WO2022168678A1 - 基板処理方法、基板処理装置 - Google Patents

基板処理方法、基板処理装置 Download PDF

Info

Publication number
WO2022168678A1
WO2022168678A1 PCT/JP2022/002674 JP2022002674W WO2022168678A1 WO 2022168678 A1 WO2022168678 A1 WO 2022168678A1 JP 2022002674 W JP2022002674 W JP 2022002674W WO 2022168678 A1 WO2022168678 A1 WO 2022168678A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
substrate
heating
wafer
preheating
Prior art date
Application number
PCT/JP2022/002674
Other languages
English (en)
French (fr)
Inventor
健一 小手
隆文 野上
和生 小林
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US18/264,539 priority Critical patent/US20240047194A1/en
Priority to KR1020237029368A priority patent/KR20230134596A/ko
Publication of WO2022168678A1 publication Critical patent/WO2022168678A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/18Vacuum control means
    • H01J2237/182Obtaining or maintaining desired pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge

Definitions

  • the present disclosure relates to a substrate processing method and a substrate processing apparatus.
  • the substrate is sufficiently heated by the heating means of the substrate mounting table on which the substrate is mounted, and then the film forming reaction proceeds.
  • CVD chemical vapor deposition
  • the substrate is sufficiently heated by the heating means of the substrate mounting table on which the substrate is mounted, and then the film forming reaction proceeds.
  • the substrate may be misaligned during transportation, and when the substrate is placed, the periphery of the substrate may come into contact with the mounting table, causing particles to be generated. Therefore, it is required to prevent the substrate from warping during substrate processing at high temperature.
  • Patent Documents 1 and 2 As a method for suppressing the warp of the substrate, a method including a preheating treatment of preheating the substrate before the film formation process is known (see Patent Documents 1 and 2, for example).
  • the substrate is gradually heated with radiant heat from a heating means of a mounting table while the substrate is supported by support pins, thereby relaxing the thermal stress.
  • Patent Literature 2 discloses a method of placing a substrate on a mounting table and performing preheating using plasma to shorten the preheating time.
  • the present disclosure provides a technique for reducing the time required for preheating before film formation while suppressing warping of the substrate.
  • the present disclosure provides a preparation step of placing a substrate to be processed on a mounting table in a processing container, and supplying a first gas into the processing container to heat the substrate to be processed by heating means. a first heating step, and a second heating step of stopping the supply of the first gas and supplying a second gas different from the first gas to heat the substrate by the heating means. and a processing step of supplying a third gas containing the second gas to process the substrate to be processed.
  • FIG. 4 is a diagram illustrating an example of supply or stop timing of various processing gases in a series of processes including preheating;
  • FIG. 2 is an example flow diagram showing an outline of steps of a substrate processing method in the present disclosure;
  • FIG. 4 is a diagram illustrating the influence of the supply time of N 2 gas supplied in the first preheating step on the film quality in the two-step preheating of the present disclosure. It is an image diagram of an example explaining warp of a wafer.
  • FIG. 5 is a diagram showing an example of heater outputs in preheating in which various gases that can be used for preheating are supplied.
  • FIG. 1A and 1B are a top view and a cross-sectional view of an example of a mounting table;
  • FIG. It is a figure of an example explaining the flow of the gas supplied to the processing container. It is a figure which shows an example of the viscosity coefficient of NH3 , He, N2 , and Ar.
  • FIG. 4 is a diagram showing the temperature distribution in the radial direction of the wafer W when NH 3 gas and N 2 gas are respectively supplied and heated for a specific time;
  • FIG. 1 is a cross-sectional view schematically showing an example of a plasma processing apparatus 100 according to an embodiment.
  • the plasma processing apparatus 100 has a processing container 101 , a mounting table 102 , a gas supply mechanism 103 , an exhaust mechanism 104 , a microwave plasma source 105 and a controller 106 .
  • the processing container 101 is made of a metal material such as aluminum with an anodized surface, and has a substantially cylindrical shape.
  • the processing container 101 has a plate-like top wall portion 111, a bottom wall portion 113, and a side wall portion 112 connecting them.
  • the inner wall of the processing container 101 may be coated with yttria (Y 2 O 3 ) or the like.
  • a mounting table 102 is arranged inside the processing container 101 .
  • the processing container 101 accommodates wafers W such as semiconductor wafers.
  • the ceiling wall portion 111 has a plurality of openings into which the microwave radiation mechanism 143 and the gas introduction nozzle 123 of the microwave plasma source 105, which will be described later, are fitted.
  • the side wall portion 112 has a loading/unloading port 114 for loading/unloading the wafer W (substrate to be processed) to/from a transfer chamber (not shown) adjacent to the processing container 101 .
  • the loading/unloading port 114 is opened and closed by a gate valve 115 .
  • An exhaust pipe 116 is connected to the bottom wall portion 113 .
  • the mounting table 102 is formed in a disc shape and is made of a metal material such as aluminum whose surface is anodized, or a ceramic material such as aluminum nitride (AlN). A wafer W is placed on the upper surface of the mounting table 102 .
  • the mounting table 102 is supported by a support member 120 which is a metal cylindrical body extending upward from the center of the bottom of the processing container 101 via an insulating member 121 .
  • a heater 126 is provided inside the mounting table 102 as a heating means.
  • the heater 126 is powered by a heater power supply 127 to generate heat.
  • the output of the heater 126 is controlled by a temperature signal from a sensor (for example, a thermocouple) provided near the upper surface of the mounting table 102 to control the wafer W to a predetermined temperature.
  • the mounting table 102 is positioned so that the distance from the lower surface of the ceiling wall portion 111, which is the microwave radiation surface of the microwave radiation mechanism 143, to the wafer W is in the range of 40 to 200 mm from the viewpoint of performing good plasma processing. It is preferable to provide
  • a high-frequency power source 122 is electrically connected to the mounting table 102 . If the mounting table 102 is made of ceramics, an electrode is provided on the mounting table 102 and the high frequency power source 122 is electrically connected to the electrode.
  • the high-frequency power supply 122 applies high-frequency power as bias power to the mounting table 102 .
  • the frequency of the high frequency power applied by the high frequency power supply 122 is preferably in the range of 0.4 to 27.12 MHz.
  • a gas supply mechanism 103 supplies various processing gases for film formation into the processing chamber 101 .
  • the gas supply mechanism 103 has a plurality of gas introduction nozzles 123 , a gas supply pipe 124 and a gas supply section 125 .
  • the gas introduction nozzle 123 is fitted into an opening formed in the ceiling wall portion 111 of the processing container 101 .
  • the gas supply unit 125 is connected to each gas introduction nozzle 123 via a gas supply pipe 124 .
  • the gas supply unit 125 supplies various processing gases.
  • the gas supply unit 125 includes a first gas supply source, a second gas supply source, and a third gas supply source.
  • the first gas supplied by the first gas supply source is an inert gas such as N2 gas, Ar gas, He gas.
  • the second gas supplied by the second gas supply source is a reducing gas such as NH 3 or N 2 .
  • N2 gas was initially used to suppress warping of the substrate, and was switched to NH3 gas , which does not affect the film quality of the film, before the film formation process.
  • the third gas supplied by the third gas supply source includes SiH 4 gas, SiH 2 Cl 2 gas, and the like, which can be source gases.
  • the gas supply unit 125 includes a valve for supplying and stopping the processing gas and a flow rate adjusting unit for adjusting the flow rate of the processing gas.
  • An exhaust pipe 116 is connected to the bottom wall portion 113 of the processing container 101 .
  • the exhaust pipe 116 is connected to the exhaust mechanism 104 .
  • the evacuation mechanism 104 includes a vacuum pump and a pressure control valve, and can evacuate the inside of the processing container 101 through an evacuation pipe 116 by the vacuum pump.
  • the pressure inside the processing container 101 is controlled by a pressure control valve (not shown) based on the value of the pressure gauge.
  • a microwave plasma source 105 is provided above the processing container 101 .
  • the microwave plasma source 105 introduces electromagnetic waves (microwaves) into the processing container 101 to generate plasma.
  • the microwave plasma source 105 has a microwave output section 130 and an antenna unit 140 .
  • Antenna unit 140 includes a plurality of antenna modules. In FIG. 1, the antenna unit 140 includes three antenna modules. Each antenna module has an amplifier section 142 and a microwave radiation mechanism 143 .
  • the microwave output unit 130 generates microwaves, distributes the microwaves, and outputs the microwaves to each antenna module.
  • the amplifier section 142 of the antenna module mainly amplifies the distributed microwave and outputs it to the microwave radiation mechanism 143 .
  • the microwave radiation mechanism 143 is provided on the top wall portion 111 .
  • the microwave radiation mechanism 143 radiates the microwave output from the amplifier section 142 into the processing container 101 .
