WO2022168189A1 - 受信装置及びa/d変換方法 - Google Patents

受信装置及びa/d変換方法 Download PDF

Info

Publication number
WO2022168189A1
WO2022168189A1 PCT/JP2021/003817 JP2021003817W WO2022168189A1 WO 2022168189 A1 WO2022168189 A1 WO 2022168189A1 JP 2021003817 W JP2021003817 W JP 2021003817W WO 2022168189 A1 WO2022168189 A1 WO 2022168189A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
information signal
digital information
analog
output
Prior art date
Application number
PCT/JP2021/003817
Other languages
English (en)
French (fr)
Inventor
聖史 斧原
隼也 西岡
巨生 鈴木
俊行 安藤
幹夫 高林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP21924586.7A priority Critical patent/EP4266586A4/en
Priority to PCT/JP2021/003817 priority patent/WO2022168189A1/ja
Priority to CA3204256A priority patent/CA3204256C/en
Priority to JP2022576357A priority patent/JP7233625B1/ja
Publication of WO2022168189A1 publication Critical patent/WO2022168189A1/ja
Priority to US18/203,470 priority patent/US20230299860A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • H04B17/22Monitoring; Testing of receivers for calibration; for correcting measurements for calibration of the receiver components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks

Definitions

  • the present disclosure relates to a receiving device and an A/D conversion method that perform A/D (Analog to Digital) conversion processing of a received signal, and in particular, a receiving device and A/D It relates to the D conversion method.
  • A/D Analog to Digital
  • the bit resolution of an A/D converter with a sampling rate of 100 MS/s can be achieved with about 16 bits, but with a sampling rate of 20 GS/s, the bit resolution drops to about several bits.
  • Patent document 1 is known as a method for improving the bit resolution of an A/D converter.
  • the A/D conversion device disclosed in Patent Document 1 is an A/D conversion device that performs A/D conversion processing by an analog/digital mixed method, and includes a first A/D converter and a second A/D converter.
  • An analog signal is directly input to a first A/D converter for A/D conversion, and an analog signal amplified by an analog amplifier is input to a second A/D converter for A/D conversion.
  • /D conversion linearly converting the digital signal after A/D conversion by a nonlinear correction unit, comparing the amplitude with the digital signal from the first A/D converter, and selecting one of the digital signals improves bit resolution.
  • the signal power-to-noise power ratio (S/N ratio) can be maintained even when the amplitude of the received signal is small. Furthermore, it is desired to obtain a digital signal free from waveform distortion corresponding to the frequency of the received signal, which occurs depending on the input/output characteristics of the analog amplifier.
  • the present disclosure has been made in view of the above situation, and is intended to handle a digital signal in which waveform distortion according to the frequency of the received signal is suppressed in a receiving device that performs A/D conversion processing by an analog/digital mixed method.
  • An object of the present invention is to obtain a receiving device capable of
  • a receiving apparatus includes a first A/D converter that receives an analog information signal, A/D-converts the input analog information signal, and outputs a first digital information signal; an analog amplifier that receives a signal and amplifies the input analog information signal to output an analog information amplified signal; and the second digital information signal output from the second A/D converter is corrected in accordance with the frequency-dependent input/output characteristics of the analog amplifier. and a frequency characteristic correction section for outputting the second digital information correction signal, and the first digital information signal output from the first A/D converter or the second digital information correction signal output from the frequency characteristic correction section. and an information signal selection output section for selectively outputting one of them as a digital information signal.
  • the present disclosure it is possible to handle a digital signal obtained by performing A/D conversion processing on a received signal composed of an analog signal, and a digital signal in which waveform distortion according to frequency is suppressed.
  • FIG. 1 is a configuration diagram showing a receiver used in a radio communication system according to Embodiment 1, mainly a receiver of a receiver that receives an information signal;
  • FIG. 4 is a diagram showing input/output characteristics of an analog amplifier in the receiver according to Embodiment 1;
  • FIG. 4 is a diagram for explaining A/D conversion processing in a first A/D conversion processing system A and a second A/D conversion processing system B in the receiving apparatus according to Embodiment 1;
  • FIG. 4 is a configuration diagram showing an amplitude comparison section in the receiving device according to Embodiment 1;
  • FIG. FIG. 10 is a configuration diagram showing a receiving device used in the radio communication system according to Embodiment 2, mainly a receiving section of the receiving device that receives an information signal;
  • FIG. 10 is a configuration diagram showing a receiving device used in a radio communication system according to Embodiment 3, mainly a receiving section of a receiving device that receives an information signal;
  • FIG. 11 is a configuration diagram showing a receiving device used in an optical communication system according to Embodiment 4, mainly a receiving section of a receiving device that receives an information signal;
  • FIG. A receiving apparatus is a radio receiving apparatus that receives, via a receiving antenna, a modulated information signal transmitted from a radio transmitting apparatus via a transmitting antenna, and demodulates or detects the received information signal.
  • a wireless communication system is configured by a wireless transmitting device and a wireless receiving device.
  • An information signal composed of an analog signal transmitted from a wireless transmission device is intended for a high frequency signal of 10 GHz or more.
  • An information signal composed of an analog signal is hereinafter referred to as an analog information signal.
  • FIG. 1 shows a radio receiver that receives an analog information signal transmitted from a radio transmitter.
  • the analog information signal received by the receiving antenna 100 and transmitted from the radio transmitting device is converted into a digital information signal by the A/D conversion processing performed by the A/D conversion device, which is the receiving section 300.
  • a digital information signal output from the A/D converter is processed by an information signal processing section 400 such as a demodulation section or a detection section.
  • the receiving apparatus includes a receiving antenna 100, a test signal generator 200, a receiving section 300 composed of an A/D converter, and an information signal processing section 400.
  • FIG. The receiving section 300 and the information signal processing section 400 which are A/D converters, are integrated (integrated into an IC) as a semiconductor integrated circuit device.
  • “... device”, “... device” and “... part” are expressions used to clearly express the configuration requirements, and when integrated as a semiconductor integrated circuit device , ⁇ equipment'' and ⁇ equipment'' refer to ⁇ circuit'', and ⁇ unit'' refers to a component that implements a function by a microprocessor.
  • a receiving antenna 100 receives an analog information signal transmitted from a radio transmitting device.
  • the test signal generator 200 outputs a test signal made up of an analog signal or the like used for adjustment of the receiving section 300 or the like.
  • the test signal generator 200 is used before the start of operation of the receiver, that is, before the start of reception of the analog information signal, and the test signal is used for adjustment of the receiver 300 and the like.
  • the test signal generator 200 is also used during the operation of the receiving apparatus after starting reception, and the test signal is used for adjusting the receiving section 300 . The test signal will be described later.
  • the receiving section 300 performs A/D conversion processing on the analog information signal received by the receiving antenna 100 and outputs an information signal composed of a digital signal to the information signal processing section 400 .
  • the information signal processing section 400 demodulates or detects the information signal based on the information signal composed of the digital signal from the receiving section 300 .
  • Information signals composed of digital signals are hereinafter referred to as digital information signals.
  • the receiving section 300 includes an input side selector 1, a delay adjusting section 2, a first A/D converter 3, an amplitude amplifying section 4, an analog amplifier 5, a second A/D converter 6, and a frequency characteristic correcting section 7.
  • a bit extension unit 8, an information signal selection output unit 9, and a gain adjustment unit 10 are provided.
  • the input side selector 1 switches between the analog information signal received by the receiving antenna 100 and the analog test signal output from the test signal generator 200 based on the switching signal, and outputs them.
  • the input side selector 1 outputs the test signal from the test signal generator 200 according to the switching signal before operating as a receiving apparatus.
  • the test signal output from the test signal generator 200 at this time is a reference voltage setting signal for adjusting and setting the reference voltages of the first A/D converter 3 and the second A/D converter 6.
  • the transmission line length from the output end of the input side selector 1 to the input end of the first A/D converter 3 and from the output end of the input side selector 1 to the input end of the second A/D converter 6 This is a delay amount setting signal for setting the delay amount in the delay adjustment unit 2 for adjusting the time skew caused by the difference from the transmission line length including the delay in the analog amplifier 5 of .
  • the switching signal causes the analog information signal received by the receiving antenna 100 to branch and output the analog information signal to the delay adjustment section 2 and the analog amplifier 5 respectively.
  • input side selector 1 outputs a test signal from test signal generator 200 upon receiving a switching signal for adjusting receiving section 300 during operation as a receiving apparatus.
  • the test signal output from the test signal generator 200 at this time is an initialization signal for initializing the gains of the amplitude amplifier 4 and the analog amplifier 5 .
  • the receiving section 300 there is no need to adjust the receiving section 300 when operating as a receiving device, and if the test signal generator 200 is only used before the receiving device is operated, that is, before shipment, the receiving device can be tested.
  • the signal generator 200 may not be provided.
  • the input side selector 1 is unnecessary, and the configuration is such that the analog information signal received by the receiving antenna 100 is directly input to the delay adjustment section 2 and the analog amplifier 5, and the test signal generated by the test signal generator 200 is used during the preliminary adjustment. It is sufficient to directly input to the delay adjustment section 2 and the analog amplifier 5 .
  • the delay adjustment unit 2 matches the timing of inputting the analog information signal to the first A/D converter 3 with the timing of inputting the amplified analog information signal to the second A/D converter 6 . That is, the delay adjustment unit 2 determines the time for the analog information signal received by the receiving antenna 100 to reach the input terminal of the first A/D converter 3 and the input terminal of the second A/D converter 6 In order to adjust the arrival time to be the same, the arrival time of the analog information signal received by the receiving antenna 100 to the input terminal of the first A/D converter 3 is delayed.
  • the delay amount setting signal from the test signal generator 200 is inputted in advance to the receiving section 300 via the input side selector 1, and the delay amount setting signal is set by the first A/D.
  • the delay time of the delay adjuster 2 is set so that the time to reach the input end of the D converter 3 and the time to reach the input end of the second A/D converter 6 are the same.
  • the first A/D converter 3 receives the analog information signal received by the receiving antenna 100 through the delay adjustment unit 2, and converts the input analog information signal into first digital information. Output a signal.
  • the first digital information signal is a signal (b 1 b 2 b 3 b 4 ) with a quantization bit number of 4 bits.
  • the amplitude amplifier 4 multiplies the amplitude of the first digital information signal from the first A/D converter 3 . That is, if the power gain of the analog amplifier 5 is G [dB], the amplitude amplifier 4 multiplies the amplitude of the first digital information signal ( ⁇ G). Note that the multiplication factor ⁇ G of the amplitude amplifying section 4 is initialized by the test signal output from the test signal generator 200 in advance before operation of the receiving apparatus.
  • the delay adjusting section 2, the first A/D converter 3, and the amplitude amplifying section 4 perform A/D conversion processing on the analog information signal received by the receiving antenna 100, and output a first digital information signal whose amplitude is controlled.
  • a first A/D conversion processing system A for output.
  • Analog amplifier 5 receives an analog information signal received by receiving antenna 100 via input side selector 1 or directly, and amplifies the input analog information signal after gain adjustment by gain adjustment signal S2 from gain adjustment section 10. and output as an analog information amplified signal.
  • the power gain G of the analog amplifier 5 is 24 [dB]. Note that the power gain G of the analog amplifier 5 is initialized by the test signal output from the test signal generator 200 in advance before the receiver is put into operation.
  • a second A/D converter 6 A/D-converts the amplified analog information signal output from the analog amplifier 5 to output a second digital information signal.
