WO2022168554A1 - 光計測装置 - Google Patents

光計測装置 Download PDF

Info

Publication number
WO2022168554A1
WO2022168554A1 PCT/JP2022/000845 JP2022000845W WO2022168554A1 WO 2022168554 A1 WO2022168554 A1 WO 2022168554A1 JP 2022000845 W JP2022000845 W JP 2022000845W WO 2022168554 A1 WO2022168554 A1 WO 2022168554A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
scattering
intensity
particles
wavelength
Prior art date
Application number
PCT/JP2022/000845
Other languages
English (en)
French (fr)
Inventor
崇市郎 中村
健一 濱田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP22749431.7A priority Critical patent/EP4290213A1/en
Priority to JP2022579411A priority patent/JPWO2022168554A1/ja
Priority to CN202280012000.6A priority patent/CN116868043A/zh
Priority to KR1020237025751A priority patent/KR20230125051A/ko
Publication of WO2022168554A1 publication Critical patent/WO2022168554A1/ja
Priority to US18/361,895 priority patent/US20230375453A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble

Definitions

  • the present invention relates to an optical measurement device that measures the scattering intensity of a dispersion containing particles at different scattering angles or different wavelengths.
  • Dynamic light scattering measurements are widely used for various measurements such as particle size measurement.
  • Patent Document 1 discloses a light scattering detector for detecting fine particles in a liquid or gaseous sample, in which a transparent sample cell for holding the sample and a static detector having a first wavelength or a first wavelength band are disclosed. a first light source for emitting light for dynamic light scattering measurement; and a second light source for emitting light for dynamic light scattering measurement having a second wavelength or a second wavelength band different from the first wavelength or first wavelength band. A light source means and a light source means disposed centrally surrounding the sample cell for detecting light scattered from the sample cell at different scattering angles into the surroundings in response to illumination for static light scattering measurements.
  • a first detection means comprising a plurality of detectors capable of selectively detecting a wavelength band
  • Static light scattering measurement by a second detector means comprising one or more detectors selectively detectable at a second wavelength or band of wavelengths to detect light scattered at different scattering angles, and a first light source means.
  • Patent Document 1 two light source means, a first light source means and a second light source means, having different wavelengths or wavelength bands are prepared, and the light emitted from these light source means is simultaneously or non-coaxially irradiated onto the sample cell. is doing.
  • a light combining means for introducing the irradiation light from the first light source means and the irradiation light from the second light source means into the sample cell along the same optical path.
  • a plurality of light sources and detectors are required, and the device configuration becomes large-scale.
  • An object of the present invention is to provide an optical measurement device that can easily measure scattering intensity at different scattering angles or different wavelengths.
  • one aspect of the present invention provides an optical measurement device having a low coherence interferometer, wherein at least part of scattered light obtained by incident light on a dispersion liquid containing particles and a first detection unit that interferes with the reference light and detects the intensity of the interference light for each wavelength; from the data of the interference light intensity for each wavelength detected by the detection unit having at least one of the second detection units for detecting the interference light intensity for each scattering angle, and the dispersion liquid Scattering intensity at a specific depth and a specific scattering angle of the dispersion from the data of the scattering intensity at a specific depth and a specific wavelength, or the data of the interference light intensity for each scattering angle detected by the second detection unit and a converting unit for extracting a plurality of data of the scattering intensity and converting the extracted scattering intensity data into time fluctuation data of the scattered light at a specific depth of the dispersion liquid.
  • a memory that stores at least one of scattering angle dependent data on scattered light intensity and wavelength dependent data on scattered light intensity of known particles determined by the complex refractive index, particle size and shape of the known particles a storage unit for storing scattering angle dependent data obtained from the time fluctuation data obtained by the conversion unit or scattered light wavelength dependent data obtained from the time fluctuation data obtained by the conversion unit; Obtain the particle size distribution for each particle type contained in the dispersion by fitting to the scattering angle dependent data about the scattered light intensity of the known particles stored by or the wavelength dependent data about the scattered light intensity It is preferable to have an arithmetic unit.
  • the first detection unit has a photodetector that wavelength-decomposes the scattered light that interferes with the reference light and detects the wavelength-decomposed scattered light for each wavelength.
  • the second detection unit preferably has a photodetector that detects the scattered light that interferes with the reference light for each scattering angle.
  • a polarization control section that controls the polarization state of incident light is provided, and the first detection unit or the second detection unit measures the light intensity of the polarized component of the scattered light as the scattering intensity. It is preferable to have a spectral adjustment unit that controls the center wavelength and wavelength band of incident light.
  • the time fluctuation data of scattered light is a power spectrum or an autocorrelation function.
  • an optical measurement device that can easily measure scattering intensity at different scattering angles or different wavelengths.
  • 4 is a graph showing an example of the time response of the electric field in the depth of interest region obtained in the first example of the optical measurement method according to the embodiment of the present invention; It is a graph which shows an example of the power spectrum obtained by the 1st example of the optical measurement method of embodiment of this invention. It is a graph which shows an example of the time correlation function obtained by the 1st example of the optical measurement method of embodiment of this invention. 4 is a graph showing wavelength dependence of scattering intensity. 4 is a graph showing wavelength dependence of static light scattering intensity. It is a schematic diagram which shows the optical apparatus for demonstrating the 2nd example of the optical measurement method of embodiment of this invention. It is a graph which shows an example of the light intensity obtained by the 2nd example of the optical measurement method of embodiment of this invention.
  • FIG. 10 is a graph showing the results of particle size obtained by autocorrelation function and fitting at a scattering angle of 175°.
  • FIG. 4 is a graph showing results of particle size obtained by autocorrelation function and fitting at a scattering angle of 173°.
  • FIG. 10 is a graph showing the results of particle size obtained by autocorrelation function and fitting at a scattering angle of 172.5°.
  • FIG. It is a flowchart which shows the optical measurement method of embodiment of this invention.
  • 4 is a histogram of particles A; 4 is a histogram of particles B; 4 is a graph showing the relationship between interference light intensity and scattering angle; A histogram of single particles. It is a histogram of agglomerated particles.
  • 4 is a graph showing the relationship between scattering intensity and scattering angle for each particle shape.
  • 1 is a schematic perspective view showing spherical particles; FIG. FIG.
  • FIG. 2 is a schematic perspective view showing disk-shaped particles; It is a schematic diagram which shows the 2nd example of the optical measuring device of embodiment of this invention.
  • FIG. 4 is a schematic diagram showing a first example of a mask of a second example of the optical measurement device according to the embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a second example of a mask of a second example of the optical measurement device according to the embodiment of the present invention;
  • FIG. 10 is a schematic diagram showing a third example of the mask of the second example of the optical measurement device according to the embodiment of the present invention; It is a schematic diagram which shows the 3rd example of the optical measuring device of embodiment of this invention.
  • FIG. 1 is a schematic diagram showing a first example of an optical measurement device according to an embodiment of the present invention.
  • the optical measurement device 10 shown in FIG. have.
  • the optical metrology device 10 has a sample cell 18 .
  • the low coherence interferometer 12 is an optical interferometer using a light source that emits low coherence light.
  • the low coherence interferometer 12 has, for example, a light source section 20 and four beam splitters 21a, 21b, 21c and 21d.
  • the four beam splitters 21a, 21b, 21c, and 21d each have a transmissive/reflective surface 21e that splits incident light into two or multiplexes two incident lights.
  • the transmissive/reflective surface 21e is a sloping surface with an angle of 45°.
  • the four beam splitters 21a, 21b, 21c, and 21d are all cubic beam splitters.
  • the shape of the beam splitter is not limited to the cube type, and may be a flat plate type.
  • the low coherence interferometer 12 is not limited to the configuration shown in FIG.
  • the four beam splitters 21a, 21b, 21c, and 21d are arranged at the vertices of the quadrangle.
  • the transmitting/reflecting surfaces 21e of the beam splitters 21a and 21d arranged on a diagonal line are parallel to each other.
  • the beam splitter 21b and the beam splitter 21c, which are arranged on a diagonal line, have parallel transmission/reflection surfaces 21e.
  • the transmission/reflection surfaces 21e of the four beam splitters 21a, 21b, 21c, and 21d are oriented differently from the transmission/reflection surfaces 21e of the adjacent beam splitters 21a, 21b, 21c, and 21d, and are non-parallel. parallel.
  • a beam splitter 21a and a beam splitter 21c are arranged side by side, and a reflector 22 is arranged on the opposite side of the beam splitter 21c to the beam splitter 21a. Between the beam splitter 21c and the reflector 22, a dispersion compensation adjusting section 23a and an objective lens 23b are arranged from the beam splitter 21c side.
  • the reflector 22 reflects incident light, and the reflecting surface 22a of the reflector 22 is a reference surface.
  • the reflector 22 is not particularly limited as long as it can reflect incident light, and for example, a mirror or a glass plate is used.
  • the dispersion compensation adjuster 23a compensates for group velocity dispersion caused by the sample cell 18.
  • FIG. When the sample cell 18 is made of optical glass as will be described later, the dispersion compensating adjuster 23a compensates for group velocity dispersion due to the thickness of the optical glass that makes up the sample cell 18 .
  • a glass plate having approximately the same thickness as the optical glass forming the sample cell 18 is arranged between the beam splitter 21c and the objective lens 23b to compensate for the group velocity dispersion of the passing light.
  • the dispersion compensation adjustment unit 23a adjusts the optical path length difference due to the difference in the wavelength of the reference light Lr, and matches the optical path lengths of the reference light Lr and the scattered light Ld for each wavelength.
  • the objective lens 23b converges the light incident on the reflector 22 onto the reflecting surface 22a of the reflector 22 .
  • a beam splitter 21a and a beam splitter 21b are arranged side by side, and an ND (Neutral Density) filter 24a is arranged between the beam splitter 21a and the beam splitter 21b.
  • An ND filter 24b is arranged between the beam splitter 21a and the beam splitter 21c.
  • the ND filters 24 a and 24 b adjust the amount of light in order to balance the light intensity of the reference light Lr reflected by the reflecting surface 22 a of the reflector 22 and the scattered light Ld from the sample cell 18 .
  • Known filters can be used as appropriate for the ND filters 24a and 24b.
  • a sample cell 18 is arranged on the opposite side of the beam splitter 21b to the beam splitter 21a.
  • An objective lens 25 is arranged between the beam splitter 21b and the sample cell 18 to converge the incident light Ls on the sample cell 18 .
  • the beam splitter 21c and the beam splitter 21d are arranged side by side, and the first detection unit 14a is arranged on the opposite side of the beam splitter 21d to the beam splitter 21c.
  • a polarization adjuster 26 is arranged between the beam splitter 21d and the first detection unit 14a. The polarization adjuster 26 controls the polarization state of scattered light emitted from the beam splitter 21d and incident on the first detection unit 14a.
  • the polarization adjustment unit 26 is composed of, for example, a polarization element, and the polarization element is appropriately used to adjust the polarization state of the scattered light Ld scattered from the dispersion liquid Lq of the sample cell 18, such as circularly polarized light, linearly polarized light, or elliptically polarized light.
  • the polarization adjuster 26 is composed of a polarizer. Measurement may be performed by changing the direction of the transmission axis of the polarizer.
  • the beam splitter 21b and the beam splitter 21d are arranged side by side, and the second detection unit 14b is arranged on the opposite side of the beam splitter 21d to the beam splitter 21b.
  • the first detection unit 14a has a mirror 30 and a diffraction grating 32 on which light reflected from the mirror 30 is incident.
  • the diffraction grating 32 is an optical element that wavelength-decomposes incident light, including scattered light, into light of each wavelength.
  • the diffraction grating 32 can obtain scattered light for each wavelength.
  • it has a photodetector 33 into which the diffracted light diffracted according to the wavelength by the diffraction grating 32 is incident.
  • the photodetector 33 detects the scattered light that is wavelength-resolved for each wavelength.
  • a line camera in which photoelectric conversion elements are arranged on a straight line is used.
  • the photodetector 33 may be a photomultiplier tube arranged in a straight line instead of the line camera.
  • the photodetector 33 of the first detection unit 14a receives diffracted light including scattered light diffracted by the diffraction grating 32, but the diffraction angle differs for each wavelength, and the line camera, which is the photodetector 34, receives the light. position is determined. Therefore, in the first detection unit 14a, the wavelength is specified by the position at which the line camera, which is the photodetector 33, receives the light. In this manner, the first detection unit 14a decomposes the scattered light into wavelengths and detects the wavelength-decomposed scattered light for each wavelength.
  • the diffraction grating 32 is used to obtain light of each wavelength, it is not limited to the diffraction grating 32 as long as light of each wavelength can be obtained. For example, it is possible to prepare a plurality of bandpass filters having different cutoff wavelength bands, replace the bandpass filters, and obtain scattered light for each wavelength. A prism can also be used instead of the diffraction grating 32 .
  • the second detection unit 14b has a photodetector 34 .
  • the photodetector 34 detects scattered light for each scattering angle.
  • a line camera in which photoelectric conversion elements are arranged on a straight line is used.
  • the scattering angle is specified from the position at which the line camera, which is the photodetector 34, receives the light. This makes it possible to easily measure the scattering intensity of scattered light at different scattering angles.
  • the photodetector 34 also detects the intensity of the interference light for each scattering angle for the interference light that the scattered light interferes with the reference light.
  • the photodetector 34 may be a high-speed camera instead of the line camera.
  • Photoelectric conversion elements used for the photodetectors 33 and 34 are, for example, photodiodes.
  • the sample cell 18 is, for example, a cuboid or cylindrical container made of optical glass or optical plastic.
  • the sample cell 18 contains a dispersion liquid Lq containing particles, which is an object to be measured.
  • the dispersion Lq is irradiated with the incident light Ls.
  • the sample cell 18 may be placed in an immersion bath, not shown.
  • the liquid immersion bath is for removing the refractive index difference between the sample cell 18 and the surrounding environment, and a known liquid immersion bath can be used as appropriate.
  • the temperature of the sample cell 18 can be adjusted by bringing the sample cell 18 into contact with the metal in contact with the Peltier element.
  • the light source unit 20 is arranged on the opposite side of the beam splitter 21a to the beam splitter 21b.
  • the light source unit 20 irradiates the sample cell 18 with the incident light Ls, and causes the light emitted to the beam splitter 21a to enter.
  • the light source unit 20 emits low coherence light as the incident light Ls.
  • Low-coherence light is light with a bandwidth, unlike monochromatic laser light.
  • a xenon lamp, a superluminescence diode (SLD), an LED (light emitting diode), or a supercontinuum (SC) light source is used as the light source unit 20, for example.
  • a spectral adjustment unit 27 and a polarization control unit 28 are provided from the light source unit 20 side between the light source unit 20 and the beam splitter 21a.
  • the spectral adjustment section 27 cuts an unnecessary wavelength range according to the spectrum of the incident light Ls from the light source section 20 .
  • the spectral adjustment unit 27 is provided with, for example, Use a filter that cuts the near-infrared light region.
  • a bandpass filter may be used in the spectral adjustment section 27 for the purpose of limiting the wavelength band.
  • a bandpass filter may be used in the spectral adjustment section 27 for the purpose of limiting the wavelength band.
  • the wavelength range can be cut, so that the configuration of the light source section 20 can be simplified, and the apparatus configuration can be simplified.
  • the polarization control section 28 controls the polarization state of incident light, and adjusts the polarization of the incident light.
  • the polarization control unit 28 is composed of, for example, a polarizing element, and a polarizing element corresponding to the polarized light with which the sample cell 18 is irradiated, such as circularly polarized light, linearly polarized light, or elliptically polarized light, is appropriately used. Polarization of the incident light is used in determining the shape of the particles. More specifically, the polarization control section 28 is composed of a combination of a polarizer and a ⁇ /4 plate. Thereby, the non-polarized incident light Ls can be circularly polarized. In addition, in the optical measurement device 10, when the polarized light emitted from the light source unit 20 is used as it is, the polarization adjustment unit 26 and the polarization control unit 28 are not necessarily required.
  • the optical measurement device 10 having the first detection unit 14a and the second detection unit 14b can conveniently measure the scattering intensity at different scattering angles or different wavelengths. Further, in the optical measurement device 10, if either one of the scattering angle and the wavelength is used, in the detection unit 14, either one of the first detection unit 14a and the second detection unit 14b I wish I had.
  • the light emitted from the light source unit 20 is split by the transmission/reflection surface 21e of the beam splitter 21a, passes through the transmission/reflection surface 21e, enters the beam splitter 21b, and passes through the transmission/reflection surface 21e of the beam splitter 21b to reach the sample.
  • the cell 18 is irradiated with the incident light Ls.
  • the incident light Ls is scattered by the dispersion liquid Lq of the sample cell 18, and the scattered light Ld is reflected by the transmissive reflection surface 21e of the beam splitter 21b to the beam splitter 21d.
  • the scattered light Ld reflected by the transmissive reflection surface 21e of the beam splitter 21d is incident on the first detection unit 14a.
  • the light beam split by the transmissive/reflective surface 21e of the beam splitter 21a and incident on the beam splitter 21c is transmitted through the transmissive/reflective surface 21e, enters the reflector 22, and is reflected by the reflective surface 22a of the reflector 22.
  • FIG. This reflected light is the reference light Lr.
  • the reference light Lr is reflected by the transmission/reflection surface 21e of the beam splitter 21c and enters the beam splitter 21d.
  • the reference light Lr transmitted through the transmission/reflection surface 21e of the beam splitter 21d enters the first detection unit 14a. In this manner, the scattered light Ld and the reference light Lr enter the first detection unit 14a and interfere with each other.
  • At least part of the scattered light Ld should interfere with the reference light Lr.
  • the light receiving position of the photodetector 33 is determined for each wavelength by the diffraction grating 32, and the first detection unit 14a can detect the interference light for each wavelength, and obtain the data of the interference light intensity for each wavelength.
  • the conversion unit 15 can obtain scattering intensity data at a specific depth and a specific wavelength of the dispersion liquid Lq from the interference spectrum of the scattered light. It should be noted that the depth may be considered to refer to the optical path length of the scattered light through the dispersion liquid Lq.
  • the scattered light Ld is transmitted through the transmission/reflection surface 21e of the beam splitter 21d and enters the second detection unit 14b.
  • the reference light Lr reflected by the transmissive reflection surface 21e of the beam splitter 21d enters the second detection unit 14b.
  • the scattered light Ld and the reference light Lr enter the second detection unit 14b and interfere with each other.
  • At least part of the scattered light Ld should interfere with the reference light Lr, and the optical path length is adjusted so that only the scattered light generated at a specific depth in the dispersion liquid Lq interferes with the reference light Lr. is preferred.
  • the reflection position of the scattered light Ld on the transmissive reflection surface 21e of the beam splitter 21b differs, and the light receiving position on the photodetector 34 also differs. Therefore, in the second detection unit 14b, the light receiving position of the photodetector 34 is determined for each scattering angle, and the interference light between the reference light and the scattered light can be detected for each scattering angle. data are obtained. As a result, the conversion unit 15 obtains scattering intensity data at a specific scattering angle from the interference light intensity data for each scattering angle for scattered light at a specific depth in the dispersion liquid Lq corresponding to the same optical path length as that of the reference light. be able to.
  • the scattering angle ⁇ b (°) in FIG. 1 is an angle based on the backscattered light with a scattering angle of 180°.
  • the general notation of the scattering angle ⁇ (°), where the angle of forward scattering is 0°, has a relationship of ⁇ (°) 180° - ⁇ b (°).
  • a calculation unit 16 is connected to the conversion unit 15 , and a storage unit 17 is connected to the conversion unit 15 and the calculation unit 16 .
  • the conversion unit 15 converts the data of the interference light intensity detected by the first detection unit 14a into a value proportional to the scattering intensity of the scattered light of a specific wavelength or the electric field, or the value proportional to the electric field of the interference light intensity detected by the second detection unit 14b.
  • a plurality of values proportional to the scattering intensity of light at a specific scattering angle or the electric field are extracted from the data. Then, the conversion unit 15 converts the extracted scattering intensity data into time fluctuation data of the scattered light at a specific depth of the dispersion liquid Lq.
  • the converter 15 is connected to the photodetector 33 of the first detection unit 14a and the photodetector 34 of the second detection unit 14b.
  • the conversion unit 15 acquires light intensity data at a specific wavelength detected by the photodetector 33 of the first detection unit 14a, and extracts a plurality of scattering intensity data at the specific wavelength. Then, the data of the scattered intensity that is taken out is converted into time fluctuation data of the scattered light at a specific depth of the dispersion liquid Lq. Further, the conversion unit 15 causes only the scattered light generated at a specific depth of the dispersion liquid Lq to interfere with the position control of the reflector 22, which is detected by the photodetector 34 of the second detection unit 14b, and the light is scattered at a specific scattering angle.
  • the data of the intensity of the interference light at , and a plurality of scattering intensities at a specific scattering angle are taken out.
  • the scattered intensity data taken out is converted into time fluctuation data of the scattered light at a specific depth in the dispersion liquid Lq.
  • the time fluctuation data is a power spectrum or an autocorrelation function.
  • the scattered light of the dispersion liquid Lq described above includes components of light scattered at various depths of the dispersion liquid Lq, and the number of times of scattering is different and the intensity is also different.
  • By setting a specific depth of the dispersion liquid Lq it is possible to obtain, for example, single scattered light in which the light is scattered only once.
  • the analysis in which the conversion unit 15 converts the extracted scattering intensity data into the time fluctuation data of the scattered light at a specific depth of the dispersion liquid Lq will be described later.
  • the conversion unit 15 extracts a plurality of scattering intensities as described above by executing a program (computer software) stored in a ROM (Read Only Memory) or the like, and distributes the extracted scattering intensity data. A transformation of the scattered light at a specific depth in the liquid Lq into time fluctuation data is performed.
  • the conversion unit 15 may be configured by a computer in which each part functions by executing a program as described above, or may be a dedicated device in which each part is configured by a dedicated circuit. May be configured on the server to run.
  • the calculation unit 16 uses the time fluctuation data acquired by the conversion unit 15 to calculate the particle size of the particles. Further, the calculation unit 16 converts the time fluctuation data acquired by the conversion unit 15 and the time average data obtained by time-averaging the time fluctuation data acquired by the conversion unit 15 into a theory that defines the relationship between the particle size and the scattering intensity. By fitting to the formula, the particle size distribution for each particle type contained in the dispersion is obtained. Various calculation methods used in the dynamic light scattering method can be appropriately used for calculating the particle size of the particles in the calculation unit 16 . Further, obtaining a particle size distribution for each particle type contained in the dispersion will be described later.
  • the storage unit 17 stores at least one of scattering angle-dependent data about the scattered light intensity of known particles and wavelength-dependent data about the scattered light intensity of the known particles, which are obtained from the complex refractive index, particle size, and shape of the known particles. It remembers one. By storing in the storage unit 17 at least one of the data of the scattering angle dependence of the scattered light intensity and the wavelength dependence of the scattered light intensity of the known particles, when obtaining the particle size distribution of the particles, Or it can be referenced during fitting. Therefore, for various particles, at least one of data on the scattering angle dependence of the scattered light intensity and data on the wavelength dependence of the scattered light intensity for known particles is stored, and a model library is constructed. is preferred. The storage unit 17 also stores various data obtained by the conversion unit 15 .
  • the storage unit 17 can store the data of the scattering angle dependence of the scattered light intensity and the wavelength dependence data of the scattered light intensity related to the above-described known particles, and various data obtained by the conversion unit 15, It is not particularly limited, and various storage media such as hard disks or SSDs (Solid State Drives) can be used.
  • the calculation unit 16 uses at least one of the scattering angle dependence data of the scattered light intensity and the wavelength dependence data of the scattered light intensity for the known particles stored in the storage unit 17 to calculate for each particle type A fitting is performed to obtain the particle size distribution of
  • the calculation unit 16 can also read out various data obtained by the conversion unit 15 stored in the storage unit 17 and perform fitting.
  • the scattering properties of the particles are, for example, the scattering angle dependence data of the scattered light intensity and the wavelength dependence data of the scattered light intensity of known particles.
  • the scattering properties of these particles may be measured values obtained using known particles such as standard particles, or calculations obtained by theoretical formulas such as Mie scattering theoretical formulas that define the relationship between particle size and scattering intensity. can be a value.
  • the scattering properties of the particles may be calculated values obtained by simulation. A calculated value by simulation is obtained using, for example, the FDTD method (Finite-difference time-domain method) or the DDA (Discrete dipole approximation) method.
  • the scattering properties of particles described above are stored in the storage unit 17 as, for example, a model library.
  • the calculation unit 16 executes a program (computer software) stored in a ROM or the like, thereby calculating the particle size of the particles and obtaining a particle size distribution for each particle type contained in the dispersion liquid. to implement.
  • the calculation unit 16 may be configured by a computer in which each part functions by executing the program as described above, or may be a dedicated device in which each part is configured by a dedicated circuit. May be configured on the server to run.
  • the reference light Lr may be blocked so as not to interfere with the scattered light.
  • normal dynamic light scattering measurement can be performed by blocking the reference light Lr.
