm。
条分布突起部117设置在板体116的一个表面上,包括条形突起122以及条形凹槽123。
条形突起122沿板体111的第一边缘120延伸形成,并与板体116一体形成,所有条形突起122的上表面相平齐。
在本实施例中,条分布突起部117包括11个条形突起122,11个条形突起从板体111的第一边缘120分布至与第一边缘120相对的第二边缘121,沿第一边缘120开始分别为第一条形突起122a、第二条形突起122b、第三条形突起122c、第四条形突起122d、第五条形突起122e、第六条形突起122f、第七条形突起122g、第八条形突起122h、第九条形突起122i、第十条形突起122j以及第十一条形突起122k。
11个条形突起122的宽度从第一边缘120朝第二边缘121逐渐减小。在本实施例中,第一条形突起122a的宽度为20mm,第二条形突起122b的宽度为18.2mm,第三条形突起122c的宽度为11mm,第四条形突起122d的宽度为9.3mm,第五条形突起122e的宽度为8.4mm,第六条形突起122f的宽度为7.8mm,第七条形突起122f的宽度为6.5mm,第八条形突起122g的宽度为5.6mm,第九条形突起122h的宽度为4.3mm,第十条形突起122i的宽度为4.3mm,第十一条形突起122j的宽度为2.7mm。
条形凹槽123设置在相邻的两个条形突起122之间,在本实施例中,共有10个条形凹槽123,所有的条形凹槽123的间距相等,均为4mm。
支脚118形成在板体116的另一个表面上,用于与轨底托凹槽相互配合,从而将板体116更稳固地嵌入轨底托内。在本实施例中,支脚118的数量为4个,分别形成在板体116的另一个表面的四个角部。
多道沟槽119形成在板体116的另一个表面上。在本实施例中,沟槽119为五道直型沟槽,五道沟槽119均匀地分布在板体116的表面上。五道沟槽119平行设置且延伸方向与条形突起122的长度方向保持一致。五道沟槽119的宽度相同,均为4mm,相邻两道沟槽119的距离均为21mm。
在本实施例中,由于轨底托112的安装坡度为1:40,符合轨底托在轨道交通路段的安 装标准,所以为了提供更好的减振效果,轨道交通用橡胶垫板113在安装时,第二边缘121位于靠近两条钢轨的中间线的一侧,即靠近两条钢轨14的中间线的一侧的条形突起122的宽度大于远离两条钢轨114的中间线的一侧的条形突起122的宽度。同时,轨道交通用橡胶垫板113具有条分布突起部117一面朝向钢轨的底部。
本实施例中的轨道交通用橡胶垫板由下述按重量份计的原料制备而成:
100份NR-1#天然橡胶、60份白炭黑、5份碳酸钙、30份氧化锌、1.5份硬脂酸、1.5份防老剂SPC、1份防老剂2246、2份微晶蜡、1份WB215、5份PEG4000、5份钛白粉、2份群青、0.8份硫磺、1.3份二硫化二苯并噻唑、2.5份N-环己基-2-苯并噻唑次磺酰胺以及1.3份二硫化四甲基秋兰姆。
本实施例中地铁轨道交通用橡胶垫板的制备方法如下:
步骤1,将100份NR-1#天然橡胶、60份白炭黑、5份碳酸钙、30份氧化锌、1.5份硬脂酸、1.5份防老剂SPC、1份防老剂2246、2份微晶蜡、1份WB215、5份PEG4000、5份钛白粉以及2份群青,密炼2min,加入40份白炭黑、3.3份碳酸钙混炼5min,最后加入20份白炭黑、1.7份碳酸钙,混炼4min,控制密炼机内部温度为100℃,通升栓排胶,冷却,停放10h,得A段胶;
步骤2,将A段料加入开炼机中进行热炼,开炼机的滚筒温度控制在50℃,加入0.8份硫磺、1.3份二硫化二苯并噻唑、2.5份N-环己基-2-苯并噻唑次磺酰胺以及1.3份二硫化四甲基秋兰姆,翻炼4次,打包4次,小辊距薄通5次后,出片冷却停放,得B段胶;
步骤3,将B段胶按需求进行裁切,得胶胚;
步骤4,将胶胚放入对应的模具中,进行硫化,即得地铁轨道交通用橡胶垫板。
对本实施例制得的地铁轨道交通用橡胶垫板进行性能测试,测试方法与实施例一中相同。
测试结果如表5所示。
表5实施例五中橡胶垫板的测试结果
测试内容 测试结果
邵氏硬度 80 shore A
拉伸强度 18.9MPa
拉断伸长率 302%
200%定伸应力 11.9MPa
最小静刚度 50kN/mm
最大静刚度 300kN/mm
实施例五的作用与效果
根据本实施例所涉及的轨道交通用橡胶垫板及轨道交通路段,因为轨道交通用橡胶垫板包括板体以及突起部,突起部为包含多个条形突起的条形突起部,多个条形突起的宽度从板体第一边缘朝板体的第二边缘逐渐减小,所以,当车辆经过轨道交通路段的弯道处时,由于离心力的作用,车辆会对钢轨的外侧产生的压力会比对钢轨内侧产生的压力更大,相应地,钢轨对轨道交通用橡胶垫板位于钢轨外侧的一侧产生的压力会比对位于钢轨内侧的一侧产生的压力更大,由于本实施例提供的轨道交通用橡胶垫板,在安装时板体的第二边缘靠近两条钢轨的中心线的一侧,因此整个轨道交通用橡胶垫板各位置的变形量相近,从而有利于在轨道交通路段弯道处上行驶的车辆保持平稳,减振降噪。