  • FIG. 1 illustrates an example in which three antenna modules are provided in the antenna unit 140
  • the number of antenna modules is not limited.
  • six antenna modules may be provided in the area above the mounting table 102 of the top wall portion 111 so as to form the apexes of a regular hexagon.
  • seven antenna modules may be arranged at the center positions of the regular hexagon.
  • the microwave plasma source 105 having a single microwave introduction part with a size corresponding to the wafer W may be used as long as the power density of the microwave can be controlled appropriately.
  • the control unit 106 is, for example, a computer equipped with a processor, a storage unit, an input device, a display device, and the like.
  • the controller 106 controls each part of the plasma processing apparatus 100 .
  • the operator can use the input device to input commands for managing the plasma processing apparatus 100 .
  • the control unit 106 can visualize and display the operation status of the plasma processing apparatus 100 using the display device.
  • the storage unit of the control unit 106 stores a control program for controlling various processes executed by the plasma processing apparatus 100 by the processor, and recipe data. A desired process is performed in the plasma processing apparatus 100 by the processor of the control unit 106 executing the control program and controlling each section of the plasma processing apparatus 100 according to the recipe data.
  • the control unit 106 controls each unit of the plasma processing apparatus 100 to perform the process of the film forming method according to the embodiment.
  • Preheating is performed before film formation by CVD, for example, for the purpose of suppressing warpage of the wafer W and obtaining stable film quality.
  • This disclosure describes a SiN deposition process using NH 3 and SiH 4 as raw material gases.
  • the processing gas is not limited to these.
  • the temperature of the wafer W is gradually heated over time until the temperature is stabilized at a temperature suitable for film formation.
  • the heating is performed gradually over 120 seconds, for example. It is known that warping of the wafer W can be suppressed to some extent by heating the wafer W gradually (over 120 seconds).
  • the wafer W when the wafer W is mounted on the mounting table 102, the wafer W may be attracted to the mounting table 102 due to the electrostatic force of the wafer W itself. If the wafer W is warped due to being rapidly heated in a state where the wafer W is adsorbed to the mounting table 102, the wafer W may bounce or crack. For this reason, a conventional method has been adopted in which the wafer W is pinned up with wafer support pins, a distance is provided between the wafer W and the mounting table 102, and the radiant heat from the mounting table 102 heats the wafer over a long period of time.
  • FIG. 2 is a diagram for explaining the supply or stop timing of various processing gases in a series of processes including preheating.
  • N 2 gas is supplied to perform the first preheating as the first heating step.
  • N2 gas is supplied into the processing container 101 and is adjusted to the first pressure.
  • the first pressure is predetermined as a pressure suitable for preheating the wafer W. As shown in FIG.
  • the time required for the first preheating is T1 seconds.
  • N 2 gas is stopped, NH 3 gas different from N 2 gas is supplied, and second preheating is performed as a second heating step.
  • second preheating similarly to the first preheating, the atmosphere in the processing container 101 is replaced with NH 3 gas while the inside of the processing container 101 is adjusted to the first pressure.
  • the time required for the second preheating is T2 seconds.
  • SiH 4 gas is supplied while NH 3 gas is supplied, and the pressure is stabilized at a second pressure lower than the first pressure.
  • the time required for stabilization is T3 seconds.
  • the second pressure is predetermined as a pressure suitable for film formation, that is, a pressure at which plasma is easily ignited.
  • SiH4 gas containing NH3 gas is an example of the third gas.
  • the supply of SiH 4 gas may be started between (iii) and (iv).
  • the film is formed with the microwave power turned on.
  • the time required for film formation is T4 seconds.
  • a desired film is formed by supplying a second gas and a third gas.
  • NH 3 gas and SiH 4 gas are supplied to form a SiN film.
  • FIG. 3 is a flow diagram showing an overview of the steps of the substrate processing method in the present disclosure.
  • control unit 106 loads the wafer W into the processing container 101 from the transfer chamber (not shown), which is maintained in a decompressed state by opening the gate valve 115, through the carry-in/out port 114 by the transfer device (not shown). (S1).
  • control unit 106 raises the wafer support pins (not shown) to receive the wafer W, unloads the transfer device, and moves the received wafer W to the mounting table 102 by lowering the wafer support pins (not shown). , and prepared (S2).
  • the control unit 106 closes the gate valve 115, supplies a predetermined flow rate of N2 gas from the gas supply unit 125 into the processing container 101, exhausts the inside of the processing container 101, and adjusts the pressure to the first pressure. (S3).
  • the first pressure is preferably 20 to 667, for example 333 [Pa] (2.5 Torr).
  • the heating of the wafer W is started as the first preheating. Specifically, power is supplied from the heater power source 127 to the heater 126 to heat the mounting table 102, and the heat controls the wafer W to a desired temperature.
  • the time for the first preheating is T1 seconds.
  • the first preheating is part of the preheating process for raising the temperature of the wafer W to a temperature suitable for film formation.
  • the control unit 106 stops the supply of N 2 gas from the gas supply unit 125 while maintaining the first pressure, and the gas supply unit 125 NH 3 gas is supplied into the processing container 101 at a predetermined flow rate (S4).
  • This step is the second preheating. Switching from the first preheating to the second preheating is performed at a predetermined time based on, for example, evaluation results. Also, switching from the first preheating to the second preheating may be performed based on an output signal that the controller 106 outputs to the heater 126 . The time for the second preheating is T2 seconds.
  • the control unit 106 performs control so that the temperature is raised to a temperature suitable for film formation by the first preheating and the second preheating (that is, T1+T2 seconds: for example, about 40 seconds).
  • the control unit 106 maintains the supply of NH 3 gas from the gas supply unit 125 into the processing container 101, and increases the pressure inside the processing container 101 to 1 pressure is reduced to a second pressure that is lower than the first pressure. Further, for example, SiH 4 gas is supplied into the processing container 101 at a predetermined flow rate from the gas supply unit 125, and the pressure in the processing container 101 is stabilized to the second pressure (S5).
  • the time for this gas stabilization step prior to the film forming step can be, for example, 5 seconds or more and 50 seconds or less, preferably 10 seconds or more and 30 seconds or less.
  • the second pressure is preferably 6.7 to 133, for example, 16 [Pa] (120 mTorr).
  • the control unit 106 turns on the microwave power to generate plasma. It is ignited and the film forming process is started on the wafer W (S6). That is, the microwave from the microwave output unit 130 is radiated to the space above the wafer W in the processing container 101 via the microwave radiation mechanism 143 . An electromagnetic field is formed in the processing container 101 by microwaves radiated to the processing container 101, and the NH 3 gas and SiH 4 become plasma. A SiN film is uniformly formed on the surface of the wafer W by the action of active species in the plasma, mainly N radicals.
  • the film to be generated varies depending on the processing gas, and may be an insulating film containing oxygen or nitrogen, a dielectric film, a metal film, or the like, in addition to the SiN film.
  • the source gases are SiH 4 and N 2 O
  • an oxide film (insulating film) of SiO 2 can be produced.
  • the material gases are SiH 2 Cl 2 and NH 3
  • a dielectric film of Si 3 N 4 can be produced.
  • the source gases are WF6 and Si
  • a metal film of 2WSi can be formed.
  • control unit 106 After performing the film forming process for a predetermined time, the control unit 106 turns off the microwave power, stops the SiH 4 gas and the NH 3 gas, and ends the film forming process (S7).
  • the wafer support pins (not shown) are lifted in the reverse order of steps S1 and S2, and the wafer W is unloaded by the transfer device (not shown) (S8).
  • the preheating of the present disclosure consists of two steps, a first preheating step and a second preheating step. That is, the time required for preheating is the sum of the time T1 required for the first preheating step and the time T2 required for the second preheating step.
  • the degree of influence of the preheating time of the present disclosure on the film quality of the film to be formed will be described.
  • FIG. 4 is a diagram illustrating the influence of the supply time of N 2 gas supplied in the first preheating step on the film quality in the two-step preheating of the present disclosure.
  • the film forming process was performed under the following five conditions A to E for the supply time of the N 2 gas supplied in the first preheating step.
  • N2 gas is supplied in the first preheating performed during T1 seconds
  • NH3 gas is supplied in the second preheating performed during T2 seconds.
  • T1 0 seconds
  • T2 120 seconds
  • T1 20 seconds
  • T2 20 secondsC
  • T1 30 seconds
  • T2 10 secondsD
  • T1 35 seconds
  • T2 5 secondsE.
  • T1 40 seconds
  • T2 0 seconds
  • the horizontal axis is time [seconds]
  • the vertical axis is RI (Refractive Index) of the obtained film, which is an index of film quality.