  • the second digital information signal is a signal with a quantization bit number of 4 bits (b 5 b 6 b 7 b 8 ).
  • a frequency characteristic corrector 7 corrects the second digital information signal output from the second A/D converter 6 in accordance with the frequency-dependent input/output characteristics of the analog amplifier 5 to obtain second digital information. Obtain a correction signal.
  • a 4-bit signal (b 5 'b 6 'b 7 'b 8 ') is used as an example of the second digital information correction signal obtained at this time.
  • the input/output characteristics of the analog amplifier 5 should have a linear relationship between the input amplitude and the output amplitude. However, as shown in FIG. amplitude is not proportional to the amplitude of the input signal. Furthermore, the input/output characteristics change depending on the frequency. Due to the frequency dependence of the input/output characteristics, waveform distortion occurs in the analog information amplified signal output from the analog amplifier 5, and the second digital information signal output from the second A/D converter 6 is also affected. influence.
  • the horizontal axis indicates the amplitude of the input signal to the analog amplifier 5
  • the vertical axis indicates the amplitude of the output signal from the analog amplifier 5
  • the solid line indicates the input / output characteristics for frequency f1
  • the dotted line indicates frequency f2. shows input/output characteristics for
  • the frequency characteristic corrector 7 corrects the influence of the waveform distortion generated in the analog information amplified signal output from the analog amplifier 5 on the second digital information signal due to the frequency dependence of the input/output characteristics of the analog amplifier 5. By performing correction corresponding to the frequency of the information signal, a second digital information signal is obtained in which the influence of the frequency dependency of the input/output characteristics of the analog amplifier 5 is suppressed.
  • the frequency characteristic correction unit 7 includes a fast Fourier transform (FFT) unit 71 , a waveform correction unit 72 and an inverse fast Fourier transform (IFFT) unit 73 .
  • the fast Fourier transform section 71 performs Fourier transform ( FFT).
  • the waveform correction unit 72 corrects the second digital information signal, which is the signal in the frequency domain Fourier-transformed by the fast Fourier transform unit 71, according to the frequency-dependent input/output characteristics of the analog amplifier 5.
  • FIG. The correction corresponding to the frequency-dependent input/output characteristics of the analog amplifier 5 by the waveform correction unit 72 is performed for the input/output of the second digital information signal set corresponding to the frequency of the analog information signal input to the analog amplifier 5. It is done by the correction value of the characteristic.
  • the input/output characteristic correction value for the second digital information signal to be set is the gain corresponding to the frequency of the analog information signal, that is, the gain value based on the amplitude of the output signal with respect to the amplitude of the input signal shown in FIG. is.
  • the amplitude based on the difference between the amplitude of the output signal in the input/output characteristics of the ideal value shown by the dashed line in FIG. is the correction value of
  • the input/output characteristic correction value for the second digital information signal is set by inputting an analog test signal output from the test signal generator 200 to the analog amplifier 5 and outputting the analog test signal from the analog amplifier 5 before starting operation of the receiving apparatus. by measuring the amplified analog signal. If the frequency-dependent input/output characteristics of the analog amplifier 5 are known in advance, the correction value may be set based on the previously known frequency-dependent input/output characteristics.
  • the set correction values for the input/output characteristics are stored in the correction table of the waveform correction section 72 .
  • the correction table is a correction value for the input/output characteristics based on the gain due to the amplitude of the output signal corresponding to the ideal characteristic for the amplitude of the input signal, or the difference in the output amplitude from the output amplitude of the ideal characteristic, with the frequency of the analog information signal as a key.
  • the waveform correction unit 72 corrects the input/output characteristics of the second digital information signal Fourier-transformed by the fast Fourier transform unit 71 using the correction values of the input/output characteristics stored in the gain correction table using the frequency of the analog information signal as a key. Compensate for frequency dependence.
  • the inverse fast Fourier transform unit 73 performs an inverse Fourier transform (IFFT) on the second digital information signal corrected by the waveform correction unit 72 from the frequency domain signal to the original time domain signal, thereby producing a second digital information corrected signal.
  • IFFT inverse Fourier transform
  • the bit extension unit 8 performs bit extension processing for adding higher bits to the second digital information correction signal from the frequency characteristic correction unit 7 .
  • the bit extension processing by the bit extender 8 adds "0" to the higher order of the second digital information correction signal so that the number of bits is the same as the number of bits of the first digital information signal from the amplitude amplifier 4, This is the process of obtaining the second digital information.
  • the bit extension unit 8 adds 4 high-order bits (0000) to the second digital information correction signal (b 5 ′ b 6 ′ b 7 ′ b 8 ′), It outputs the second digital information as an 8 - bit signal ( 0000b5'b6'b7'b8 ').
  • the analog amplifier 5, the second A/D converter 6, the frequency characteristic correction unit 7, and the bit expansion unit 8 perform A/D conversion processing on the analog information signal received by the receiving antenna 100, and the gain is adjusted and the frequency is corrected.
  • a second A/D conversion processing system B for outputting a second digital information signal.
  • the amplitudes of both the first digital information output from the first A/D conversion processing system A and the second digital information output from the second A/D conversion processing system B are It can be handled equally with the extension part 8 .
  • the information signal selection output unit 9 outputs the amplitude of the first digital information signal output from the first A/D converter 3 and the amplitude of the second digital information correction signal output from the frequency characteristic correction unit 7. to compare the amplitude using the first digital information signal from the first A/D conversion processing system A or the second digital information signal from the second A/D conversion processing system B as a digital information signal Output.
  • the information signal selection output unit 9 performs the first A/D conversion processing system.
  • the first digital information signal from A is selected and output as a digital information signal, and if the amplitude of the analog information signal received by the receiving antenna 100 is small, the second A/D conversion processing system B A digital information signal is selected and output as a digital information signal.
  • the information signal selection output section 9 includes an amplitude comparison section 91 and an output side selector 92 .
  • the amplitude comparator 91 compares the amplitude of the first digital information signal output from the first A/D converter 3 with the amplitude of the second digital information correction signal output from the frequency characteristic corrector 7. do.
  • the amplitude comparator 91 includes a first digital information signal amplitude comparator 91a and a second digital information signal amplitude comparator 91b.
  • the amplitude comparator 91a compares the amplitude of the first digital information signal output from the first A/D converter 3 with a preset first amplitude threshold. If the amplitude of the first digital information signal output from the first A/D converter 3 is equal to or greater than the first amplitude threshold, the amplitude comparator 91a determines "1" as the determination result, and the first amplitude threshold. If it is less than 0, the determination result is "0".
  • the first digital information signal output from the first A/D converter 3 is selected. Since it is sufficient for the first A/D converter 3 to identify the analog information signal and output the digital information signal, the amplitude comparator 91a detects that the analog information signal received by the receiving antenna 100 has a large amplitude. , the first digital information signal from the first A/D conversion processing system A should be selected. Therefore, the first amplitude threshold value is set so that the first digital information signal output from the first A/D converter 3 is greater than or equal to the effective number of bits.
  • the amplitude comparator 91b compares the amplitude of the second digital information correction signal output from the frequency characteristic corrector 7 with a preset second amplitude threshold.
  • the amplitude comparison section 91b determines that the amplitude of the second digital information correction signal output from the frequency characteristic correction section 7 is less than the second amplitude threshold, and determines that the amplitude is equal to or greater than the second amplitude threshold. and "0" as the determination result.
  • the second digital information correction signal output from the frequency characteristic correction section 7 is selected.
  • the second A/D converter 6 only needs to be able to identify when the analog information signal received by the receiving antenna 100 is an analog information signal with a small amplitude, and the second amplitude threshold is the analog amplifier 5
  • a second digital information signal output from the second A/D converter 6 obtained by A/D-converting the analog information amplified signal output from the second A/D converter 6 is set to a threshold value that does not stick to the High side.
  • the first amplitude threshold and the second amplitude threshold are the first digital information signal from the first A/D conversion processing system A and the second digital information signal from the second A/D conversion processing system B. are set to thresholds that are not selected at the same time.
  • the amplitude comparator 91 outputs the first digital information signal when the determination result of the amplitude comparator 91a is "1", and outputs the second digital information correction signal when the determination result of the amplitude comparator 91b is "1". Select to get the selection result.
  • the amplitude comparison section 91 outputs the gain adjustment signal S1 when the second digital information correction signal output from the frequency characteristic correction section 7 input to the amplitude comparison section 91b is not proper.
  • the amplitude comparison section 91 determines that the second digital information correction signal is not proper, for example, although the determination result of the amplitude comparison section 91a is "0", the determination result of the amplitude comparison section 91b is "0" or even though the amplitude of the second digital information correction signal is less than the second amplitude threshold, the second digital information signal output from the second A/D converter 6 is stuck on the high side.
  • the output side selector 92 Based on the selection result of the amplitude comparing section 91, the output side selector 92 outputs the first digital information signal from the first A/D conversion processing system A when the determination result of the amplitude comparing section 91a is "1". If the determination result of the amplitude comparator 91b is "1", the second digital information signal from the second A/D conversion processing system B is selected and output.
  • the first digital information signal of 8-bit signal (b 1 b 2 b 3 b 4 0000) is output. Output from the side selector 92 . If the determination result of the amplitude comparator 91 is that the second digital information signal is selected, the second digital information signal of the 8-bit signal (0000b 5 ′ b 6 ′ b 7 ′ b 8 ′) is selected. is output from the output side selector 92 .
  • the amplitude amplifying section 4, the frequency characteristic correcting section 7, the bit extending section 8, and the information signal selection output section 9 combine the first digital information signal output from the first A/D converter 3 with the second A/D signal.
  • a digital signal processing section C is configured to process the second digital information signal output from the converter 6 .
  • the digital signal processing section C is composed of a microprocessor.
  • the gain adjustment section 10 generates a gain adjustment signal S2 based on the gain adjustment signal S1 from the amplitude comparison section 91b, and adjusts the value of the gain G of the analog amplifier 5 using the gain adjustment signal S2.
  • the input side selector 1 receives the switching signal and selects and outputs the test signal from the test signal generator 200 .
  • the adjustment of the receiving section 300 includes adjustment of the reference voltages of the first A/D converter 3 and the second A/D converter 6, setting of the delay amount in the delay adjustment section 2, and gain (multiplication) of the amplitude amplification section 4. G) and the power gain G of the analog amplifier 5, and the setting of the correction value of the input/output characteristics for the second digital information signal. 200 is input to the first A/D conversion processing system A and the second A/D conversion processing system B via the input side selector 1 .
  • the setting of the delay amount in the delay adjusting section 2 is performed by sending a delay amount setting signal from the test signal generator 200 to the first A/D conversion processing system A and the second A/D conversion processing system A through the input side selector 1. This is done by measuring the delay amount setting signals that are input to the system B and input to the input terminal of the first A/D converter 3 and the input terminal of the second A/D converter 6 .
  • the delay amount is adjusted and set in the delay adjustment unit 2 so that the delay amount setting signals input to both are synchronized at the same timing.
  • the delay amount in the delay adjustment unit 2 By setting the delay amount in the delay adjustment unit 2 in this way, the transmission line length from the output end of the input side selector 1 to the input end of the first A/D converter 3 and the output of the input side selector 1
  • the time skew resulting from the difference in transmission line length, including the delay in the analog amplifier 5, from the end to the input of the second A/D converter 6 can be adjusted to convert the analog information signal received by the receiving antenna 100 into the first A/D converter 6 input.
  • the input terminal of the A/D converter 3 and the input terminal of the second A/D converter 6 can be inputted at the same timing.