与此同时,由于轨道交通用橡胶垫板由NR-1#天然橡胶、白炭黑、碳酸钙、氧化锌、硬脂酸、防老剂SPC、防老剂2246、微晶蜡、WB215、PEG4000、钛白粉、群青、硫磺、二 硫化二苯并噻唑、N-环己基-2-苯并噻唑次磺酰胺以及二硫化四甲基秋兰姆制成,所以,该轨道交通用橡胶垫板的最小静刚度为50kN/mm,最大静刚度为300kN/mm,与重载铁路的直道处所需的轨道交通用橡胶垫板的静刚度相匹配,所以,本实施例提供的轨道交通用橡胶垫板尤其适用在重载铁路铁路的直道处。
进一步地,因为轨道交通用橡胶垫板的另一个表面形成五道相互平行且均匀分布的沟槽,所以,一方面,能够在垫板因受力发生变形的情况下吸收一部分力,从而避免垫板过度扭曲变形;另一方面,可以在雨天引导积水快速排出,保证轨道交通路段的通畅。
进一步地,因为轨道交通用橡胶垫板中的条分布突起部靠近第一边缘一侧与钢轨的底部的接触面积大于条分布突起部靠近第二边缘一侧与钢轨的底部的接触面积,使得条分布突起部与钢轨之间有更大的横向摩擦力,从而使得钢轨与轨道交通用橡胶垫板之间的安装更为可靠,不易发生位移。
<实施例六>
图13是实施例六中轨道交通用橡胶垫板的结构示意图,图14是实施例六中轨道交通用橡胶垫板的俯视图,图15是实施例六中轨道交通用橡胶垫板的侧视图,图16是实施例六中轨道交通用橡胶垫板的仰视图。
如图13-16所示,本实施例提供的轨道交通用橡胶垫板131具有:板体132、点分布突起部133、支脚134以及沟槽135。
板体132呈长方体,其具有相对设置的第一边缘136以及第二边缘137。在本实施例中,板体132的长度为185mm,宽度为150mm,高度为10mm。
点分布突起部133包括复数个上表面相平齐的台形突起138,复数个台形突起138从板体132的第一边缘135并分布与第二边缘136。复数个台形突起138在板体132的长度方向形成有多排台形突起组,相邻的两排台形突起组错位设置。
复数个台形突起138均具有横截面,每一排中台形突起138的横截面的面积均相同,各排台形突起组中的台形突起138的横截面的面积从第一边缘136到第二边缘137逐渐减小。
具体地,在本实施例中,台形突起138的数量为95个。95个台形突起138均成圆柱体状,其横截面均为圆形。在别的实施方式中,台形突起的形状也可以为别的形状,如圆台体状、长方体状、四面体状,椭圆柱体等形状。
95个台形突起138在板体132的长度方向形成有10排,沿第一边缘136开始分别为第一排台形突起组139a、第二排台形突起组139b、第三排台形突起组139c、第四排台形突起组139d、第五排台形突起组139e、第六排台形突起组139f、第七排台形突起组139g、第八排台形突起组139h、第九排台形突起组139i以及第十排台形突起组139j。
在第一排台形突起组139a、第三排台形突起组139c、第五排台形突起组139e、第七排台形突起组139g以及第九排台形突起组139i中,每排台形突起组139具有8个台型突起138;在第二排台形突起组139b、第四排台形突起组139d、第六排台形突起组139f、第八排台形突起组139h以及第十排台形突起组139j中,每排台形突起组139包括9个台型突起138。
第一排台形突起组139a中台形突起138的直径为44.04mm,横截面的面积为154.30mm 2,第二排台形突起组139b中台形突起138的直径为44.04mm,横截面的面积为154.30mm 2,第三排台形突起组139c中台形突起138的直径为36.7mm,横截面的面积为107.16mm 2,第四排台形突起组139d中台形突起138的直径为36.7mm,横截面的面积为107.16mm 2,第五排台形突起组139e中台形突起138的直径为30.58mm,横截面的面积为74.41mm 2,第六排台形突起组139f中台形突起138的直径为30.58mm,横截面的面积为 74.41mm 2,第七排台形突起组139g中台形突起138的直径为24.47mm,横截面的面积为47.64mm 2,第八排台形突起组139h中台形突起138的直径为24.47mm,横截面的面积为47.64mm 2,第九排台形突起组139i中台形突起138的直径为18.32mm,横截面的面积为26.70mm 2,第十排台形突起组139j中台形突起138的直径为18.32mm,横截面的面积为26.70mm 2
支脚134形成在板体132的另一个表面上,用于与轨底托凹槽相互配合,从而将板体132更稳固地嵌入轨底托112内。在本实施例中,支脚134的数量为4个,分别形成在板体132的另一个表面的四个角部。