  • Points A to E are RIs corresponding to conditions A to E, respectively. Since only NH 3 is used in conventional preheating, conditions B to E were evaluated using the RI obtained under condition A as a reference value (reference value).
  • a dotted line 71 interpolates between the data of conditions D and E.
  • the time T2 for supplying the NH 3 gas is preferably 5 seconds or longer, and at least 2 seconds or longer.
  • FIG. 5 is an image diagram for explaining the warpage of the wafer W.
  • FIG. FIG. 5(a) shows a wafer W that is not warped
  • FIG. 5(b) shows a wafer W that is warped.
  • the warp of the wafer W can be confirmed, for example, through a window (not shown) provided in the side wall portion 112 of the processing chamber 101 to confirm the state of the warp of the wafer W as shown in FIG.
  • a method for detecting the warpage of the wafer W other than visually there is a method focusing on the heater output. Specifically, it is a method of determining from the value of the output data of the heater power source 127 that supplies power to the heater 126 built in the mounting table 102 .
  • the contact area between the mounting table 102 and the wafer W is reduced as shown in FIG. 5B.
  • a smaller contact area reduces the heat capacity of the object to be heated, making it possible to heat the object to a target temperature with a small heater output. That is, on the premise that the wafer W is heated to the same temperature, the following relationships exist. ⁇ Low heater output ⁇ warping occurs ⁇ High heater output ⁇ no warping This relationship is consistent with visual judgment. Therefore, the presence or absence of warpage can be determined by recording the heater output during preheating.
  • FIG. 6 is a diagram showing an example of heater output in preheating in which various gases that can be used for preheating are supplied.
  • the horizontal axis in FIG. 6 is time [seconds], and the vertical axis is heater output [%].
  • a wafer W is placed on a mounting table 102, and four gases, namely NH3 gas, Ar gas, He gas, and N2 gas, which can be used for preheating, are introduced into the processing container 101, respectively. Preheating was performed by feeding.
  • the heater output of NH 3 gas is clearly smaller than those of Ar gas, He gas, and N 2 gas. That is, preheating with NH 3 gas supplied caused warping easily, but warping hardly occurred with preheating with any of Ar gas, He gas, or N 2 gas supplied. is shown. These results also agree with visual judgment. In this manner, warp can be detected from the output data of the heater power supply 127 . From the above, it can be said that as the first gas, any one of Ar gas, He gas, and N2 gas, or a combination of these gases, is preferable as the first gas is less likely to warp the wafer W.
  • FIG. 7 shows a top view and a sectional view of the mounting table 102.
  • the mounting table 102 is provided with three through holes 162 through which the wafer support pins 161 move the wafer W up and down.
  • the upper surface of the mounting table 102 is formed with a plurality of projections 165 by embossing.
  • a space is formed between the lower surface of the wafer W and the wafer W.
  • the gas supplied to the processing container 101 can flow from the bottom to the top of the through hole 162 .
  • a plurality of protrusions 165 formed by embossing are formed to prevent the wafer W from sticking to the surface of the mounting table 102 .
  • FIG. 8 is a diagram for explaining the flow of gas supplied to the processing container 101.
  • the gas supplied from the ceiling wall of the processing container 101 is considered to pass through the processing space U, pass through the space below the mounting table 102 from the outer periphery of the mounting table 102 , and flow from the bottom to the top of the through hole 162 .
  • the gas that has flowed in reaches the lower surface (back surface) of the wafer W, but it is difficult to spread uniformly over the entire lower surface (back surface) of the wafer W because a plurality of protrusions 165 are formed on the surface of the mounting table 102 . .
  • pressures are applied to the central portion of the mounting table 102 so that gas flows from the three through-holes 162 and cancel each other out. Therefore, it is difficult for the gas to reach the central portion from any direction of the three through-holes 162 . Become. Therefore, the gas that has flowed upward from the bottom of the through-hole 162 tends to escape from the outer periphery of the wafer W. As shown in FIG. Then, it is considered that the ease of removal from the outer periphery is affected by the viscosity coefficient of the gas.
  • FIG. 9 is an example of viscosity coefficients of NH3 gas, He gas, N2 gas, and Ar gas at 20°C.
  • the viscosity coefficient of NH3 gas is about 45% to 55% of the viscosity coefficients of He gas, N2 gas and Ar gas.
  • NH3 gas has the lowest viscosity coefficient.
  • FIG. 8(a) is a diagram showing the flow of NH 3 gas supplied to the processing container 101 in consideration of viscous resistance. Since the NH 3 gas that has flowed upward from the bottom of the through-hole 162 has a smaller viscosity coefficient than He gas, N 2 gas, and Ar gas, it is assumed that it is difficult to reach the center of the mounting table 102 and easily escapes from the outer periphery. .
  • FIG. 8(b) is a diagram showing the flow of He gas, N2 gas, or Ar gas supplied to the processing container 101 in consideration of the viscosity coefficient. Since the He gas, N2 gas, or Ar gas that has flowed upward from the bottom of the through-hole 162 has a higher viscosity coefficient than the NH3 gas, it is presumed that it easily reaches the center of the mounting table 102 and is difficult to escape from the outer periphery. .
  • FIG. 10 is a diagram showing the temperature distribution in the radial direction of the wafer W when NH 3 gas and N 2 gas are respectively supplied into the processing container 101 and heated for a specific time.
  • the horizontal axis indicates the radial distance from the center of the wafer W.
  • FIG. 0 mm on the horizontal axis indicates the center of the wafer W with a diameter of 300 mm, and 148 mm on the horizontal axis indicates the outer peripheral portion of the wafer W.
  • FIG. The vertical axis indicates the temperature at each distance from the center of the wafer W.
  • the NH 3 gas line is obtained when the temperature of the mounting table 102 is set to 320° C., the wafer W is placed on the mounting table 102, and heated for a specific time (6 seconds) while supplying the NH 3 gas. shows the temperature distribution in the radial direction of the wafer W.
  • the N 2 gas line indicates the diameter of the wafer W when the temperature of the mounting table 102 is set to 320° C., and the wafer W is placed on the mounting table 102 and heated for a specific time (6 seconds) while supplying N 2 gas. directional temperature distribution.
  • the NH 3 gas When the NH 3 gas is supplied in this manner, the NH 3 gas hardly reaches the central portion of the mounting table 102 and easily escapes from the outer periphery. It is considered that a temperature difference occurs in the outer peripheral portion, and as a result, the wafer W is warped. On the other hand, He gas, N 2 gas, or Ar gas easily reaches the central portion of the mounting table 102 and is difficult to escape from the outer circumference. will not occur, and as a result, the wafer W will not warp. From the above, it is preferable that the first gas be any one of Ar gas, He gas, and N2 gas, or a combination of these gases, in which the wafer W is unlikely to warp. However, any inert gas with high viscosity resistance other than He gas, N2 gas, or Ar gas may be applicable as the first gas.
  • the substrate processing method of the present disclosure makes it possible to uniformly heat the surface of the wafer W by performing the first preheating using an inert gas (for example, N 2 gas). . Therefore, it is possible to suppress warping of the wafer W that may occur due to heating. Moreover, since the warpage is suppressed, it is not necessary to preheat the wafer W while it is pinned up and supported by the wafer support pins. Since the warp is suppressed, the temperature can be raised in a short time, and the productivity (throughput) is improved.
  • an inert gas for example, N 2 gas
  • the method can be applied regardless of the type of film formation gas.
  • a purge line for purging the processing gas line (flow path) already installed in the plasma processing apparatus 100 is used to supply the inert gas (for example, N 2 gas), it is necessary to add a new gas line. do not have.
  • the substrate processing apparatus has been described above according to the above embodiments, the substrate processing apparatus according to the present disclosure is not limited to the above embodiments, and various modifications and improvements are possible within the scope of the present disclosure.
  • the matters described in the above multiple embodiments can be combined within a consistent range.
  • the wafer W was described as an example, but the object to be processed, which is the object of plasma processing, is not limited to the wafer W, and may be various substrates used in LCDs (Liquid Crystal Displays) and FPDs (Flat Panel Displays). can be various substrates used in LCDs (Liquid Crystal Displays) and FPDs (Flat Panel Displays).
  • LCDs Liquid Crystal Displays
  • FPDs Felat Panel Displays
  • preheating before the CVD film forming process has been described in the present disclosure
  • the preheating can also be used for preheating before various heat treatment processes, impurity introduction processes, or planarization processes.
  • preheating for film formation processing by the plasma processing apparatus 100 has been described, but preheating for etching and ashing can also be used.
  • the film formation process is not limited to the method using plasma, and sputtering, thermal oxidation, annealing with various lamps, and the like may be used.
  • REFERENCE SIGNS LIST 100 plasma processing apparatus 101 processing container 102 mounting table 103 gas supply source 105 microwave plasma source 106 control unit 111 lid 122 high frequency bias power source U processing space