  • the setting of the input/output characteristic correction value for the second digital information signal that is, the setting of the input/output characteristic correction value for the analog amplifier 5 stored in the correction table of the waveform correction unit 72 gradually increases the amplitude value.
  • a test signal composed of a raised sine wave is input to the analog amplifier 5, the amplitude value of the test signal output from the analog amplifier 5 is measured, and the input/output characteristics of the analog amplifier 5 are obtained.
  • the input/output characteristics are compared with the ideal input/output characteristics.
  • the setting of the input/output characteristic correction value for the second digital information signal is performed using a plurality of test signals having different frequencies.
  • the obtained correction values of the input/output characteristics for the second digital information signal are stored in the correction table of the waveform correction section 72 for each frequency. Based on the correction values of the input/output characteristics obtained for each frequency, the correction values of the input/output characteristics for the second digital information signal for continuous frequencies are obtained, and the second digital information signals for the obtained continuous frequencies are obtained. may be stored in a correction table of the waveform correction unit 72.
  • the input side selector 1 receives the switching signal, selects and outputs the analog information signal received by the receiving antenna 1 .
  • the analog information signal selected by the input side selector 1 is branched and input to the first A/D conversion processing system A and the second A/D conversion processing system B.
  • the analog information signal is delayed by the delay adjustment unit 2, and the delayed analog information signal is A/D-converted by the first A/D converter 3 into 4-bit data.
  • a first digital information signal consisting of signals (b 1 b 2 b 3 b 4 ) is output (step ST11).
  • the amplitude amplifier 4 multiplies ( ⁇ G) the amplitude of the first digital information signal from the first A/D converter 3 to obtain the first digital information signal (b 1 b 2 b 3 b 4 ) is shifted upward by 4 bits to obtain a first digital information signal consisting of an 8-bit signal (b 1 b 2 b 3 b 4 0000) (step ST12).
  • the analog amplifier 5 is gain-adjusted by the gain adjustment signal S2, amplifies the analog information signal, and outputs an amplified analog information signal (step ST21).
  • the second A/D converter 6 A/D-converts the analog information amplification signal consisting of the 4-bit signal (b 5 b 6 b 7 b 8 ) output from the analog amplifier 5 to produce a second is output (step ST22).
  • Step ST23 in which the frequency characteristic correction section 7 obtains the second digital information correction signal, includes steps ST231 to ST233.
  • step ST231 the fast Fourier transform section 71 Fourier transforms the second digital information signal from the time waveform to the frequency spectrum.
  • the waveform correction unit 72 corrects the Fourier-transformed second digital information signal using the frequency-dependent input/output characteristics of the analog amplifier 5.
  • step ST233 the inverse fast Fourier transform section inverse Fourier transforms the corrected second digital information signal from the frequency spectrum to the time waveform to obtain the second digital information corrected signal.
  • bit extension unit 8 performs a bit extension process of adding 4 bits of "0" to the second digital information correction signal from the frequency characteristic correction unit 7 to obtain a second digital information correction signal ( b5 'b 6 'b 7 'b 8 ') are added with 4 high-order bits (0000) to obtain second digital information consisting of an 8-bit signal (0000b 5 'b 6 'b 7 'b 8 '). obtained (step ST24).
  • the information signal selection output unit 9 outputs the amplitude of the analog information signal (b 1 b 2 b 3 b 4 ) from the first A/D converter 3 and the second digital information correction signal ( b 5 'b 6 'b 7 'b 8 ') are used for amplitude comparison, and the first digital information signal (b 1 b 2 b 3 b 4 0000) by the first A/D conversion processing system A is obtained.
  • one of the second digital information correction signals ( 0000b5'b6'b7'b8 ' ) is output as a digital information signal (step ST3 ).
  • Step ST3 in which the information signal selection output unit 9 outputs either the first digital information signal or the second digital information correction signal as a digital information signal, includes steps ST31 and ST32.
  • the amplitude comparator 91 compares the amplitude of the first digital information signal output from the first A/D converter 3 and the second digital information correction signal output from the frequency characteristic corrector 7. Amplitude comparison is performed using the amplitude to obtain a selection result of which one to select. Specifically, the first digital information signal amplitude comparator 91 a constituting the amplitude comparator 91 is set in advance to the amplitude of the first digital information signal output from the first A/D converter 3 . If the amplitude of the first digital information signal is greater than or equal to the first amplitude threshold, the first digital information signal is selected as a determination result of "1". If the amplitude is less than the threshold value, "0" is set as the determination result (step ST311).
  • the amplitude comparison section 91b of the second digital information signal constituting the amplitude comparison section 91 compares the amplitude of the second digital information correction signal output from the frequency characteristic correction section 7 with the preset second amplitude threshold value. If the amplitude of the second digital information correction signal is less than the second amplitude threshold, then the second digital information correction signal is selected as a determination result of "1". If there is, "0" is set as the determination result (step ST311).
  • the amplitude comparator 91 outputs the first digital information signal when the determination result of the amplitude comparator 91a is "1", and outputs the second digital information correction signal when the determination result of the amplitude comparator 91b is “1". Select to get the selection result.
  • step ST32 the output side selector 92 outputs the first digital signal from the first A/D conversion processing system A based on the selection result of the amplitude comparison section 91 when the determination result of the amplitude comparison section 91a is "1".
  • the second digital information signal from the second A/D conversion processing system B is output when the determination result of the amplitude comparator 91b is "1".
  • the receiving section 300 converts the analog information signal received by the receiving antenna 100 into the first digital information signal A/D-converted by the first A/D converter 3, and the analog amplifier
  • the analog information signal amplified by 5 is subjected to A/D conversion processing by a second A/D converter 6 and converted into a second digital information signal corrected for frequency-dependent input/output characteristics of the analog amplifier 5.
  • the analog information signal received by the receiving antenna 100 has a large amplitude
  • the first digital information signal is selected and output
  • the analog information signal received by the receiving antenna 100 has a small amplitude. If it is an analog information signal, it selects and outputs the second digital information signal.
  • the receiving section 300 includes a first A/D conversion processing system A having a delay adjusting section 2, a first A/D converter 3, and an amplitude amplifying section 4, an analog amplifier 5, and a second A/D converter. 6 and a second A/D conversion processing system B having a frequency characteristic correction unit 7 and a bit extension unit 8. Further, an analog amplifier and a second A/D conversion processing system B are provided. A third A/D conversion processing system having a /D converter, a frequency characteristic correction section, and a bit extension section may be used. In short, a plurality of second A/D conversion processing systems each having an analog amplifier, a second A/D converter, a frequency characteristic corrector, and a bit extender may be provided. When a plurality of second A/D conversion processing systems are provided, the gain of each analog amplifier is set to a different value.
  • the receiving apparatus includes a first A/D converter 3 that A/D converts an analog information signal received by a receiving antenna 100 and outputs a first digital information signal. and an analog amplifier 5 and a second A/D converter 6 for amplifying an analog information signal and then performing A/D conversion processing to output a second digital information signal. a second A/D conversion processing system B; and one of the first digital information signal by the first A/D conversion processing system A and the second digital information signal by the second digital information signal is digital information. Since the information signal selection output section 9 is provided for selectively outputting as a signal, the bit resolution is improved in operation with a low voltage power supply, and the signal power to noise power ratio can be maintained even when the amplitude of the received signal is small.
  • a frequency characteristic correction unit 7 is provided in the second A/D conversion processing system B, and the frequency characteristic correction unit 7 performs the second A/D conversion according to the frequency-dependent input/output characteristics of the analog amplifier 5. Since the second digital information signal output from the processing system B is corrected, the waveform distortion of the second digital information signal does not occur due to the input/output characteristics of the analog amplifier 5 having frequency dependence.
  • a D/A converter, a subtraction circuit, and an amplifier are used as a sub.
  • a D/A converter with high-precision bit resolution required by the subranging method is not required, and an analog subtraction circuit that operates with high-bandwidth signals is not required.
  • the frequency characteristic correction unit 7 in the receiving device according to Embodiment 1 includes a fast Fourier transform (FFT) unit 71, a waveform correction unit 72, and an inverse fast Fourier transform (IFFT) unit 73.
  • FFT fast Fourier transform
  • IFFT inverse fast Fourier transform
  • the frequency characteristic correction section 7A is provided with a waveform shaping filter, and the other components are the same.
  • FIG. 5 the same reference numerals as in FIG. 1 denote the same or corresponding parts.
  • the frequency characteristic correction unit 7A adjusts the frequency dependence of the input/output characteristics of the analog amplifier 5 to the analog information output from the analog amplifier 5.
  • the influence of the waveform distortion generated in the amplified signal on the second digital information signal corresponding to the frequency of the analog information signal the influence of the frequency dependency of the input/output characteristics of the analog amplifier 5 is suppressed. outputs a second digital information signal.
  • the waveform shaping filter that constitutes the frequency characteristic correction unit 7A has a characteristic that the passband is changed by a filter coefficient such as a finite impulse response (FIR) filter or an infinite impulse response (IIR) filter. It is a digital filter.
  • the waveform shaping filter which is a digital filter, converts the second digital information signal output from the second A/D converter 6 by changing the filter coefficient corresponding to the frequency dependence of the input/output characteristics of the analog amplifier 5. It is corrected and output as a second digital information correction signal.
  • the waveform shaping filter has a correction table, and filter coefficients corresponding to the input/output characteristics of the analog amplifier 5 are stored in the correction table.
  • the filter coefficients stored in the correction table are obtained by inputting the analog test signal output from the test signal generator 200 to the analog amplifier 5 and converting the analog amplified signal output from the analog amplifier 5 into the analog amplifier 5 before starting operation of the receiving apparatus. It is done by measuring. Further, if the frequency-dependent input/output characteristics of the analog amplifier 5 are known in advance, the filter coefficient, which is a correction value, may be set based on the previously known frequency-dependent input/output characteristics. good.
  • the receiving apparatus according to Embodiment 2 operates in the same manner as the receiving apparatus according to Embodiment 1, and the step of outputting the second digital information correction signal is performed in such a manner that the waveform shaping filter depends on the frequency of the analog amplifier 5.
  • the steps are the same except for the step of correcting the second digital information signal by changing the filter coefficient corresponding to the input/output characteristic and outputting it as the second digital information corrected signal.
  • the receiving device like the receiving device according to Embodiment 1, has improved bit resolution in operation with a low-voltage power supply, and maintains the signal power to noise power ratio even when the amplitude of the received signal is small.
  • the waveform shaping filter that constitutes the frequency characteristic corrector 7A prevents waveform distortion from occurring in the second digital information signal due to the frequency-dependent input/output characteristics of the analog amplifier 5. Further, high accuracy is achieved. It has the advantage that a D/A converter with a high bit resolution is not required, and an analog subtraction circuit that operates with high-bandwidth signals is not required.
  • Embodiment 3 A receiver according to Embodiment 3 will be described with reference to FIG.
  • the receiving apparatus according to Embodiment 3 is different from the receiving apparatus according to Embodiment 2 in that the delay adjusting section 2 is replaced by a delay adjusting section 2A having a function of adjusting the amount of delay using the delay amount control signal S3.
  • the other components are the same.
  • FIG. 6 the same reference numerals as in FIG. 5 denote the same or corresponding parts.
  • Each transmission time of the analog information signal on the transmission line including the delay in the analog amplifier 5 to the input of is affected by the ambient temperature.
  • the delay adjustment unit 2A which receives the delay amount control signal S3, adjusts the delay amount according to the variation in the transmission time of the analog information signal due to the ambient temperature.