多道沟槽135在板体132另一个表面上。在本实施例中,沟槽135为五道直型沟槽,五道沟槽135在板体132的表面上均匀地分布。五道沟槽135平行设置且延伸方向各排台形突起的排列的方向保持一致。五道沟槽135的宽度相同,均为4mm,相邻两道沟槽135的距离均为21mm。
在本实施例中,由于轨底托的安装坡度为1:40,符合轨底托在轨道交通路段的安装标准。为了提供更好的减振效果,轨道交通用橡胶垫板131在安装时,第二边缘136位于靠近两条钢轨的中间线的一侧,即、靠近两条钢轨的中间线的一侧的台形突起138的横截面面积大于远离两条钢轨的中间线的一侧的台形突起138的横截面面积。同时,本实施例中,轨道交通用橡胶垫板131具有点分布突起部133一面朝向钢轨的底部。
本实施例中的轨道交通用橡胶垫板由下述按重量份计的原料制备而成:
100份NR-1#天然橡胶、25份白炭黑、1份硅烷偶联剂、30份氧化锌、1.5份硬脂酸、1.5份防老剂SPC、1份防老剂2246、2份微晶蜡、1份WB215、1.5份PEG4000、5份钛白粉、0.3份炭黑、0.8份硫磺、1份二硫化二苯并噻唑、2份N-环己基-2-苯并噻唑次磺酰胺以及2份二硫化四甲基秋兰姆。
本实施例提供的地铁轨道交通用橡胶垫板制备方法如下:
步骤1,将100份NR-1#天然橡胶加入密炼机中,炼制7min后,加入1份硅烷偶联剂、30份氧化锌、1.5份硬脂酸、1.5份防老剂SPC、1份防老剂2246、2份微晶蜡、1份WB215、1.5份PEG4000、5份钛白粉以及0.3份炭黑,密炼2min,加入16.7份白炭黑混炼5min,最后加入8.3份白炭黑,混炼4min,控制密炼机内部温度为100℃,通升栓排胶,冷却,停放10h,得A段胶;
步骤2,将A段料加入开炼机中进行热炼,开炼机的滚筒温度控制在50℃,调整辊距为1.0mm,加入0.8份硫磺、1份二硫化二苯并噻唑、2份N-环己基-2-苯并噻唑次磺酰胺以及2份二硫化四甲基秋兰姆,翻炼4次,打包4次,小辊距薄通5次后,出片冷却停放,得B段胶;
步骤3,将B段胶按需求进行裁切,得胶胚;
步骤4,将胶胚放入对应的模具中,进行硫化,即得地铁轨道交通用橡胶垫板组合物。
对本实施例制得的地铁轨道交通用橡胶垫板进行性能测试,测试方法与实施例一中相同。
测试结果如表6所示。
表6实施例六中橡胶垫板的测试结果
测试内容 测试结果
邵氏硬度 59 shore A
拉伸强度 17.2MPa
拉断伸长率 352%
200%定伸应力 6.4MPa
最小静刚度 15kN/mm
最大静刚度 140kN/mm
实施例六的作用与效果
根据本实施例所涉及的轨道交通用橡胶垫板及轨道交通路段,轨道交通用橡胶垫板包括板体以及突起部,突起部为包含多个台形突起的点分布突起部,多个台形突起排列成十排台形突起组,十排台形突起组中台形突起上表面横截面的面积从板体第一边缘朝板体的第二边缘逐渐减小,所以,轨道交通用橡胶垫板的刚度从从板体的第一边缘朝板体的第二边缘逐渐减小。当车辆经过轨道交通路段的弯道处时,由于离心力的作用,车辆会对钢轨的外侧产生的压力会比对钢轨内侧产生的压力更大,相应地,钢轨对轨道交通用橡胶垫板位于钢轨外侧的一侧产生的压力会比对位于钢轨内侧的一侧产生的压力更大,由于本实施例提供的轨道交通用橡胶垫板中具有横截面面积较大的台形突起的一侧相对于横截面面积较小的台形突起的一侧具有更大的刚度,因此能够在承受较大的作用力的情况下发生更小的形变,从而有利于在轨道交通路段弯道处上行驶的车辆保持平稳,减振降噪。
与此同时,由于采用了NR-1#天然橡胶、白炭黑、硅烷偶联剂、氧化锌、硬脂酸、防老剂SPC、防老剂2246、微晶蜡、WB215、PEG4000、钛白粉、炭黑、硫磺、二硫化二苯并噻唑、N-环己基-2-苯并噻唑次磺酰胺以及二硫化四甲基秋兰姆为原料,所以本实施例的轨道交通用橡胶垫板的最小静刚度为15kN/mm,最大静刚度为140kN/mm,与运行轴重为14t的地铁的地铁轨道曲线半径大于400米的弯道处所需的轨道交通用橡胶垫板的静刚度相匹配,所以本实施例的轨道交通用橡胶垫板特别适合安装在地铁轨道曲线半径大于400米的弯道处。
进一步地,因为轨道交通用橡胶垫板中的点分布突起部靠近第一边缘一侧与钢轨的底部的接触面积大于点分布突起部靠近第二边缘一侧与钢轨的底部的接触面积,使得点分布突起部与钢轨之间有更大的横向摩擦力,从而使得钢轨与轨道交通用橡胶垫板之间的安装更为可靠,不易发生位移。
<实施例七>
本实施例提供了一种轨道交通用橡胶垫板,其结构与实施例六中的轨道交通用橡胶垫板的结构完全相同。
本实施例中的轨道交通用橡胶垫板由下述按重量份计的原料制备而成:
30份4045M三元乙丙橡胶、70份3092PM三元乙丙橡胶、55份白炭黑、20份碳酸钙、2份硅烷偶联剂、9份石蜡油、5份氧化锌、1.5份硬脂酸、1份防老剂MB、0.6份防老剂2246、2份微晶蜡、2份聚乙烯蜡WB42、3份PEG4000、3份石油树脂TL-100、3份钛白粉、1.5份氧化铁红、0.5份硫磺、2份二硫化二苯并噻唑、1.3份二丁基二硫代氨基甲酸锌、0.5份二硫化四甲基秋兰姆以及1.3份4,4’-二硫化二吗啉。
本实施例中地铁轨道交通用橡胶垫板组合物的制备方法如下:
步骤1,将30份4045M三元乙丙橡胶、70份3092PM三元乙丙橡胶加入密炼机中,炼制7min后,加入2份硅烷偶联剂、9份石蜡油、5份氧化锌、1.5份硬脂酸、1份防老剂MB、0.6份防老剂2246、2份微晶蜡、2份聚乙烯蜡WB42、3份PEG4000、3份石油树脂TL-100、3份钛白粉、1.5份氧化铁红,密炼2min,加入36.7份白炭黑、13.3份碳酸钙混炼5min,最后加入18.3份白炭黑、6.7份碳酸钙以及9份石蜡油,混炼4min,控制密炼机内部温度为100℃,通升栓排胶,冷却,停放10h,得A段胶;
步骤2,将A段料加入开炼机中进行热炼,开炼机的滚筒温度控制在50℃,加入0.5 份硫磺、2份二硫化二苯并噻唑、1.3份二丁基二硫代氨基甲酸锌、0.5份二硫化四甲基秋兰姆以及1.3份4,4’-二硫化二吗啉,翻炼4次,打包4次,小辊距薄通5次后,出片冷却停放,得B段胶;
步骤3,将B段胶按需求进行裁切,得胶胚;
步骤4,将胶胚放入对应的模具中,进行硫化,即得地铁轨道交通用橡胶垫板。
对本实施例制得的地铁轨道交通用橡胶垫板进行性能测试,测试方法与实施例一中相同。
测试结果如表7所示。
表7实施例七中橡胶垫板的测试结果
测试内容 测试结果
邵氏硬度 79 shore A
拉伸强度 17.3MPa
拉断伸长率 352%
200%定伸应力 6.8MPa
最小静刚度 20kN/mm
最大静刚度 160kN/mm
实施例七的作用与效果
根据本实施例所涉及的轨道交通用橡胶垫板,因为轨道交通用橡胶垫板的最小静刚度为20kN/mm,最大静刚度为160kN/mm,所以与用于运行轴重为16t的地铁的地铁轨道的弯道处(曲线半径大于400米)所需的轨道交通用橡胶垫板的静刚度相匹配,特别适合安装在地铁轨道曲线半径大于400米的弯道处。
进一步地,因为本实施例采用的轨道交通用橡胶垫板使用的轨道交通用橡胶垫板组合物中的基质橡胶为三元乙丙橡胶,所以,本实施例提供的轨道交通用橡胶垫板具有更好的耐候性,能够承受较大的温差变化,更加适用于高架路段或路基段。
上述实施方式为本发明的优选案例,并不用来限制本发明的保护范围。
在别的实施方式中,可以根据实际需要设置更多道沟槽或更少道沟槽。
在别的实施方式中,多道沟槽也可以设置成多道曲线沟槽。
在别的实施方式中,沟槽的延伸方向也不局限于与条形突起的长度方向保持一致,也可以与条形突起的长度方向相互垂直或者呈任意角度。
在别的实施方式中,多道沟槽的宽度可以不相同,可以设置成从板体的板体的一个边缘到另一个边缘渐变的状态。
在某些情形下,如轨底托的安装不符合在轨道交通路段的安装标准时,为了保证轨道交通用橡胶垫板能提供足够的减振效果,轨道交通用橡胶垫板在安装时,其点分布突起部位于远离两条钢轨的中间线的一侧,但是并不限定轨道交通用橡胶垫板具有条分布突起部、点分布突起部一面的朝向,既可以朝向钢轨的底部设置,也可以朝向轨底托的上表面设置。

Claims (23)

  1. 一种轨道交通用橡胶垫板,与轨道的钢轨相匹配使用,其特征在于,具有:
    板体;以及
    突起部,设置在所述板体的一个表面上,
    其中,所述突起部包括多组突起部件,
    所述多组突起部件从所述板体的一个边缘分布至与所述一个边缘相对的另一个边缘,
    所述轨道交通用橡胶垫板的原料包括下述按重量份计的组分:
    100份基体橡胶、20-100份填充剂、0-5份硅烷偶联剂、5-35份活性剂、0-15份增塑剂、3-10份颜料、1-3份防老剂、3-15份功能助剂、0.3-2.5份硫化剂以及2-8份硫化促进剂。
  2. 根据权利要求1所述的轨道交通用橡胶垫板,其特征在于:
    其中,所述突起部包括:
    条分布突起部,设置在所述板体的一个表面上;以及
    点分布突起部,与所述条分布突起部设置在同一个所述表面上,
    所述条分布突起部与所述点分布突起部邻接形成,
    所述板体与所述条分布突起部以及所述点分布突起部一体形成。
  3. 根据权利要求2所述的轨道交通用橡胶垫板,其特征在于:
    其中,所述条分布突起部包括至少一个条形突起,该条形突起沿所述板体的一个边缘延伸形成,
    所述点分布突起部包括复数个台形突起,该复数个台形突起设置在所述条形突起的长侧边的一侧并分布至与所述一个边缘相对的另一个边缘。
  4. 根据权利要求3所述的轨道交通用橡胶垫板,其特征在于:
    其中,所述条形突起为复数个,相邻两个所述条形突起之间设有条形凹槽,