  • a light shielding plate that can move forward and backward is provided between the beam splitter 21a and the beam splitter 21c so that the light split from the beam splitter 21a reaches the reflector 22.
  • a retractable light shielding plate may be provided between the beam splitter 21c and the beam splitter 21d to block the reference light Lr reaching the beam splitter 21d and cut off the reference light Lr.
  • the light shielding plate is not limited to the retractable light shielding plate.
  • an optical shutter using a liquid crystal shutter can be used. With the above configuration, the optical measurement device 10 can also be used as a normal dynamic light scattering device for homodyne detection.
  • FIG. 2 is a graph showing an example of the power spectrum obtained by the first example of the optical measurement method according to the embodiment of the invention
  • FIG. 10 is a graph showing an example of an obtained autocorrelation function
  • a dispersion liquid containing polystyrene particles with a diameter of 1 ⁇ m and a concentration of 1% by mass is detected by using the optical measuring device 10 shown in FIG. 1 to detect the interference light intensity for each wavelength.
  • interference intensity spectra of three wavelengths of center wavelengths 620 nm, 640 nm, and 660 nm are extracted as representatives.
  • the width of the wavelength is ⁇ 9 nm with respect to the central wavelengths of 620 nm, 640 nm, and 660 nm.
  • the conversion unit 15 acquires data of signal components proportional to the electric field of the scattered light of each wavelength at the specific depth from the interference light intensity detected by the first detection unit 14a.
  • the scattering intensity data of each wavelength is converted into a power spectrum as time fluctuation data of scattered light at a specific depth of the dispersion liquid Lq. Thereby, the power spectrum shown in FIG. 2 is obtained.
  • the power spectrum shown in FIG. 2 is subjected to an inverse Fourier transform in the transform section 15 to obtain an autocorrelation function for each wavelength as shown in FIG.
  • the numerical values on the vertical axis in FIG. 3 are common logarithms.
  • the gradient ⁇ g is obtained for each of the common logarithms (log 10 ) of the autocorrelation function of each wavelength shown in FIG.
  • q is the scattering vector.
  • kB is the Boltzmann constant
  • T is the absolute temperature
  • is the viscosity of the dispersion solvent.
  • the method of calculating the particle distribution from the slope of the autocorrelation function is not limited to this method, and the CONTIN method, histogram method, cumulant expansion, etc. are known, and these methods can be used.
  • the hydrodynamic particle size of the polystyrene particles at each wavelength is obtained.
  • This hydrodynamic particle size is the particle size d mentioned above.
  • 0.9 ⁇ m is obtained at the center wavelength of 620 nm
  • 1.1 ⁇ m is obtained at the center wavelength of 640 nm
  • 1.2 ⁇ m is obtained at the center wavelength of 660 nm.
  • the average particle size obtained for each is 1.06 ⁇ m.
  • the particle size can be measured for polystyrene particles with a particle size of 1 ⁇ m and a concentration of 1% by mass.
  • a first example of the optical metrology method utilizes multiple wavelengths in the optical metrology device 10 .
  • a supercontinuum light source is used to measure a dispersion containing particles.
  • light of each wavelength is detected by the photodetector 33 of the first detection unit 14a.
  • Light of each wavelength incident on the photodetector 33 contains interference light between the scattered light and the reference light, and is represented by the interference spectrum shown in FIG. 4, for example.
  • the vertical axis is the light intensity
  • the horizontal axis is the wave number.
  • the intensity Ik of the interference spectrum shown in FIG. 4 is represented by the following formula.
  • E S is the electric field of the scattered light
  • E S * is the complex conjugate quantity of E S
  • E R is the electric field of the reference light
  • E R * is the complex conjugate quantity of E R.
  • a wavelength region 35a with a center wavelength of 620 nm is extracted.
  • the width of the wavelength region 35a is ⁇ 9 nm with respect to the central wavelength of 620 nm.
  • the scattering intensity in a specific wavelength region is extracted from the scattering intensity data for each wavelength.
  • an inverse Fourier transform F ⁇ 1 is performed on the intensity I k of the interference spectrum for the wavelength region.
  • a scattering profile F ⁇ 1 (I K ) in the depth direction of the dispersion liquid Lq at a center wavelength of 620 nm is obtained.
  • FIG. 5 An example of the scattering profile in the depth direction of the dispersion liquid Lq is shown in FIG.
  • the vertical axis is F ⁇ 1 (I K )
  • the horizontal axis is the distance from the position of the reference optical path length.
  • This reference optical path length position is equal to the optical path length of the reference light.
  • the horizontal axis is the interface is the depth from
  • a single scattering region is taken out as a depth region of interest 35b.
  • the single scattering region that is, the region where light is scattered only once is determined by the optical path length in the optical measurement device 10.
  • the optical path length of the single scattering region is specified in advance. is preferred. Note that the depth-of-interest region 35b described above corresponds to a specific depth of the dispersion liquid Lq.
  • the conversion unit 15 converts the scattering intensity data for each wavelength detected by the first detection unit 14 a into a power spectrum or an autocorrelation function at a specific depth of the dispersion liquid Lq.
  • the calculation unit 16 calculates the particle size of the particles using the power spectrum or the autocorrelation function, which is the time fluctuation data acquired by the conversion unit 15 .
  • the method for calculating the particle size of particles using the autocorrelation function is as shown in FIG.
  • the time average of the signal in the depth-of-interest region 35b shown in FIG. It can be obtained by dividing by the intensity signal in the same wavelength region as wavelength region 35a described above. By further squaring this, the scattered light intensity normalized by the light source spectrum can be obtained. As described above, it is possible to obtain, for example, information on static light scattering by single scattering in a wavelength region with a central wavelength of 620 nm.
  • a wavelength region with a center wavelength of 640 nm for example, a wavelength region with a center wavelength of 660 nm, a wavelength region with a center wavelength of 640 nm and a wavelength region with a center wavelength of 660 nm are extracted from the interference spectrum shown in FIG. By doing so, it is possible to obtain information on single-scattered static light scattering at each wavelength.
  • the width of the wavelength region is, for example, ⁇ 9 nm with respect to the central wavelengths of 640 and 660 nm.
  • FIG. 9 is a graph showing wavelength dependence of scattering intensity
  • FIG. 10 is a graph showing wavelength dependence of static light scattering intensity.
  • FIG. 9 is obtained by theoretical calculation
  • FIG. 10 is obtained by actual measurement.
  • Profile 36 shown in FIG. 9 shows the scattering intensity of bridging aggregates with a hydrodynamic diameter of 1000 nm composed of polystyrene particles with a diameter of 50 nm. The bridged aggregates have an average particle-to-particle distance equal to or greater than the particle size of polystyrene.
  • Profile 37 shows the scattering intensity of a single particle of polystyrene particles with a diameter of 1000 nm.
  • the vertical axis is scattering intensity and the horizontal axis is wavelength.
  • the bridging aggregate is composed of, for example, particles of a predetermined size and a polymer existing between the particles.
  • the polymer is often a polymer having a functional group (for example, a polar group) that causes particles to aggregate together.
  • the bridging aggregate represented by profile 36 exhibits a decrease in scattering intensity with increasing wavelength.
  • the scattering intensity increases with increasing wavelength.
  • FIG. 10 shows the static light scattering intensity obtained by measuring a single polystyrene particle with a diameter of 1000 nm and a concentration of 1% by weight. Like the wavelength dependence of the static light scattering intensity shown in FIG. 10, the scattering intensity of a single polystyrene particle increases with increasing wavelength.
  • the dynamic light scattering method only reveals that the hydrodynamic size of the particles is 1000 nm, as shown in the analysis example of the time fluctuation data of the scattered light. Therefore, even if the particle diameter of the particles is known to be 1000 nm, it cannot be determined whether the particles are either the above-mentioned bridge aggregates or single particles. Since the scattering intensity of a single particle increases with increasing wavelength as shown in profile 37 shown in FIG. 9, the signal obtained in the experiment of FIG. It can be determined that there is It should be noted that determination of single particles is performed by the calculation unit 16 . As described above, in the procedure described later (see FIG.
  • the state of the particles in the dispersion and the type of particles in the dispersion can be determined.
  • the state of particles in the dispersion is, for example, an aggregated state.
  • the type of particles in the dispersion liquid and the state of the particles in the dispersion liquid are performed by the calculation unit 16 . Note that the calculation unit 16 only needs to be able to determine at least one of the type of particles in the dispersion liquid and the state of the particles in the dispersion liquid.
  • FIG. 11 is a schematic diagram showing an optical device for explaining a second example of the optical measurement method according to the embodiment of the invention.
  • the optical device 38 shown in FIG. 11 has a simplified configuration for explaining measurement using a plurality of scattering angles in the optical measurement device 10 shown in FIG. 11, the same components as those of the optical measurement device 10 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • a photodetector 34 and a reflector 22 are arranged with a cube-shaped beam splitter 39 interposed therebetween.
  • An objective lens 23 b is arranged between the beam splitter 39 and the reflector 22 .
  • a surface 39a of the beam splitter 39 is a surface perpendicular to the direction in which the reflectors 22 and the photodetectors 34 are arranged.
  • a sample cell 18 containing a dispersion liquid Lq is provided facing the surface 39 a of the beam splitter 39 .
  • An objective lens 25 is arranged between the surface 39a of the beam splitter 39 and the dispersion liquid Lq.
  • the beam splitter 39 has a transmission/reflection surface 39e that splits incident light into two or multiplexes two incident lights. Also, the beam splitter 39 is a cubic cube beam splitter, but the shape of the beam splitter is not limited to the cube type, and may be a flat plate type.
  • the photodetector 34 is a line camera in which photoelectric conversion elements are arranged on a straight line as described above.
  • the coordinate xc is the coordinate when the scattering angle ⁇ b is 0° with respect to the angle of the backscattered light or the specularly reflected light of the sample cell, that is, the scattering angle
  • is 180°.
  • the position at which the reference light interferes with the scattered light in the depth direction of the dispersion liquid Lq can be changed.
  • the optical path length of the reference light to the optical path length of the single scattered light from the dispersion liquid, it is possible to obtain a signal in which the single scattered light interferes.
  • the incident light Ls is incident on the surface 39b of the beam splitter 39 that faces the surface 39a.
  • the incident light Ls is transmitted through the transmissive/reflective surface 39e, passes through the objective lens 25, and is irradiated onto the dispersion liquid Lq, thereby generating scattered light Ld with a scattering angle ⁇ .
  • the scattered light Ld is incident on the transmission/reflection surface 39 e of the beam splitter 39 , reflected by the transmission/reflection surface 39 e , and the scattered light Ld is incident on the photodetector 34 .
  • the incident light Ls is split by the transmission/reflection surface 39 e of the beam splitter 39 and enters the reflector 22 .
  • the reference light Lr reflected by the reflecting surface 22a of the reflector 22 is transmitted through the transmitting/reflecting surface 39e and enters the photodetector .
  • the scattered light Ld and the reference light Lr enter the photodetector 34 and interfere with each other.
  • the intensity of the interference light shown in FIG. 12 is obtained.
  • the vertical axis is the light intensity
  • the horizontal axis is the position coordinates of the line camera.
  • the intensity of the interference light shown in FIG. 12 is represented by the following formula.
  • I- interference (x,t) I R +I S +2Re ⁇ E R E S * (x,z interference ) ⁇ (t)
  • x is the position coordinate of the line camera
  • t time
  • I R is the intensity of the reference light
  • Is is the intensity of the scattered light
  • Re ⁇ E R E S * ⁇ is a function taking the real part
  • E R is the electric field of the reference light
  • E s is the electric field of the scattered light
  • z is the interference position in the dispersion liquid in the direction of the optical axis, that is, the interference position in the depth direction of the dispersion liquid.
  • I non-interference (x, t) I R +I S.
  • a non-interfering spectrum can be obtained, for example, by placing a thick glass plate at the position of the dispersion compensation adjusting section 23a shown in FIG. 1 to lengthen the optical path length of the reference light and changing the optical path length.
  • I -interference (x,t) may be obtained as a simpler approximation by taking the time average of I- interference (x,t) ⁇ I- interference (x,t)>t.
  • FIG. 12 shows the light intensity with respect to the scattering angle ⁇ as shown in FIG.
  • FIG. 13 shows the profile of the scattering intensity with respect to the scattering angle.
  • the vertical axis of FIG. 13 is the light intensity, indicating the scattering intensity, and the horizontal axis is the scattering angle.
  • I non-interference ( ⁇ , t) I R +I S.
  • an angular region of interest 40 and an angular region of interest 42 are set.
  • a plurality of interference light intensity I interference ( ⁇ , t) containing information on the scattered optical electric field at a specific scattering angle are extracted.
  • the time response of the electric field of the angular regions of interest 40, 42 is obtained in the second detection unit 14b.
  • a profile 41 showing the time dependence of the scattered electric field shown in FIG. 14 is obtained for the angular region 40 of interest.
  • a profile 43 showing the time dependence of the scattered electric field shown in FIG. 14 is obtained for the angular region 40 of interest.
  • a profile 43 showing the time dependence of the scattered electric field shown in FIG. 14 is obtained for the angular region of interest 42.
  • FIG. 14 is a graph obtained by extracting the scattering angle component in the region of interest and plotting it as a time-series change, showing the fluctuation of the scattering angle ⁇ component in the time domain. Note that the vertical axis in FIG. 14 is the electric field, and the horizontal axis is time.
  • FIG. 15 shows the power spectrum of only one of the angular regions of interest 40 , but the power spectrum of the angular region of interest 42 can be obtained in the same manner as for the angular region of interest 40 .
  • the vertical axis is intensity and the horizontal axis is frequency.
  • the value represented by the vertical axis in FIG. 15 is obtained by subtracting the following P non-interference ( ⁇ , t) from the following P interference ( ⁇ , t).
  • F * indicates a complex conjugate.
  • P- interference ( ⁇ ,t) F ⁇ I- interference ⁇ F * ⁇ I- interference ⁇
  • P non-interfering ( ⁇ , t) F ⁇ I non-interfering ⁇ F * ⁇ I non-interfering ⁇
  • the autocorrelation function of the scattered electric field Es at the scattering angle ⁇ is obtained, as shown in FIG.
  • the vertical axis is the autocorrelation function
  • the horizontal axis is the delay time.
  • the power spectrum shown in FIG. 15 or the autocorrelation function shown in FIG. 16 is the time fluctuation data described above.
  • the hydrodynamic size of the particles can be obtained by performing fitting based on the principle of the dynamic light scattering method.
  • Also, Re ⁇ E R E S * ⁇ ( ⁇ ) (I interference ⁇ I non-interference )/2.
  • I R ( ⁇ ) obtained by expediently rewriting the spatial intensity distribution I R (x) of the reference light into a function of ⁇ corresponding to the coordinates of the line detector, and taking the time average. gives the scattering angle dependence Is( ⁇ ) of the static light scattering electric field.
  • Is( ⁇ )
  • a dispersion liquid containing polystyrene particles having a particle diameter of 1000 nm and a concentration of 1 mass % using incident light having a central wavelength of 650 nm will be described.
  • Water was used as the solvent for the dispersion.
  • the measurement depth was set at a position 50 ⁇ m from the surface of the dispersion, that is, the gas-liquid interface.
  • the depth of the dispersion liquid was 50 ⁇ m.
  • the incident light has a center wavelength of 650 nm and a wavelength width of ⁇ 33 nm with respect to the center wavelength by using a band-pass filter, for example.
  • the particle size of the particles was measured using scattered light components at a scattering angle of 175°, a scattering angle of 173°, and a scattering angle of 172.5° among the plurality of scattering angles obtained.
  • the above-mentioned scattering intensity indicates the central angle, and the full width of the scattering angle is 0.5°.
  • the full width of the scattering angle of 0.5° is the center value of the angle ⁇ 0.25°. For example, if the scattering angle is 175°, the scattering angle is 175° ⁇ 0.25°.
  • the second detection unit 14b detects the light at each scattering angle with the photodetector 34, and the interference light Obtain strength data.
  • the conversion unit 15 obtains scattering intensity data for specific scattering angles, 175°, 173°, and 172.5°, from the scattering intensity data.
  • the data of the scattering intensity taken out is converted into an autocorrelation function as the time fluctuation data of the scattered light at the depth of the dispersion liquid of 50 ⁇ m as described above. This resulted in the autocorrelation functions shown in the plots of FIGS. 17-19.
  • 17 shows the autocorrelation function at a scattering angle of 175°
  • FIG. 18 at a scattering angle of 173°
  • FIG. 19 at a scattering angle of 172.5°.
  • the particle size is calculated by determining the slope ⁇ g of the autocorrelation function as shown in FIG. 3, and using the slope ⁇ g to determine the diffusion coefficient D at the scattering angle.
  • the particle size d is calculated from the diffusion coefficient D by the Stokes-Einstein equation representing the relationship between the diffusion coefficient D and the particle size d.
  • the scattering angle shown in FIG. 17 is 175°
  • the median grain size is 1.03 ⁇ m.
  • the scattering angle shown in FIG. 18 is 173°
  • the median grain size is 1.04 ⁇ m.
  • the scattering angle shown in FIG. 19 is 172.5°
  • the median grain size is 1.01 ⁇ m.
  • the average particle size obtained for each is 1.027 ⁇ m.
  • the time fluctuation data acquired by the conversion unit 15 and the time average data obtained by time averaging the time fluctuation data acquired by the conversion unit 15 are used to determine the relationship between the particle size and the scattering intensity. Fitting to the theoretical formula will be explained. By the fitting described above, the particle size distribution for each particle type contained in the dispersion is obtained. In the above examples, the number of types of particles in the dispersion liquid was one, but the following calculation formula can be used to quantify or determine the type of particles when the number of types of particles contained in the dispersion liquid is two or more. can also be applied to The method is shown below. For fitting, in addition to the theoretical formula that defines the relationship between the particle size and the scattering intensity, known scattering characteristics of particles can also be used.
  • FIG. 20 is a flow chart showing the optical measurement method according to the embodiment of the present invention.
  • the optical measurement method includes, for example, a measurement step (step S10), a step of obtaining experimental data (step S12), a step of obtaining precalculated values (step S14), and an optimization step (step S16).
  • step S10 analysis results, that is, particle size distributions for each of a plurality of types of particle species are obtained (step S18).
  • the measuring step (step S10) for example, the time fluctuation of the interference light intensity and the scattering angle dependence or wavelength dependence of the time average value of the interference light intensity are measured.
  • the step of obtaining experimental data obtains, for example, the time correlation with respect to the time fluctuation of interference light intensity based on the measured values of the measuring step (step S10). Also, the scattering angle dependence of the time average value of the interference light intensity or the wavelength dependence of the time average value of the interference light intensity is obtained.
  • the scattering properties of particles are calculated using, for example, the single particle and bridging aggregation data in FIG. obtain.
  • the scattering properties of known particles may be actual measurements using standard particles as described above.
  • a theoretical formula or a calculated value obtained by simulation may be used as the scattering properties of particles.
  • the scattering properties of a particle are, for example, the scattering angle dependence data of the scattered light intensity and the wavelength dependence data of the scattered light intensity for a known particle, as described above.
  • the scattering properties of the particles obtained in step S14 are used, for example, to identify the particles in the dispersion or the particle species in the dispersion.
  • the measured value obtained in step S10 for example, the particle size distribution value obtained from the measured fluctuation data, the wavelength-dependent data of the scattered light measured or the intensity-dependent data of the scattered light, and the particles in step S14
  • the particle species of the particles in the dispersion and the state of the particles in the dispersion are determined by comparing the scattering properties of .
  • the measured scattered light wavelength-dependent data and scattered light intensity-dependent data are obtained from the time fluctuation data of the scattered light acquired by the conversion unit 15 .
  • the step of optimizing for example, the first-order autocorrelation function and the theoretical expression of the scattering intensity are combined with the time correlation of the time fluctuation of the interference light intensity obtained in step S12 and the time average of the interference light intensity. fit the values.
  • step S16 after initial values are set for the number of particles for all particle sizes, the evaluation value is updated to minimize and the final number of particles is obtained. The fitting will be described in more specific detail below.
  • the first-order autocorrelation function is represented by the following formula (1).
  • the scattering intensity is represented by the following formula (2).
  • Formulas (1) and (2) below are theoretical formulas, and I total in formulas (1) and (2) are both calculated values.
  • I d A and I d B are theoretical values, and pre-calculated values obtained in step S14 described above can be used.
  • g (1) indicates a first-order autocorrelation function.
  • I total indicates the total scattering intensity.
  • d indicates the particle size.
  • the subscripts 0 to M of d indicate the bin ordinals of the histograms shown in FIGS. N indicates the number of particles.
  • the subscripts 0 through M of N indicate the ordinal numbers of the bins of the histograms shown in FIGS.
  • a bin of a histogram is a data section of the histogram, and is indicated by a bar in the histogram.
  • D indicates a diffusion coefficient.
  • the subscript d of the diffusion coefficient D indicates that it depends on the particle size d.
  • q denotes the scattering vector.
  • indicates the time lag of the first-order autocorrelation function.
  • indicates the scattering angle.
  • I indicates scattering intensity.
  • the subscript d of the scattering intensity I indicates that it depends on the particle size d.
  • the superscripts A and B indicate that the scattering intensity wavelength dependence corresponds to the particles A and B.
  • the following term corresponds to particle A and corresponds to the histogram of particle A shown in FIG.
  • exp( ⁇ Dq 2 ⁇ ) is the first-order autocorrelation function
  • the other part of N d A I d A /I total is the scattering intensity of all particles A belonging to the bin of particle size d. to the total reflection intensity. That is, the weighting of particle A.
  • I total in the formula (1) is a theoretical value determined by the particle size. Mie scattering theoretical formula can be used as a theoretical value.
  • the following term corresponds to particle B and corresponds to the histogram of particle B shown in FIG.
  • exp( ⁇ Dq 2 ⁇ ) is the first-order autocorrelation function
  • the other part of N d B I d B /I total is the scattering intensity of all particles B belonging to the bin of particle size d to the total reflection intensity. That is, the weighting of particle B.
  • NdAIdA corresponds to the scattering intensity of particle A
  • NdBIdB corresponds to the scattering intensity of particle B.
  • Fitting for determining the particle size distribution for each of a plurality of types of particle species will be described below.
  • the number of particles is used as a variable, and finally the number of particles for each particle size is obtained.
  • a plurality of first-order autocorrelation functions g (1) ( ⁇ ) are measured for each wavelength. The actually measured ones are, for example, the autocorrelation functions of a plurality of wavelengths shown in FIG. 3 described above.
  • the initial number of particles is set using the number of particles as a variable in Equation (1) for each first-order autocorrelation function for each wavelength.
  • a calculated value of the first-order autocorrelation function of Equation (1) is obtained based on the set initial number of particles.
  • the first-order autocorrelation function for each wavelength corresponds to time fluctuation data derived from scattering characteristics using a theoretical formula. For each wavelength, the difference between the value of the first-order autocorrelation function actually measured and the calculated value of the first-order autocorrelation function of Equation (1) is obtained. The difference between the actually measured value of the first-order autocorrelation function and the calculated value of the first-order autocorrelation function of Equation (1) is called the difference of the first-order autocorrelation function. Differences in first-order autocorrelation functions are obtained for each wavelength.
  • the total scattering intensity I total is actually measured for each wavelength. 9 and 10, it can also be determined that the particles are not aggregates but single particles.
  • the number of particles is set using the number of particles as a variable. Calculate the value of the total scattering intensity I total of the formula (2) based on the set initial number of particles.
  • the difference between the measured total scattering intensity I total and the total scattering intensity I total calculated from equation (2) is obtained for each wavelength.
  • the difference between the value of the total scattering intensity I total actually measured at an arbitrary wavelength and the calculated value of the total scattering intensity I total of Equation (2) is referred to as the difference in the total scattering intensity I total at the wavelength.
  • the difference of the total scattered intensity I total at the wavelength is obtained.
  • the calculated value of the total scattering intensity I total in Equation (2) corresponds to time-averaged data obtained by averaging the derived time fluctuation data.
  • the difference in the first-order autocorrelation function obtained for each wavelength and the difference in the total scattering intensity at the wavelength are used to obtain the final number of particles.
  • an evaluation value obtained by adding the squared value of the difference in the first-order autocorrelation function obtained for each wavelength and the squared value of the difference in the total scattering intensity at the wavelength for all wavelengths Use The number of particles with the smallest evaluation value is taken as the final number of particles. Therefore, in fitting, the final number of particles is obtained by repeatedly updating the number of particles in equations (1) and (2) so as to minimize the evaluation value. This corresponds to step S16 described above. After setting the initial value for the number of particles for all particle sizes, the evaluation value is updated to minimize.
  • the particle size distribution is the distribution of the number of particles with respect to the particle size, and the unit is, for example, %.
  • the above steps are the steps for determining the particle size distribution for each of the plurality of types of particle species. Note that the evaluation values used for fitting are not limited to those described above.
  • the type of particles in the dispersion can be determined using the difference in scattering intensity with respect to wavelength as shown in FIGS. Therefore, by specifying in advance the relationship between the type of particles and the scattering intensity with respect to the wavelength, it is possible to determine the type of particles and the particle size distribution of the particles. It is preferable to store the relationship between the particle type and the interference light intensity with respect to the wavelength in the storage unit 17 .
  • the calculation unit 16 can also read out the relationship between the type of particles and the intensity of the interference light with respect to the wavelength from the storage unit 17 to obtain the type of particles and the particle size distribution of the particles.
  • the two theoretical equations (1) and (2) are fitted to the measured first-order autocorrelation function and the measured total scattering intensity I total to obtain the final number of particles.
  • the fitting optimization method is not limited to the one described above, and for example, Bayesian optimization can be used for fitting.
  • the primary autocorrelation function is used to obtain the number of particles as described above, the present invention is not limited to this, and a power spectrum can be used instead of the primary autocorrelation function.
  • the number of particles for each particle type such as particle A and particle B and the particle size distribution can be obtained.