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本開示は、処理容器内の載置台に被処理基板を載置する準備工程と、第1のガスを前記処理容器内に供給して加熱手段で前記被処理基板を加熱する第1の加熱工程と、前記第1のガスの供給を停止して、前記第1のガスとは異なる第2のガスを供給して前記加熱手段で前記被処理基板を加熱する第2の加熱工程と、前記第2のガスを含む第3のガスを供給して前記被処理基板を処理する処理工程と、を有する基板処理方法を提供する。

Description

基板処理方法、基板処理装置
 本開示は、基板処理方法、及び、基板処理装置に関する。
 基板に対してCVD(chemical vapor deposition)などによって成膜を行う成膜装置では、基板を載置する基板載置台の加熱手段によって十分に基板を加熱した上で成膜反応を進行させる。近年、生産性の向上のため、高温処理による高速化が求められた結果、基板が急速に加熱されるため、基板に反りが生じる場合がある。基板に反りが生じると搬送時に基板の位置ずれなどを引き起こし、基板を載置した際に基板周縁部などが載置台と接触し、パーティクルを生じさせる原因となる。したがって、高温による基板処理時に基板に反りが生じないようにすることが求められている。
 基板の反りを抑制する方法としては、成膜処理前に基板を予め加熱する予備加熱処理を含む方法が知られている(例えば、特許文献1、2を参照。)。特許文献1には、基板を支持ピンで支持した状態で載置台の加熱手段の輻射熱で基板を徐々に加熱することで熱応力が緩和し、その後、載置台に載置して更なる予備加熱を行うことで予備加熱時間を短縮する方法が開示されている。特許文献2には、載置台に基板を載置し、プラズマを用いて予備加熱を行うことで予備加熱時間を短縮する方法が開示されている。
特開2003-77863号公報 特開2010-238739号公報 国際公開第2005/098913号 国際公開第2007/013605号
 本開示は、基板の反りを抑制しながら、成膜前の予備加熱に要する時間を短縮する技術を提供する。
 上記課題に鑑み、本開示は、処理容器内の載置台に被処理基板を載置する準備工程と、第1のガスを前記処理容器内に供給して加熱手段で前記被処理基板を加熱する第1の加熱工程と、前記第1のガスの供給を停止して、前記第1のガスとは異なる第2のガスを供給して前記加熱手段で前記被処理基板を加熱する第2の加熱工程と、前記第2のガスを含む第3のガスを供給して前記被処理基板を処理する処理工程と、を有する基板処理方法を提供する。
 基板の反りを抑制しながら、成膜前の予備加熱に要する時間を短縮することができる。
実施形態に係るプラズマ処理装置の一例を模式的に示す断面図である。 予備加熱を含む一連のプロセスにおいて、各種処理ガスの供給、又は、停止のタイミングを説明する一例の図である。 本開示における基板処理方法の工程の概要を示す一例のフロー図である。 本開示の2ステップでの予備加熱において、第1の予備加熱工程で供給されるNガスの供給時間が膜質に与える影響を説明する図である。 ウェハの反りを説明する一例のイメージ図である。 予備加熱に用いることが可能な各種ガスが供給された予備加熱におけるヒータ出力の一例を示す図である。 載置台の一例の上面図と断面図である。 処理容器に供給されたガスの流れを説明する一例の図である。 NH、He、N、Arの粘性係数の一例を示す図である。 NHガスとNガスを各々供給し、特定の時間加熱したときのウェハWの径方向の温度分布を示す図である。
 以下、本開示を実施するための形態について図面を参照して説明する。なお、本明細書及び図面において、実質的に同一の構成については、同一の符号を付することにより重複した説明を省く。
 [装置構成]
 本開示の成膜方法を実施するためのプラズマ処理装置の一例を説明する。図1は、実施形態に係るプラズマ処理装置100の一例を模式的に示す断面図である。
 プラズマ処理装置100は、処理容器101と、載置台102と、ガス供給機構103と、排気機構104と、マイクロ波プラズマ源105と、制御部106とを有する。
 処理容器101は、金属材料、例えば表面に陽極酸化処理が施されたアルミニウムからなり、略円筒形状をなしている。処理容器101は、板状の天壁部111及び底壁部113と、これらを連結する側壁部112とを有している。処理容器101の内壁は、イットリア(Y)等によりコーティングされていてもよい。処理容器101は、内部に載置台102が配置されている。処理容器101は、半導体ウェハ等のウェハWを収容する。
 天壁部111には、マイクロ波プラズマ源105の後述するマイクロ波放射機構143及びガス導入ノズル123が嵌め込まれる複数の開口部を有している。側壁部112は、処理容器101に隣接する搬送室(図示せず)との間でウェハW(被処理基板)の搬入出を行うための搬入出口114を有している。搬入出口114はゲートバルブ115により開閉されるようになっている。底壁部113には排気管116が接続されている。
 載置台102は、円板状に形成されており、金属材料、例えば、表面に陽極酸化処理が施されたアルミニウム、又はセラミックス材料、例えば窒化アルミニウム(AlN)により構成されている。載置台102は、上面にウェハWが載置される。載置台102は、処理容器101の底部中央から絶縁部材121を介して上方に延びる金属製の円筒体である支持部材120により支持されている。
 また、載置台102の内部には、ウェハWを昇降するための昇降ピン(図示せず)が載置台102の上面に対して突没可能に設けられている。さらに、載置台102の内部には加熱手段としてヒータ126が設けられている。ヒータ126は、ヒータ電源127から給電されて発熱する。そして、載置台102の上面の近傍に設けられた不図示のセンサ(例えば、熱電対)の温度信号によりヒータ126の出力を制御することで、ウェハWが所定の温度に制御される。
 載置台102は、良好なプラズマ処理を行う観点から、マイクロ波放射機構143のマイクロ波放射面である天壁部111の下面からウェハWまでの距離が40~200mmの範囲となるような位置に設けることが好ましい。
 載置台102には、高周波電源122が電気的に接続されている。載置台102がセラミックスの場合は、載置台102に電極を設けて、その電極に高周波電源122を電気的に接続する。高周波電源122は、載置台102にバイアス電力として高周波電力を印加する。高周波電源122が印加する高周波電力の周波数は0.4~27.12MHzの範囲が好ましい。
 ガス供給機構103は、成膜を行うための各種の処理ガスを処理容器101内に供給する。ガス供給機構103は、複数のガス導入ノズル123と、ガス供給配管124と、ガス供給部125とを有している。ガス導入ノズル123は、処理容器101の天壁部111に形成された開口部に嵌め込まれている。ガス供給部125は、ガス供給配管124を介して各ガス導入ノズル123と接続されている。ガス供給部125は、各種の処理ガスを供給する。例えば、ガス供給部125は、第1ガス供給源、第2ガス供給源、第3ガス供給源を含む。第1ガス供給源が供給する第1のガスとしてはNガス、Arガス、Heガスなどの不活性ガスである。また、第1のガスとして例えば、Krガス、Xeガス、Neガスなどでもよい。第2ガス供給源が供給する第2のガスとしては、NH、Nなどの還元性ガスである。第2のガスとして、最初は基板の反りを抑制するためにNガスが用いられ、成膜工程前に膜の膜質に影響を及ぼさないNHガスに切り替えられ、NHガスは成膜工程において引き続き使用される。第3ガス供給源が供給する第3のガスとしては、原料ガスとなりうるSiHガス、SiHClガスなどである。なお、ガス供給部125は、処理ガスの供給及び停止をおこなうバルブや処理ガスの流量を調整する流量調整部が備えられている。