    所述复数个台形突起在所述条形突起的长度方向形成有多排,
    相邻两排中的各个所述台形突起相错位设置。
  5. 根据权利要求4所述的轨道交通用橡胶垫板,其特征在于:
    其中,所述条形突起为三个以上,所述条形凹槽至少为两个,所述条形凹槽的宽度从所述一个边缘朝所述另一个边缘逐渐减小,
    所述复数个台形突起具有横截面,每一排中各个所述台形突起的横截面的面积相同,各排所述台形突起的横截面的面积从所述一个边缘朝所述另一个边缘逐渐减小,
    所述条形突起的上表面与所述台形突起的上表面相平齐。
  6. 根据权利要求5所述的轨道交通用橡胶垫板,其特征在于:
    其中,所述条形突起为三个,沿所述一个边缘开始分别为第一条形突起、第二条形突起以及第三条形突起,
    所述第一条形突起与所述第二条突起之间设有第一凹槽,所述第二条形突起与所述第三条突起之间设有第二凹槽,
    所述第一条形突起的宽度为10mm-15mm,所述第二条形突起的宽度为19mm-20mm,所述第三条形突起的宽度为21mm-22mm,
    所述点分布突起部包括复数个台形突起,该多个台形突起设置在所述条形突起的长侧边的一侧并分布至与所述一个边缘相对的另一个边缘,
    所述台形突起在所述条形突起的长度方向形成有六排,所述条形突起的长侧边的一侧开始分别为第一排台形突起、第二排台形突起、第三排台形突起、第四排台形突起、第五排台形突起以及第六排台形突起,
    相邻两排的所述台形突起的距离为15mm-20mm,
    所述第一排台形突起的横截面的面积为100mm 2-120mm 2
    所述第二排台形突起的横截面的面积为100mm 2-120mm 2
    所述第三排台形突起的横截面的面积为70mm 2-90mm 2
    所述第四排台形突起的横截面的面积为70mm 2-90mm 2
    所述第五排台形突起的横截面的面积为40mm 2-60mm 2
    所述第六排台形突起的横截面的面积为40mm 2-60mm 2
  7. 根据权利要求1所述的轨道交通用橡胶垫板,其特征在于:
    其中,所述突起部为条分布突起部,
    所述条分布突起部包括复数个条形突起,该条形突起沿所述板体的一个边缘延伸,所述复数个条形突起从所述板体的一个边缘分布至与所述一个边缘相对的另一个边缘,
    所述条形突起的宽度从所述一个边缘朝所述另一个边缘逐渐减小,相邻的两个所述条形突起之间设有条形凹槽。
  8. 根据权利要求7所述的轨道交通用橡胶垫板,其特征在于,
    其中,所有所述条形凹槽的宽度相等。
  9. 根据权利要求7所述的轨道交通用橡胶垫板,其特征在于,
    其中,所述条形突起为11个,沿所述一个边缘开始分别为第一条形突起、第二条形突起、第三条形突起、第四条形突起、第五条形突起、第六条形突起、第七条形突起、第八条形突起、第九条形突起、第十条形突起以及第十一条形突起,
    所述第一条形突起的宽度为19mm-21mm,
    所述第二条形突起的宽度为17mm-19mm,
    所述第三条形突起的宽度为10mm-12mm,
    所述第四条形突起的宽度为9mm-10mm,
    所述第五条形突起的宽度为8mm-9mm,
    所述第六条形突起的宽度为7mm-8mm,
    所述第七条形突起的宽度为6mm-7mm,
    所述第八条形突起的宽度为5mm-6mm,
    所述第九条形突起的宽度为4mm-5mm,
    所述第十条形突起的宽度为4mm-5mm,
    所述第十一条形突起的宽度为2mm-3mm。
  10. 根据权利要求1所述的轨道交通用橡胶垫板,其特征在于:
    其中,所述突起部为点分布突起部,
    所述点分布凸起部包括复数个台形突起,所述复数个台形突起在所述板体的长度方向形成有多排,所述复数个台形突起从所述板体的一个边缘分布至与所述一个边缘相对的另一个边缘,
    所述复数个台形突起具有横截面,每一排中各个所述台形突起的横截面的面积相同,各排所述台形突起的横截面的面积从所述一个边缘朝所述另一个边缘逐渐减小。
  11. 根据权利要求10所述的轨道交通用橡胶垫板,其特征在于,
    其中,相邻两排所述台型突起的错位设置。
  12. 根据权利要求10所述的轨道交通用橡胶垫板,其特征在于,
    其中,相邻两排所述台型突起的间距相等。
  13. 根据权利要求10所述的轨道交通用橡胶垫板,其特征在于,
    其中,所述台形突起在所述板体的长度方向形成有10排,沿所述一个边缘开始分别为第一排台形突起、第二排台形突起、第三排台形突起、第四排台形突起、第五排台形突起、第六排台形突起、第七排台形突起、第八排台形突起、第九排台形突起以及第十排台形突起,