  • the dispersion liquid contains impurity components
  • the impurity components and the particle size distribution for each particle type can be obtained, so that the influence of the impurity components can be separated.
  • time fluctuation data derived from known scattering properties of particles and time averaged data obtained by averaging the derived time fluctuation data may be used in addition to the theoretical formula.
  • the measured value of the scattering angle dependency of the time average value of the interference light intensity is obtained (see step S10) for the relationship between the scattering intensity and the scattering angle.
  • Obtaining the relationship between the scattering intensity and the scattering angle corresponds to step S12 described above.
  • the data indicating the relationship between the scattering intensity and the scattering angle corresponds to the scattering angle dependent data obtained from the time fluctuation data obtained by the conversion unit.
  • Data indicating the relationship between scattering intensity and wavelength can also be obtained, which corresponds to wavelength-dependent data obtained from the time fluctuation data obtained by the conversion unit.
  • the first-order autocorrelation function is represented by the following formula (3).
  • the scattering intensity is represented by the following formula (4).
  • Formulas (3) and (4) below are theoretical formulas, and I total in formulas (3) and (4) are both calculated values.
  • I d single and I d floc are theoretical values, and precalculated values obtained in step S14 described above can be used.
  • Formula (3) below is basically the same as formula (1)
  • formula (4) below is basically the same as formula (2).
  • the superscript single of the scattering intensity I represents the scattering intensity of a single particle
  • the superscript floc represents a bridging aggregate.
  • Equation (3) corresponds to a single particle and corresponds to the single particle histogram shown in FIG.
  • exp(-Dq 2 ⁇ ) is the first-order autocorrelation function
  • the other part of N d single I d single /I total is the scattering by all single particles belonging to the bin of particle size d
  • the ratio of intensity to total scattered intensity is shown. It shows the ratio of single particles to all particles. That is, single-particle weighting.
  • I total in formula (3) is a theoretical value determined by the particle size.
  • the following term corresponds to aggregates in which particles are bridged and aggregated, and corresponds to the histogram of aggregates shown in FIG.
  • exp( ⁇ Dq 2 ⁇ ) is the first-order autocorrelation function
  • the other part of N d floc I d floc /I total is the scattering intensity by all aggregates belonging to the bin of particle size d of the total scattering intensity. That is, aggregate weighting.
  • N d single I d single corresponds to the scattering intensity of a single particle belonging to a bin of size d
  • N d floc I d floc is the cross-linking intensity of a particle belonging to a bin of size d.
  • the fitting for obtaining the particle size distribution for each of a plurality of types of particle species will be described below.
  • the number of particles for each particle size is used as a variable, and finally the number of particles for each particle size is obtained.
  • a plurality of first-order autocorrelation functions g (1) ( ⁇ ) are actually measured for each scattering angle.
  • the initial number of particles is set using the number of particles as a variable in Equation (3) for the first-order autocorrelation function for each scattering angle.
  • a calculated value of the first-order autocorrelation function of Equation (3) is obtained based on the set initial number of particles.
  • the first-order autocorrelation function for each scattering angle corresponds to the time fluctuation data derived from the scattering characteristics using the theoretical formula.
  • the difference between the value of the first-order autocorrelation function actually measured and the calculated value of the first-order autocorrelation function of Equation (3) is obtained.
  • the difference between the actually measured value of the first-order autocorrelation function and the calculated value of the first-order autocorrelation function of Equation (3) is referred to as the difference of the first-order autocorrelation function.
  • Differences in the first order autocorrelation functions are obtained for each scattering angle.
  • the total scattering intensity I total is actually measured for each scattering angle as shown in FIG.
  • equation (4) the value of the total scattering intensity I total of equation (4) based on the set initial number of particles is obtained.
  • a difference between the value of the total scattering intensity I total actually measured for each scattering angle as shown in FIG. 23 and the calculated value of the total scattering intensity I total of Equation (4) is obtained.
  • the difference between the value of the total scattering intensity I total actually measured at an arbitrary scattering angle and the calculated value of the total scattering intensity I total from Equation (4) is referred to as the difference in the total scattering intensity I total at the scattering angle. .
  • the difference of the total scattered intensity I total at the scattering angle is obtained.
  • the calculated value of the total scattering intensity I total in Equation (4) corresponds to time-averaged data obtained by time-averaging the derived time fluctuation data.
  • the difference in the first-order autocorrelation function obtained for each scattering angle and the difference in the total scattering intensity at the scattering angle are used to obtain the final number of particles.
  • it can be obtained by adding the squared value of the difference of the first-order autocorrelation function obtained for each scattering angle and the squared value of the difference of the total scattering intensity at the scattering angle for all the scattering angles.
  • Use the evaluation value The number of particles with the smallest evaluation value is taken as the final number of particles. Therefore, in fitting, the final number of particles is obtained by repeatedly updating the number of particles in equations (3) and (4) so as to minimize the evaluation value. This corresponds to step S16 described above.
  • the above steps are the steps for determining the particle size distribution for each of the plurality of types of particle species. Note that the evaluation values used for fitting are not limited to those described above.
  • the two theoretical equations (3) and (4) are fitted to the measured first-order autocorrelation function and the measured total scattering intensity I total to obtain the final number of particles.
  • the fitting optimization method is not limited to the one described above, and for example, Bayesian optimization can be used for fitting.
  • the primary autocorrelation function is used to obtain the number of particles as described above, the present invention is not limited to this, and a power spectrum can be used instead of the primary autocorrelation function.
  • the autocorrelation function or power spectrum of the scattering intensity and the scattering intensity for each scattering angle to the theoretical formula, the number of particles of each of the single particles and the aggregates, A particle size distribution can be obtained.
  • the dispersion liquid contains impurity components
  • the impurity components and the particle size distribution for each particle type can be obtained, so that the influence of the impurity components can be separated.
  • time fluctuation data derived from known scattering properties of particles and time averaged data obtained by averaging the derived time fluctuation data may be used in addition to the theoretical formula.
  • a third example of an optical metrology method makes use of polarized light.
  • the light intensity of the polarized component of the scattered light of the dispersion obtained by irradiating the dispersion with incident light of specific polarized light may be measured as the scattering intensity.
  • the dispersion liquid Lq in the sample cell 18 is irradiated with circularly polarized laser light as incident light, and the polarization component of the scattered light of the dispersion liquid Lq is measured.
  • the light intensity of the polarized component of the scattered light for example, the difference between the light intensity of the vertically linearly polarized light and the light intensity of the horizontally linearly polarized light is measured as the scattered light intensity.
  • the vertical linearly polarized light means that the direction of the linearly polarized light is vertical when the scattering plane is horizontal.
  • Horizontal linearly polarized light means that the direction of linearly polarized light is horizontal when the scattering plane is horizontal.
  • FIG. 26 is a graph showing the relationship between scattering intensity and scattering angle for each particle shape.
  • FIG. 26 shows the relationship between scattering intensity and scattering angle for the spherical particles shown in FIG. 27 and the disk-shaped particles shown in FIG.
  • the scattering intensity profile 52 of the spherical particles is different from the scattering intensity profile 53 of the disk-shaped particles.
  • the change in scattering intensity with respect to the scattering angle differs depending on the particle shape. That is, the scattering intensity profile obtained by changing the scattering angle, for example, differs for each of the plurality of types of particle species.
  • the difference in particle shape can be determined by using polarized laser light as incident light and measuring the polarized component of the scattered light.
  • the particle diameter of the particles is measured in the same manner as in the first example of the optical measurement method described above. can be calculated. Moreover, in a dispersion liquid containing a plurality of types of particles, it is possible to obtain a particle size distribution for each of the plurality of types of particle species. Moreover, when the types of particles in the dispersion can be determined, the particle size distribution of each particle in the dispersion can be obtained.
  • the particle size distribution for each of a plurality of types of particle species can be obtained by separating the influence of the impurity components.
  • time fluctuation data derived from known scattering properties of particles and time averaged data obtained by averaging the derived time fluctuation data may be used in addition to the theoretical formula.
  • the type for example, the shape of the particles in the dispersion liquid by using polarized light and utilizing the difference in scattering intensity with respect to the scattering angle as shown in FIG. It is also possible to determine the particle size distribution of the determined particles. For this reason, it is preferable to acquire data representing the relationship between polarized light and the shape of particles in advance as information about the shape of the particles, and store the data in the storage unit 17 .
  • equations (1) and (2) above can be used when using multiple wavelengths. Further, when polarized light is used as described above, for example, when multiple scattering angles are used, the above equations (3) and (4) can be used. Note that the first example of the optical measurement method described above and the second example of the optical measurement method may be combined. That is, it is also possible to determine the particle size distribution for each of a plurality of types of particle species using the plurality of wavelengths and the plurality of scattering angles described above. Also in this case, when the dispersion contains impurity components, the impurity components and the particle size distribution for each particle type can be obtained, so that the influence of the impurity components can be separated.
  • the plurality of types of particles refers to the aggregation structure, the material of the particles, the shape of the particles, and the like.
  • Plural types of particles include the aforementioned single particles, aggregates in which particles aggregate, spherical particles, disk-shaped particles, and the like.
  • FIG. 29 is a schematic diagram showing a second example of the optical measurement device according to the embodiment of the present invention.
  • 30 to 32 are schematic diagrams showing first to third examples of the mask of the second example of the optical measuring device according to the embodiment of the present invention.
  • 29 to 32 the same components as those of the optical measurement device 10 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the optical measuring device 10a shown in FIG. 29 differs from the optical measuring device 10 shown in FIG. 1 in the arrangement position of optical elements such as a beam splitter.
  • the optical measurement device 10a has a configuration different from that of the detection unit 14 of the optical measurement device 10 shown in FIG. and a detection unit 14d for detecting the scattering intensity of light.
  • the optical measurement device 10 a has a beam splitter 60 , a beam splitter 62 and a beam splitter 63 .
  • the beam splitter 60, the beam splitter 62, and the beam splitter 63 are all cube-shaped beam splitters, and split incident light into two or combine two incident lights by transmissive reflection. It has faces 60e, 62e, 63e. The angles of the transmissive/reflective surfaces 60e, 62e, and 63e are 45°.
  • Beam splitter 63 is larger than beam splitter 60 and beam splitter 62 .
  • a beam splitter 60, a beam splitter 62, and a beam splitter 63 are arranged side by side.
  • a surface 60b of the beam splitter 60 and a surface 62a of the beam splitter 62 are arranged to face each other, and a surface 62b of the beam splitter 62 and a surface 63a of the beam splitter 63 are arranged to face each other.
  • the transmitting/reflecting surface 60e of the beam splitter 60 and the transmitting/reflecting surface 60e of the beam splitter 62 are oriented in opposite directions and are antiparallel.
  • the transmission/reflection surface 63e of the beam splitter 63 is oriented differently from the transmission/reflection surface 60e of the beam splitter 60, and is non-parallel, more specifically, anti-parallel.
  • the light source unit 20 is arranged on the opposite side of the beam splitter 60 to the beam splitter 62 so as to face the surface 60 a of the beam splitter 60 .
  • a spectral adjustment unit 27 is arranged between the beam splitter 60 and the light source unit 20 .
  • a sample cell 18 is arranged on the opposite side of the beam splitter 63 from the beam splitter 62 , facing the surface 63 b of the beam splitter 63 .
  • An objective lens 65 a is arranged between the beam splitter 63 and the sample cell 18 .
  • a beam splitter 64 is arranged on the opposite side of the sample cell 18 from the beam splitter 63 .
  • the orientation of the transmission/reflection surface 64e of the beam splitter 64 is the same as the orientation of the transmission/reflection surface 63e of the beam splitter 63, and is parallel.
  • An objective lens 65 b is arranged between the sample cell 18 and the beam splitter 64 .
  • a mirror 61 is arranged on the optical axis C1 of the light split by the beam splitter 60 .
  • a beam expander 66 is arranged on the optical axis C2 of the light reflected by the mirror 61 .
  • the beam expander 66 emits incident light as collimated light having a diameter larger than the incident light.
  • a beam splitter 67 is arranged adjacent to the beam expander 66 with a surface 67 a facing the beam expander 66 .
  • the beam splitter 67 has a transmission/reflection surface 67e that combines two incident lights.
  • the orientation of the transmission/reflection surface 67e of the beam splitter 67 is the same as the orientation of the transmission/reflection surface 60e of the beam splitter 60, and is parallel.
  • a mask 68 is provided adjacent to the exit surface 67 b of the beam splitter 67 .
  • An objective lens 69 is arranged on the opposite side of the mask 68 from the beam splitter 67 with the mask 68 interposed therebetween.
  • a first photodetector 71 having an optical fiber 70 into which light collected by an objective lens 69 is incident is arranged. The first photodetector 71 detects backscattered light out of the scattered light from the sample cell 18, and detects the intensity of interference light between the backscattered light and the reference light for each scattering angle.
  • a mirror 72 is arranged on the optical axis C3 of the light split by the beam splitter 62 .
  • a beam expander 73 is arranged on the optical axis C4 of the light reflected by the mirror 72 .
  • the beam expander 73 emits incident light as collimated light having a diameter larger than the incident light.
  • a beam splitter 74 is arranged adjacent to the beam expander 73 with a surface 74 a facing the beam expander 73 .
  • the beam splitter 74 has a transmission/reflection surface 74e that combines two incident lights.
  • the orientation of the transmission/reflection surface 74e of the beam splitter 74 is the same as the orientation of the transmission/reflection surface 60e of the beam splitter 60, and is parallel.
  • the beam splitter 64, the beam splitter 67, and the beam splitter 74 are all cube-shaped beam splitters, and split incident light into two or combine two incident lights. It has transmissive and reflective surfaces 64e, 67e, and 74e that allow light to pass through. The angles of the transmissive/reflective surfaces 64e, 67e, and 74e are 45°.
  • a mask 68 is provided adjacent to the exit surface 74 b of the beam splitter 74 .
  • An objective lens 69 is arranged on the opposite side of the mask 68 from the beam splitter 74 with the mask 68 interposed therebetween.
  • a second photodetector 76 having an optical fiber 75 into which the light collected by the objective lens 69 is incident is arranged. The second photodetector 76 detects the forward scattered light out of the scattered light from the sample cell 18, and detects the intensity of interference light between the forward scattered light and the reference light for each scattering angle.
  • the mask 68 transmits the light emitted from a specific position among the light emitted from the emission surfaces 67b and 74b of the beam splitters 67 and 74 . This allows light with a specific scattering angle to pass through.
  • Mask 68 has openings corresponding to the scattering angles. For example, a mask 68 shown in FIGS. 30 and 31 has ring-shaped openings 68a and 68b. A mask 68 shown in FIG. 32 has a circular opening 68c in the central portion. The mask 68 shown in FIG. 32 transmits light with a scattering angle of 0° or 180°. Also, the mask 68 is switchable, and any of the masks 68 shown in FIGS. 30-32 can be used.
  • the mask 68 allows only a specific scattering angle component out of the scattered light to pass through and is detected by the first photodetector 71 to obtain a spectrum for each scattering angle. As a result, the signal of the scattered light that is the interference light is detected for each scattering angle. Further, a mask switching unit (not shown) having a plurality of masks 68 is provided, and the mask 68 arranged between the beam splitters 67 and 74 and the objective lens 69 is switched by the mask switching unit according to the scattering angle. You may make it switch to 68.
  • the configuration of the beam expanders 66 and 73 is not particularly limited as long as the beam expanders 66 and 73 can emit the incident light as collimated light with a diameter larger than the incident light, and known ones can be used as appropriate. is. Also, the positions where the beam expanders 66 and 73 are provided are not particularly limited to the positions shown in the figure, and they may be placed immediately after the light source section 20 .
  • the light emitted from the light source unit 20 toward the sample cell 18 is split into two by the transmission/reflection surface 60 e of the beam splitter 60 .
  • One of the split lights passes through the beam splitter 62 and the beam splitter 63, is collected by the objective lens 65a, and enters the sample cell 18 as the incident light Ls.
  • forward scattered light and backward scattered light are generated as scattered light.
  • the backscattered light passes through the objective lens 65 a , passes through the surface 63 b of the beam splitter 63 , is reflected by the transmissive reflection surface 63 e , and enters the beam splitter 67 .
  • the transmission/reflection surface 67 e of the beam splitter 67 After being reflected by the transmission/reflection surface 67 e of the beam splitter 67 , light with a specific scattering angle passes through the mask 68 , is condensed by the objective lens 69 , and enters the optical fiber 70 .
  • the reflection position of the backscattered light on the transmission/reflection surface 63e of the beam splitter 63 and the transmission/reflection surface 67e of the beam splitter 67 differs depending on the scattering angle of the dispersion liquid.
  • the other light split into two by the transmission/reflection surface 60 e of the beam splitter 60 is reference light, is reflected by the mirror 61 , is collimated by the beam expander 66 into collimated light with a large diameter, and is converted into a beam splitter 67 , and passes through the transmissive/reflective surface 67 e of the beam splitter 67 .
  • the other light split by the beam splitter 60 passes through the opening 68a (see FIG. 30) of the mask 68, is condensed by the objective lens 69, and enters the optical fiber .
  • the backscattered light and the reference light which is the other light split by the transmission/reflection surface 60 e of the beam splitter 60 , enter the beam splitter 67 and interfere with each other. 1 is detected by the photodetector 71 .
  • data of scattering intensity of coherent light at a specific scattering angle of backscattered light can be obtained.
  • intensity data of the interference light at various scattering angles of the backscattered light can be obtained, and a plurality of intensity data of the interference light at a specific scattering angle can be extracted for the backscattered light. In this way, the scattering intensity of backscattered light can be conveniently measured at different scattering angles.
  • a detection unit 14 c is configured by the mask 68 , the objective lens 69 , the optical fiber 70 and the first photodetector 71 .
  • the forward scattered light passes through the objective lens 65b, passes through the surface 64a of the beam splitter 64, is reflected by the transmissive reflection surface 64e, and enters the beam splitter 74.
  • FIG. Furthermore, the light with a specific scattering intensity is reflected by the transmission/reflection surface 74 e of the beam splitter 74 , passes through the mask 68 , is condensed by the objective lens 69 , and enters the optical fiber 75 .
  • the reflection positions of the forward scattered light on the transmission/reflection surface 64e of the beam splitter 64 and the transmission/reflection surface 74e of the beam splitter 74 differ.
  • the light split by the transmission/reflection surface 62e of the beam splitter 62 is reference light, is reflected by the mirror 72, is collimated by the beam expander 73, and is emitted to the beam splitter 74. It passes through the transmission reflection surface 74 e of the splitter 74 .
  • the light split by the beam splitter 62 passes through the opening 68 a (see FIG. 30) of the mask 68 , is condensed by the objective lens 69 and enters the optical fiber 75 . In this way, the forward scattered light and the reference light, which is the light split by the transmission/reflection surface 60 e of the beam splitter 62 , enter the beam splitter 74 and interfere with each other.
  • a detection unit 14 d is composed of the mask 68 , the objective lens 69 , the optical fiber 75 and the second photodetector 76 .
  • the beam splitters 60, 62, 63, 64, 67, and 74 described above are all cubic beam splitters, but the shape of the beam splitter is not limited to a cube shape, and a flat plate beam splitter can be used. A shaped plate type may be used.
  • the first photodetector 71 and the second photodetector 76 are not particularly limited as long as they can detect light, and for example, photoelectric conversion elements or photomultiplier tubes are used.
  • the photoelectric conversion element is, for example, a photodiode.
  • the first photodetector 71 and the second photodetector 76 may be single-pixel photodetectors or spectrometers. When the first photodetector 71 and the second photodetector 76 are spectral detectors, an interference spectrum is obtained.
  • the particle size of the particles contained in the dispersion liquid can be obtained as described above using the data of the scattering intensity for each scattering angle of the forward scattered light or the data of the scattering intensity for each scattering angle of the backscattered light. It is also possible to obtain the particle size distribution for each particle type contained in the dispersion.
  • the reference light may be blocked so as not to interfere with the scattered light.
  • normal dynamic light scattering measurements can be performed by blocking the reference beam.
  • a method of blocking the reference light for example, there is a method of preventing the reference light from reaching the beam expander 66 by providing a retractable light blocking plate on the optical axis C1 or the optical axis C2 .
  • a method of preventing the reference light from reaching the beam expander 73 by providing a retractable light shielding plate on the optical axis C3 or the optical axis C4 .
  • it can block light it is not limited to a light shielding plate that can move back and forth.
  • an optical shutter using a liquid crystal shutter can be used.
  • the optical measurement device 10a can also be used as a normal dynamic light scattering device for homodyne detection.
  • FIG. 33 is a schematic diagram showing a third example of the optical measurement device according to the embodiment of the invention. 33, the same components as those of the optical measurement device 10 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the optical measuring device 10b shown in FIG. 33 differs from the optical measuring device 10 shown in FIG. It also has a plurality of photodetectors 85-88.
  • the plurality of photodetectors 85 to 88 detect light with different scattered light angles.
  • the photodetectors 85 to 88 are not particularly limited as long as they can detect light, and for example, photoelectric conversion elements or photomultiplier tubes are used.
  • the photoelectric conversion element is, for example, a photodiode.
  • the photodetectors 85-88 may be spectral detectors (spectrometers).
  • the optical measurement device 10b has a photocoupler 81 into which light emitted from the light source unit 20 is incident.
  • the photocoupler 81 splits the emitted light at an intensity ratio of 1:99, for example.
  • light with a high intensity ratio is defined as incident light Ls
  • light with a low intensity ratio is defined as reference light Lr.
  • An optical fiber 80 extending from a photocoupler 81 and through which incident light Ls, which is light having a high intensity ratio, is propagated is connected to a bundle fiber 82 .
  • the bundle fiber 82 is a bundle of multiple optical fibers (not shown).
  • a sample cell 18 is arranged facing the end surface 82 b of the bundle fiber 82 .
  • An objective lens 83 is arranged between the end face 82 b of the bundle fiber 82 and the sample cell 18 .
  • Scattered light Ld scattered by the dispersion liquid Lq in the sample cell 18 is incident on the bundle fiber 82 .
  • the scattered light Ld is incident on optical fibers at different positions among the plurality of optical fibers (not shown) of the bundle fiber 82 for each scattering angle ⁇ and propagates. Therefore, the positions of the optical fibers of the bundle fiber 82 can be associated with the scattering angles. Thereby, scattered light Ld with a different scattering angle is obtained for each optical fiber of the bundle fiber 82 .
  • Each optical fiber of the bundle fiber 82 is connected to the optical fiber 80a at the end surface 82a.
  • a photocoupler 84 is connected to the optical fiber 80 through which the reference light Lr propagates the light having a small intensity ratio among the light split by the photocoupler 81 .
  • the photocoupler 84 splits the reference light Lr according to the number of photodetectors 85 , 86 , 87 , 88 .
  • An optical fiber 80a connected to each optical fiber of the bundle fiber 82 is connected using a photocoupler 89 to an optical fiber 80b connecting the photocoupler 84 and each of the photodetectors 85, 86, 87 and 88.
  • the configuration of the photocouplers 81, 84, and 89 is not particularly limited as long as the incident light can be split at a specific ratio or the incident light can be combined, and known ones can be used as appropriate. It is possible.
  • the incident light Ls emitted from the light source unit 20 passes through the optical fiber 80 , the photocoupler 81 and the bundle fiber 82 , passes through the objective lens 83 , and irradiates the dispersion liquid Lq in the sample cell 18 .
  • Scattered light Ld scattered by the dispersion liquid Lq in the sample cell 18 is incident on the bundle fiber 82 .
  • the scattered light Ld is incident on different optical fibers for each scattering angle, propagates through the optical fiber 80a, passes through the photocoupler 89, and propagates to the optical fiber 80b.
  • the reference light Lr is propagated through the optical fiber 80b.
  • the reference light Lr and the scattered light Ld are propagated to the photodetectors 85, 86, 87, 88 and interfere with each other.
  • the photodetectors 85, 86, 87, and 88 obtain scattering intensity data of the interference light for each scattering angle, and a plurality of scattering intensity data at a specific scattering angle can be extracted. In this way, scattering intensity can be conveniently measured at different scattering angles.
  • a spectrometer is used for the photodetectors 85, 86, 87, 88, the spectrum of interference light can be obtained.
  • the scattering intensity data for each scattering angle of the scattered light the particle size of the particles contained in the dispersion can be obtained as described above, and the particle size distribution for each particle type contained in the dispersion can also be obtained. .
  • the reference light Lr may be attenuated by an attenuator (attenuator) so as not to interfere with the scattered light Ld.
  • an attenuator attenuator
  • normal dynamic light scattering measurement can be performed by blocking the reference light Lr.
  • an attenuator is provided in the optical fiber 80 connecting the photocoupler 81 and the photocoupler 84, and the attenuator prevents the reference light Lr from reaching the photocoupler 84.
  • the attenuator is not limited to an attenuator as long as it can block or sufficiently attenuate light.
  • the photocoupler 81 may have a variable branching ratio so that the light is not emitted to the optical fiber 80 connecting the photocoupler 81 and the photocoupler 84 .
  • the optical measurement device 10b can also be used as a normal dynamic light scattering device for homodyne detection.
  • the present invention is basically configured as described above. Although the optical measurement device of the present invention has been described in detail above, the present invention is not limited to the above-described embodiments, and various improvements and modifications may be made without departing from the gist of the present invention. is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