 処理容器101の底壁部113には、排気管116が接続されている。排気管116は、排気機構104が接続されている。排気機構104は、真空ポンプと圧力制御バルブを備え、真空ポンプにより排気管116を介して処理容器101内を真空排気可能である。処理容器101内の圧力は、圧力計の値に基づいて、圧力制御バルブ(不図示)により制御される。
 マイクロ波プラズマ源105は、処理容器101の上に設けられている。マイクロ波プラズマ源105は、処理容器101内に電磁波(マイクロ波)を導入してプラズマを生成する。
 マイクロ波プラズマ源105は、マイクロ波出力部130と、アンテナユニット140とを有する。アンテナユニット140は、複数のアンテナモジュールを含んでいる。図1では、アンテナユニット140は、3つのアンテナモジュールを含んでいる。各アンテナモジュールは、アンプ部142と、マイクロ波放射機構143とを有する。マイクロ波出力部130は、マイクロ波を生成するとともに、マイクロ波を分配して各アンテナモジュールに出力する。アンテナモジュールのアンプ部142は、分配されたマイクロ波を主に増幅してマイクロ波放射機構143に出力する。マイクロ波放射機構143は、天壁部111に設けられている。マイクロ波放射機構143は、アンプ部142から出力されたマイクロ波を処理容器101内に放射する。
 なお、図1では、アンテナユニット140にアンテナモジュールを3つ設けた場合を例に説明したが、アンテナモジュールの数は限定されるものではない。例えば、アンテナモジュールは、天壁部111の載置台102の上方の領域に、正六角形の頂点の配置となるように6つ設けてもよい。また、アンテナモジュールは、さらに正六角形の中心位置にも配置して7つ設けてもよい。
 また、マイクロ波のパワー密度を適正に制御することができれば、マイクロ波プラズマ源105がウェハWに対応する大きさの単一のマイクロ波導入部を有するマイクロ波プラズマ源105を用いてもよい。
 制御部106は、例えば、プロセッサ、記憶部、入力装置、表示装置等を備えるコンピュータである。制御部106は、プラズマ処理装置100の各部を制御する。制御部106では、入力装置を用いて、オペレータがプラズマ処理装置100を管理するためにコマンドの入力操作等を行うことができる。また、制御部106では、表示装置により、プラズマ処理装置100の稼働状況を可視化して表示することができる。さらに、制御部106の記憶部には、プラズマ処理装置100で実行される各種処理をプロセッサにより制御するための制御プログラム、及び、レシピデータが格納されている。制御部106のプロセッサが制御プログラムを実行して、レシピデータにしたがってプラズマ処理装置100の各部を制御することにより、所望の処理がプラズマ処理装置100で実行される。例えば、制御部106は、プラズマ処理装置100の各部を制御して、実施形態に係る成膜方法の処理を実行する。
 [本開示の予備加熱]
 予備加熱(プリヒート)は、ウェハWの反りを抑制し、安定した膜質を得る等の目的で、例えば、CVDによる成膜処理前に実施される。本開示では、NHとSiHを原料ガスとするSiNの成膜プロセスについて説明する。しかしながら、処理ガスについてはこれらに限るものではない。
 SiNの成膜プロセスにおける予備加熱では、ウェハWの温度が成膜に適切な温度に安定するまで時間をかけて徐々に加熱している。加熱時間としては、例えば、120秒かけて徐々に加熱する。ウェハWを徐々に(120秒かけて)加熱することでウェハWの反りをある程度、抑制できることがわかっている。
 また、載置台102にウェハWが載置されると、ウェハW自身の静電力でウェハWが載置台102に吸着する場合がある。ウェハWが載置台102に吸着した状態で急激に加熱されることで、ウェハWに反りが発生すると、ウェハWの跳ねや割れが生じる場合がある。このため、ウェハWをウェハ支持ピンでピンアップして、ウェハWと載置台102との間に距離を設けて、載置台102からの輻射熱で時間をかけて加熱する方法が従来から採用されている。
 生産性(スループット:1枚あたりの処理時間)を改善する観点からは、この予備加熱の時間を短くし、かつ、ウェハ支持ピンのピンアップ動作も省略することが好ましい。
 そこで、本開示では基板の反りを抑制しながら、成膜前の予備加熱に要する時間を短縮する方法について開示し、該方法について説明する。
 図2は、予備加熱を含む一連のプロセスにおいて、各種処理ガスの供給、又は、停止のタイミングを説明する図である。
 (i)では、Nガスを供給して、第1の加熱工程として第1の予備加熱を行う。第1の予備加熱では、処理容器101内にNガスが供給され、第1の圧力に調圧されている。第1の圧力はウェハWの予備加熱に適した圧力として予め定められている。第1の予備加熱に要する時間をT1秒とする。
 (ii)では、Nガスを停止し、Nガスとは異なるNHガスを供給して、第2の加熱工程として第2の予備加熱を行う。第2の予備加熱では、処理容器101内を第1の予備加熱と同様、第1の圧力に調圧した状態で、処理容器101内の雰囲気をNHガスに置換する。第2の予備加熱に要する時間をT2秒とする。
 (iii)では、NHガスを供給した状態で、SiHガスを供給し、第1の圧力よりも低い第2の圧力に圧力を安定させる。安定に要する時間をT3秒とする。第2の圧力は、成膜に適した圧力、すなわちプラズマが着火しやすい圧力として予め定められている。NHガスを含むSiHガスは第3のガスの一例である。なお、SiHガスの供給を開始するのは(iii)から(iv)の間であればよい。
 (iv)では、マイクロ波パワーをONにして成膜する。成膜に要する時間をT4秒とする。(iv)では、第2のガス及び第3のガスを供給して所望な膜を成膜する。本開示では、一例としてNHガス及びSiHガスを供給してSiN膜を成膜する。
 予備加熱を含む一連のプロセスについて、図1、図3を用いてより具体的に説明する。図3は、本開示における基板処理方法の工程の概要を示すフロー図である。
 まず、制御部106は、ゲートバルブ115を開にして減圧状態に保持された搬送室(不図示)から、搬入出口114を介し、搬送装置(不図示)によりウェハWを処理容器101内に搬入する(S1)。
 そして、制御部106は、ウェハ支持ピン(不図示)を上昇させてウェハWを受け取り、搬送装置を搬出後、受け取ったウェハWを、ウェハ支持ピン(不図示)を下降させることで載置台102に載置し、準備する(S2)。
 次に、制御部106は、ゲートバルブ115を閉じ、ガス供給部125からNガスを所定流量、処理容器101内に供給すると共に、処理容器101内を排気し、第1の圧力に調圧する(S3)。第1の圧力は20~667が好ましく例えば333[Pa](2.5Torr)である。また、Nガスの供給開始の後、供給開始の前、又は同時に、第1の予備加熱として、ウェハWの加熱を開始する。具体的には、ヒータ電源127からヒータ126に給電されることにより載置台102が加熱され、その熱でウェハWが所望の温度に制御される。第1の予備加熱の時間はT1秒である。第1の予備加熱はウェハWの温度を成膜に適した温度に上昇させる予備加熱工程の一部である。