    在第一排台形突起、第三排台形突起、第五排台形突起、第七排台形突起以及第九排台形突起中,每排台形突起包括8个所述台型突起,
    在第二排台形突起、第四排台形突起、第六排台形突起、第八排台形突起以及第十排台形突起中,每排台形突起包括9个所述台型突起,
    所述第一排台形突起中所述台形突起的横截面的面积为130mm 2-160mm 2
    所述第二排台形突起中所述台形突起的横截面的面积为130mm 2-160mm 2
    所述第三排台形突起中所述台形突起的横截面的面积为90mm 2-120mm 2
    所述第四排台形突起中所述台形突起的横截面的面积为90mm 2-120mm 2
    所述第五排台形突起中所述台形突起的横截面的面积为60mm 2-80mm 2
    所述第六排台形突起中所述台形突起的横截面的面积为60mm 2-80mm 2
    所述第七排台形突起中所述台形突起的横截面的面积为40mm 2-50mm 2
    所述第八排台形突起中所述台形突起的横截面的面积为40mm 2-50mm 2
    所述第九排台形突起中所述台形突起的横截面的面积为20mm 2-30mm 2
    所述第十排台形突起中所述台形突起的横截面的面积为20mm 2-30mm 2
  14. 根据权利要求1所述的轨道交通用橡胶垫板,其特征在于:
    其中,所述突起部的上表面相平齐。
  15. 根据权利要求1-14任意一项所述的轨道交通用橡胶垫板,其特征在于,还具有:
    多道沟槽,形成在所述板体的另一个表面上。
  16. 根据权利要求15所述的轨道交通用橡胶垫板,其特征在于:
    其中,所述多道沟槽为相互平行的多道条形沟槽,其延伸方向与所述条形突起的所述长度方向一致。
  17. 根据权利要求16所述的轨道交通用橡胶垫板,其特征在于:
    其中,所述多道沟槽的宽度从所述一个边缘朝所述另一个边缘渐变。
  18. 根据权利要求15所述的轨道交通用橡胶垫板,其特征在于:
    其中,所述多道沟槽为多道曲线沟槽。
  19. 根据权利要求15所述的轨道交通用橡胶垫板,其特征在于:
    其中,所述多道沟槽为相互平行且均匀分布的多道条形沟槽,其延伸方向与所述条形突起的所述长度方向相垂直。
  20. 根据权利要求1所述的轨道交通用橡胶垫板,其特征在于,
    其中,所述轨道还具有轨底托,该轨底托安装在所述钢轨的下方,
    所述轨道交通用橡胶垫板安装在所述钢轨与所述轨底托之间,
    所述轨道具有两条平行设置的所述钢轨,所述轨底托的安装坡度为1:(30-50)。
  21. 一种地铁轨道交通用橡胶垫板的制备方法,用于制备权利要求1-20任意一项所述的地铁轨道交通用橡胶垫板,其特征在于,包括如下步骤:
    步骤1,将基体橡胶加入密炼机中,炼制5min-8min后,加入活性剂、防老剂、功能助剂、硅烷偶联剂、颜料,密炼1min-2min,加入占总填充剂重量30%-40%的填充剂混炼3min-8min,最后加入剩余的填充剂以及增塑剂,混炼3min-5min,控制密炼机内部温度为95℃-125℃,通升栓排胶,冷却,停放8h-24h,得A段胶;
    步骤2,将所述A段料加入开炼机中进行热炼,所述开炼机的滚筒温度控制在40℃~55℃,加入硫化剂以及硫化促进剂,翻炼,打包,小辊距薄通后,出片冷却停放,得B段胶;
    步骤3,将所述B段胶按需求进行裁切,得胶胚;
    步骤4,将所述胶胚放入对应的模具中,进行硫化,即得地铁轨道交通用橡胶垫板。
  22. 一种轨道交通路段,其特征在于,具有:
    钢轨;以及
    橡胶垫板,与轨道的所述钢轨相匹配使用,
    其中,所述橡胶垫板为权利要求1-19任意一项所述的轨道交通用橡胶垫板。
  23. 根据权利要求22所述的轨道交通路段,其特征在于,还具有:
    轨底托,设置在所述橡胶垫板的下方,
    其中,所述橡胶垫板为权利要求20所述的轨道交通用橡胶垫板。
PCT/CN2021/118802 2021-02-10 2021-09-16 轨道交通用橡胶垫板、制备方法及轨道交通路段 WO2022170763A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110185366.0A CN113004582B (zh) 2021-02-10 2021-02-10 轨道交通用橡胶垫板、制备方法及轨道交通路段
CN202110185366.0 2021-02-10

Publications (1)

Publication Number Publication Date
WO2022170763A1 true WO2022170763A1 (zh) 2022-08-18

Family