異なる散乱角度又は異なる波長で、散乱強度を簡便に測定できる光計測装置を提供する。低コヒーレンス干渉計を有する光計測装置は粒子を含む分散液に入射光を入射して得られる散乱光のうち少なくとも一部と、参照光とを干渉させ、波長毎の干渉光強度を検出する第1検出ユニット及び粒子を含む分散液に入射光を入射して得られる散乱光のうち少なくとも一部と、参照光とを干渉させ、散乱角度毎の干渉光強度を検出する第2検出ユニットのうち、少なくとも一方を有する検出部と、第1検出ユニットで検出される波長毎の干渉光強度のデータから分散液の特定の深さかつ特定の波長の散乱強度又は第2検出ユニットで検出される散乱角度毎の干渉光強度のデータから分散液の特定の深さかつ特定の散乱角度の散乱強度を複数取り出し、取り出した散乱強度のデータを分散液の特定の深さにおける散乱光の時間揺らぎデータに変換する変換部とを有する。

Description

光計測装置
 本発明は、異なる散乱角度又は異なる波長で、粒子を含む分散液の散乱強度を測定する光計測装置に関する。
 懸濁液等の媒質に光を当て、媒質中の散乱体からの散乱される散乱光強度の時間変動を自己相関関数、又はパワースペクトルを用いて検出することにより、散乱体の動的特性を調べる動的光散乱測定法がある。動的光散乱測定法は、粒径測定等、様々な測定に広く用いられている。
 例えば、特許文献1には、液体状又は気体状の試料中の微粒子を検出するための光散乱検出装置において、試料を保持する透明な試料セルと、第1波長又は第1波長帯域を有する静的光散乱測定用の光を出射する第1光源手段と、第1波長又は第1波長帯域とは異なる第2波長又は第2波長帯域を有する動的光散乱測定用の光を出射する第2光源手段と、試料セルを中心に取り囲むように配置され、静的光散乱測定用の光の照射に応じて試料セルから周囲に異なる散乱角を以て散乱する光を検出するべく第1波長又は第1波長帯域を選択的に検出可能な複数の検出器から成る第1検出手段と、試料セルを中心に取り囲むように配置され、動的光散乱測定用の光の照射に応じて試料セルから周囲に異なる散乱角を以て散乱する光を検出するべく第2波長又は第2波長帯域を選択的に検出可能な1乃至複数の検出器から成る第2検出手段と、第1光源手段による静的光散乱測定用の光と第2光源手段による動的光散乱測定用の光が同時に試料セルに照射されたときに第1検出手段による検出信号と第2検出手段による検出信号とを並行的に受け、前者に基づいて静的光散乱法による演算を実行するとともに後者に基づいて動的光散乱法による演算を実行する演算処理手段とを備える光散乱検出装置が記載されている。
特開2008-39539号公報
 特許文献1では、波長又は波長帯域の相違する第1光源手段と第2光源手段の2つの光源手段を用意し、それら光源手段からの出射光を同時に同軸的又は非同軸的に試料セルに照射している。同軸的に両光束を照射するためには、例えば、第1光源手段による照射光と第2光源手段による照射光とを同一光路に沿って試料セルに導入する光合一手段をさらに備える必要がある。特許文献1では、光源と検出器とが複数必要であり、装置構成が大掛かりになる。この観点から、測定波長数の増加、又は散乱角度の分解能向上に対して不利である。さらに試料中の同一個所から発生した散乱光を検出するために検出器と光源の数だけ光軸調整の労が必要である。また、多重散乱する懸濁液では、粒子により複数回散乱した信号を検出してしまうために測定できない。特許文献1では、異なる散乱角度又は異なる波長で、粒子を含む分散液又は懸濁液の散乱強度を簡便に測定することが難しい。
 本発明の目的は、異なる散乱角度又は異なる波長で、散乱強度を簡便に測定できる光計測装置を提供することにある。
 上述の目的を達成するために、本発明の一態様は、低コヒーレンス干渉計を有する光計測装置であって、粒子を含む分散液に入射光を入射して得られる散乱光のうち少なくとも一部と、参照光とを干渉させ、波長毎の干渉光強度を検出する第1検出ユニット、及び、粒子を含む分散液に入射光を入射して得られる散乱光のうち少なくとも一部と、参照光とを干渉させ、散乱角度毎の干渉光強度を検出する第2検出ユニットのうち、少なくとも一方を有する検出部と、第1検出ユニットで検出される波長毎の干渉光強度のデータから、分散液の特定の深さかつ特定の波長の散乱強度のデータ、又は第2検出ユニットで検出される散乱角度毎の干渉光強度のデータから、分散液の特定の深さかつ特定の散乱角度の散乱強度のデータを複数取り出し、取り出した散乱強度のデータを分散液の特定の深さにおける散乱光の時間揺らぎデータに変換する変換部とを有する、光計測装置を提供するものである。
 変換部で取得された時間揺らぎデータを用いて、粒子の粒径を算出する演算部を有することが好ましい。
 変換部で取得された時間揺らぎデータと、変換部で取得された時間揺らぎデータを時間平均した時間平均データとを、粒径と散乱強度の関係を定めた理論式に対してフィッティングすることにより、分散液に含まれる粒子種毎の粒度分布を得る演算部を有することが好ましい。
 既知の粒子の複素屈折率、粒径、及び形状によって求められる、既知の粒子の散乱光強度についての散乱角度依存のデータ及び散乱光強度についての波長依存のデータのうち少なくとも1つを記憶する記憶部を有し、変換部で取得された時間揺らぎデータから得られた散乱角度依存のデータ、又は変換部で取得された時間揺らぎデータから得られた散乱光の波長依存のデータとを、記憶部が記憶している既知の粒子の散乱光強度についての散乱角度依存のデータ又は散乱光強度についての波長依存のデータに対してフィッティングすることにより、分散液に含まれる粒子種毎の粒度分布を得る演算部を有することが好ましい。
 既知の粒子の複素屈折率、粒径、及び形状によって求められる、既知の粒子の散乱光強度についての散乱角度依存のデータ及び散乱光強度についての波長依存のデータのうち、少なくとも1つを記憶する記憶部を有し、記憶部が記憶している既知の粒子の散乱光強度についての散乱角度依存のデータ又は散乱光強度についての波長依存のデータを用いて、分散液中の粒子の粒子種、及び分散液中の粒子の状態のうち、少なくとも一方の判定を実施する演算部を有することが好ましい。
 第1検出ユニットは、参照光と干渉した散乱光を波長分解して、波長分解された散乱光を波長毎に検出する光検出器を有することが好ましい。
 第2検出ユニットは、参照光と干渉した散乱光を散乱角度毎に検出する光検出器を有することが好ましい。
 入射光の偏光状態を制御する偏光制御部を有し、第1検出ユニット又は第2検出ユニットが、散乱光の偏光成分の光強度を散乱強度として測定することが好ましい。
 入射光の中心波長及び波長帯域を制御する分光調整部を有することが好ましい。
 例えば、散乱光の時間揺らぎデータは、パワースペクトル、又は自己相関関数である。
 本発明によれば、異なる散乱角度又は異なる波長で、散乱強度を簡便に測定できる光計測装置を提供できる。
本発明の実施形態の光計測装置の第1の例を示す模式図である。 本発明の実施形態の光計測方法の第1の例により得られたパワースペクトルの一例を示すグラフである。 本発明の実施形態の光計測方法の第1の例により得られた自己相関関数の一例を示すグラフである。 本発明の実施形態の光計測方法の第1の例で得られた干渉スペクトルの一例を示すグラフである。 本発明の実施形態の光計測方法の第1の例で得られた分散液の深さ方向の散乱プロファイルの一例を示すグラフである。 本発明の実施形態の光計測方法の第1の例で得られた関心深さ領域の電場の時間応答の一例を示すグラフである。 本発明の実施形態の光計測方法の第1の例で得られたパワースペクトルの一例を示すグラフである。 本発明の実施形態の光計測方法の第1の例で得られた時間相関関数の一例を示すグラフである。 散乱強度の波長依存性を示すグラフである。 静的光散乱強度の波長依存性を示すグラフである。 本発明の実施形態の光計測方法の第2の例を説明するための光学装置を示す模式図である。 本発明の実施形態の光計測方法の第2の例で得られる光強度の一例を示すグラフである。 本発明の実施形態の光計測方法の第2の例で得られる散乱角に対する散乱強度のプロファイルの一例を示すグラフである。 本発明の実施形態の光計測方法の第2の例で得られる関心角度領域の電場の時間応答の一例を示すグラフである。 本発明の実施形態の光計測方法の第2の例で得られるパワースペクトルの一例を示すグラフである。 本発明の実施形態の光計測方法の第2の例で得られる自己相関関数の一例を示すグラフである。 散乱角度が175°における自己相関関数とフィッティングにより得られた粒径の結果を示すグラフである。 散乱角度が173°における自己相関関数とフィッティングにより得られた粒径の結果を示すグラフである。 散乱角度が172.5°における自己相関関数とフィッティングにより得られた粒径の結果を示すグラフである。 本発明の実施形態の光計測方法を示すフローチャートである。 粒子Aのヒストグラムである。 粒子Bのヒストグラムである。 干渉光強度と散乱角との関係を示すグラフである。 単一粒子のヒストグラムである。 粒子が凝集した凝集体のヒストグラムである。 粒子の形状毎の散乱強度と散乱角との関係を示すグラフである。 球状粒子を示す模式的斜視図である。 円板状粒子を示す模式的斜視図である。 本発明の実施形態の光計測装置の第2の例を示す模式図である。 本発明の実施形態の光計測装置の第2の例のマスクの第1の例を示す模式図である。 本発明の実施形態の光計測装置の第2の例のマスクの第2の例を示す模式図である。 本発明の実施形態の光計測装置の第2の例のマスクの第3の例を示す模式図である。 本発明の実施形態の光計測装置の第3の例を示す模式図である。
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の光計測装置を詳細に説明する。
 なお、以下に説明する図は、本発明を説明するための例示的なものであり、以下に示す図に本発明が限定されるものではない。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値εα~数値εβとは、εの範囲は数値εαと数値εβを含む範囲であり、数学記号で示せばεα≦ε≦εβである。
 「具体的な数値で表された角度」、及び「平行」等の角度は、特に記載がなければ、該当する技術分野で一般的に許容される誤差範囲を含む。
(光計測装置の第1の例)
 図1は本発明の実施形態の光計測装置の第1の例を示す模式図である。
 図1に示す光計測装置10は、低コヒーレンス干渉計12と、第1検出ユニット14a及び第2検出ユニット14bを有する検出部14と、変換部15と、演算部16と、記憶部17とを有する。光計測装置10は試料セル18を有する。
 低コヒーレンス干渉計12は、光源に低コヒーレンス光を出射する光源を用いた光干渉計である。
 低コヒーレンス干渉計12は、例えば、光源部20と、4つのビームスプリッター21a、21b、21c、21dとを有する。4つのビームスプリッター21a、21b、21c、21dは、それぞれ入射した光を2つに分割するか、又は入射した2つの光を合波させる透過反射面21eを有する。透過反射面21eは、45°の角度の傾斜した斜面である。
 また、4つのビームスプリッター21a、21b、21c、21dは、いずれも立方体状のキューブ型のビームスプリッターである。なお、ビームスプリッターの形態は、キューブ型に限定されるものではなく、平板状のプレート型でもよい。
 また、低コヒーレンス干渉計12は、図1に示す構成に限定されるものではない。
 4つのビームスプリッター21a、21b、21c、21dは、四角形の各頂点の位置に配置されている。対角線上の配置されたビームスプリッター21aとビームスプリッター21dとは透過反射面21eが平行である。また、対角線上に配置されたビームスプリッター21bとビームスプリッター21cとは透過反射面21eが平行である。4つのビームスプリッター21a、21b、21c、21dの透過反射面21eは、隣接するビームスプリッター21a、21b、21c、21dの透過反射面21eとは向きが異なり、非平行であり、具体的には逆平行である。
 ビームスプリッター21aとビームスプリッター21cとが並んで配置されており、ビームスプリッター21cのビームスプリッター21aの反対側に、反射体22が配置されている。ビームスプリッター21cと反射体22との間に、ビームスプリッター21c側から分散保障調整部23aと、対物レンズ23bとが配置されている。
 反射体22は、入射する光を反射するものであり、反射体22の反射面22aが参照面である。反射体22は、入射する光を反射することができれば、特に限定されるものではなく、例えば、ミラー、又はガラス板が用いられる。
 分散保障調整部23aは、試料セル18による群速度分散を補償するものである。
 試料セル18が、後述のように光学ガラスで構成されている場合、分散保障調整部23aは、試料セル18を構成する光学ガラスの厚みによる群速度分散を補償する。試料セル18を構成する光学ガラスと同程度の厚みのガラス板を、ビームスプリッター21cと対物レンズ23bとの間に配置する構成とし、通過する光の群速度分散を補償する。すなわち、分散保障調整部23aは参照光Lrの波長の違いによる光路長差を調整し、参照光Lrと散乱光Ldとの波長毎の光路長を合わせる。
 対物レンズ23bは、反射体22に入射する光を、反射体22の反射面22aに集光するものである。
 ビームスプリッター21aとビームスプリッター21bとが並んで配置されており、ビームスプリッター21aとビームスプリッター21bとの間に、ND(Neutral Density)フィルター24aが配置されている。ビームスプリッター21aとビームスプリッター21cとの間に、NDフィルター24bが配置されている。
 NDフィルター24a、24bは、反射体22の反射面22aで反射した参照光Lrと試料セル18からの散乱光Ldとの光強度のバランスをとるために、光量を調整するものである。NDフィルター24a、24bには、公知のものを適宜利用可能である。
 ビームスプリッター21bのビームスプリッター21aの反対側に試料セル18が配置されている。ビームスプリッター21bと試料セル18との間に、入射光Lsを試料セル18に集光する対物レンズ25が配置されている。
 ビームスプリッター21cとビームスプリッター21dとが並んで配置されており、ビームスプリッター21dのビームスプリッター21cの反対側に第1検出ユニット14aが配置されている。ビームスプリッター21dと第1検出ユニット14aとの間に偏光調整部26が配置されている。
 偏光調整部26は、ビームスプリッター21dから出射され、第1検出ユニット14aに入射する散乱光の偏光状態を制御するものである。偏光調整部26は、例えば、偏光素子で構成され、円偏光、直線偏光、又は楕円偏光等、試料セル18の分散液Lqから散乱した散乱光Ldの偏光状態を調整するために偏光素子が適宜用いられる。より具体的には、例えば、偏光調整部26は、偏光子で構成される。偏光子の透過軸の向きを複数変えて測定してよい。
 ビームスプリッター21bとビームスプリッター21dとが並んで配置されており、ビームスプリッター21dのビームスプリッター21bの反対側に第2検出ユニット14bが配置されている。
 第1検出ユニット14aは、ミラー30と、ミラー30から反射した反射光が入射される回折格子32とを有する。回折格子32は、散乱光を含む入射された光を波長分解して、波長毎の光に分ける光学素子である。回折格子32により、波長毎の散乱光を得ることができる。
 さらに、回折格子32により散乱光が波長に応じて回折された回折光が入射される光検出器33を有する。光検出器33により波長分解された散乱光が波長毎に検出される。光検出器33には、例えば、直線上に光電変換素子の配置されたラインカメラが用いられる。なお、光検出器33は、ラインカメラに代えて、光電子増倍管を直線上に配置したものでもよい。
 第1検出ユニット14aの光検出器33は、回折格子32で回折された、散乱光を含む回折光を受光するが、波長毎に回折角が異なり、光検出器34であるラインカメラが受光する位置が決まる。このため、第1検出ユニット14aでは、光検出器33であるラインカメラが受光した位置により、波長が特定される。このようにして、第1検出ユニット14aは、散乱光を波長分解して、波長分解された散乱光を波長毎に検出する。これにより、異なる波長で、散乱光の散乱強度を簡便に測定できる。
 なお、波長毎の光を得るために回折格子32を用いたが、波長毎の光を得ることができれば、回折格子32に限定されるものではない。例えば、遮断波長帯域が異なるバンドパスフィルターを複数用意しておき、バンドパスフィルターを交換して、波長毎の散乱光を得ることもできる。また、回折格子32の代わりにプリズムを用いることもできる。
 第2検出ユニット14bは、光検出器34を有する。光検出器34は、散乱角度毎に散乱光を検出するものである。光検出器34には、例えば、直線上に光電変換素子が配置されたラインカメラが用いられる。第2検出ユニット14bでは、光検出器34であるラインカメラが受光した位置により、散乱角度が特定される。これにより、異なる散乱角度で、散乱光の散乱強度を簡便に測定できる。光検出器34は、散乱光が参照光と干渉した干渉光についても散乱角度毎の干渉光強度を検出する。
 なお、光検出器34は、ラインカメラに代えて、高速カメラでもよい。
 また、光検出器33、34に用いられる光電変換素子は、例えば、フォトダイオードである。
 試料セル18は、例えば、光学ガラス、又は光学プラスチックで構成された直方体又は円柱の容器である。試料セル18に、測定対象である、粒子を含む分散液Lqが収納される。分散液Lqに入射光Lsが照射される。
 試料セル18は、図示はしないが液浸バス内に配置されてもよい。液浸バスは、試料セル18と周囲の環境との屈折率差を除去するためのものであり、公知の液浸バスが適宜利用可能である。また、試料セル18をペルチェ素子の接触した金属に接触させて、試料セル18を温度調整することもできる。
 光源部20は、ビームスプリッター21aのビームスプリッター21bの反対側に配置されている。光源部20は、試料セル18に入射光Lsを照射するものであり、ビームスプリッター21aに出射した光を入射させる。
 光源部20は、入射光Lsとして、低コヒーレンス光を出射するものである。低コヒーレンス光は、単色のレーザー光とは異なり、バンド幅のある光である。光源部20は、例えば、キセノンランプ、スーパールミネッセンスダイオード(SLD)、LED(light emitting diode)又はスーパーコンティニウム(SC)光源が用いられる。
 光源部20と、ビームスプリッター21aとの間には、光源部20側から分光調整部27と、偏光制御部28とが設けられている。
 分光調整部27は、光源部20による入射光Lsのスペクトルに応じて不要な波長域をカットするものである。例えば、スーパーコンティニウム光源における近赤外光域を、第1検出ユニット14aの光検出器33と、第2検出ユニット14bの光検出器34とでは検出できない場合、分光調整部27に、例えば、近赤外光域をカットするフィルターを用いる。
 また、第2検出ユニット14bにおいて散乱角度毎に散乱強度を測定するとき、波長帯域を限定する目的で、分光調整部27に、例えば、バンドパスフィルターを用いてもよい。
 なお、複数の波長の光を用いて、分散液Lqの散乱光を測定する場合、光源部20として出射波長が異なる複数の光源を用意することも考えられる。しかしながら、分光調整部27として、バンドパスフィルターを用いることにより、波長域をカットすることができるため、光源部20の構成を簡略化でき、装置構成を簡略化できる。
 偏光制御部28は、入射光の偏光状態を制御するものであり、入射光の偏光を調整している。偏光制御部28は、例えば、偏光素子で構成され、円偏光、直線偏光、又は楕円偏光等、試料セル18に照射する偏光に応じた偏光素子が適宜用いられる。粒子の形状を決定する際には、入射光に偏光を用いる。偏光制御部28は、より具体的には、偏光子とλ/4板とを組合せたもので構成される。これにより、無偏光の入射光Lsを円偏光にできる。
 なお、光計測装置10において、光源部20から出射した光の偏光をそのまま利用する場合、偏光調整部26及び偏光制御部28は、必ずしも必要ではない。
 第1検出ユニット14a及び第2検出ユニット14bを有する光計測装置10では、異なる散乱角度又は異なる波長で、散乱強度を簡便に測定できる。
 また、光計測装置10では、散乱角度及び波長のうち、利用するものが、いずれか一方である場合、検出部14において、第1検出ユニット14a及び第2検出ユニット14bのうち、いずれか一方があればよい。
 光源部20から出射した光は、ビームスプリッター21aの透過反射面21eで分割されて、透過反射面21eを透過してビームスプリッター21bに入射し、ビームスプリッター21bの透過反射面21eを透過して試料セル18に入射光Lsとして照射される。入射光Lsが試料セル18の分散液Lqで散乱して生じた散乱光Ldがビームスプリッター21bの透過反射面21eでビームスプリッター21dに反射する。
 光源部20から出射した光のうち、ビームスプリッター21dの透過反射面21eで反射した散乱光Ldが第1検出ユニット14aに入射される。
 ビームスプリッター21aの透過反射面21eで分割されてビームスプリッター21cに入射した光は、透過反射面21eを透過して、反射体22に入射して、反射体22の反射面22aで反射する。この反射した光が参照光Lrである。参照光Lrは、ビームスプリッター21cの透過反射面21eで反射して、ビームスプリッター21dに入射する。ビームスプリッター21dの透過反射面21eを透過した参照光Lrは、第1検出ユニット14aに入射する。このように第1検出ユニット14aには、散乱光Ldと参照光Lrとが入射して、干渉する。なお、散乱光Ldのうち少なくとも一部と、参照光Lrとが干渉すればよく、光路長を調整して、分散液Lqの特定の深さで生じた散乱光Ldのみ参照光Lrと干渉させることが好ましい。
 第1検出ユニット14aは、回折格子32により、波長毎に光検出器33の受光位置が決まっており、波長毎に干渉光を検出でき、波長毎の干渉光強度のデータが得られる。これにより、変換部15では、散乱光の干渉スペクトルから分散液Lqの特定の深さかつ特定の波長の散乱強度のデータを得ることができる。なお、深さとは、散乱光が分散液Lqを通った光路長のことを指すと考えてよい。
 また、散乱光Ldがビームスプリッター21dの透過反射面21eを透過し、第2検出ユニット14bに入射する。
 参照光Lrのうち、ビームスプリッター21dの透過反射面21eで反射した参照光Lrが、第2検出ユニット14bに入射する。このように第2検出ユニット14bには、散乱光Ldと参照光Lrとが入射して、干渉する。なお、散乱光Ldのうち少なくとも一部と、参照光Lrとが干渉すればよく、光路長を調整して、分散液Lqの特定の深さで生じた散乱光のみ参照光Lrと干渉させることが好ましい。