  • the timing at which the analog information signal is input to the first A/D converter 3 is made the same as the timing at which the analog information amplification signal is input to the second A/D converter 6 regardless of the change in .
  • the temperature sensor unit 11 detects the ambient temperature and outputs a delay amount control signal S3 corresponding to the detected ambient temperature to the delay adjustment unit 2A.
  • the delay adjustment section 2A adjusts the delay amount based on the delay amount control signal output from the temperature sensor section 11 .
  • the delay adjuster 2A has a delay amount correction table that stores delay amount correction values that indicate the relationship between the ambient temperature and the delay amount.
  • the delay amount correction value stored in the delay amount correction table is obtained by inputting the delay amount setting signal output from the test signal generator 200 to the receiving unit 300 and changing the ambient temperature before starting operation of the receiving apparatus. , the time at which the delay amount setting signal reaches the input terminal of the first A/D converter 3 and the time at which the signal for setting the delay amount reaches the input terminal of the second A/D converter 6 are the same. associated value.
  • the delay adjustment unit 2A Upon receiving the delay amount control signal S3 output from the temperature sensor unit 11, the delay adjustment unit 2A adjusts the delay based on the delay amount correction value stored in the delay amount correction table using the ambient temperature indicated by the delay amount control signal S3 as a key. amount is set. The delay adjustment unit 2A dynamically corrects the delay amount using the delay amount correction table according to the delay amount control signal S3 output from the temperature sensor unit 11. FIG.
  • the delay adjustment unit 2A dynamically adjusts the delay amount using the delay amount correction table according to the delay amount control signal S3 output from the temperature sensor unit 11 with respect to the receiving apparatus according to the second embodiment.
  • the operation of performing A/D conversion processing on the analog information signal received by the receiving antenna 100 and outputting it as a digital signal is the same except that the delay amount is corrected at the beginning, and therefore the description thereof will be omitted.
  • the receiving device according to Embodiment 3 has the same effects as the receiving device according to Embodiment 2, and also suppresses the influence of the ambient temperature.
  • Embodiment 4 A receiver according to Embodiment 4 will be described with reference to FIG.
  • the receiving apparatus according to Embodiment 4 is the receiving apparatus according to Embodiment 1 applied to a radio transmitting apparatus, but is different in that it is applied to a digital optical communication system.
  • FIG. 7 the same reference numerals as in FIG. 1 denote the same or corresponding parts.
  • FIG. 7 shows a receiving device in an optical transmission device having a receiving device and a transmitting device, which are connected via a communication path.
  • the receiving device converts an optical signal transmitted from a transmitting device in another optical transmission device received via a communication path by the photodetector 500 into an analog information signal composed of an electric signal, and the converted analog information signal is received by the receiving section 300.
  • a certain A/D conversion device performs A/D conversion processing, converts it into a digital information signal, and outputs the digital information signal. Signal processing is performed by the unit 400 .
  • the receiver according to the fourth embodiment includes a photodetector 500, a test signal generator 200, a receiver 300 composed of an A/D converter, and an information signal processor 400.
  • FIG. The photodetector 500 receives an optical signal transmitted from a transmitter in another optical transmission device and converts the received optical signal into an electrical signal.
  • Test signal generator 200 has the same configuration as test signal generator 200 in the receiving apparatus according to Embodiment 1, and outputs a test signal composed of an analog signal or the like used for adjustment of receiving section 300 or the like.
  • Receiving section 300 has the same configuration as receiving section 300 in the receiving apparatus according to Embodiment 1, and includes input selector 1, delay adjusting section 2, first A/D converter 3, amplitude amplifying section 4, and analog It comprises an amplifier 5, a second A/D converter 6, a frequency characteristic correction section 7, a bit extension section 8, an information signal selection output section 9, and a gain adjustment section 10. /D conversion processing is performed and an information signal composed of a digital signal is output to the information signal processing section 400 .
  • a first A/D conversion processing system A comprising a delay adjusting section 2, a first A/D converter 3 and an amplitude amplifying section 4 performs A/D conversion processing on the analog information signal output from the photodetector 500. , outputs a first digital information signal whose amplitude is controlled.
  • a second A/D conversion processing system B comprising an analog amplifier 5, a second A/D converter 6, a frequency characteristic correction unit 7, and a bit extension unit 8 converts the analog information signal output from the photodetector 500 into an A/D signal. D conversion processing is performed to output a gain-adjusted and frequency-corrected second digital information signal.
  • An information signal selection output unit 9 having an amplitude comparison unit 91 and an output side selector 92 detects the amplitude of the first digital information signal output from the first A/D converter 3 and the amplitude of the first digital information signal output from the frequency characteristic correction unit 7. Amplitude comparison is performed using the amplitude of the second digital information correction signal, and the first digital information signal from the first A/D conversion processing system A or the second digital information signal from the second A/D conversion processing system B output one of the digital information signals as a digital information signal.
  • the receiving section 300 converts the analog information signal output from the photodetector 500 into the first digital information signal A/D-converted by the first A/D converter 3, and the analog amplifier
  • the analog information signal amplified by 5 is subjected to A/D conversion processing by a second A/D converter 6 and converted into a second digital information signal corrected for frequency-dependent input/output characteristics of the analog amplifier 5.
  • the analog information signal received by the photodetector 500 and converted from the optical signal to the electrical signal is an analog information signal having a large amplitude
  • the first digital information signal is selected and output
  • the photodetector 500 receives the analog information signal.
  • the analog information signal converted from the optical signal to the electric signal is an analog information signal having a small amplitude
  • the second digital information signal is selected and output.
  • the bit resolution of the analog information signal output from the photodetector 500 is improved in the operation with the low-voltage power supply, and the received optical signal
  • the signal power to noise power ratio can be maintained even when the amplitude of the analog information signal converted from to the electric signal is small.
  • There is no waveform distortion in the digital information signal of 2 a D/A converter with high-precision bit resolution is not required, and an analog subtraction circuit that operates with a high-bandwidth signal is not required. .
  • the receiving device transmits a modulated information signal or radar signal on the transmitting side (transmitting device), and demodulates or detects the received signal on the receiving side (receiving device). It can be applied to a communication system that performs transmission and reception, receives a modulated analog information signal transmitted from a transmission device, A/D converts the received analog information signal to a digital information signal, and demodulates or detects the digital information signal.
  • a photodetector 500 converts an optical signal transmitted from a receiving device or a transmitting device in another optical transmission device through a communication path into an analog information signal composed of an electric signal, and A/D converts the analog information signal into a digital information signal. However, it is preferably applied to a digital optical communication system that demodulates or detects a digital information signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

受信装置は、アナログ情報信号が入力され、当該入力されたアナログ情報信号をA/D変換して第1のディジタル情報信号を出力する第1のA/D変換器3と、アナログ情報信号が入力され、当該入力されたアナログ情報信号を増幅してアナログ情報増幅信号を出力するアナログ増幅器5と、アナログ増幅器5から出力されたアナログ情報増幅信号をA/D変換して第2のディジタル情報信号を出力する第2のA/D変換器6と、第2のA/D変換器6から出力された第2のディジタル情報信号を、アナログ増幅器5の周波数に依存した入出力特性に対応して補正した第2のディジタル情報補正信号を出力する周波数特性補正部7と、第1のA/D変換器3から出力された第1のディジタル情報信号又は周波数特性補正部7から出力された第2のディジタル情報補正信号のいずれか一方をディジタル情報信号として選択出力する情報信号選択出力部9を備える。

Description

受信装置及びA/D変換方法
 本開示は、受信信号のA/D(Analog to Digital)変換処理を行う受信装置及びA/D変換方法に係り、特に、アナログ/ディジタル混在方式によるA/D変換処理を行う受信装置及びA/D変換方法に関する。
 送信側(送信装置)で変調された情報信号又はレーダ信号を送信し、受信側(受信装置)で受信信号の復調又は検出を行う無線通信又は光ファイバ通信等の送受信を行う通信システムにおいて、近年、10GHz以上の高周波信号を扱うことが増えてきている。
 一方、半導体製造プロセスの技術進歩とともに、半導体集積回路の低電圧電源が進んでいる。
 このような状況の下、受信装置において、アナログ信号をディジタル信号に変換するA/D変換器の低電圧動作の実現が急務となっている。
 また、扱う信号の広帯域化に伴い、アナログ信号からディジタル信号への変換に要求されるサンプリングレートも増加し、10GHzの信号を扱う場合は20GS/s(S/s:サンプル毎秒)以上の性能が要求される。
 一般に、サンプリングレートが増加すると、ビット分解能は反対に小さくなる傾向がある。例えば、100MS/sのサンプリングレートを持つA/D変換器のビット分解能は16ビット程度により実現できるが、20GS/sのサンプリングレートになると、ビット分解能は数ビット程度に下がってしまう。
 A/D変換器のビット分解能を改善する方法として特許文献1が知られている。
 特許文献1に示されたA/D変換装置は、アナログ/ディジタル混在方式によるA/D変換処理を行うA/D変換装置であり、第1のA/D変換器と第2のA/D変換器を用い、第1のA/D変換器にはアナログ信号を直接入力してA/D変換し、第2のA/D変換器にはアナログ増幅器により増幅したアナログ信号を入力してA/D変換し、A/D変換後のディジタル信号を非線形補正部により線形に変換した後、第1のA/D変換器からのディジタル信号と振幅比較し、いずれかのディジタル信号を選択することにより、ビット分解能を改善している。
国際公開WO2020/178954号公報
 特許文献1に示されたアナログ/ディジタル混在方式によるA/D変換処理を行うA/D変換装置では、受信信号の振幅が小さい場合でも信号電力対雑音電力比(S/N比)を保つことができるが、さらに、アナログ増幅器の入出力特性に依存して生ずる受信信号の周波数に応じた波形歪みのないディジタル信号が得られることが望まれている。
 本開示は上記した状況に鑑みてなされたものであり、アナログ/ディジタル混在方式によるA/D変換処理を行う受信装置において、受信信号の周波数に応じた波形歪みが抑制されたディジタル信号を取り扱うことができる受信装置を得ることを目的とする。
 本開示に係る受信装置は、アナログ情報信号が入力され、当該入力されたアナログ情報信号をA/D変換して第1のディジタル情報信号を出力する第1のA/D変換器と、アナログ情報信号が入力され、当該入力されたアナログ情報信号を増幅してアナログ情報増幅信号を出力するアナログ増幅器と、アナログ増幅器から出力されたアナログ情報増幅信号をA/D変換して第2のディジタル情報信号を出力する第2のA/D変換器と、第2のA/D変換器から出力された第2のディジタル情報信号を、アナログ増幅器の周波数に依存した入出力特性に対応して補正した第2のディジタル情報補正信号を出力する周波数特性補正部と、第1のA/D変換器から出力された第1のディジタル情報信号又は周波数特性補正部から出力された第2のディジタル情報補正信号のいずれか一方をディジタル情報信号として選択出力する情報信号選択出力部とを備える。
 本開示によれば、アナログ信号からなる受信信号をA/D変換処理を行うことにより得られるディジタル信号に、周波数に応じた波形歪みが抑制されたディジタル信号を取り扱うことができる。
実施の形態1に係る無線通信システムに用いられる受信装置、主として、情報信号を受信する受信装置の受信部を示す構成図である。 実施の形態1に係る受信装置におけるアナログ増幅器の入出力特性を示す図である。 実施の形態1における受信装置における第1のA/D変換処理系Aと第2のA/D変換処理系BにおけるA/D変換処理を説明するための図である。 実施の形態1に係る受信装置における振幅比較部を示す構成図である。 実施の形態2に係る無線通信システムに用いられる受信装置、主として、情報信号を受信する受信装置の受信部を示す構成図である。 実施の形態3に係る無線通信システムに用いられる受信装置、主として、情報信号を受信する受信装置の受信部を示す構成図である。 実施の形態4に係る光通信システムに用いられる受信装置、主として、情報信号を受信する受信装置の受信部を示す構成図である。
実施の形態1.