ID=76402365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118802 WO2022170763A1 (zh) 2021-02-10 2021-09-16 轨道交通用橡胶垫板、制备方法及轨道交通路段

Country Status (2)

Country Link
CN (1) CN113004582B (zh)
WO (1) WO2022170763A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004582B (zh) * 2021-02-10 2022-10-28 浙江天铁实业股份有限公司 轨道交通用橡胶垫板、制备方法及轨道交通路段
CN112961410B (zh) * 2021-02-10 2023-01-20 浙江天铁实业股份有限公司 地铁轨道交通用橡胶垫板及其组合物、制备方法
CN116516751A (zh) * 2022-07-23 2023-08-01 浙江天铁实业股份有限公司 转弯轨道的轨下垫板系统的测试及设置方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1663998A (zh) * 2005-03-08 2005-09-07 成都宏亿复合材料工程技术有限公司 铁道混凝土弹性轨枕枕下用橡胶垫板及其制作方法
CN101381485A (zh) * 2008-10-20 2009-03-11 无锡铁华橡塑有限公司 客运专线橡胶垫板
CN102146644A (zh) * 2011-04-22 2011-08-10 江阴海达橡塑股份有限公司 聚酯弹性减振垫板
CN202099700U (zh) * 2011-04-22 2012-01-04 江阴海达橡塑股份有限公司 聚酯弹性减振垫板
KR20120100406A (ko) * 2011-03-04 2012-09-12 팬드롤코리아 주식회사 철도레일용 레일패드
CN203113165U (zh) * 2012-09-21 2013-08-07 株洲时代新材料科技股份有限公司 一种弹性减振垫板
CN103669125A (zh) * 2013-12-31 2014-03-26 浙江中元铁路配件有限公司 一种铁轨垫板
CN105670060A (zh) * 2014-11-19 2016-06-15 江苏海迅铁路器材集团股份有限公司 客运专线橡胶垫板
CN106283962A (zh) * 2015-05-20 2017-01-04 江苏海迅铁路器材集团股份有限公司 一种高铁客运专线轨下橡胶减震扣件
CN106638173A (zh) * 2016-11-29 2017-05-10 株洲时代新材料科技股份有限公司 一种三级缓冲重载弹性垫板及三级缓冲减振方法
CN107722381A (zh) * 2017-09-29 2018-02-23 北京北化新橡特种材料科技股份有限公司 一种轨道减振垫用橡胶复合材料及其制备方法
CN109021330A (zh) * 2018-07-06 2018-12-18 衡水中铁建工程橡胶有限责任公司 一种轨道交通用橡胶材料及其制备方法与应用
CN208328567U (zh) * 2018-05-10 2019-01-04 北京铁科首钢轨道技术股份有限公司 一种铁路曲线处使用的轨下垫板
CN110483917A (zh) * 2019-08-28 2019-11-22 浙江天铁实业股份有限公司 微孔橡胶垫板及其制备方法
CN210657812U (zh) * 2019-08-28 2020-06-02 上海鑫普新材料有限公司 一种轨下弹性体垫板结构
CN111764202A (zh) * 2020-07-08 2020-10-13 青岛大学 一种新型轨下垫板
CN112961410A (zh) * 2021-02-10 2021-06-15 浙江天铁实业股份有限公司 地铁轨道交通用橡胶垫板及其组合物、制备方法
CN113004582A (zh) * 2021-02-10 2021-06-22 浙江天铁实业股份有限公司 轨道交通用橡胶垫板、制备方法及轨道交通路段

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2031649A1 (en) * 1989-12-08 1991-06-09 Jude O. Igwemezie Attenuating pad for concrete railway ties
ES2156564B1 (es) * 1999-08-19 2002-04-01 Plasticos Mondragon Sa Placa elastica de asiento para carril ferroviario.