 分散液Lqの散乱角θbにより、散乱光Ldのビームスプリッター21bの透過反射面21eにおける反射位置が異なり、光検出器34における受光位置も異なる。このため、第2検出ユニット14bは、散乱角度毎に光検出器34の受光位置が決まっており、散乱角度毎に参照光と散乱光との干渉光を検出でき、散乱角度毎の干渉光強度のデータが得られる。これにより、変換部15では、参照光と同一光路長に相当する分散液Lqの特定深さの散乱光について、散乱角度毎の干渉光強度のデータから特定の散乱角度の散乱強度のデータを得ることができる。なお、図1の散乱角θb(°)は、散乱角180°の後方散乱光を基準とした角度である。前方散乱の角度を0°とした、一般的な散乱角θ(°)の表記とは、θ(°)=180°-θb(°)の関係にある。
 変換部15に演算部16が接続されており、記憶部17が変換部15と演算部16に接続されている。
 変換部15は、第1検出ユニット14aで検出される干渉光強度のデータから特定の波長の散乱光の散乱強度若しくは電場に比例した値、又は第2検出ユニット14bで検出される干渉光強度のデータから特定の散乱角度の光の散乱強度若しくは電場に比例した値を複数取り出す。そして、変換部15は、取り出した散乱強度のデータを分散液Lqの特定の深さにおける散乱光の時間揺らぎデータに変換するものである。
 変換部15は、第1検出ユニット14aの光検出器33、及び第2検出ユニット14bの光検出器34に接続されている。変換部15は、第1検出ユニット14aの光検出器33が検出する、特定の波長での光強度のデータを取得し、特定の波長の散乱強度のデータを複数取り出す。そして、取り出した散乱強度のデータを分散液Lqの特定の深さにおける散乱光の時間揺らぎデータに変換する。
 また、変換部15は、第2検出ユニット14bの光検出器34が検出する、反射体22の位置制御により分散液Lqの特定の深さで生じた散乱光のみ干渉させ、かつ特定の散乱角度での干渉光の強度のデータを取得し、特定の散乱角度の散乱強度を複数取り出す。これにより、取り出した散乱強度のデータを分散液Lqの特定の深さにおける散乱光の時間揺らぎデータに変換する。なお、時間揺らぎデータとは、パワースペクトル又は自己相関関数のことである。
 上述の分散液Lqの散乱光は、分散液Lqの様々な深さで散乱した光の成分が含まれ、散乱の回数が異なり、強度も異なる。粒子の粒径等の正確な測定のために、分散液Lqの特定の深さにおける散乱光を用いて解析する必要がある。分散液Lqの特定の深さを設定することにより、散乱光のうち、例えば、光が1度だけ散乱された単散乱光を得ることができる。
 なお、変換部15において、取り出した散乱強度のデータを分散液Lqの特定の深さにおける散乱光の時間揺らぎデータに変換する解析については、後に説明する。
 変換部15は、ROM(Read Only Memory)等に記憶されたプログラム(コンピュータソフトウェア)を、変換部15で実行することにより、上述のように散乱強度を複数取り出し、取り出した散乱強度のデータを分散液Lqの特定の深さにおける散乱光の時間揺らぎデータへの変換を実施する。変換部15は、上述のようにプログラムが実行されることで各部位が機能するコンピューターによって構成されてもよいし、各部位が専用回路で構成された専用装置であってもよく、クラウド上で実行されるようにサーバーで構成してもよい。
 演算部16は、変換部15で取得された時間揺らぎデータを用いて、粒子の粒径を算出するものである。
 また、演算部16は、変換部15で取得された時間揺らぎデータと、変換部15で取得された時間揺らぎデータを時間平均した時間平均データとを、粒径と散乱強度の関係を定めた理論式に対してフィッティングすることにより、分散液に含まれる粒子種毎の粒度分布を得るものである。演算部16における粒子の粒径の算出には、動的光散乱法に用いられる各種の算出方法が適宜利用可能である。また、分散液に含まれる粒子種毎の粒度分布を得ることについては、後に説明する。
 記憶部17は、既知の粒子の複素屈折率、粒径、及び形状によって求められる、既知の粒子の散乱光強度についての散乱角度依存のデータ及び散乱光強度についての波長依存のデータのうち少なくとも1つを記憶するものである。
 記憶部17に、既知の粒子に関する散乱光強度の散乱角度依存のデータ及び散乱光強度の波長依存のデータのうち、少なくとも1つを記憶しておくことにより、粒子の粒径分布を求める際、又はフィッティングの際に参照することができる。このため、各種の粒子について、既知の粒子に関する散乱光強度の散乱角度依存のデータ及び散乱光強度の波長依存のデータのうち、少なくとも1つを記憶しておき、モデルライブラリーを構築しておくことが好ましい。
 また、記憶部17は、変換部15で得られた各種のデータを記憶するものでもある。
 なお、記憶部17は、上述の既知の粒子に関する散乱光強度の散乱角度依存のデータ及び散乱光強度の波長依存のデータ、及び変換部15で得られた各種のデータを記憶することができれば、特に限定されるものではなく、例えば、ハードディスク、又はSSD(Solid State Drive)の各種の記憶媒体を用いることができる。
 また、演算部16は、記憶部17が記憶している既知の粒子に関する散乱光強度の散乱角度依存のデータ及び散乱光強度の波長依存のデータのうち、少なくとも1つを用いて、粒子種毎の粒度分布を得るためのフィッティングを実施する。
 演算部16は、記憶部17が記憶している、変換部15で得られた各種のデータを読み出して、フィッティングを実施することもできる。また、実測の揺らぎデータから得られた粒径分布値、及び実測の散乱光の波長依存又は強度依存に対して、モデルライブラリーに格納された粒子の散乱特性を比較することにより、粒子の凝集状態又は粒子種を判定することもできる。
 なお、粒子の散乱特性は、例えば、既知の粒子に関する散乱光強度の散乱角度依存のデータ及び散乱光強度の波長依存のデータである。これらの粒子の散乱特定は、標準粒子等の既知の粒子を用いて得られた実測値でもよく、又はMie散乱理論式等の粒径と散乱強度の関係を定めた理論式により得られた計算値でもよい。また、粒子の散乱特性は、シミュレーションによる計算値でもよい。シミュレーションによる計算値は、例えば、FDTD法(Finite-difference time-domain method)又は、DDA(Discrete dipole approximation)法を用いて得られる。上述の粒子の散乱特性は、例えば、モデルライブラリーとして記憶部17に記憶される。
 演算部16は、ROM等に記憶されたプログラム(コンピュータソフトウェア)を、演算部16で実行することにより、上述の粒子の粒径の算出、及び分散液に含まれる粒子種毎の粒度分布を得ることを実施する。演算部16は、上述のようにプログラムが実行されることで各部位が機能するコンピューターによって構成されてもよいし、各部位が専用回路で構成された専用装置であってもよく、クラウド上で実行されるようにサーバーで構成してもよい。
 光計測装置10においては、参照光Lrを遮断して、散乱光と干渉させてないようにしてもよい。この場合、参照光Lrを遮断することにより、通常の動的光散乱測定を実施できる。参照光Lrを遮断する方法としては、例えば、ビームスプリッター21aとビームスプリッター21cとの間に、進退可能な遮光板を設けて、ビームスプリッター21aから分割される光を、反射体22に到達することを防ぐ方法がある。
 また、ビームスプリッター21cとビームスプリッター21dとの間に、進退可能な遮光板を設けて、ビームスプリッター21dに到達する参照光Lrを遮光して、参照光Lrを遮断してもよい。
 なお、光を遮光することができれば、進退可能な遮光板に限定されるものではなく、例えば、液晶シャッタを利用した光シャッタを用いることができる。
 以上の構成により、光計測装置10は、通常のホモダイン検出の動的光散乱装置としても使用できる。
 図2は本発明の実施形態の光計測方法の第1の例により得られたパワースペクトルの一例を示すグラフであり、図3は本発明の実施形態の光計測方法の第1の例により得られた自己相関関数の一例を示すグラフである。
 例えば、直径が1μm、濃度1質量%のポリスチレン粒子を含む分散液を、上述の図1に示す光計測装置10を用いて、波長毎の干渉光強度を検出する。第1検出ユニット14aで得られた干渉光のスペクトルのうち、中心波長620nm、640nm、及び660nmの3つ波長の干渉強度スペクトルを代表して抽出する。なお、中心波長620nm、640nm、及び660nmに対して、波長の幅は、それぞれ±9nmである。
 次に、変換部15で、第1検出ユニット14aで検出された干渉光強度から特定深さの各波長の散乱光の電場に比例した信号成分のデータを取得する。各波長の散乱強度のデータを、分散液Lqの特定の深さにおける散乱光の時間揺らぎデータとして、パワースペクトルに変換する。これにより、図2に示すパワースペクトルを得る。さらに、変換部15で、図2に示すパワースペクトルを、逆フーリエ変換し、図3に示すように波長毎に自己相関関数を得る。図3の縦軸の数値は、常用対数である。
 次に、演算部16において、例えば、図3に示す各波長の自己相関関数の常用対数(log10)をとったものについて、それぞれ傾きΓgを求める。傾きΓgを用いて、各波長での拡散係数Dを求める。拡散係数Dは、D=Γg/qで表される。なお、qは散乱ベクトルである。
 ここで、拡散係数Dと粒径dとは、ストークス・アインシュタインの式により、d=kT/(3πηD)で表される。なお、kはボルツマン定数であり、Tは絶対温度であり、ηは分散液の溶媒の粘度である。なお、自己相関関数の傾きから粒子分布を算出する方法は、本方法に限らず、CONTIN法、ヒストグラム法、キュムラント展開等が知られており、これらの方法が利用可能である。
 次に、演算部16において、各波長の拡散係数Dを用いて、各波長でのポリスチレン粒子の流体力学的な粒子サイズを求める。この流体力学的な粒子サイズは、上述の粒径dである。その結果、中心波長620nmでは0.9μmが得られ、中心波長640nmでは1.1μmが得られ、中心波長660nmでは1.2μmが得られる。それぞれ得られた粒径の平均値は、1.06μmである。このように、複数の波長を用いた場合、粒径が1μm、濃度1質量%のポリスチレン粒子に対して、粒径を測定できる。
<光計測方法の第1の例>
 光計測方法の第1の例は、光計測装置10において、複数の波長を利用する。
 例えば、スーパーコンティニウム光源を用いて、粒子を含む分散液を測定する。測定により、第1検出ユニット14aの光検出器33にて各波長の光が検出される。光検出器33に入射する各波長の光は、散乱光と参照光との干渉光を含んでおり、例えば、図4に示す干渉スペクトルで表される。なお、図4は縦軸が光強度であり、横軸が波数である。
 図4に示す干渉スペクトルの強度Iは、下記式で表される。下記式において、Eは散乱光の電場であり、E はEの複素共役量であり、Eは参照光の電場であり、E はEの複素共役量である。
=|E+E=|E+|E+E +E
 次に、図4に示す干渉スペクトルについて、例えば、中心波長が620nmの波長領域35aを取り出す。なお、波長領域35aの幅は、中心波長620nmに対して±9nmである。これにより、波長毎の散乱強度のデータから、特定の波長領域の散乱強度が取り出される。特定の波長領域の散乱強度を取り出した後、波長領域に対して、干渉スペクトルの強度Iに対して、逆フーリエ変換F‐1を実施する。これにより、例えば、中心波長が620nmにおける分散液Lqの深さ方向の散乱プロファイルF‐1(I)が得られる。分散液Lqの深さ方向の散乱プロファイルの一例を図5に示す。なお、図5は縦軸がF‐1(I)であり、横軸が基準となる光路長の位置からの距離である。この基準光路長位置は参照光の光路長に等しく、例えば、試料セルと分散液の界面で生じる反射光の光路長と基準光路長位置の光路長を等しくなるようにした場合、横軸は界面からの深さとなる。
 上述の逆フーリエ変換は、下記式により表される。
 F‐1(I)=|r δ(z)+r ρ(s/2)+E Γρ(s/2)
 なお、rは反射体22の電場に対する反射率であり、Eは試料へ照射した光の電場であり、δ(z)はデルタ関数であり、ρは分散液の界面から深さs/2の位置からの散乱電場の拡散反射率であり、Γρは散乱電場の拡散反射率の深さ依存に対する自己相関関数である。
 図5に示す分散液の深さ方向のプロファイルにおいて、例えば、単散乱領域を関心深さ領域35bとして取り出す。単散乱領域、すなわち、光が1度だけ散乱された領域は、光計測装置10において光路長により決定されるものであり、光計測装置10において、単散乱領域の光路長を予め特定しておくことが好ましい。なお、上述の関心深さ領域35bが、分散液Lqの特定の深さに対応する。
 第1検出ユニット14aで関心深さ領域35bの電場の時間応答を得る。ラインディテクタで得られる信号の時系列データを全て同様に処理し、関心深さ領域35bにおける散乱電場Eρ(s/2)に比例した信号量の時間依存性が得られる。これを図6に示す。なお、図6は縦軸が電場であり、横軸が時間である。
 図6に示す散乱電場の時間依存性に対してフーリエ変換して2乗を実施する。これにより、散乱光の強度の周波数応答、すなわち、図7に示すパワースペクトルが得られる。なお、図7は縦軸が強度であり、横軸が周波数である。図7に示すパワースペクトルIESは下記式で表される。なお、下記式のΓESは、電場の時間相関関数(=自己相関関数)である。
Figure JPOXMLDOC01-appb-M000001
 次に、図7に示すパワースペクトルIESに対して逆フーリエ変換を実施する。これにより、散乱電場の自己相関関数が得られる。これを図8に示す。なお、図8は縦軸が自己相関関数であり、横軸が遅延時間である。上述の逆フーリエ変換は、下記式により表される。
‐1(IES)=ΓES(τ)=GES (1)(τ)
 以上のようにして、取り出した干渉光強度のデータから分散液Lqの特定の深さにおける散乱光の時間揺らぎデータとして、パワースペクトル又は自己相関関数が得られる。第1検出ユニット14aで検出される波長毎の散乱強度のデータを、分散液Lqの特定の深さのパワースペクトル又は自己相関関数への変換は、変換部15で実施される。
 次に、演算部16において、変換部15で取得された時間揺らぎデータであるパワースペクトル又は自己相関関数を用いて、粒子の粒径を算出する。自己相関関数を用いた粒子の粒径の算出方法は、上述の図3に示すとおりである。
 なお、散乱電場の時間平均の波長依存は、図4に示す波長領域35aについて抜き出した後に、図5に示す関心深さ領域35bの信号の時間平均を算出し、これを参照光のスペクトルにおいて、上述の波長領域35aと同じ波長領域の強度信号で割ることにより得ることができる。これをさらに2乗すると光源スペクトルで規格化した散乱光強度が得られる。以上のようにして、例えば、中心波長が620nmの波長領域における単散乱した静的光散乱の情報を得ることができる。
 例えば、中心波長が640nmの波長領域についても、例えば、中心波長が660nmの波長領域についても、図4に示す干渉スペクトルから、中心波長が640nmの波長領域、及び中心波長が660nmの波長領域を取り出すことにより、各波長における単散乱した静的光散乱の情報を得ることができる。なお、波長領域の幅は、例えば、中心波長640、660nmに対して±9nmである。
 ここで、図9は散乱強度の波長依存性を示すグラフであり、図10は静的光散乱強度の波長依存を示すグラフである。図9は理論計算により得られたものであり、図10は実測により得られたものである。
 図9に示すプロファイル36は、直径が50nmのポリスチレン粒子により構成される流体力学的直径が1000nmの橋掛け凝集体の散乱強度を示す。橋掛け凝集体は、平均粒子間距離がポリスチレンの粒径以上である。プロファイル37は、直径が1000nmのポリスチレン粒子の単一粒子の散乱強度を示す。図9は縦軸が散乱強度であり、横軸が波長である。例えば、図9の単一粒子及び橋掛け凝集のデータが、モデルライブラリーとして、記憶部17(図1参照)に記憶されている。
 なお、橋掛け凝集体は、例えば、所定の大きさの粒子と粒子同士の間に存在する高分子とによって構成される。高分子としては、粒子同士を凝集させる官能基(例えば、極性基)を有する高分子である場合が多い。
 図9に示すように、プロファイル36で表される橋掛け凝集体では、波長の増加に対して散乱強度が低下している。一方、プロファイル37で表される直径が1000nmの単一粒子では、波長の増加に対して散乱強度が増加している。
 図10は直径が1000nm、濃度1質量%のポリスチレン粒子の単一粒子を測定して得た静的光散乱強度を示す。図10に示す静的光散乱強度の波長依存性のように、ポリスチレン粒子の単一粒子は、波長の増加に対して散乱強度が増加する。
 動的光散乱法(DLS)では、上述の散乱光の時間揺らぎのデータの解析事例で示したように、粒子の流体力学的サイズが1000nmであることしかわからない。このため、粒子の粒径が1000nmとわかっても、上述の橋掛け凝集体、及び単一粒子のうち、いずれかであるか判定できない。図9に示すプロファイル37に示すように単一粒子は波長の増加に対して散乱強度が増加することから、図10の実験で得られた信号は、直径が1000nmのポリスチレン粒子の単一粒子であると判定できる。なお、単一粒子の判定は、演算部16で実施される。
 以上、後述する手順(図20参照)にて、動的光散乱と、静的光散乱の波長依存を組み合わせてモデルライブラリーのデータと比較することにより、流体力学的な粒子サイズだけでなく、分散液中の粒子の状態、及び分散液中の粒子の種類を判定することができる。分散液中の粒子の状態は、例えば、凝集状態である。分散液中の粒子の種類及び分散液中の粒子の状態は、演算部16により実施される。なお、演算部16では、分散液中の粒子の種類及び分散液中の粒子の状態のうち、少なくとも一方の判定を実施できればよい。
<光計測方法の第2の例>
 光計測方法の第2の例は、複数の散乱角度を利用する。例えば、スーパーコンティニウム光源を用いて、粒子を含む分散液を測定する。
 図11は本発明の実施形態の光計測方法の第2の例を説明するための光学装置を示す模式図である。図11に示す光学装置38は、図1に示す光計測装置10において、複数の散乱角度を利用した測定を説明するために構成を簡略化したものである。なお、図11において、図1に示す光計測装置10と同一構成物には、同一符号を付して、その詳細な説明は省略する。
 図11に示す光学装置38は、例えば、立方体状のキューブ型のビームスプリッター39を挟んで光検出器34と、反射体22とが配置されている。ビームスプリッター39と反射体22との間に、対物レンズ23bが配置されている。ビームスプリッター39の面39aは、反射体22と光検出器34が配列する方向と直交する方向の面である。ビームスプリッター39の面39aに対向して、分散液Lqが収納された試料セル18が設けられている。ビームスプリッター39の面39aと分散液Lqとの間に、対物レンズ25が配置されている。ビームスプリッター39は、入射した光を2つに分割するか、又は入射した2つの光を合波させる透過反射面39eを有する。また、ビームスプリッター39は、立方体状のキューブ型のビームスプリッターであるが、ビームスプリッターの形態は、キューブ型に限定されるものではなく、平板状のプレート型でもよい。
 光検出器34は、上述のように直線上に光電変換素子が配置されたラインカメラである。光検出器34において、ラインカメラの位置座標をxとするとき、座標xcは散乱角θbが後方散乱光又は試料セルの正反射光の角度を基準に0°のときの座標、すなわち、散乱角θが180°のときの座標である。ラインカメラの位置座標xは、x=f・sinθb+xcで表される。なお、fは、対物レンズ25の焦点距離である。このため、後述の図12、及び図13には各深さからの散乱光の情報が含まれる。反射体22の位置を調整することより、参照光と、分散液Lqの深さ方向での散乱光とを干渉させる位置を変えることができる。これにより、参照光の光路長が分散液からの単散乱光の光路長になるように合わせることで、単散乱光が干渉した信号とすることができる。
 ビームスプリッター39の面39aに対向する面39bに入射光Lsが入射される。入射光Lsは透過反射面39eを透過し、対物レンズ25を経て分散液Lqに照射され、散乱角θの散乱光Ldが生じる。散乱光Ldがビームスプリッター39の透過反射面39eに入射して、透過反射面39eにより反射されて散乱光Ldが光検出器34に入射する。
 一方、入射光Lsはビームスプリッター39の透過反射面39eで分割されて反射体22に入射される。反射体22の反射面22aで反射した参照光Lrは、透過反射面39eを透過して光検出器34に入射する。このように、散乱光Ldと参照光Lrとが光検出器34に入射されて、干渉が生じる。これにより、図12に示す干渉光の強度を得る。なお、図12は縦軸が光強度であり、横軸がラインカメラの位置座標である。図12に示す干渉光の強度は、以下の式で表される。
 I干渉(x,t)=I+I+2Re{E (x,z干渉)}(t)
 ここで、I干渉(x,t)の式において、xはラインカメラの位置座標、tは時間、Iは参照光の強度、Iは散乱光の強度、Re{E }は実部をとる関数、Eは参照光の電場、Eは散乱光の電場、zは分散液中における光軸方向の干渉位置、すなわち、分散液の深さ方向の干渉位置を示す。
 また、非干渉時の光強度は、I非干渉(x,t)=I+Iで表される。非干渉のスペクトルは、例えば、図1に示す分散保障調整部23aの位置に、参照光の光路長を長くするために厚いガラス板を配置して、光路長を変更することにより得られる。I非干渉(x,t)は、より簡単な近似として、I干渉(x,t)の時間平均<I干渉(x,t)>tをとることによって得てもよい。
 上述のx=f・sinθb+xcを用いて、図12に示す光強度を、図13に示すように散乱角θに対する光強度に変換する。なお、図13は散乱角に対する散乱強度のプロファイルを示す。図13の縦軸は光強度であり、散乱強度を示しており、横軸は散乱角である。
 図13の光強度は、I干渉(θ,t)=I+I+2Re{E }で表される。また、非干渉時の光強度は、I非干渉(θ,t)=I+Iで表される。
 次に、図13において、例えば、関心角度領域40と、関心角度領域42とを設定する。これにより、特定の散乱角度の散乱光電場の情報を含んだ干渉光強度I干渉(θ,t)が複数取り出される。
 第2検出ユニット14bで関心角度領域40、42の電場の時間応答を得る。これにより、関心角度領域40について、図14に示す散乱電場の時間依存性を示すプロファイル41を得る。関心角度領域42についても、図14に示す散乱電場の時間依存性を示すプロファイル43を得る。