 実施の形態1に係る受信装置を図1から図4を用いて説明する。
 実施の形態1に係る受信装置は、無線送信装置から送信アンテナを介して送信された変調された情報信号を受信アンテナを介して受信し、受信した情報信号の復調又は検出を行う無線受信装置である。無線送信装置と無線受信装置により無線通信システムが構成される。
 無線送信装置から送信されるアナログ信号からなる情報信号は10GHz以上の高周波信号を対象としている。アナログ信号からなる情報信号を以下、アナログ情報信号と称す。
 図1は、無線送信装置から送信されたアナログ情報信号を受信する無線受信装置を示す。
 無線受信装置は、受信アンテナ100により受信した無線送信装置から送信されたアナログ情報信号を、受信部300であるA/D変換装置がA/D変換処理を行うことによりディジタル情報信号に変換して出力し、A/D変換装置から出力されるディジタル情報信号を、復調部又は検出部などの情報信号処理部400により信号処理する。
 受信装置は、受信アンテナ100と試験信号発生器200とA/D変換装置からなる受信部300と情報信号処理部400とを備える。
 A/D変換装置からなる受信部300と情報信号処理部400は半導体集積回路装置として集積化(IC化)される。
 本開示において、「・・・器」、「・・・装置」及び「・・・部」は構成要件を明確に表すために用いた表現であり、半導体集積回路装置として集積化された場合は、「・・・器」及び「・・・装置」は「・・・回路」を指し、「・・・部」はマイクロプロセッサにより機能を実現する構成要素を指す。
 受信アンテナ100は無線送信装置から送信されたアナログ情報信号を受信する。
 試験信号発生器200は、受信部300の調整などに使用されるアナログ信号などからなる試験信号を出力する。
 試験信号発生器200は、受信装置の運用開始前、つまり、アナログ情報信号を受信開始する前に事前に使用され、試験信号は受信部300の調整などに使用される。
 また、試験信号発生器200は、受信装置が受信開始後の動作中にも使用され、試験信号は受信部300の調整に使用される。
 試験信号については後述する。
 受信部300は、受信アンテナ100が受信したアナログ情報信号をA/D変換処理を行いディジタル信号からなる情報信号を情報信号処理部400に出力する。
 情報信号処理部400は、受信部300からのディジタル信号からなる情報信号により、情報信号の復調又は検出を行う。ディジタル信号からなる情報信号を以下、ディジタル情報信号と称す。
 受信部300は、入力側セレクタ1と遅延調整部2と第1のA/D変換器3と振幅増幅部4とアナログ増幅器5と第2のA/D変換器6と周波数特性補正部7とビット拡張部8と情報信号選択出力部9と利得調整部10とを備える。
 入力側セレクタ1は、切替信号に基づき、受信アンテナ100が受信したアナログ情報信号と試験信号発生器200から出力されたアナログ試験信号とを切り替えて出力する。
 入力側セレクタ1は、受信装置として運用する前、切替信号により、試験信号発生器200からの試験信号を出力する。
 この時の試験信号発生器200から出力される試験信号は、第1のA/D変換器3と第2のA/D変換器6のリファレンス電圧を調整、設定するためのリファレンス電圧設定用信号、及び、入力側セレクタ1の出力端から第1のA/D変換器3の入力端までの伝送線路長と入力側セレクタ1の出力端から第2のA/D変換器6の入力端までのアナログ増幅器5における遅延を含む伝送線路長との差から生ずる時間スキューを調整するための遅延調整部2における遅延量を設定するための遅延量設定用信号である。
 入力側セレクタ1は、受信装置として機能、運用されると、切替信号により、受信アンテナ100が受信したアナログ情報信号を分岐して、アナログ情報信号をそれぞれ遅延調整部2とアナログ増幅器5に出力する。
 また、入力側セレクタ1は、受信装置として運用している際に、受信部300を調整するための切替信号を受けると、試験信号発生器200からの試験信号を出力する。
 この時の試験信号発生器200から出力される試験信号は、振幅増幅部4及びアナログ増幅器5の利得を初期設定する初期設定用信号である。
 なお、受信装置として運用している際に受信部300の調整は必要なく、受信装置の運用前、つまり、出荷前に試験信号発生器200が使用されるだけである場合は、受信装置として試験信号発生器200を備えてなくても良い。この場合、入力側セレクタ1は不要であり、受信アンテナ100が受信したアナログ情報信号を直接遅延調整部2とアナログ増幅器5に入力する構成をとり、事前調整時に試験信号発生器200による試験信号を直接遅延調整部2とアナログ増幅器5に入力すればよい。
 遅延調整部2は、第1のA/D変換器3にアナログ情報信号が入力されるタイミングを、第2のA/D変換器6にアナログ情報増幅信号が入力されるタイミングに合わせる。
 すなわち、遅延調整部2は、受信アンテナ100が受信したアナログ情報信号が、第1のA/D変換器3の入力端に到達する時間と、第2のA/D変換器6の入力端に到達する時間を同じに調整するために、受信アンテナ100が受信したアナログ情報信号が第1のA/D変換器3の入力端へ到達する時間を遅延させる。
 遅延調整部2による調整時間は、事前に、試験信号発生器200からの遅延量設定用信号が入力側セレクタ1を介して受信部300に入力され、遅延量設定用信号が第1のA/D変換器3の入力端に到達する時間と第2のA/D変換器6の入力端に到達する時間が同じになるように、遅延調整部2の遅延時間が設定される。
 第1のA/D変換器3は、受信アンテナ100が受信したアナログ情報信号が遅延調整部2を介して入力され、当該入力されたアナログ情報信号をA/D変換して第1のディジタル情報信号を出力する。一例として、第1のディジタル情報信号を量子化ビット数が4ビットの信号(b)とする。
 振幅増幅部4は、第1のA/D変換器3からの第1のディジタル情報信号の振幅を逓倍する。
 すなわち、振幅増幅部4は、アナログ増幅器5の電力利得をG[dB]とすると、アナログ増幅器5による増幅と同等の利得が与えられるように、第1のディジタル情報信号に対して振幅を逓倍(√G)する。
 なお、振幅増幅部4の逓倍数√Gは受信装置の運用前に事前に試験信号発生器200から出力される試験信号により初期設定される。
 一例として、アナログ増幅器5の電力利得Gが24[dB]の場合、アナログ増幅器5から出力されるアナログ情報増幅信号の電圧振幅はアナログ増幅器5に入力されるアナログ情報信号の16(=2)倍である。
 従って、図3に示すように、振幅増幅部4は、第1のA/D変換器3からの第1のディジタル情報信号の振幅をアナログ増幅器5の振幅と同等になるように、第1のディジタル情報信号を振幅増幅部4により4ビット上位にシフトさせ、8ビットの信号(b0000)として第1のディジタル情報信号を出力する。
 遅延調整部2と第1のA/D変換器3と振幅増幅部4は、受信アンテナ100が受信したアナログ情報信号をA/D変換処理を行ない、振幅制御された第1のディジタル情報信号を出力する第1のA/D変換処理系Aである。
 アナログ増幅器5は、受信アンテナ100が受信したアナログ情報信号が入力側セレクタ1を介してもしくは直接入力され、利得調整部10からの利得調整信号S2により利得調整されて入力されたアナログ情報信号を増幅し、アナログ情報増幅信号として出力する。一例として、アナログ増幅器5の電力利得Gは24[dB]である。
 なお、アナログ増幅器5の電力利得Gは受信装置の運用前に事前に試験信号発生器200から出力される試験信号により初期設定される。
 第2のA/D変換器6は、アナログ増幅器5から出力されたアナログ情報増幅信号をA/D変換して第2のディジタル情報信号を出力する。一例として、第2のディジタル情報信号を量子化ビット数が4ビットの信号(b)とする。
 周波数特性補正部7は、第2のA/D変換器6から出力された第2のディジタル情報信号を、アナログ増幅器5の周波数に依存した入出力特性に対応して補正した第2のディジタル情報補正信号を得る。この時得られる第2のディジタル情報補正信号の一例として、4ビットの信号(b′b′b′b′)とする。
 アナログ増幅器5の入出力特性は、理想的には入力振幅と出力振幅の関係が線形であることが望ましいが、図2に示すように、入力信号の振幅が大きくなるにつれて利得が下がり、出力信号の振幅が入力信号の振幅に比例した値にならない。さらに、周波数によりその入出力特性が変わる。
 この入出力特性の周波数依存性により、アナログ増幅器5から出力されたアナログ情報増幅信号に波形歪みが生じ、第2のA/D変換器6から出力された第2のディジタル情報信号にも影響を及ぼす。
 図2において、横軸がアナログ増幅器5への入力信号の振福を、縦軸がアナログ増幅器5からの出力信号の振幅を示し、実線が周波数fに対する入出力特性を、点線が周波数fに対する入出力特性を示す。
 周波数特性補正部7は、アナログ増幅器5が持つ入出力特性の周波数依存性により、アナログ増幅器5が出力されたアナログ情報増幅信号に生じた波形歪みによる第2のディジタル情報信号への影響を、アナログ情報信号の周波数に対応した補正を行うことにより、アナログ増幅器5が持つ入出力特性の周波数依存性による影響が抑制された第2のディジタル情報信号を得る。
 周波数特性補正部7は、高速フーリエ変換(FFT)部71と波形補正部72と逆高速フーリエ変換(IFFT)部73とを備える。
 高速フーリエ変換部71は、第2のA/D変換器6から出力された第2のディジタル情報信号を時間波形、つまり、時間領域の信号から周波数スペクトル、つまり、周波数領域の信号にフーリエ変換(FFT)する。
 波形補正部72は、高速フーリエ変換部71によりフーリエ変換された周波数領域の信号である第2のディジタル情報信号をアナログ増幅器5の周波数に依存した入出力特性に対応して補正する。
 波形補正部72によるアナログ増幅器5の周波数に依存した入出力特性に対応した補正は、アナログ増幅器5に入力されるアナログ情報信号の周波数に対応して設定された第2のディジタル情報信号に対する入出力特性の補正値により行われる。
 設定される第2のディジタル情報信号に対する入出力特性の補正値は、アナログ情報信号の周波数に対応した利得、つまり、図2に示した入力信号の振幅に対する出力信号の振幅に基づいた利得の値である。言い換えれば、入力信号に対する、図2に一点鎖線で示した理想値の入出力特性における出力信号の振幅と周波数f、周波数fに対する入出力特性における出力信号の振幅との差に基づいた振幅の補正値である。
 第2のディジタル情報信号に対する入出力特性の補正値の設定は、受信装置の運用開始前に、アナログ増幅器5に試験信号発生器200から出力されるアナログ試験信号を入力し、アナログ増幅器5から出力されるアナログ増幅信号を測定することにより行う。
 また、アナログ増幅器5の周波数に依存した入出力特性が事前に分かっているものであれば、事前に分かっている周波数に依存した入出力特性に基づいて補正値を設定してもよい。
 設定された入出力特性の補正値は、波形補正部72が有する補正用テーブルに格納される。
 補正用テーブルは、アナログ情報信号の周波数をキーにした入力信号の振幅に対する理想特性に対応する出力信号の振幅による利得又は理想特性の出力振幅に対する出力振幅の差に基づいた入出力特性の補正値を示す利得補正テーブルである。
 波形補正部72は、アナログ情報信号の周波数をキーに利得補正テーブルに格納された入出力特性の補正値により、高速フーリエ変換部71によりフーリエ変換された第2のディジタル情報信号における入出力特性の周波数依存性を補正する。
 逆高速フーリエ変換部73は、波形補正部72により補正された第2のディジタル情報信号を周波数領域の信号から元の時間領域の信号に逆フーリエ変換(IFFT)し、第2のディジタル情報補正信号を得る。