JP2001355201A (ja) * 2000-06-12 2001-12-26 Railway Technical Res Inst 軌道用防振タイパッド
GB2453575B (en) * 2007-10-11 2011-11-30 Pandrol Ltd Railway rail paid
KR100910171B1 (ko) * 2009-02-02 2009-07-30 최의용 철도 도상용 흡음콘크리트판
CN201459537U (zh) * 2009-06-12 2010-05-12 哈尔滨哈轻塑胶有限公司 铁路弹性垫板
CN102199315A (zh) * 2011-04-22 2011-09-28 江阴海达橡塑股份有限公司 高速铁路用减振海绵垫板的制备方法
CN102604237A (zh) * 2012-02-28 2012-07-25 安徽中鼎密封件股份有限公司 一种用于高铁的发泡弹性垫块及其制备方法
JP6368566B2 (ja) * 2014-07-09 2018-08-01 日本発條株式会社 軌道パッド
CN105153490A (zh) * 2015-10-22 2015-12-16 浙江天台祥和实业股份有限公司 用于制作铁路橡胶垫板的组合物
CN109958006B (zh) * 2017-12-25 2024-05-03 北京九州一轨环境科技股份有限公司 一种弹性隔振垫

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1663998A (zh) * 2005-03-08 2005-09-07 成都宏亿复合材料工程技术有限公司 铁道混凝土弹性轨枕枕下用橡胶垫板及其制作方法
CN101381485A (zh) * 2008-10-20 2009-03-11 无锡铁华橡塑有限公司 客运专线橡胶垫板
KR20120100406A (ko) * 2011-03-04 2012-09-12 팬드롤코리아 주식회사 철도레일용 레일패드
CN102146644A (zh) * 2011-04-22 2011-08-10 江阴海达橡塑股份有限公司 聚酯弹性减振垫板
CN202099700U (zh) * 2011-04-22 2012-01-04 江阴海达橡塑股份有限公司 聚酯弹性减振垫板
CN203113165U (zh) * 2012-09-21 2013-08-07 株洲时代新材料科技股份有限公司 一种弹性减振垫板
CN103669125A (zh) * 2013-12-31 2014-03-26 浙江中元铁路配件有限公司 一种铁轨垫板
CN105670060A (zh) * 2014-11-19 2016-06-15 江苏海迅铁路器材集团股份有限公司 客运专线橡胶垫板
CN106283962A (zh) * 2015-05-20 2017-01-04 江苏海迅铁路器材集团股份有限公司 一种高铁客运专线轨下橡胶减震扣件
CN106638173A (zh) * 2016-11-29 2017-05-10 株洲时代新材料科技股份有限公司 一种三级缓冲重载弹性垫板及三级缓冲减振方法
CN107722381A (zh) * 2017-09-29 2018-02-23 北京北化新橡特种材料科技股份有限公司 一种轨道减振垫用橡胶复合材料及其制备方法
CN208328567U (zh) * 2018-05-10 2019-01-04 北京铁科首钢轨道技术股份有限公司 一种铁路曲线处使用的轨下垫板
CN109021330A (zh) * 2018-07-06 2018-12-18 衡水中铁建工程橡胶有限责任公司 一种轨道交通用橡胶材料及其制备方法与应用
CN110483917A (zh) * 2019-08-28 2019-11-22 浙江天铁实业股份有限公司 微孔橡胶垫板及其制备方法
CN210657812U (zh) * 2019-08-28 2020-06-02 上海鑫普新材料有限公司 一种轨下弹性体垫板结构
CN111764202A (zh) * 2020-07-08 2020-10-13 青岛大学 一种新型轨下垫板
CN112961410A (zh) * 2021-02-10 2021-06-15 浙江天铁实业股份有限公司 地铁轨道交通用橡胶垫板及其组合物、制备方法
CN113004582A (zh) * 2021-02-10 2021-06-22 浙江天铁实业股份有限公司 轨道交通用橡胶垫板、制备方法及轨道交通路段

Also Published As

Publication number Publication date
CN113004582B (zh) 2022-10-28
CN113004582A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
WO2022170763A1 (zh) 轨道交通用橡胶垫板、制备方法及轨道交通路段
CN112961410B (zh) 地铁轨道交通用橡胶垫板及其组合物、制备方法
WO2021036327A1 (zh) 一种聚氨酯充气轮胎及其制造方法
EP0320215A2 (en) Radial tyre
CN101381485A (zh) 客运专线橡胶垫板
DE102018131358B4 (de) Luftreifen
CN105670060A (zh) 客运专线橡胶垫板
CN108589435B (zh) 铁路轨道橡胶减震结构及橡胶
US20140373995A1 (en) Pneumatic Tire
CN102574425B (zh) 重型载重充气轮胎
CN201089872Y (zh) 钢轨伸缩调节器
CN108914720B (zh) 一种铁垫板下垫板及其制造方法
EP3546246A1 (en) Tire
CN211142663U (zh) 一种弹性垫板
CN208685351U (zh) 铁路轨道橡胶减震结构及橡胶减震垫
CN108894063B (zh) 铁路轨道橡胶减震垫
WO2024021346A1 (zh) 转弯轨道的轨下垫板系统的测试及设置方法
CN116516734A (zh) 一种转弯轨道用轨下垫板及轨道系统
CN206884616U (zh) 一种充气轮胎
CN105153490A (zh) 用于制作铁路橡胶垫板的组合物
CN111267553B (zh) 多层式型胶胎面结构
CN203295905U (zh) 一种铁道用高分子防爬撑
CN215793012U (zh) 轮胎花纹及具有其的轮胎
CN218749196U (zh) 一种胎面口型板
WO2024021647A1 (zh) 道床用谐振板及其制作方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925415

Country of ref document: EP

Kind code of ref document: A1