 図14は、関心領域における散乱角の成分を取り出し、時系列の変化としてグラフ化したものであり、散乱角θの成分の時間領域の揺らぎを示す。なお、図14の縦軸は電場であり、横軸が時間である。
 次に、図14に示す電場の時間依存性を示すプロファイル41、43に対してフーリエ変換の2乗を実施する。これにより、強度の周波数応答、すなわち、図15に示すパワースペクトルが得られる。図15では、パワースペクトルは、関心角度領域40の1つしか示していないが、関心角度領域42についても、関心角度領域40と同様にして、パワースペクトルを得ることができる。
 なお、図15は縦軸が強度であり、横軸が周波数である。図15の縦軸で表される値は、下記P干渉(θ,t)から下記P非干渉(θ,t)を引いたものである。下記式においてFは複素共役を示す。
 P干渉(θ,t)=F{I干渉}F{I干渉}
 P非干渉(θ,t)=F{I非干渉}F{I非干渉}
 次に、図15に示すパワースペクトルに対して逆フーリエ変換を実施する。これにより、図16に示すように、散乱角θにおける散乱電場Esの自己相関関数が得られる。なお、図16は縦軸が自己相関関数であり、横軸が遅延時間である。
 図15に示すパワースペクトル、又は図16に示す自己相関関数は、上述の時間揺らぎデータである。図15に示すパワースペクトル、又は図16に示す自己相関関数を用いて、動的光散乱法の原理に基づきフィッティングを行うことにより、粒子の流体力学的サイズを得ることができる。
 ここで、参照光の空間強度分布I(x)は、I(x)=|Eで表される。
 また、Re{E }(θ)=(I干渉-I非干渉)/2である。
 これを、参照光の空間強度分布I(x)を便宜的にラインディテクタの座標と対応するθの関数に焼き直したI(θ)を用いて、規格化し、かつ時間平均をとることにより、静的な光散乱電場の散乱角依存Is(θ)が得られる。
 Is(θ)=<|Re{E }(θ)|time average/2I
 上述の光計測装置10において、中心波長650nmの入射光を用い、粒径1000nm、濃度1質量%のポリスチレン粒子を含む分散液について計測した結果について説明する。分散液の溶媒は水とした。なお、測定深度を分散液の表面、すなわち、気液界面から50μmの位置とした。分散液の深さを50μmとした。入射光は、例えば、バンドパスフィルターを用いることにより中心波長を650nm、波長幅を中心波長に対して±33nmとした。
 得られた複数の散乱角度のうち、散乱角度175°、散乱角度173°、散乱角度172.5°の散乱光の成分を用いて、粒子の粒径を測定した。なお、上述の散乱強度は中心角度を示しており、散乱角度の全幅は0.5°である。なお、散乱角度の全幅は0.5°とは、角度中心値±0.25°である。例えば、散乱角度175°であれば、散乱角度175°±0.25°である。
 光計測装置10において、上述の中心波長650nmの入射光を分散液Lqに照射して生じた散乱光について、第2検出ユニット14bで各散乱角度における光を光検出器34で検出し、干渉光強度のデータを得る。
 変換部15において、散乱強度のデータから特定の散乱角度、上述の175°、173°、及び172.5°の散乱強度のデータを得る。次に、取り出した散乱強度のデータを、上述のように分散液の深さを50μmにおける散乱光の時間揺らぎデータとして、自己相関関数に変換する。この結果、図17~図19のプロットに示す自己相関関数が得られた。図17は散乱角度が175°、図18は散乱角度が173°、図19は散乱角度が172.5°の自己相関関数を示す。
 演算部16にて、フィッティングにより粒径を算出した結果、図17~図19に示す結果が得られた。粒径の算出は、上述の図3に示すように自己相関関数の傾きΓgを求め、傾きΓgを用いて、散乱角度での拡散係数Dを求める。拡散係数Dと粒径dとの関係を表すストークス・アインシュタインの式により、拡散係数Dから粒径dを算出する。
 図17に示す散乱角度が175°の場合、中心粒径が1.03μmである。図18に示す散乱角度が173°の場合、中心粒径が1.04μmである。図19に示す散乱角度が172.5°の場合、中心粒径が1.01μmである。それぞれ得られた粒径の平均値は、1.027μmである。このように、複数の散乱角度を用いても、粒径が1μmのポリスチレン粒子に対して、十分な精度で粒径を測定できる。
 次に、演算部16において、変換部15で取得された時間揺らぎデータと、変換部15で取得された時間揺らぎデータを時間平均した時間平均データとを、粒径と散乱強度の関係を定めた理論式に対してフィッティングすることについて説明する。上述のフィッティングにより、分散液に含まれる粒子種毎の粒度分布が得られる。以上の実施例は、分散液中に粒子種類が1つの場合であったが、以下の計算式により、同様に分散液中に含まれる粒子種類が2種類以上の場合の定量又は粒子種の判定にも応用できる。その方法について以下に示す。フィッティングには、粒径と散乱強度の関係を定めた理論式以外に、既知の粒子の散乱特性を用いることもできる。
 ここで、図20は本発明の実施形態の光計測方法を示すフローチャートである。
 光計測方法は、図20に示すように、例えば、測定工程(ステップS10)と、実験データを得る工程(ステップS12)と、事前計算値を得る工程(ステップS14)と、最適化する工程(ステップS16)とを有する。最適化する工程(ステップS16)により、解析結果、すなわち、複数の種類の粒子種毎の粒度分布が得られる(ステップS18)。
 測定工程(ステップS10)は、例えば、干渉光強度の時間ゆらぎ、及び干渉光強度の時間平均値の散乱角度依存、又は波長依存を測定する。
 実験データを得る工程(ステップS12)は、測定工程(ステップS10)の測定値に基づいて、例えば、干渉光強度の時間ゆらぎに対する時間相関を得る。また、干渉光強度の時間平均値の散乱角度依存、又は干渉光強度の時間平均値の波長依存を得る。
 事前計算値を得る工程(ステップS14)では、モデルライブラリーとして記憶部17に記憶された、例えば、上述の図9の単一粒子及び橋掛け凝集のデータを利用して、粒子の散乱特性を得る。
 なお、既知の粒子の散乱特性は、上述のように標準粒子を用いた実測値でもよい。理論式又はシミュレーションにより得られた計算値を、粒子の散乱特性として用いてもよい。粒子の散乱特性は、上述のように、例えば、既知の粒子に関する散乱光強度の散乱角度依存のデータ及び散乱光強度の波長依存のデータである。
 ステップS14で得られた粒子の散乱特性を、例えば、分散液中の粒子、又は分散液中の粒子種の特定に用いる。例えば、ステップS10で得られた測定値、例えば、実測の揺らぎデータから得られた粒径分布値、及び実測の散乱光の波長依存のデータ又は散乱光の強度依存のデータと、ステップS14の粒子の散乱特性とを比較することにより、分散液中の粒子の粒子種及び分散液中の粒子の状態を判定する。実測の散乱光の波長依存のデータ及び散乱光の強度依存のデータは、変換部15で取得された散乱光の時間揺らぎデータから得られる。
 最適化する工程(ステップS16)では、例えば、1次の自己相関関数、及び散乱強度の理論式を、ステップS12で得られた干渉光強度の時間ゆらぎの時間相関、及び干渉光強度の時間平均値にフィッティングする。ステップS16では、全ての粒径に対する粒子数について、初期値を設定した後、評価値を最小にするように更新して、最終的な粒子数を得る。
 以下、フィッティングについて、より具体的に詳細に説明する。
(フィッティングの第1の例)
 分散液中に、粒子Aと粒子Bとの2種類の粒子がある場合について説明する。
 なお、粒子Aと粒子Bと粒子の種類、各粒径における粒子の複素屈折率の波長依存性が既知であることを前提とする。この場合、既知の粒子の複素屈折率、粒径、及び形状によって求められる、散乱光強度の波長依存のデータがあり、モデルライブラリーとして記憶部17(図1参照)に記憶されている。
 1次の自己相関関数g(1)(τ)は、g(1)(τ)=exp(-Dqτ)で表される。
 分散液中に、粒子Aと粒子Bとの2種類の粒子がある場合、1次の自己相関関数は、下記式(1)で表される。また、散乱強度は、下記式(2)で表される。下記式(1)、(2)は理論式であり、式(1)及び(2)のItotalは、いずれも計算値である。また、I A及びI Bは理論値であり、上述のステップS14で得られた事前計算値を用いることができる。
 なお、下記式(1)、(2)において、g(1)は1次の自己相関関数を示す。Itotalは全散乱強度を示す。dは粒径を示す。dの下付き添字0~Mは、図21、図22に示すヒストグラムのビンの序数を示す。Nは粒子数を示す。Nの下付き添字0~Mは、図21、図22に示すヒストグラムのビンの序数を示す。なお、ヒストグラムのビンとは、ヒストグラムのデータ区間のことであり、ヒストグラムでは棒で示される。
 また、Dは拡散係数を示す。拡散係数Dの下付き添字dは、粒径dに依存することを表す。qは散乱ベクトルを示す。τは1次の自己相関関数のタイムラグを示す。θは散乱角を示す。Iは散乱強度を示す。散乱強度Iの下付き添字dは、粒径dに依存することを表す。
 下記式(1)及び(2)において、上付き添字AとBとは散乱強度波長依存性が粒子A、粒子Bに対応することを表す。
Figure JPOXMLDOC01-appb-M000002
 上述の式(1)において、下記項は、粒子Aに対応するものであり、図21に示す粒子Aのヒストグラムに対応する。下記項において、exp(-Dqτ)が1次の自己相関関数であり、それ以外のN A A/Itotalの部分が、粒径dのビンに属する全粒子Aの散乱強度の、全反射強度に対する割合を示す。すなわち、粒子Aの重み付けである。なお、式(1)のItotalは、粒径により決まる理論値である。理論値としてMie散乱理論式を用いることができる。
Figure JPOXMLDOC01-appb-M000003
 上述の式(1)において、下記項は、粒子Bに対応するものであり、図22に示す粒子Bのヒストグラムに対応する。下記項において、exp(-Dqτ)が1次の自己相関関数であり、それ以外のN B B/Itotalの部分が、粒径dのビンに属する全粒子Bの散乱強度の、全反射強度に対する割合を示す。すなわち、粒子Bの重み付けである。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 上述の式(2)において、N A Aは粒子Aの散乱強度に対応し、N B Bは粒子Bの散乱強度に対応する。
 以下、複数の種類の粒子種毎の粒度分布を求めるフィッティングについて説明する。フィッティングでは、粒子数を変数として、最終的に粒径ごとの粒子数を求める。
 1次の自己相関関数g(1)(τ)は波長毎に実測されており、複数ある。実測されたものとしては、例えば、上述の図3に示す複数の波長の自己相関関数である。
 フィッティングにおいては、波長毎の1次の自己相関関数について、それぞれ式(1)において、粒子数を変数として、初期粒子数を設定する。設定した初期粒子数に基づく、式(1)の1次の自己相関関数の計算値を求める。波長毎の1次の自己相関関数が、理論式を用いた散乱特性から導出した時間揺らぎデータに相当する。
 波長毎に、それぞれ実測された1次の自己相関関数の値と、式(1)の1次の自己相関関数の計算値との差を求める。なお、この実測された1次の自己相関関数の値と、式(1)の1次の自己相関関数の計算値との差を、1次の自己相関関数の差という。1次の自己相関関数の差が波長毎に得られる。
 例えば、図9及び図10に示すように、全散乱強度Itotalは波長毎に実測されている。なお、上述の図9及び図10の説明から、粒子が凝集体ではなく、単一粒子であることも判定できる。
 式(2)において、粒子数を変数として、粒子数を設定する。設定した初期粒子数に基づく式(2)の全散乱強度Itotalの値を求める。
 図9及び図10に示すように波長毎に、実測された全散乱強度Itotalの値と、式(2)の全散乱強度Itotalの計算値との差を求める。なお、任意の波長における、実測された全散乱強度Itotalの値と、式(2)の全散乱強度Itotalの計算値との差を、波長での全散乱強度Itotalの差という。全散乱強度Itotalについて、波長での全散乱強度Itotalの差が得られる。式(2)の全散乱強度Itotalの計算値が、導出した時間揺らぎデータを時間平均した時間平均データに相当する。
 フィッティングでは、最終的な粒子数を求めるために、上述の波長毎に得られた1次の自己相関関数の差と、波長での全散乱強度の差とを用いる。例えば、波長毎に得られた1次の自己相関関数の差の2乗の値と、波長での全散乱強度の差の2乗の値とを、全ての波長について足して得られた評価値を用いる。評価値が最小になる粒子数を、最終的な粒子数とする。
 このため、フィッティングにおいては、評価値が最小になるように、粒子数を、式(1)、(2)において繰り返して更新して、最終的な粒子数を得る。これが上述のステップS16に相当する。
 全ての粒径に対する粒子数について、初期値を設定した後、評価値を最小にするように更新する。粒子の粒径毎に、上述の最終的な粒子数を得ることを実施して、例えば、図21に示す粒子Aのヒストグラムと、図22に示す粒子Bのヒストグラムとを得ることができる。すなわち、N A、N Bをすべてのd=d~dについて求めることにより、粒径分布を得ることができる。これが上述のステップS18に相当する。粒径分布とは、粒子個数の粒径に対する分布であり、例えば、単位は%で示される。
 以上の工程が、複数の種類の粒子種毎の粒度分布を求める工程である。なお、フィッティングに用いられる評価値は、上述のものに限定されるものではない。
 なお、図9及び図10に示すような波長に対する散乱強度の違いを利用して、分散液中の粒子の種類を判定することができる。このため、粒子の種類と、波長に対する散乱強度との関係を予め特定しておくことにより、粒子の種類と、粒子の粒度分布を求めることもできる。粒子の種類と、波長に対する干渉光強度との関係を記憶部17に記憶しておくことが好ましい。演算部16では、記憶部17から、粒子の種類と、波長に対する干渉光強度との関係を読み出し、粒子の種類と、粒子の粒度分布を求めることもできる。
 上述のように2つの理論式である式(1)、(2)を、実測された1次の自己相関関数及び実測された全散乱強度Itotalにフィッティングして、最終的な粒子数を求めている。しかしながら、フィッティングの最適化方法は、上述のものに限定されるものではなく、例えば、フィッティングにベイズ最適化を用いることができる。
 なお、上述のように粒子数を求める際に、1次の自己相関関数を用いたが、これに限定されるものではなく、1次の自己相関関数にかえてパワースペクトルを用いることもできる。
 また、上述のように散乱強度の自己相関関数又はパワースペクトルと、波長毎の散乱強度を理論式に対してフィッティングすることにより、粒子Aと粒子Bのように、粒子種毎にそれぞれの粒子数と、粒径分布とを得ることができる。また、分散液に不純物成分が含まれる場合、不純物成分と、粒子種毎の粒径分布とを得ることができるため、不純物成分の影響を分離できる。なお、フィッティングには、理論式以外に、既知の粒子の散乱特性から導出した時間揺らぎデータと、導出した時間揺らぎデータを時間平均した時間平均データを用いることもできる。
 なお、波長を2つの例について説明したが、波長は2つに限定されるものではなく、複数であれば、波長は3でも4でもよい。
(フィッティングの第2の例)
 分散液中に、単一粒子と凝集体との2種類の粒子がある場合について説明する。
 なお、単一粒子と凝集体の種類、各粒径における粒子の複素屈折率の散乱強度依存性が既知であることを前提とする。この場合、既知の粒子の複素屈折率、粒径、及び形状によって求められる、散乱光強度の散乱角度依存のデータがあり、モデルライブラリーとして記憶部17に記憶されている。事前に単一粒子と凝集体とについて、干渉光強度の散乱角度依存を計算する。この計算が上述のステップS14に相当する。
 また、例えば、分散液について、図23に示すように散乱強度と散乱角との関係について、干渉光強度の時間平均値の散乱角度依存の実測値(ステップS10参照)を得る。この散乱強度と散乱角との関係を得ることが上述のステップS12に相当する。この散乱強度と散乱角との関係を示すデータが、変換部で取得された時間揺らぎデータから得られた散乱角度依存のデータに相当する。なお、散乱強度と波長との関係を示すデータを得ることもででき、これが変換部で取得された時間揺らぎデータから得られた波長依存のデータに相当する。
 分散液中に2種類の粒子種がある場合、1次の自己相関関数は、下記式(3)で表される。また、散乱強度は、下記式(4)で表される。下記式(3)、(4)は理論式であり、式(3)及び(4)のItotalは、いずれも計算値である。また、I single及びI flocは理論値であり、上述のステップS14で得られた事前計算値を用いることができる。
 下記式(3)は、基本的には式(1)と同じであり、下記式(4)は、基本的には式(2)と同じである。
 下記式(3)、(4)において、散乱強度Iの上付き添字singleは、単一粒子の散乱強度を表し、上付き添字flocは、橋掛け凝集した凝集体を表す。
Figure JPOXMLDOC01-appb-M000006
 上述の式(3)において、下記項は、単一粒子に対応するものであり、図24に示す単一粒子のヒストグラムに対応する。下記項において、exp(-Dqτ)が1次の自己相関関数であり、それ以外のN single single/Itotalの部分が、粒径dのビンに属する全単一粒子による散乱強度の、全散乱強度に対する割合を示す。単一粒子の全粒子における割合を示す。すなわち、単一粒子の重み付けである。なお、式(3)のItotalは、粒径により決まる理論値である。
Figure JPOXMLDOC01-appb-M000007
 上述の式(3)において、下記項は、粒子が橋掛け凝集した凝集体に対応するものであり、図25に示す凝集体のヒストグラムに対応する。下記項において、exp(-Dqτ)が1次の自己相関関数であり、それ以外のN floc floc/Itotalの部分が、粒径dのビンに属する全凝集体による散乱強度の、全散乱強度に対する割合を示す。すなわち、凝集体の重み付けである。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 上述の式(4)において、N single singleは粒径dのビンに属する単一粒子の散乱強度に対応し、N floc flocは粒径dのビンに属する粒子が橋掛け凝集した凝集体の散乱強度に対応する。
 以下、複数の種類の粒子種毎の粒度分布を求めるフィッティングについて説明する。フィッティングでは、粒径毎の粒子数を変数として、最終的に粒径毎の粒子数を求める。
 1次の自己相関関数g(1)(τ)は散乱角度毎に実測されており、複数ある。
 フィッティングにおいては、散乱角度毎の1次の自己相関関数について、それぞれ式(3)において、粒子数を変数として、初期粒子数を設定する。設定した初期粒子数に基づく、式(3)の1次の自己相関関数の計算値を求める。散乱角度毎の1次の自己相関関数が、理論式を用いた散乱特性から導出した時間揺らぎデータに相当する。
 散乱角度毎に、それぞれ実測された1次の自己相関関数の値と、式(3)の1次の自己相関関数の計算値との差を求める。なお、この実測された1次の自己相関関数の値と、式(3)の1次の自己相関関数の計算値との差を、1次の自己相関関数の差という。1次の自己相関関数の差が散乱角度毎に得られる。
 全散乱強度Itotalは、図23に示すように散乱角度毎に実測されている。式(4)において、設定した初期粒子数に基づく式(4)の全散乱強度Itotalの値を求める。
 図23に示すような散乱角度毎に実測された全散乱強度Itotalの値と、式(4)の全散乱強度Itotalの計算値との差を求める。なお、任意の散乱角度における、実測された全散乱強度Itotalの値と、式(4)の全散乱強度Itotalの計算値との差を、散乱角度での全散乱強度Itotalの差という。全散乱強度Itotalについて、散乱角度での全散乱強度Itotalの差が得られる。式(4)の全散乱強度Itotalの計算値が、導出した時間揺らぎデータを時間平均した時間平均データに相当する。
 フィッティングでは、最終的な粒子数を求めるために、上述の散乱角度毎に得られた1次の自己相関関数の差と、散乱角度での全散乱強度の差とを用いる。例えば、散乱角度毎に得られた1次の自己相関関数の差の2乗の値と、散乱角度での全散乱強度の差の2乗の値とを、全ての散乱角度について足して得られた評価値を用いる。評価値が最小になる粒子数を、最終的な粒子数とする。
 このため、フィッティングにおいては、評価値が最小になるように、粒子数を、式(3)、(4)において繰り返して更新して、最終的な粒子数を得る。これが上述のステップS16に相当する。
 全ての粒径に対する粒子数について、初期値を設定した後、評価値を最小にするように更新する。例えば、図24に示す単一粒子のヒストグラムと、図25に示す粒子が凝集した凝集体のヒストグラムとを得ることができる。すなわち、N single、N flocをすべてのd=d~dについて求めることにより、粒径分布を得ることができる。これが上述のステップS18に相当する。
 以上の工程が、複数の種類の粒子種毎の粒度分布を求める工程である。なお、フィッティングに用いられる評価値は、上述のものに限定されるものではない。
 上述のように2つの理論式である式(3)、(4)を、実測された1次の自己相関関数及び実測された全散乱強度Itotalにフィッティングして、最終的な粒子数を求めている。しかしながら、フィッティングの最適化方法は、上述のものに限定されるものではなく、例えば、フィッティングにベイズ最適化を用いることができる。
 なお、上述のように粒子数を求める際に、1次の自己相関関数を用いたが、これに限定されるものではなく、1次の自己相関関数にかえてパワースペクトルを用いることもできる。
 また、上述のように、散乱強度の自己相関関数又はパワースペクトルと、散乱角度毎の散乱強度とを理論式に対してフィッティングすることにより、単一粒子と凝集体とのそれぞれの粒子数と、粒径分布とを得ることができる。また、分散液に不純物成分が含まれる場合、不純物成分と、粒子種毎の粒径分布とを得ることができるため、不純物成分の影響を分離できる。なお、フィッティングには、理論式以外に、既知の粒子の散乱特性から導出した時間揺らぎデータと、導出した時間揺らぎデータを時間平均した時間平均データを用いることもできる。
<光計測方法の第3の例>
 光計測方法の第3の例は、偏光を利用する。光計測装置10においては、特定の偏光の入射光を分散液に照射して得られる分散液の散乱光の偏光成分の光強度を散乱強度として測定してもよい。