 ビット拡張部8は、周波数特性補正部7による第2のディジタル情報補正信号に上位ビットを付加するビット拡張処理を行う。
 ビット拡張部8によるビット拡張処理は、振幅増幅部4からの第1のディジタル情報信号のビット数と同じビット数になるように第2のディジタル情報補正信号の上位に「0」を付加し、第2のディジタル情報を得る処理である。
 一例として、ビット拡張部8は、図3に示すように、第2のディジタル情報補正信号(b′b′b′b′)に4ビットの上位ビット(0000)を付加し、8ビットの信号(0000b′b′b′b′)として第2のディジタル情報を出力する。
 アナログ増幅器5と第2のA/D変換器6と周波数特性補正部7とビット拡張部8は、受信アンテナ100が受信したアナログ情報信号をA/D変換処理を行ない、利得調整及び周波数補正された第2のディジタル情報信号を出力する第2のA/D変換処理系Bである。
 第1のA/D変換処理系Aから出力される第1のディジタル情報と第2のA/D変換処理系Bから出力される第2のディジタル情報両者の振幅は、振幅増幅部4とビット拡張部8とにより同等に扱うことできる。
 情報信号選択出力部9は、第1のA/D変換器3から出力された第1のディジタル情報信号の振幅と、周波数特性補正部7から出力された第2のディジタル情報補正信号の振幅を用いて振幅比較し、第1のA/D変換処理系Aからの第1のディジタル情報信号又は第2のA/D変換処理系Bからの第2のディジタル情報信号の一方をディジタル情報信号として出力する。
 情報信号選択出力部9は、入力側セレクタ1を介して入力された受信アンテナ100が受信したアナログ情報信号が大きな振幅を持ったアナログ情報信号である場合は、第1のA/D変換処理系Aからの第1のディジタル情報信号を選択してディジタル情報信号として出力し、受信アンテナ100が受信したアナログ情報信号の振幅が小さい場合は第2のA/D変換処理系Bからの第2のディジタル情報信号を選択してディジタル情報信号として出力する。
 情報信号選択出力部9は、振幅比較部91と出力側セレクタ92を備える。
 振幅比較部91は、第1のA/D変換器3から出力された第1のディジタル情報信号の振幅と、周波数特性補正部7から出力された第2のディジタル情報補正信号の振幅とを比較する。
 振幅比較部91は、図4に示すように、第1のディジタル情報信号の振幅比較部91aと第2のディジタル情報信号の振幅比較部91bを備える。
 振幅比較部91aは、第1のA/D変換器3から出力された第1のディジタル情報信号の振幅と予め設定された第1の振幅閾値とを比較する。
 振幅比較部91aは、第1のA/D変換器3から出力された第1のディジタル情報信号の振幅が第1の振幅閾値以上であると「1」を判定結果とし、第1の振幅閾値未満であると「0」を判定結果とする。
 判定結果が「1」の時、第1のA/D変換器3から出力された第1のディジタル情報信号が選択される。
 第1のA/D変換器3がアナログ情報信号を識別してディジタル情報信号を出力できればよいので、振幅比較部91aは、受信アンテナ100が受信したアナログ情報信号が大きな振幅を持ったアナログ情報信号である場合に第1のA/D変換処理系Aからの第1のディジタル情報信号を選択するようにすればよい。
 従って、第1の振幅閾値は、第1のA/D変換器3から出力される第1のディジタル情報信号が有効ビット数以上になるように設定される。
 振幅比較部91bは、周波数特性補正部7から出力された第2のディジタル情報補正信号の振幅と予め設定された第2の振幅閾値とを比較する。
 振幅比較部91bは、周波数特性補正部7から出力された第2のディジタル情報補正信号の振幅が第2の振幅閾値未満であると「1」を判定結果とし、第2の振幅閾値以上であると「0」を判定結果とする。
 判定結果が「1」の時、周波数特性補正部7から出力された第2のディジタル情報補正信号が選択される。
 第2のA/D変換器6は、受信アンテナ100が受信したアナログ情報信号が小さな振幅を持ったアナログ情報信号である場合に識別することができれば良く、第2の振幅閾値は、アナログ増幅器5から出力されるアナログ情報増幅信号をA/D変換した第2のA/D変換器6から出力される第2のディジタル情報信号がハイ(High)側に張り付かない閾値に設定される。
 第1の振幅閾値及び第2の振幅閾値は、第1のA/D変換処理系Aからの第1のディジタル情報信号と第2のA/D変換処理系Bからの第2のディジタル情報信号の両者が同時に選択されない閾値に設定される。
 振幅比較部91は、振幅比較部91aの判定結果が「1」であると第1のディジタル情報信号を、振幅比較部91bの判定結果が「1」であると第2のディジタル情報補正信号を選択するとの選択結果を得る。
 また、振幅比較部91は、振幅比較部91bに入力される周波数特性補正部7から出力された第2のディジタル情報補正信号が適正でないと利得調整信号S1を出力する。
 振幅比較部91が第2のディジタル情報補正信号が適正でないと判断する場合は、例えば、振幅比較部91aの判定結果が「0」であるにも関わらず、振幅比較部91bの判定結果が「0」である場合、あるいは、第2のディジタル情報補正信号の振幅が第2の振幅閾値未満であるにも関わらず、第2のA/D変換器6から出力される第2のディジタル情報信号がハイ側に張り付いてしまう場合などである。
 出力側セレクタ92は、振幅比較部91による選択結果に基づき、振幅比較部91aの判定結果が「1」であると第1のA/D変換処理系Aからの第1のディジタル情報信号を、振幅比較部91bの判定結果が「1」であると第2のA/D変換処理系Bからの第2のディジタル情報信号を選択して出力する。
 一例として、振幅比較部91の判定結果が第1のディジタル情報信号を選択するとの判定であると、8ビットの信号(b0000)の第1のディジタル情報信号が出力側セレクタ92から出力される。
 また、振幅比較部91の判定結果が第2のディジタル情報信号を選択するとの判定であると、8ビットの信号(0000b′b′b′b′)の第2のディジタル情報信号が出力側セレクタ92から出力される。
 振幅増幅部4と周波数特性補正部7とビット拡張部8と情報信号選択出力部9は、第1のA/D変換器3から出力された第1のディジタル情報信号と第2のA/D変換器6から出力された第2のディジタル情報信号を処理するディジタル信号処理部Cを構成する。
 ディジタル信号処理部Cはマイクロプロセッサにより構成される。
 利得調整部10は、振幅比較部91bによる利得調整信号S1に基づいて利得調整信号S2を生成し、利得調整信号S2によりアナログ増幅器5の利得Gの値を調整する。
 次に動作について説明する。
 まず、試験信号発生器200による受信装置の運用開始前の受信部300の調整について説明する。入力側セレクタ1は切替信号を受けて試験信号発生器200からの試験信号を選択して出力する。
 受信部300の調整は、第1のA/D変換器3と第2のA/D変換器6のリファレンス電圧の調整、遅延調整部2における遅延量の設定、振幅増幅部4の利得(逓倍数√G)及びアナログ増幅器5の電力利得Gの初期設定、及び第2のディジタル情報信号に対する入出力特性の補正値の設定であり、それぞれの調整、設定は対応した試験信号を試験信号発生器200から入力側セレクタ1を介して第1のA/D変換処理系A及び第2のA/D変換処理系Bに入力することにより行われる。
 遅延調整部2における遅延量の設定は、試験信号発生器200からの遅延量設定用信号を入力側セレクタ1を介して第1のA/D変換処理系A及び第2のA/D変換処理系Bに入力し、第1のA/D変換器3の入力端と第2のA/D変換器6の入力端に入力される遅延量設定用信号を測定することにより行われる。
 すなわち、第1のA/D変換器3の入力端に入力される遅延量設定用信号と第2のA/D変換器6の入力端に入力される遅延量設定用信号の入力されるタイミングを合わせる、つまり、両者に入力される遅延量設定用信号が同じタイミングにより同期がとられるように、遅延調整部2における遅延量の調整を行い、設定する。
 このように、遅延調整部2における遅延量が設定されることにより、入力側セレクタ1の出力端から第1のA/D変換器3の入力端までの伝送線路長と入力側セレクタ1の出力端から第2のA/D変換器6の入力端までのアナログ増幅器5における遅延を含む伝送線路長との差から生ずる時間スキューを調整でき、受信アンテナ100が受信したアナログ情報信号を第1のA/D変換器3の入力端及び第2のA/D変換器6の入力端に同じタイミングで入力できる。
 第2のディジタル情報信号に対する入出力特性の補正値の設定、つまり、波形補正部72が有する補正用テーブルに格納されるアナログ増幅器5に対する入出力特性の補正値の設定は、徐々に振幅値を上昇させた正弦波からなる試験信号をアナログ増幅器5に入力し、アナログ増幅器5から出力された試験信号の振幅値を測定し、アナログ増幅器5の入出力特性を得、得られたアナログ増幅器5の入出力特性と理想の入出力特性とを比較して行う。この第2のディジタル情報信号に対する入出力特性の補正値の設定は、周波数の異なる複数の試験信号を用いて行われる。
 得られた第2のディジタル情報信号に対する入出力特性の補正値は、周波数ごとに波形補正部72が有する補正用テーブルに格納される。
 なお、周波数ごとに得た入出力特性の補正値を基に、連続した周波数に対する第2のディジタル情報信号に対する入出力特性の補正値を求め、この求めた連続した周波数に対する第2のディジタル情報信号に対する入出力特性の補正値を波形補正部72が有する補正用テーブルに格納してもよい。
 次に、受信アンテナ100が受信した無線受信信号であるアナログ情報信号をA/D変換処理を行ってディジタル信号として出力する動作を説明する。入力側セレクタ1は切替信号を受けて受信アンテナ1が受信したアナログ情報信号を選択して出力する。
 入力側セレクタ1により選択されたアナログ情報信号は分岐されて第1のA/D変換処理系A及び第2のA/D変換処理系Bに入力される。
 第1のA/D変換処理系Aでは、アナログ情報信号が遅延調整部2により遅延され、第1のA/D変換器3が遅延されたアナログ情報信号をA/D変換して4ビットの信号(b)からなる第1のディジタル情報信号を出力する(ステップST11)。
 次に、振幅増幅部4が、第1のA/D変換器3からの第1のディジタル情報信号の振幅を逓倍(√G)し、第1のディジタル情報信号(b)を4ビット上位にシフトさせ、8ビットの信号(b0000)からなる第1のディジタル情報信号を得る(ステップST12)。
 一方、第2のA/D変換処理系Bでは、アナログ増幅器5が、利得調整信号S2により利得調整されてアナログ情報信号を増幅してアナログ情報増幅信号を出力する(ステップST21)。
 次に、第2のA/D変換器6が、アナログ増幅器5から出力された4ビットの信号(b)からなるアナログ情報増幅信号をA/D変換して第2のディジタル情報信号を出力する(ステップST22)。
 そして、周波数特性補正部7が、第2のディジタル情報信号(b)を、アナログ増幅器5の周波数に依存した入出力特性に対応して補正した4ビットの信号(b′b′b′b′)からなる第2のディジタル情報補正信号を得る(ステップST23)。
 周波数特性補正部7が第2のディジタル情報補正信号を得るステップST23は、ステップST231からステップST233を有する。
 ステップST231では、高速フーリエ変換部71が、第2のディジタル情報信号を時間波形から周波数スペクトルにフーリエ変換する。
 ステップST232では、波形補正部72が、フーリエ変換された第2のディジタル情報信号をアナログ増幅器5の周波数に依存した入出力特性を用いて補正する。