 第1の予備加熱の後(T1秒が経過した後)、制御部106は、第1の圧力を維持しつつ、ガス供給部125からのNガスの供給を停止し、ガス供給部125からNHガスを所定の流量で処理容器101内に供給する(S4)。この工程が第2の予備加熱である。第1の予備加熱から第2の予備加熱への切り替えは、例えば、評価結果等に基づき、予め定められた時間で切り替えられる。また、第1の予備加熱から第2の予備加熱への切り替えは、制御部106がヒータ126に出力する出力信号に基づいて切り替えられてもよい。第2の予備加熱の時間はT2秒である。制御部106は第1の予備加熱と第2の予備加熱(すなわち、T1+T2秒:例えば、約40秒)で成膜に適した温度まで上昇するように制御している。
 第2の予備加熱の後(T2秒が経過した後)、制御部106は、ガス供給部125から処理容器101内へのNHガスの供給を維持しつつ、処理容器101内の圧力を第1の圧力から第1の圧力よりも低圧となる第2の圧力まで減圧する。また、ガス供給部125から、例えばSiHガスを所定の流量で処理容器101内に供給し、処理容器101内の圧力が第2の圧力となるように安定化させる(S5)。成膜工程に先立つこのガス安定化工程の時間は、例えば5秒以上50秒以下、好ましくは10秒以上30秒以下とすることができる。また、第2の圧力は6.7~133が好ましく、例えば16[Pa](120mTorr)である。
 そして、制御部106は、ガス安定化工程で圧力が安定した後(T3秒の経過後、具体的には圧力の監視結果が安定したと判断した後)、マイクロ波パワーをONにしてプラズマを着火し、ウェハWに対して成膜処理を開始する(S6)。すなわち、マイクロ波出力部130からのマイクロ波を、マイクロ波放射機構143を介して、処理容器101内におけるウェハWの上方空間に放射させる。処理容器101に放射されたマイクロ波により処理容器101内で電磁界が形成され、NHガス及びSiHがプラズマ化する。そして、プラズマ中の活性種、主としてNラジカルの作用によって、ウェハWの表面に均一にSiN膜が形成される。なお、生成される膜は、処理ガスによって変わるものであり、SiN膜の他、酸素又は窒素を含む絶縁膜、誘電体膜、又は、金属膜等でもよい。例えば、原料ガスがSiHとNOであればSiOの酸化膜(絶縁膜)を生成できる。また、例えば、原料ガスがSiHclとNHであればSiの誘電体膜を生成できる。また、例えば、原料ガスがWFとSiであれば2WSiの金属膜を生成できる。
 所定時間かけて成膜処理を実施した後、制御部106は、マイクロ波パワーをOFFすると共に、SiHガス及びNHガスを停止し、成膜処理を終了させる(S7)。
 その後、ステップS1及びS2と逆の手順でウェハ支持ピン(不図示)を上昇させて、搬送装置(不図示)によりウェハWを搬出させる(S8)。
  [予備加熱時間]
 本開示の予備加熱は第1の予備加熱工程と第2の予備加熱工程の2ステップからなる。つまり、予備加熱にかかる時間は、第1の予備加熱工程にかかる時間T1と第2の予備加熱工程にかかる時間T2との合計時間である。ここでは、本開示の予備加熱時間が、成膜される膜の膜質に与える影響度について説明する。
 図4は、本開示の2ステップでの予備加熱において、第1の予備加熱工程で供給されるNガスの供給時間が膜質に与える影響を説明する図である。ここでは、2ステップでの予備加熱において、第1の予備加熱工程で供給されるNガスの供給時間を、以下の5つの条件A~Eとして成膜処理を行った。すでに説明したように、T1秒の間に行われる第1の予備加熱ではNガスが供給され、T2秒の間に行われる第2の予備加熱ではNHガスが供給される。
 A.T1= 0秒、T2=120秒(参考例:従来の予備加熱(ピンアップ動作含む)
 B.T1=20秒、T2=20秒
 C.T1=30秒、T2=10秒
 D.T1=35秒、T2= 5秒
 E.T1=40秒、T2= 0秒
 図4の横軸は時間[秒]、縦軸は膜質の指標である得られた膜のRI(Refractive Index:屈折率)である。点A~Eは、条件A~Eのそれぞれの条件に対応するRIである。従来の予備加熱ではNHのみが用いられているので、条件Aにより得られるRIを基準値(参考値)として条件B~Eを評価した。
 図4に示すように、条件A、B、C及びDでは同程度のRIが得られている。これに対し、条件EではRIの値が明らかに低下している。この結果から、2ステップでの予備加熱の時間を40秒(T1+T2=40秒)とした場合、第2の予備加熱の時間T2は少なくとも5秒以上であることが好ましいといえる。
 条件Dと条件Eの間(T1=35~40秒、又は、T2=0~5秒)については、Nガスを供給する時間T1が長いほどRIが低下すると予想される。言い換えれば、NHガスを供給する時間T2が短いほどRIが低下すると予想される。図4では、条件Dと条件Eのデータ間を点線71で内挿して示す。許容できるRIの範囲を条件AのRIに対し±0.005として、ΔRIで示す。点線71とΔRIの下限の交点から、T2=約2秒(グラフ上は38秒の場所)以上であれば、適正な膜質が得られる。このように、NHガスを供給する時間T2は好ましくは5秒以上、少なくとも2秒以上であればよい。
 第1の予備加熱の時間T1に対する、第2の予備加熱の時間T2の比で表せば、反りを抑止し適正な膜質が得られる上記比は、1:1(T1=T2=20秒)~7:1(T1=35秒、T2=5秒)である。
 なお、NHガスを供給する時間T2が短いとRIが小さくなる(適正な膜質が得られない)理由としては、成膜処理において処理容器101内に第1の予備加熱で供給されたNが残留するためと考えられる。
 [反りの判定]
 図5,図6を参照して、本開示において課題の1つとしたウェハWの反りについて、その判定方法を説明する。図5はウェハWの反りを説明するイメージ図である。図5(a)は反りが発生していないウェハWを、図5(b)は反りが発生したウェハWを示す。ウェハWの反りは、例えば、処理容器101の側壁部112に設けられた窓(図示せず)から目視することで、図5に示すようなウェハWの反りの状態を確認することができる。
 また、目視以外でウェハWの反りを検出する方法としては、ヒータ出力に着目する方法がある。具体的には、載置台102に内蔵されたヒータ126に給電するヒータ電源127の出力データの値から判断する方法である。反りが発生した場合、図5(b)に示したように、載置台102とウェハWの接触面積が小さくなる。ヒータ電源127から見ると接触面積が小さくなることは加熱対象の熱容量が小さくなり、少ないヒータ出力で目的の温度に加熱することが可能になる。すなわち、同じ温度までウェハWを加熱するという前提では、以下の関係がある。
・ヒータ出力が小さい → 反り発生
・ヒータ出力が大きい → 反りなし
 この関係は目視による判定とも一致している。したがって、予備加熱におけるヒータ出力を記録すれば反りの有無を判定できる。
 図6は、予備加熱に用いることが可能な各種ガスが供給された予備加熱におけるヒータ出力の一例を示す図である。図6の横軸は時間[秒]、縦軸はヒータ出力[%]である。図6では、ウェハWを載置台102に載置し、予備加熱に用いることが可能なガスとして、NHガス、Arガス、Heガス、Nガスの4つのガスをそれぞれ処理容器101内に供給して予備加熱を行った。