 例えば、試料セル18の分散液Lqに、円偏光のレーザー光を入射光として照射し、分散液Lqの散乱光の偏光成分を測定する。散乱光の偏光成分の光強度ついては、例えば、垂直直線偏光の光強度と、水平直線偏光の光強度との差を散乱強度として測定する。この場合、上述の動的光散乱測定方法の第1の例のように、散乱角度を変更して測定すると、図26に示す散乱強度と散乱角との関係を示すグラフを得ることができる。
 なお、垂直直線偏光とは、散乱面を水平としたときの直線偏光の向きが垂直であることをいう。水平直線偏光とは、散乱面を水平としたときの直線偏光の向きが水平であることをいう。
 図26は粒子の形状毎の散乱強度と散乱角との関係を示すグラフである。図26は、図27に示す球状粒子と、図28に示す円板状粒子とにおける散乱強度と散乱角との関係を示している。図26に示すように球状粒子の散乱強度のプロファイル52と、円板状粒子の散乱強度のプロファイル53とが異なる。
 このように、粒子の形状により、散乱強度の散乱角度に対する変化が異なる。すなわち、複数の種類の粒子種毎に、例えば、散乱角度を変更させて得られる散乱強度のプロファイルがそれぞれ異なる。散乱強度のプロファイルの違いから、入射光に偏光したレーザー光を用い、散乱光の偏光成分を測定することにより、粒子の形状の違いを判定できる。
 なお、光計測方法の第3の例は、入射光に偏光したレーザー光を用い、散乱光の偏光成分を測定し、上述の光計測方法の第1の例と同様にして、粒子の粒径を算出できる。また、複数の種類の粒子を含む分散液において、複数の種類の粒子種毎の粒度分布を求めることができる。
 また、分散液中の粒子の種類を判定できた場合、分散液中のそれぞれの粒子の粒度分布を求めることができる。
 上述のように、分散液に、入射光として偏光を入射させ、散乱光の偏光成分の光強度を散乱強度として検出し、かつ上述の散乱角度及び波長のうち、少なくとも1つとを組合わせることにより、形状が異なる粒子についても、複数の種類の粒子種毎の粒度分布を求めることができる。また、分散液に不純物成分が含まれる場合、不純物成分の影響を分離して、複数の種類の粒子種毎の粒度分布を求めることができる。フィッティングには、理論式以外に、既知の粒子の散乱特性から導出した時間揺らぎデータと、導出した時間揺らぎデータを時間平均した時間平均データを用いることもできる。
 なお、偏光を用い、図26に示すような散乱角に対する散乱強度の違いを利用して、演算部16により分散液中の粒子の種類、例えば、形状を判定することもできる。判定した粒子の粒度分布を求めることもできる。このため、粒子の形状に関する情報として、予め偏光と粒子の形状との関係を表すデータを取得しておき、記憶部17に記憶させておくことが好ましい。
 上述のように偏光を用いた場合、例えば、複数の波長を用いる場合、上述の式(1)、(2)を用いることができる。
 また、上述のように偏光を用いた場合、例えば、複数の散乱角度を用いる場合、上述の式(3)、(4)を用いることができる。
 なお、上述の光計測方法の第1の例と、光計測方法の第2の例とを組み合わせてもよい。すなわち、上述の複数の波長と複数の散乱角度とを用いて、複数の種類の粒子種毎の粒度分布を求めることもできる。この場合も、分散液に不純物成分が含まれる場合、不純物成分と、粒子種毎の粒径分布とを得ることができるため、不純物成分の影響を分離できる。
 なお、複数の種類の粒子において、複数の種類とは、凝集構造、粒子の材質、及び粒子の形状等のことである。複数の種類の粒子とは、上述の単一粒子、粒子が凝集した凝集体、球状粒子、円板状粒子等である。
(光計測装置の第2の例)
 図29は本発明の実施形態の光計測装置の第2の例を示す模式図である。図30~図32は本発明の実施形態の光計測装置の第2の例のマスクの第1の例~第3の例を示す模式図である。
 なお、図29~図32において、図1に示す光計測装置10と同一構成物には、同一符号を付して、その詳細な説明は省略する。
 図29に示す光計測装置10aは、図1に示す光計測装置10に比して、ビームスプリッター等の光学素子の配置位置が異なる。また、光計測装置10aは、図1に示す光計測装置10の検出部14とは構成が異なり、散乱角度毎の後方散乱光の散乱強度を検出する検出ユニット14cと、散乱角度毎の前方散乱光の散乱強度を検出する検出ユニット14dとを備えている。
 光計測装置10aは、ビームスプリッター60と、ビームスプリッター62と、ビームスプリッター63とを有する。ビームスプリッター60、ビームスプリッター62、及びビームスプリッター63は、いずれも立方体状のキューブ型のビームスプリッターであり、入射した光を2つに分割するか、又は入射した2つの光を合波させる透過反射面60e、62e、63eを有する。透過反射面60e、62e、63eの角度は45°である。
 ビームスプリッター63は、ビームスプリッター60及びビームスプリッター62よりも大きい。
 ビームスプリッター60と、ビームスプリッター62と、ビームスプリッター63とが並んで配置されている。ビームスプリッター60の面60bとビームスプリッター62の面62aとが対向して配置され、ビームスプリッター62の面62bとビームスプリッター63の面63aとが対向して配置されている。
 ビームスプリッター60の透過反射面60eと、ビームスプリッター62の透過反射面60eとは向きが異なり、逆平行である。ビームスプリッター63の透過反射面63eは、ビームスプリッター60の透過反射面60eと向きが異なり、非平行であり、具体的には逆平行である。
 ビームスプリッター60のビームスプリッター62の反対側に、ビームスプリッター60の面60aに対向して、光源部20が配置されている。ビームスプリッター60と、光源部20との間に分光調整部27が配置されている。
 ビームスプリッター63のビームスプリッター62の反対側に、ビームスプリッター63の面63bに対向して、試料セル18が配置されている。ビームスプリッター63と試料セル18との間に対物レンズ65aが配置されている。
 試料セル18のビームスプリッター63の反対側に、ビームスプリッター64が配置されている。ビームスプリッター64の透過反射面64eの向きは、ビームスプリッター63の透過反射面63eの向きと同じであり、平行である。試料セル18とビームスプリッター64との間に対物レンズ65bが配置されている。
 ビームスプリッター60により分割された光の光軸C上にミラー61が配置されている。ミラー61で反射した光の光軸C上に、ビームエキスパンダー66が配置されている。ビームエキスパンダー66は、入射された光を、入射されたときの直径をより大きなコリメート光で出射するものである。
 ビームエキスパンダー66に隣接してビームスプリッター67が、面67aをビームエキスパンダー66に向けて配置されている。ビームスプリッター67は、入射した2つの光を合波させる透過反射面67eを有する。
 ビームスプリッター67の透過反射面67eの向きは、ビームスプリッター60の透過反射面60eの向きと同じであり、平行である。
 ビームスプリッター67の出射面67bに隣接して、マスク68が設けられている。
 マスク68のビームスプリッター67の反対側に、マスク68を挟んで対物レンズ69が配置されている。
 対物レンズ69により集光された光が入射される光ファイバー70を有する第1光検出器71が配置されている。第1光検出器71は、試料セル18の散乱光のうち、後方散乱光を検出し、散乱角度毎の後方散乱光と参照光との干渉光の強度を検出する。
 ビームスプリッター62により分割された光の光軸C上にミラー72が配置されている。ミラー72で反射した光の光軸C上に、ビームエキスパンダー73が配置されている。ビームエキスパンダー73は、入射された光を、入射されたときの直径をより大きなコリメート光で出射するものである。
 ビームエキスパンダー73に隣接してビームスプリッター74が、面74aをビームエキスパンダー73に向けて配置されている。ビームスプリッター74は、入射した2つの光を合波させる透過反射面74eを有する。
 ビームスプリッター74の透過反射面74eの向きは、ビームスプリッター60の透過反射面60eの向きと同じであり、平行である。
 ここで、ビームスプリッター64、ビームスプリッター67、及びビームスプリッター74は、いずれも立方体状のキューブ型のビームスプリッターであり、入射した光を2つに分割するか、又は入射した2つの光を合波させる透過反射面64e、67e、74eを有する。透過反射面64e、67e、74eの角度は45°である。
 ビームスプリッター74の出射面74bに隣接して、マスク68が設けられている。
 マスク68のビームスプリッター74の反対側に、マスク68を挟んで対物レンズ69が配置されている。
 対物レンズ69により集光された光が入射される光ファイバー75を有する第2光検出器76が配置されている。第2光検出器76は、試料セル18の散乱光のうち、前方散乱光を検出し、散乱角度毎の前方散乱光と参照光との干渉光の強度を検出する。
 マスク68は、ビームスプリッター67、74の出射面67b、74bから出射する光のうち、特定の位置から出射した光を透過させるものである。これは、特定の散乱角度の光を透過させるものである。マスク68は、散乱角度に応じた開口部を有する。例えば、図30及び図31に示すマスク68では、リング状の開口部68a、68bが設けられている。図32に示すマスク68では、中央部分に円形の開口部68cが設けられている。図32に示すマスク68は、散乱角度が0°又は180°の光を透過させる。
 また、マスク68は切り替え可能であり、図30~図32に示すマスク68のいずれかを用いることができる。マスク68により、散乱光のうち、特定の散乱角成分のみが通過して、第1光検出器71で検出され、散乱角毎に分光スペクトルが得られる。これにより、散乱角度毎に、干渉光した散乱光の信号が検出される。
 また、マスク68が複数設けられるマスク切替部(図示せず)を設け、ビームスプリッター67、74と対物レンズ69との間に配置されるマスク68を、マスク切替部により、散乱角度に応じたマスク68に切り替えるようにしてもよい。
 ビームエキスパンダー66、73は、入射された光を、入射されたときの直径をより大きなコリメート光で出射することができれば、その構成は、特に限定されるものではなく、公知のものが適宜利用可能である。また、ビームエキスパンダー66、73を設ける位置も、図示する位置に、特に限定されるものではなく、光源部20の直後に置いてもよい。
 光計測装置10aでは、光源部20から、試料セル18に向けて出射された光がビームスプリッター60の透過反射面60eで2つに分割される。分割された一方の光は、ビームスプリッター62、及びビームスプリッター63を経て、対物レンズ65aにより集光されて試料セル18に入射光Lsとして入射する。試料セル18では、散乱光として、前方散乱光と後方散乱光とが生じる。
 後方散乱光は、対物レンズ65aを通過し、ビームスプリッター63の面63bを経て、透過反射面63eにより反射されて、ビームスプリッター67に入射される。さらにビームスプリッター67の透過反射面67eで反射されて、特定の散乱角度の光がマスク68を通過し、対物レンズ69により集光されて光ファイバー70に入射される。
 分散液の散乱角により、後方散乱光のビームスプリッター63の透過反射面63e及びビームスプリッター67の透過反射面67eにおける反射位置が異なる。
 一方、ビームスプリッター60の透過反射面60eで2つに分割された他方の光は、参照光であり、ミラー61で反射され、ビームエキスパンダー66により、直径が大きなコリメート光にされて、ビームスプリッター67に出射され、ビームスプリッター67の透過反射面67eを通過する。ビームスプリッター60により分割された他方の光は、マスク68の開口部68a(図30参照)を通過し、対物レンズ69により集光されて光ファイバー70に入射される。
 このようにして、後方散乱光と、ビームスプリッター60の透過反射面60eで2つに分割された他方の光である参照光とがビームスプリッター67に入射されて、干渉し、光ファイバー70を経て第1光検出器71で検出される。これにより、後方散乱光の特定の散乱角度の干渉光の散乱強度のデータが得られる。マスク68を変えることにより、後方散乱光の様々な散乱角度の干渉光の強度のデータが得られ、後方散乱光について、特定の散乱角度の干渉光の強度のデータを複数取り出すことができる。このように、異なる散乱角度で、後方散乱光の散乱強度を簡便に測定できる。
 マスク68と、対物レンズ69と、光ファイバー70と、第1光検出器71とにより検出ユニット14cが構成される。
 また、前方散乱光は、対物レンズ65bを通過し、ビームスプリッター64の面64aを経て、透過反射面64eにより反射されて、ビームスプリッター74に入射される。さらにビームスプリッター74の透過反射面74eで反射されて、特定の散乱強度の光がマスク68を通過し、対物レンズ69により集光されて光ファイバー75に入射される。
 分散液の散乱角により、前方散乱光のビームスプリッター64の透過反射面64e及びビームスプリッター74の透過反射面74eにおける反射位置が異なる。
 一方、ビームスプリッター62の透過反射面62eで分割された光は、参照光であり、ミラー72で反射され、ビームエキスパンダー73により、直径が大きなコリメート光にされて、ビームスプリッター74に出射され、ビームスプリッター74の透過反射面74eを通過する。ビームスプリッター62により分割された光は、マスク68の開口部68a(図30参照)を通過し、対物レンズ69により集光されて光ファイバー75に入射される。
 このようにして、前方散乱光と、ビームスプリッター62の透過反射面60eで分割された光である参照光とがビームスプリッター74に入射されて、干渉し、光ファイバー75を経て第2光検出器76で検出される。これにより、前方散乱光の特定の散乱角度の干渉光の強度のデータが得られる。マスク68を変えることにより、前方散乱光の様々な散乱角度の干渉光の強度のデータが得られ、前方散乱光について、特定の散乱角度の干渉光の強度のデータを複数取り出すことができる。このように、異なる散乱角度で、前方散乱光の散乱強度を簡便に測定できる。
 マスク68と、対物レンズ69と、光ファイバー75と、第2光検出器76とにより検出ユニット14dが構成される。
 なお、上述のビームスプリッター60、62、63、64、67、74は、いずれも立方体状のキューブ型のビームスプリッターであるが、ビームスプリッターの形態は、キューブ型に限定されるものではなく、平板状のプレート型でもよい。
 第1光検出器71及び第2光検出器76は、光を検出できれば、特に限定されるものではなく、例えば、光電変換素子、又は光電子増倍管が用いられる。光電変換素子は、例えば、フォトダイオードである。第1光検出器71及び第2光検出器76は、はシングルピクセルのフォトディテクターであってもよいし、分光検出機(スペクトロメーター)であってもよい。第1光検出器71及び第2光検出器76が分光検出機の場合、干渉スペクトルが得られる。
 上述の前方散乱光の散乱角度毎の散乱強度のデータ、又は後方散乱光の散乱角度毎の散乱強度のデータを用いて、上述のように分散液に含まれる粒子の粒径を得ることができ、分散液に含まれる粒子種毎の粒度分布を得ることもできる。
 光計測装置10aにおいても、参照光を遮断して、散乱光と干渉させてないようにしてもよい。この場合、参照光を遮断することにより、通常の動的光散乱測定を実施できる。参照光を遮断する方法としては、例えば、光軸C上又は光軸C上に進退可能な遮光板を設けて、参照光がビームエキスパンダー66に到達することを防ぐ方法がある。
 また、例えば、光軸C上又は光軸C上に進退可能な遮光板を設けて、参照光がビームエキスパンダー73に到達することを防ぐ方法がある。
 なお、光を遮光することができれば、進退可能な遮光板に限定されるものではなく、例えば、液晶シャッタを利用した光シャッタを用いることができる。
 以上の構成により、光計測装置10aは、通常のホモダイン検出の動的光散乱装置としても使用できる。
(光計測装置の第3の例)
 図33は本発明の実施形態の光計測装置の第3の例を示す模式図である。
 なお、図33において、図1に示す光計測装置10と同一構成物には、同一符号を付して、その詳細な説明は省略する。
 図33に示す光計測装置10bは、図1に示す光計測装置10に比して、光源部20から出射された光を光ファイバー80内を伝搬させる点が異なる。また、複数の光検出器85~88を有する。複数の光検出器85~88では、それぞれ異なる散乱光角度の光を検出する。なお、光検出器85~88は、光を検出できれば、特に限定されるものではなく、例えば、光電変換素子、又は光電子増倍管が用いられる。光電変換素子は、例えば、フォトダイオードである。さらには、光検出器85~88は、分光検出機(スペクトロメーター)であってもよい。
 光計測装置10bは、光源部20から出射光が入射されるフォトカプラー81を有する。
 フォトカプラー81は、例えば、出射光を1:99の強度比に分岐するものである。分岐された光のうち、強度比が大きい光を入射光Lsとし、強度比が小さい光を参照光Lrとする。
 フォトカプラー81から延びる、強度比が大きい光である入射光Lsが伝搬される光ファイバー80はバンドルファイバー82に接続されている。バンドルファイバー82は、複数の光ファイバー(図示せず)を束ねたものである。
 バンドルファイバー82の端面82bに対向して、試料セル18が配置されている。バンドルファイバー82の端面82bと、試料セル18との間に、対物レンズ83が配置されている。
 バンドルファイバー82には、試料セル18内の分散液Lqで散乱した散乱光Ldが入射される。散乱光Ldは散乱角θ毎に、バンドルファイバー82の複数の光ファイバー(図示せず)のうち、異なる位置の光ファイバーに入射して伝搬する。このため、バンドルファイバー82の光ファイバーの位置と、散乱角度とを対応付けることができる。これにより、バンドルファイバー82の光ファイバー毎に異なる散乱角度の散乱光Ldが得られる。
 また、バンドルファイバー82の各光ファイバーは端面82aで、それぞれ光ファイバー80aに接続されている。
 フォトカプラー81で分岐された光のうち、強度比が小さい光を参照光Lrが伝搬される光ファイバー80にフォトカプラー84が接続されている。フォトカプラー84は、光検出器85、86、87、88の数に応じて、参照光Lrを分岐するものである。
 また、フォトカプラー84と、各光検出器85、86、87、88とを接続する光ファイバー80bに、バンドルファイバー82の各光ファイバーに接続された光ファイバー80aがフォトカプラー89を用いて接続されている。
 フォトカプラー81、84、89は、入射する光を特定の比率に分岐したり、入射する光を合波することができれば、その構成は、特に限定されるものではなく、公知のものが適宜利用可能である。
 光源部20から出射された入射光Lsは、光ファイバー80、フォトカプラー81及びバンドルファイバー82を経て、対物レンズ83を通過して、試料セル18の分散液Lqに照射される。バンドルファイバー82には、試料セル18内の分散液Lqで散乱した散乱光Ldが入射される。散乱光Ldは散乱角度毎に、異なる光ファイバーに入射され、光ファイバー80aと伝搬して、フォトカプラー89を経て、光ファイバー80bに伝搬される。
 一方、光ファイバー80bには、参照光Lrが伝搬されている。これにより、各光検出器85、86、87、88に、参照光Lrと散乱光Ldとが伝搬されて干渉する。各光検出器85、86、87、88で散乱角度毎の干渉光の散乱強度のデータが得られ、特定の散乱角度の散乱強度のデータを複数取り出すことができる。このように、異なる散乱角度で、散乱強度を簡便に測定できる。ここで、光検出器85、86、87、88にスペクトロメーターを用いれば、干渉光のスペクトルが得られる。
 散乱光の散乱角度毎の散乱強度のデータを用いて、上述のように分散液に含まれる粒子の粒径を得ることができ、分散液に含まれる粒子種毎の粒度分布を得ることもできる。
 光計測装置10bにおいても、参照光Lrをアッテネーター(減衰器)で減衰して、散乱光Ldと干渉させないようにしてもよい。この場合、参照光Lrを遮断することにより、通常の動的光散乱測定を実施できる。参照光Lrを遮断する方法としては、例えば、フォトカプラー81と、フォトカプラー84とを接続する光ファイバー80に、アッテネーターを設けて、アッテネーターにより、参照光Lrがフォトカプラー84に到達することを防ぐ方法がある。
 なお、光を遮光又は十分に減衰することができれば、アッテネーターに限定されるものではない。
 また、フォトカプラー81を、分岐比可変なものとし、フォトカプラー81と、フォトカプラー84とを接続する光ファイバー80に光を出射しないようにしてもよい。
 以上の構成により、光計測装置10bは、通常のホモダイン検出の動的光散乱装置としても使用できる。
 本発明は、基本的に以上のように構成されるものである。以上、本発明の光計測装置について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。
 10、10a、10b 光計測装置
 12 低コヒーレンス干渉計
 14 検出部
 14a 第1検出ユニット
 14b 第2検出ユニット
 14c、14d 検出ユニット
 15 変換部
 16 演算部
 17 記憶部
 18 試料セル
 20 光源部
 21a、21b、21c、21d、39 ビームスプリッター
 21e、39e、60e、62e、63e、64e、67e、74e 透過反射面
 22 反射体
 22a 反射面
 23a 分散保障調整部
 23b、25 対物レンズ
 24a、24b NDフィルター
 26 偏光調整部
 27 分光調整部
 28 偏光制御部
 33、34 光検出器
 30、61、72 ミラー
 32 回折格子
 35a 波長領域
 35b 関心深さ領域
 36、37 プロファイル
 38 光学装置
 39a、39b 面
 40、42 関心角度領域
 41、43 プロファイル
 60、62、63、64、67、74 ビームスプリッター
 63b、64a 面
 65a、65b、69、83 対物レンズ
 66、73 ビームエキスパンダー
 67b 出射面
 68 マスク
 68a、68b、68c 開口部
 70、75、80、80a、80b 光ファイバー
 71 第1光検出器
 74b 出射面
 76 第2光検出器
 81、84、89 フォトカプラー
 82 バンドルファイバー
 82a、82b 端面
 85、86、87、88 光検出器
 C、C、C、C 光軸
 Lr 参照光
 Ld 散乱光
 Lq 分散液
 Ls 入射光
 θb 散乱角