 ステップST233では、逆高速フーリエ変換部が、補正された第2のディジタル情報信号を周波数スペクトルから時間波形に逆フーリエ変換し、第2のディジタル情報補正信号を得る。
 次に、ビット拡張部8が、周波数特性補正部7による第2のディジタル情報補正信号に上位に4ビットの「0」を付加するビット拡張処理を行い、第2のディジタル情報補正信号(b′b′b′b′)に4ビットの上位ビット(0000)を付加し、8ビットの信号(0000b′b′b′b′)からなる第2のディジタル情報を得る(ステップST24)。
 情報信号選択出力部9が、第1のA/D変換器3からのアナログ情報信号(b)の振幅と周波数特性補正部7からの第2のディジタル情報補正信号(b′b′b′b′)の振幅を用いて振幅比較し、第1のA/D変換処理系Aによる第1のディジタル情報信号(b0000)又は第2のディジタル情報補正信号(0000b′b′b′b′)の一方をディジタル情報信号として出力する(ステップST3)。
 情報信号選択出力部9が、第1のディジタル情報信号又は第2のディジタル情報補正信号の一方をディジタル情報信号として出力するステップST3は、ステップST31とステップST32を有する。
 ステップST31では、振幅比較部91が、第1のA/D変換器3から出力された第1のディジタル情報信号の振幅と、周波数特性補正部7から出力された第2のディジタル情報補正信号の振幅を用いて振幅比較し、いずれを選択するかの選択結果を得る。
 具体的には、振幅比較部91を構成する第1のディジタル情報信号の振幅比較部91aが、第1のA/D変換器3から出力された第1のディジタル情報信号の振幅と予め設定された第1の振幅閾値とを比較し、第1のディジタル情報信号の振幅が第1の振幅閾値以上であると第1のディジタル情報信号を選択するとの「1」を判定結果とし、第1の振幅閾値未満であると「0」を判定結果とする(ステップST311)。
 一方、振幅比較部91を構成する第2のディジタル情報信号の振幅比較部91bが、周波数特性補正部7から出力された第2のディジタル情報補正信号の振幅と予め設定された第2の振幅閾値とを比較し、第2のディジタル情報補正信号の振幅が第2の振幅閾値未満であると第2のディジタル情報補正信号を選択するとの「1」を判定結果とし、第2の振幅閾値以上であると「0」を判定結果とする(ステップST311)。
 振幅比較部91は、振幅比較部91aの判定結果が「1」であると第1のディジタル情報信号を、振幅比較部91bの判定結果が「1」であると第2のディジタル情報補正信号を選択するとの選択結果を得る。
 ステップST32では、出力側セレクタ92が、振幅比較部91による選択結果に基づき、振幅比較部91aの判定結果が「1」であると第1のA/D変換処理系Aからの第1のディジタル情報信号を、振幅比較部91bの判定結果が「1」であると第2のA/D変換処理系Bからの第2のディジタル情報信号を出力する。
 受信部300は、以上のように、受信アンテナ100が受信したアナログ情報信号を、第1のA/D変換器3によりA/D変換処理された第1のディジタル情報信号に変換し、アナログ増幅器5により増幅されたアナログ情報信号を第2のA/D変換器6によりA/D変換処理され、アナログ増幅器5における周波数に依存した入出力特性が補正された第2のディジタル情報信号に変換し、受信アンテナ100が受信したアナログ情報信号が大きな振幅を持ったアナログ情報信号である場合は、第1のディジタル情報信号を選択して出力し、受信アンテナ100が受信したアナログ情報信号が小さな振幅を持ったアナログ情報信号である場合は、第2のディジタル情報信号を選択して出力する。
 受信部300は、遅延調整部2と第1のA/D変換器3と振幅増幅部4を有する第1のA/D変換処理系Aと、アナログ増幅器5と第2のA/D変換器6と周波数特性補正部7とビット拡張部8を有する第2のA/D変換処理系Bの2つのA/D変換処理系を備えたものとしたが、さらに、アナログ増幅器と第2のA/D変換器と周波数特性補正部とビット拡張部を有する第3のA/D変換処理系をしたものでもよい。
 要するに、アナログ増幅器と第2のA/D変換器と周波数特性補正部とビット拡張部を有する第2のA/D変換処理系を複数備えたものでもよい。
 第2のA/D変換処理系を複数備えた場合、それぞれのアナログ増幅器の利得は異なった値とされる。
 実施の形態1に係る受信装置は、受信アンテナ100が受信したアナログ情報信号をA/D変換処理して第1のディジタル情報信号を出力する、第1のA/D変換器3を有する第1のA/D変換処理系Aと、アナログ情報信号を増幅した後、A/D変換処理して第2のディジタル情報信号を出力する、アナログ増幅器5と第2のA/D変換器6を有する第2のA/D変換処理系Bと、第1のA/D変換処理系Aによる第1のディジタル情報信号と第2のディジタル情報信号による第2のディジタル情報信号のいずれか一方をディジタル情報信号として選択出力する情報信号選択出力部9を備えたので、低電圧電源による動作においてビット分解能が向上し、受信信号の振幅が小さい場合でも信号電力対雑音電力比を保つことができる。
 更に、第2のA/D変換処理系Bに周波数特性補正部7を設け、周波数特性補正部7が、アナログ増幅器5の周波数に依存した入出力特性に対応して第2のA/D変換処理系Bから出力される第2のディジタル情報信号を補正したので、アナログ増幅器5における周波数依存性を持つ入出力特性によっても第2のディジタル情報信号に波形歪みが生じることがない。
 また、実施の形態1に係る受信装置では、A/D変換器のビット分解能を改善するために、2つのA/D変換器に加えてD/A変換器と減算回路と増幅器を用いたサブレンジング方式に対し、サブレンジング方式が必要とする高精度なビット分解能を持つD/A変換器が不要であり、高帯域信号で動作するアナログ減算回路が不要である。
実施の形態2.
 実施の形態2に係る受信装置を、図5を用いて説明する。
 実施の形態2に係る受信装置は、実施の形態1に係る受信装置における周波数特性補正部7が高速フーリエ変換(FFT)部71と波形補正部72と逆高速フーリエ変換(IFFT)部73とを備えたものであるのに対して、波形整形フィルタを備えた周波数特性補正部7Aとしたものであり、その他の構成要素については同じである。
 なお、図5中、図1と同一符号は同一又は相当部分を示す。
 すなわち、周波数特性補正部7Aは、実施の形態1に係る受信装置における周波数特性補正部7と同様に、アナログ増幅器5が持つ入出力特性の周波数依存性により、アナログ増幅器5が出力されたアナログ情報増幅信号に生じた波形歪みによる第2のディジタル情報信号への影響を、アナログ情報信号の周波数に対応した補正を行うことにより、アナログ増幅器5が持つ入出力特性の周波数依存性による影響が抑制された第2のディジタル情報信号を出力する。
 周波数特性補正部7Aを構成する波形整形フィルタは、有限インパルス応答(FIR:Finite Impulse Response)フィルタ又は無限インパルス応答(IIR:Infinite Impulse Response)フィルタなどのフィルタ係数によって通過帯域が変更される特性を持つディジタルフィルタである。
 ディジタルフィルタである波形整形フィルタは、アナログ増幅器5が持つ入出力特性の周波数依存性に対応したフィルタ係数の変更により、第2のA/D変換器6から出力された第2のディジタル情報信号を補正して第2のディジタル情報補正信号として出力する。
 波形整形フィルタは補正用テーブルを有し、補正用テーブルにアナログ増幅器5が持つ入出力特性に対応したフィルタ係数が格納される。
 補正用テーブルに格納されるフィルタ係数は、受信装置の運用開始前に、アナログ増幅器5に試験信号発生器200から出力されるアナログ試験信号を入力し、アナログ増幅器5から出力されるアナログ増幅信号を測定することにより行う。
 また、アナログ増幅器5の周波数に依存した入出力特性が事前に分かっているものであれば、事前に分かっている周波数に依存した入出力特性に基づいて補正値であるフィルタ係数を設定してもよい。
 実施の形態2に係る受信装置は、実施の形態1に係る受信装置と同様の動作をし、第2のディジタル情報補正信号を出力するステップが、波形整形フィルタが、アナログ増幅器5の周波数に依存した入出力特性に対応したフィルタ係数の変更により第2のディジタル情報信号を補正して第2のディジタル情報補正信号として出力するステップである以外は同じである。
 実施の形態2に係る受信装置は、実施の形態1に係る受信装置と同様に、低電圧電源による動作においてビット分解能が向上し、受信信号の振幅が小さい場合でも信号電力対雑音電力比を保つことができ、周波数特性補正部7Aを構成する波形整形フィルタにより、アナログ増幅器5における周波数依存性を持つ入出力特性によっても第2のディジタル情報信号に波形歪みが生じることがなく、さらに、高精度なビット分解能を持つD/A変換器が不要であり、高帯域信号で動作するアナログ減算回路が不要であるという効果を有する。
実施の形態3.
 実施の形態3に係る受信装置を、図6を用いて説明する。
 実施の形態3に係る受信装置は、実施の形態2に係る受信装置に対して、遅延調整部2を遅延量制御信号S3により遅延量が調整できる機能を有する遅延調整部2Aとしたものであり、その他の構成要素については同じである。
 なお、図6中、図5と同一符号は同一又は相当部分を示す。
 入力側セレクタ1の出力端から第1のA/D変換器3の入力端までの伝送線路におけるアナログ情報信号の伝送時間、及び入力側セレクタ1の出力端から第2のA/D変換器6の入力端までのアナログ増幅器5における遅延を含む伝送線路におけるアナログ情報信号の伝送時間それぞれは、周囲温度により影響を受ける。
 実施の形態3に係る受信装置は、周囲温度によるアナログ情報信号の伝送時間の変動を、遅延量制御信号S3を受ける遅延調整部2Aが伝送時間の変動に応じて遅延量を調整し、周囲温度の変化に係らず、第1のA/D変換器3にアナログ情報信号が入力されるタイミングを、第2のA/D変換器6にアナログ情報増幅信号が入力されるタイミングと同じにする。
 温度センサ部11は、周辺温度を検知し、検知した周囲温度に応じた遅延量制御信号S3を遅延調整部2Aに出力する。
 遅延調整部2Aは、温度センサ部11から出力された遅延量制御信号により遅延量を調整する。
 遅延調整部2Aは、周囲温度と遅延量との関係を示す遅延量補正値が格納された遅延量補正テーブルを有する。
 遅延量補正テーブルに格納される遅延量補正値は、受信装置の運用開始前に、受信部300に試験信号発生器200から出力される遅延量設定用信号を入力し、周囲温度を変化させながら、遅延量設定用信号が第1のA/D変換器3の入力端に到達する時間と第2のA/D変換器6の入力端に到達する時間が同じになる遅延量を周囲温度に関連付けた値である。
 遅延調整部2Aは、温度センサ部11から出力された遅延量制御信号S3を受けると、遅延量制御信号S3が示す周囲温度をキーに遅延量補正テーブルに格納された遅延量補正値により、遅延量が設定される。
 遅延調整部2Aは、温度センサ部11から出力された遅延量制御信号S3により遅延量補正テーブルを用いて動的に遅延量の補正を行なう。
 実施の形態3に係る受信装置は、実施の形態2に係る受信装置に対して、遅延調整部2Aが温度センサ部11から出力された遅延量制御信号S3により遅延量補正テーブルを用いて動的に遅延量の補正を行なう点を除いて、受信アンテナ100が受信したアナログ情報信号をA/D変換処理を行ってディジタル信号として出力する動作は同じであるので、説明は省略する。
 実施の形態3に係る受信装置は、実施の形態2に係る受信装置と同様の効果を奏する他、周囲温度による影響が抑制される。
実施の形態4.