 時間t1~t2のヒータ出力に着目すると、NHガスのヒータ出力はArガス、Heガス、Nガスと比べて明らかに小さい。すなわち、NHガスが供給された状態の予備加熱では反りが発生しやすかったが、Arガス、Heガス、Nガスのいずれかが供給された状態の予備加熱では反りが発生し難かったことを示している。これらの結果は目視による判定とも一致する。このように、ヒータ電源127の出力データにより反りを検出することができる。以上から、第1のガスとしては、ウェハWに反りが生じにくいArガス、Heガス、Nガスのいずれかのガス又はこれらのガスの組み合わせが好ましいといえる。
 [反りが発生する要因の検討]
 次に、図7~図9を参照して、反りが発生する要因について検討する。図7は、載置台102の上面図と断面図を示す。載置台102にはウェハ支持ピン161がウェハWを昇降するための3つの貫通孔162が設けられている。また、載置台102の上面はエンボス加工により複数の凸部165が形成されており、ウェハ支持ピン161が下降しウェハWが載置台102の表面に載置された状態でも載置台102の上面とウェハWの下面との間には空間が生じる構造となっている。このため、貫通孔162の下から上に、処理容器101に供給されたガスが流入可能となる。なお、エンボス加工で形成された複数の凸部165はウェハWが載置台102の表面に張り付くのを防止するために形成されている。
 図8は、処理容器101に供給されたガスの流れを説明する図である。処理容器101の天壁から供給されたガスは、処理空間Uを通り、載置台102の外周から載置台102の下方空間を通り、貫通孔162の下から上に流入すると考えられる。
 流入したガスは、ウェハWの下面(裏面)に到達するが、載置台102の表面には複数の凸部165が形成されているためウェハWの下面(裏面)の全体には均一に広がりにくい。例えば、載置台102の中央部には3つの貫通孔162のそれぞれからガスが流れ込むように圧がかかり相殺し合うため、中央部には3つの貫通孔162のどの方向からもガスが到達しにくくなる。したがって、貫通孔162の下から上に流入したガスはウェハWの外周から抜けやすい傾向になる。そして、外周からの抜けやすさは、ガスの粘性係数に影響されると考えられる。
 また、ガスが載置台102の中央に到達しにくく、外周から抜けやすいほど、ウェハWの中央部と外周部に温度差が生じやすい(中央が低く、外周が高くなる)。すなわち、反りが発生しやすいことになる。
 図9は、20℃におけるNHガス、Heガス、Nガス、Arガスの粘性係数の一例である。NHガスの粘性係数はHeガス、Nガス、Arガスの粘性係数の45%~55%程度である。このように、NHガスは粘性係数が最も小さいことが分かる。
 図8に戻って説明する。図8(a)は処理容器101に供給されたNHガスの流れを、粘性抵抗を考慮して示す図である。貫通孔162の下から上に流入したNHガスは、Heガス、Nガス、Arガスよりも粘性係数が小さいため、載置台102の中央に到達しにくく、外周から抜けやすいと推測される。
 図8(b)は処理容器101に供給されたHeガス、Nガス又はArガスの流れを、粘性係数を考慮して示す図である。貫通孔162の下から上に流入したHeガス、Nガス又はArガスはNHガスに比べると粘性係数が大きいため、載置台102の中央に到達しやすく、外周から抜けにくいと推測される。
 図10は、NHガスとNガスを処理容器101内に各々供給し、特定の時間、加熱したときのウェハWの径方向の温度分布を示す図である。横軸は、ウェハWの中心からの径方向の距離を示す。横軸の0mmは、直径が300mmのウェハWの中心を示し、横軸の148mmは、ウェハWの外周部を示す。縦軸は、ウェハWの中心からの各距離における温度を示す。具体的には、NHガスの線は、載置台102の温度を320℃として、載置台102にウェハWを載置してNHガスを供給しながら特定の時間(6秒)加熱したときのウェハWの径方向の温度分布を示す。Nガスの線は、載置台102の温度を320℃として、載置台102にウェハWを載置してNガスを供給しながら特定の時間(6秒)加熱したときのウェハWの径方向の温度分布を示す。
 図10に示す結果から、NHガスを供給した場合、ウェハWの温度は、中心部から外周部へ向かうほど高くなることが分かった。これに対し、Nガスを供給した場合、ウェハWの温度は、中心部から外周部への変化が極めて小さく、均一な温度分布であることが分かった。また、図示していないが、Nガス以外のHeガス、ArガスでもNガスと同様な傾向が見られた。
 このように、NHガスを供給した場合、NHガスは載置台102の中央部に到達しにくく、外周から抜けやすいために、ウェハWの加熱が不均一になり、ウェハWの中央部と外周部に温度差が生じ、この結果、ウェハWに反りが発生すると考えられる。一方、Heガス、Nガス又はArガスは載置台102の中央部に到達しやすく、外周から抜けにくいために、ウェハWの加熱が均一になり、ウェハWの中央部と外周部に温度差が生じず、この結果、ウェハWに反りが発生しないと考えられる。以上から、第1のガスとしては、ウェハWに反りが生じにくいArガス、Heガス、Nガスのいずれかのガス又はこれらのガスの組み合わせが好ましい。ただし、Heガス、Nガス又はArガスでなくても粘性抵抗の大きい不活性ガスであれば第1のガスとして適用できる可能性がある。
 [主な効果]
 以上説明したように、本開示の基板処理方法は、不活性ガス(例えばNガス等)を用いて第1の予備加熱を行うことで、ウェハW面を均一に加熱することが可能になる。このため、加熱により生じうるウェハWの反りの抑制が可能である。また、反りが抑制されるため、ウェハWをウェハ支持ピンでピンアップして支持した状態で予備加熱する必要ない。反りが抑制されるので、短時間での昇温が可能であり、生産性(スループット)が向上する。
 また、予備加熱中に成膜ガスに切り替えるため、成膜ガスの種類を問わずに適用できる。また、不活性ガス(例えばNガス)の供給には、プラズマ処理装置100に既設されている処理ガスライン(流路)をパージするパージラインを用いるため、新たにガスラインを増設する必要がない。
 以上、基板処理装置を上記実施形態により説明したが、本開示にかかる基板処理装置は上記実施形態に限定されるものではなく、本開示の範囲内で種々の変形及び改良が可能である。上記複数の実施形態に記載された事項は、矛盾しない範囲で組み合わせることができる。
 本開示では、ウェハWを挙げて説明したが、プラズマ処理対象である被処理体は、ウェハWに限られず、LCD(Liquid Crystal Display)、FPD(Flat Panel Display)に用いられる各種基板等であっても良い。
 また、本開示ではCVDの成膜処理の前の予備加熱について説明したが、予備加熱は、各種の熱処理工程、不純物導入工程、又は、平坦化工程、の前の予備加熱にも利用できる。また、本開示では、プラズマ処理装置100による成膜処理の予備加熱について説明したが、エッチング、アッシングの予備加熱にも使用できる。また、成膜処理としては、プラズマを用いる方法に限らず、スパッタ、熱酸化、各種のランプによるアニール、等を用いてよい。
 本出願は、2021年2月8日に日本国特許庁に出願した特願2021-18135号に基づく優先権を主張するものであり、特願2021-18135号の全内容を本出願に援用する。
 100   プラズマ処理装置
 101   処理容器
 102   載置台
 103   ガス供給源
 105   マイクロ波プラズマ源
 106   制御部
 111   蓋体
 122   高周波バイアス電源
 U     処理空間