Claims (10)

  1.  低コヒーレンス干渉計を有する光計測装置であって、
     粒子を含む分散液に入射光を入射して得られる散乱光のうち少なくとも一部と、参照光とを干渉させ、波長毎の干渉光強度を検出する第1検出ユニット、及び、
     前記粒子を含む前記分散液に前記入射光を入射して得られる前記散乱光のうち少なくとも一部と、前記参照光とを干渉させ、散乱角度毎の干渉光強度を検出する第2検出ユニットのうち、少なくとも一方を有する検出部と、
     前記第1検出ユニットで検出される前記波長毎の前記干渉光強度のデータから、前記分散液の特定の深さかつ特定の波長の散乱強度のデータ、又は前記第2検出ユニットで検出される前記散乱角度毎の前記干渉光強度のデータから、前記分散液の特定の深さかつ特定の散乱角度の散乱強度のデータを複数取り出し、前記取り出した散乱強度のデータを前記分散液の前記特定の深さにおける散乱光の時間揺らぎデータに変換する変換部とを有する、光計測装置。
  2.  前記変換部で取得された前記時間揺らぎデータを用いて、前記粒子の粒径を算出する演算部を有する、請求項1に記載の光計測装置。
  3.  前記変換部で取得された時間揺らぎデータと、前記変換部で取得された時間揺らぎデータを時間平均した時間平均データとを、粒径と散乱強度の関係を定めた理論式に対してフィッティングすることにより、前記分散液に含まれる粒子種毎の粒度分布を得る演算部を有する、請求項1に記載の光計測装置。
  4.  既知の粒子の複素屈折率、粒径、及び形状によって求められる、前記既知の粒子の散乱光強度についての散乱角度依存のデータ及び散乱光強度についての波長依存のデータのうち少なくとも1つを記憶する記憶部を有し、
     前記変換部で取得された時間揺らぎデータから得られた散乱角度依存のデータ、又は前記変換部で取得された時間揺らぎデータから得られた散乱光の前記波長依存のデータとを、前記記憶部が記憶している前記既知の粒子の散乱光強度についての散乱角度依存のデータ又は前記散乱光強度についての波長依存のデータに対してフィッティングすることにより、前記分散液に含まれる粒子種毎の粒度分布を得る演算部を有する、請求項2に記載の光計測装置。
  5.  既知の粒子の複素屈折率、粒径、及び形状によって求められる、前記既知の粒子の散乱光強度についての散乱角度依存のデータ及び散乱光強度についての波長依存のデータのうち、少なくとも1つを記憶する記憶部を有し、
     前記記憶部が記憶している前記既知の粒子の散乱光強度についての散乱角度依存のデータ又は前記散乱光強度についての波長依存のデータを用いて、前記分散液中の前記粒子の粒子種、及び前記分散液中の前記粒子の状態のうち、少なくとも一方の判定を実施する演算部を有する、請求項2に記載の光計測装置。
  6.  前記第1検出ユニットは、前記参照光と干渉した散乱光を波長分解して、波長分解された前記散乱光を波長毎に検出する光検出器を有する、請求項1~5のいずれか1項に記載の光計測装置。
  7.  前記第2検出ユニットは、前記参照光と干渉した散乱光を散乱角度毎に検出する光検出器を有する、請求項1~6のいずれか1項に記載の光計測装置。
  8.  前記入射光の偏光状態を制御する偏光制御部を有し、
     前記第1検出ユニット又は前記第2検出ユニットが、前記散乱光の偏光成分の光強度を前記散乱強度として測定する、請求項1~7のいずれか1項に記載の光計測装置。
  9.  前記入射光の中心波長及び波長帯域を制御する分光調整部を有する、請求項1~8のいずれか1項に記載の光計測装置。
  10.  前記散乱光の時間揺らぎデータは、パワースペクトル、又は自己相関関数である、請求項1~9のいずれか1項に記載の光計測装置。
     
PCT/JP2022/000845 2021-02-02 2022-01-13 光計測装置 WO2022168554A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22749431.7A EP4290213A1 (en) 2021-02-02 2022-01-13 Photometric device
JP2022579411A JPWO2022168554A1 (ja) 2021-02-02 2022-01-13
CN202280012000.6A CN116868043A (zh) 2021-02-02 2022-01-13 光测量装置
KR1020237025751A KR20230125051A (ko) 2021-02-02 2022-01-13 광 계측 장치
US18/361,895 US20230375453A1 (en) 2021-02-02 2023-07-30 Optical measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-015309 2021-02-02
JP2021015309 2021-02-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/361,895 Continuation US20230375453A1 (en) 2021-02-02 2023-07-30 Optical measurement device

Publications (1)

Publication Number Publication Date
WO2022168554A1 true WO2022168554A1 (ja) 2022-08-11

Family

ID=82741276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000845 WO2022168554A1 (ja) 2021-02-02 2022-01-13 光計測装置

Country Status (6)

Country Link
US (1) US20230375453A1 (ja)
EP (1) EP4290213A1 (ja)
JP (1) JPWO2022168554A1 (ja)
KR (1) KR20230125051A (ja)
CN (1) CN116868043A (ja)
WO (1) WO2022168554A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042371A2 (ja) * 2002-11-08 2004-05-21 Nat Inst Of Advanced Ind Scien IgA腎症の迅速診断法
JP2008039539A (ja) 2006-08-04 2008-02-21 Shimadzu Corp 光散乱検出装置
WO2010035775A1 (ja) * 2008-09-26 2010-04-01 株式会社堀場製作所 粒子物性測定装置
JP2013205145A (ja) * 2012-03-28 2013-10-07 Fujifilm Corp 低コヒーレンス光源を用いた動的光散乱測定法及び動的光散乱測定装置
JP2016006397A (ja) * 2014-06-20 2016-01-14 大塚電子株式会社 動的光散乱測定装置及び動的光散乱測定方法
JP2020193877A (ja) * 2019-05-28 2020-12-03 ソニー株式会社 分取装置、分取システム、及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042371A2 (ja) * 2002-11-08 2004-05-21 Nat Inst Of Advanced Ind Scien IgA腎症の迅速診断法
JP2008039539A (ja) 2006-08-04 2008-02-21 Shimadzu Corp 光散乱検出装置
WO2010035775A1 (ja) * 2008-09-26 2010-04-01 株式会社堀場製作所 粒子物性測定装置
JP2013205145A (ja) * 2012-03-28 2013-10-07 Fujifilm Corp 低コヒーレンス光源を用いた動的光散乱測定法及び動的光散乱測定装置
JP2016006397A (ja) * 2014-06-20 2016-01-14 大塚電子株式会社 動的光散乱測定装置及び動的光散乱測定方法
JP2020193877A (ja) * 2019-05-28 2020-12-03 ソニー株式会社 分取装置、分取システム、及びプログラム

Also Published As

Publication number Publication date
CN116868043A (zh) 2023-10-10
US20230375453A1 (en) 2023-11-23
JPWO2022168554A1 (ja) 2022-08-11
EP4290213A1 (en) 2023-12-13
KR20230125051A (ko) 2023-08-28

Similar Documents

Publication Publication Date Title
US10365163B2 (en) Optical critical dimension metrology
US7495762B2 (en) High-density channels detecting device
US7920252B2 (en) Method and apparatus for spectrophotometric characterization of turbid materials
JP2020517096A (ja) 層特定的照明スペクトルによる計量システム及び方法
JP5517000B2 (ja) 粒径計測装置、及び粒径計測方法
JP2012507008A (ja) 懸濁している粒子の情報を得る方法及び装置
KR20210013017A (ko) 순시 엘립소미터 또는 스케터로미터 및 이와 관련된 측정 방법
JP2019523874A (ja) 同時多角度分光法
JP7241764B2 (ja) 光回折により改良された粒子サイジング
David et al. Polarization-resolved exact light backscattering by an ensemble of particles in air
WO2009067043A1 (fr) Procédé de mesure des dimensions de particules dans un liquide et dispositif de mise en oeuvre
Li et al. Light scattering of semitransparent sintered polytetrafluoroethylene films
CN209027957U (zh) 双波长多角度透射式空气颗粒测量装置
KR102026742B1 (ko) 광학 측정 시스템 및 임계치수를 측정하는 방법
CN105092426B (zh) 纳米颗粒90度散射光谱的测量方法
Sutter et al. Advanced measurement techniques to characterize the near-specular reflectance of solar mirrors
WO2022168554A1 (ja) 光計測装置
KR20220129612A (ko) 본딩된 웨이퍼의 오버레이 계측
CA2983792A1 (en) Microscope device
KR20230125050A (ko) 동적 광산란 측정 방법, 및 동적 광산란 측정 장치
CN110307963B (zh) 检测透射式光学系统任意波长焦距的方法
EP3608653B1 (en) Apparatus and method for measuring particle size using backscattered light
CN109632651B (zh) 浑浊介质多参数光谱测量方法及测量系统
JP2013167478A (ja) 屈折率測定方法及び屈折率測定装置
WO2022270204A1 (ja) 粒子の測定装置及び粒子の測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237025751

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280012000.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022579411

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022749431

Country of ref document: EP

Effective date: 20230904