Claims (13)

  1.  処理容器内の載置台に被処理基板を載置する準備工程と、
     第1のガスを前記処理容器内に供給して加熱手段で前記被処理基板を加熱する第1の加熱工程と、
     前記第1のガスの供給を停止して、前記第1のガスとは異なる第2のガスを供給して前記加熱手段で前記被処理基板を加熱する第2の加熱工程と、
     前記第2のガス及び第3のガスを供給して前記被処理基板を処理する処理工程と、
     を有する基板処理方法。
  2.  前記処理工程は、前記第2のガスを含む前記第3のガスのプラズマで前記被処理基板を処理する請求項1に記載の基板処理方法。
  3.  前記第1のガスは不活性ガスであり、前記第2のガスは還元性ガスである請求項1又は2に記載の基板処理方法。
  4.  前記第1のガスはN、Ar、又は、Heであり、前記第2のガスはNHである請求項3に記載の基板処理方法。
  5.  前記第3のガスはNH及びSiHガス、又は、NH及びSiHClガスである請求項4に記載の基板処理方法。
  6.  前記第1の加熱工程と前記第2の加熱工程の圧力は、前記処理工程の圧力よりも高い請求項1~5のいずれか1項に記載の基板処理方法。
  7.  前記処理工程は、マイクロ波により前記第2のガス及び前記第3のガスのプラズマを生成し、所望の膜を成膜する成膜工程である請求項1~6のいずれか1項に記載の基板処理方法。
  8.  前記処理工程で成膜される膜は、酸素又は窒素を含む絶縁膜、誘電体膜、又は、金属膜である請求項7に記載の基板処理方法。
  9.  前記処理工程で成膜される膜は、SiN、SiO、又は、SiNとSiOとの積層膜である請求項8に記載の基板処理方法。
  10.  前記第2の加熱工程の後、前記処理工程に先立って、前記第2のガスを供給した状態で前記処理容器内の圧力を安定させる安定化工程を含む請求項7~9のいずれか1項に記載の基板処理方法。
  11.  前記第1の加熱工程にかかる時間に対する前記第2の加熱工程にかかる時間の比は、1:1~7:1である請求項1~10のいずれか1項に記載の基板処理方法。
  12.  前記第1の加熱工程から前記第2の加熱工程への切り替えは、前記加熱手段の出力信号に基づいて切り替えられる請求項1~11のいずれか1項に記載の基板処理方法。
  13.  載置台を備えた真空排気可能な処理容器と、
     前記処理容器内の前記載置台に被処理基板を載置する準備工程と、第1のガスを前記処理容器内に供給して前記被処理基板を加熱手段で加熱する第1の加熱工程と、前記第1のガスの供給を停止して、前記第1のガスとは異なる第2のガスを供給して前記加熱手段で前記被処理基板を加熱する第2の加熱工程と、前記第2のガス及び第3のガスを供給して前記被処理基板を処理する処理工程と、を含む基板処理方法が行われるように制御する制御部と、
     を有する基板処理装置。
PCT/JP2022/002674 2021-02-08 2022-01-25 基板処理方法、基板処理装置 WO2022168678A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/264,539 US20240047194A1 (en) 2021-02-08 2022-01-25 Substrate processing method and substrate processing apparatus
KR1020237029368A KR20230134596A (ko) 2021-02-08 2022-01-25 기판 처리 방법, 기판 처리 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-018135 2021-02-08
JP2021018135A JP2022121015A (ja) 2021-02-08 2021-02-08 基板処理方法、基板処理装置

Publications (1)

Publication Number Publication Date
WO2022168678A1 true WO2022168678A1 (ja) 2022-08-11

Family

ID=82741307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002674 WO2022168678A1 (ja) 2021-02-08 2022-01-25 基板処理方法、基板処理装置

Country Status (4)

Country Link
US (1) US20240047194A1 (ja)
JP (1) JP2022121015A (ja)
KR (1) KR20230134596A (ja)
WO (1) WO2022168678A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693454A (ja) * 1992-05-15 1994-04-05 Mitsubishi Kasei Corp グロー放電方法及びグロー放電装置
JP2003077863A (ja) * 2001-08-31 2003-03-14 Tokyo Electron Ltd Cvd成膜方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325174B (zh) 2004-04-09 2011-06-15 东京毅力科创株式会社 Ti膜及TiN膜的成膜方法以及接触结构
US8076252B2 (en) 2005-07-28 2011-12-13 Tokyo Electron Limited Substrate processing method and substrate processing apparatus
JP2010238739A (ja) 2009-03-30 2010-10-21 Tokyo Electron Ltd プラズマ処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693454A (ja) * 1992-05-15 1994-04-05 Mitsubishi Kasei Corp グロー放電方法及びグロー放電装置
JP2003077863A (ja) * 2001-08-31 2003-03-14 Tokyo Electron Ltd Cvd成膜方法

Also Published As

Publication number Publication date
JP2022121015A (ja) 2022-08-19
US20240047194A1 (en) 2024-02-08
KR20230134596A (ko) 2023-09-21

Similar Documents

Publication Publication Date Title
JP5008562B2 (ja) 基板処理方法および基板処理装置
US20170159181A1 (en) Substrate processing apparatus
KR101991574B1 (ko) 성막 장치, 및 그것에 이용하는 가스 토출 부재
JP6318139B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6838010B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
KR100745854B1 (ko) 화학 증착 방법
JPWO2009008474A1 (ja) プラズマ処理方法およびプラズマ処理装置
US10818476B2 (en) Substrate processing apparatus
KR100936550B1 (ko) 석영제부재의 표면 처리 방법, 플라즈마 처리 장치 및 플라즈마 처리 방법
JP6022785B2 (ja) 半導体装置の製造方法、基板処理装置、及びプログラム
WO2022168678A1 (ja) 基板処理方法、基板処理装置
JP6823709B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP2012079785A (ja) 絶縁膜の改質方法
WO2022054750A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
TWI761913B (zh) 基板處理裝置、基板承載盤蓋、半導體裝置之製造方法及基板處理方法
US7211514B2 (en) Heat-processing method for semiconductor process under a vacuum pressure
JP2012109429A (ja) 半導体装置の製造方法、及び基板処理装置
JP2009010144A (ja) 基板処理装置
KR100749375B1 (ko) 플라즈마 화학 증착 장치
JP7297149B2 (ja) 基板処理装置、基板載置台カバー、半導体装置の製造方法及びプログラム
US11658008B2 (en) Film forming apparatus and film forming method
JP2013187341A (ja) 基板処理装置及び半導体装置の製造方法
WO2022107611A1 (ja) 成膜方法及び成膜装置
JP2022053930A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP2010238739A (ja) プラズマ処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749553

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18264539

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237029368

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749553

Country of ref document: EP

Kind code of ref document: A1