 実施の形態4に係る受信装置を、図7を用いて説明する。
 実施の形態4に係る受信装置は、実施の形態1に係る受信装置を無線送信装置に適用したものであるのに対して、ディジタル光通信システムに適用した点において相違する。
 なお、図7中、図1と同一符号は同一又は相当部分を示す。
 図7は、通信路を介して接続される、受信装置と送信装置を有する光伝送装置における受信装置を示す。
 受信装置は、フォトディテクタ500により通信路を介して受信した他の光伝送装置における送信装置から送信された光信号を電気信号からなるアナログ情報信号に変換し、変換したアナログ情報信号を受信部300であるA/D変換装置がA/D変換処理を行うことによりディジタル情報信号に変換して出力し、A/D変換装置から出力されるディジタル情報信号を、復調部又は検出部などの情報信号処理部400により信号処理する。
 実施の形態4に係る受信装置は、フォトディテクタ500と試験信号発生器200とA/D変換装置からなる受信部300と情報信号処理部400とを備える。
 フォトディテクタ500は、他の光伝送装置における送信装置から送信された光信号を受信し、受信した光信号を電気信号に変換する。
 試験信号発生器200は、実施の形態1に係る受信装置における試験信号発生器200と同様の構成をし、受信部300の調整などに使用されるアナログ信号などからなる試験信号を出力する。
 受信部300は、実施の形態1に係る受信装置における受信部300と同様の構成をし、入力側セレクタ1と遅延調整部2と第1のA/D変換器3と振幅増幅部4とアナログ増幅器5と第2のA/D変換器6と周波数特性補正部7とビット拡張部8と情報信号選択出力部9と利得調整部10とを備え、フォトディテクタ500から出力されたアナログ情報信号をA/D変換処理を行いディジタル信号からなる情報信号を情報信号処理部400に出力する。
 遅延調整部2と第1のA/D変換器3と振幅増幅部4を備える第1のA/D変換処理系Aは、フォトディテクタ500から出力されたアナログ情報信号をA/D変換処理を行ない、振幅制御された第1のディジタル情報信号を出力する。
 アナログ増幅器5と第2のA/D変換器6と周波数特性補正部7とビット拡張部8を備える第2のA/D変換処理系Bは、フォトディテクタ500から出力されたアナログ情報信号をA/D変換処理を行ない、利得調整及び周波数補正された第2のディジタル情報信号を出力する。
 振幅比較部91と出力側セレクタ92を備える情報信号選択出力部9は、第1のA/D変換器3から出力された第1のディジタル情報信号の振幅と、周波数特性補正部7から出力された第2のディジタル情報補正信号の振幅を用いて振幅比較し、第1のA/D変換処理系Aからの第1のディジタル情報信号又は第2のA/D変換処理系Bからの第2のディジタル情報信号の一方をディジタル情報信号として出力する。
 受信部300は、以上のように、フォトディテクタ500から出力されたアナログ情報信号を、第1のA/D変換器3によりA/D変換処理された第1のディジタル情報信号に変換し、アナログ増幅器5により増幅されたアナログ情報信号を第2のA/D変換器6によりA/D変換処理され、アナログ増幅器5における周波数に依存した入出力特性が補正された第2のディジタル情報信号に変換し、フォトディテクタ500が受信し、光信号から電気信号に変換されたアナログ情報信号が大きな振幅を持ったアナログ情報信号である場合は、第1のディジタル情報信号を選択して出力し、フォトディテクタ500が受信し、光信号から電気信号に変換されたアナログ情報信号が小さな振幅を持ったアナログ情報信号である場合は、第2のディジタル情報信号を選択して出力する。
 実施の形態4に係る受信装置は、実施の形態1に係る受信装置と同様に、フォトディテクタ500から出力されたアナログ情報信号に対して低電圧電源による動作においてビット分解能が向上し、受信した光信号から電気信号に変換されたアナログ情報信号の振幅が小さい場合でも信号電力対雑音電力比を保つことができ、周波数特性補正部7により、アナログ増幅器5における周波数依存性を持つ入出力特性によっても第2のディジタル情報信号に波形歪みが生じることがなく、さらに、高精度なビット分解能を持つD/A変換器が不要であり、高帯域信号で動作するアナログ減算回路が不要であるという効果を有する。
 なお、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本開示に係る受信装置は、送信側(送信装置)で変調された情報信号又はレーダ信号を送信し、受信側(受信装置)で受信信号の復調又は検出を行う無線通信又は光ファイバ通信等の送受信を行う通信システムに適用でき、送信装置から送信された変調されたアナログ情報信号を受信し、受信したアナログ情報信号をディジタル情報信号にA/D変換し、ディジタル情報信号の復調又は検出を行う受信装置、及び他の光伝送装置における送信装置から通信路を介して送信された光信号をフォトディテクタ500により電気信号からなるアナログ情報信号に変換し、アナログ情報信号をディジタル情報信号にA/D変換し、ディジタル情報信号の復調又は検出を行うディジタル光通信システムに適用するのが好適である。
 100 受信アンテナ、200 試験信号発生器、300 受信部、400 情報信号処理部、1 入力側セレクタ、2、2A 遅延調整部、3 第1のA/D変換器、4 振幅増幅部、5 アナログ増幅器、6 第2のA/D変換器、7、7A 周波数特性補正部、8 ビット拡張部、9 情報信号選択出力部、91 振幅比較部、92 出力側セレクタ、10 利得調整部、11 温度センサ部、A 第1のA/D変換処理系、B 第2のA/D変換処理系、C ディジタル信号処理部。

Claims (11)

  1.  アナログ情報信号が入力され、当該入力されたアナログ情報信号をA/D変換して第1のディジタル情報信号を出力する第1のA/D変換器と、
     前記アナログ情報信号が入力され、当該入力されたアナログ情報信号を増幅してアナログ情報増幅信号を出力するアナログ増幅器と、
     前記アナログ増幅器から出力されたアナログ情報増幅信号をA/D変換して第2のディジタル情報信号を出力する第2のA/D変換器と、
     前記第2のA/D変換器から出力された第2のディジタル情報信号を、前記アナログ増幅器の周波数に依存した入出力特性に対応して補正した第2のディジタル情報補正信号を出力する周波数特性補正部と、
     前記第1のA/D変換器から出力された第1のディジタル情報信号又は前記周波数特性補正部から出力された第2のディジタル情報補正信号のいずれか一方をディジタル情報信号として選択出力する情報信号選択出力部と、
     を備えた受信装置。
  2.  前記周波数特性補正部は、
     前記第2のA/D変換器から出力された第2のディジタル情報信号を時間領域の信号から周波数領域の信号にフーリエ変換する高速フーリエ変換部と、
     前記高速フーリエ変換部によりフーリエ変換された第2のディジタル情報信号を前記アナログ増幅器の周波数に依存した入出力特性を用いて補正する波形補正部と、
     前記波形補正部により補正された第2のディジタル情報信号を周波数領域の信号から時間領域の信号に逆フーリエ変換し、前記第2のディジタル情報補正信号として出力する逆高速フーリエ変換部とを備える請求項1に記載の受信装置。
  3.  前記波形補正部に用いられる前記アナログ増幅器の周波数に依存した入出力特性の補正値は、前記アナログ増幅器にアナログ試験信号を入力し、前記アナログ増幅器から出力されるアナログ増幅信号を測定することにより設定される請求項2に記載の受信装置。
  4.  前記周波数特性補正部は、フィルタ係数によって通過帯域が変更される特性を持ち、前記アナログ増幅器の周波数に依存した入出力特性に対応した前記フィルタ係数の変更により前記第2のA/D変換器から出力された第2のディジタル情報信号を補正して前記第2のディジタル情報補正信号として出力する波形整形フィルタである請求項1に記載の受信装置。
  5.  前記波形整形フィルタに用いられる前記フィルタ係数は、前記アナログ増幅器にアナログ試験信号を入力し、前記波形整形フィルタから出力されるディジタル試験補正信号を測定することにより設定される請求項4に記載の受信装置。
  6.  前記第1のA/D変換器の前段に、前記第1のA/D変換器に前記アナログ情報信号が入力されるタイミングを、前記第2のA/D変換器に前記アナログ情報増幅信号が入力されるタイミングに合わせる遅延調整部を備えた請求項1から請求項5のいずれか1項に記載の受信装置。
  7.  前記遅延調整部は、温度センサ部により検知された周囲温度に基づいた遅延量制御信号により遅延量を調整する請求項6に記載の受信装置。
  8.  前記遅延調整部における調整する遅延量は、前記遅延調整部及び前記アナログ増幅器に遅延量設定用信号を入力し、周囲温度を変化させながら、前記第1のA/D変換器及び前記第2のA/D変換器に前記遅延量設定用信号が入力されたタイミングを測定することにより設定される請求項7に記載の受信装置。
  9.  第1のA/D変換器が、アナログ情報信号をA/D変換して第1のディジタル情報信号を出力するステップと、
     アナログ増幅器が、前記アナログ情報信号を増幅してアナログ情報増幅信号を出力するステップと、
     第2のA/D変換器が、前記アナログ情報増幅信号をA/D変換して第2のディジタル情報信号を出力するステップと、
     周波数特性補正部が、前記第2のディジタル情報信号を、前記アナログ増幅器の周波数に依存した入出力特性に対応して補正した第2のディジタル情報補正信号を出力するステップと、
     情報信号選択出力部が、前記第1のディジタル情報信号又は前記第2のディジタル情報補正信号のいずれか一方をディジタル情報信号として選択出力するステップと、
     を備えたA/D変換方法。
  10.  前記周波数特性補正部は、高速フーリエ変換部と波形補正部と逆高速フーリエ変換部とを備え、
     前記第2のディジタル情報補正信号を出力するステップは、
     前記高速フーリエ変換部が、前記第2のディジタル情報信号を時間波形から周波数スペクトルにフーリエ変換するステップと、
     前記波形補正部が、前記フーリエ変換された第2のディジタル情報信号を前記アナログ増幅器の周波数に依存した入出力特性を用いて補正するステップと、
     前記逆高速フーリエ変換部が、前記補正された第2のディジタル情報信号を周波数スペクトルから時間波形に逆フーリエ変換し、前記第2のディジタル情報補正信号として出力するステップとを備えた請求項9に記載のA/D変換方法。
  11.  前記周波数特性補正部は、フィルタ係数によって通過帯域が変更される特性を持つ波形整形フィルタであり、
     前記第2のディジタル情報補正信号を出力するステップは、
     前記波形整形フィルタが、前記アナログ増幅器の周波数に依存した入出力特性に対応した前記フィルタ係数の変更により前記第2のディジタル情報信号を補正して前記第2のディジタル情報補正信号として出力するステップである請求項9に記載のA/D変換方法。
PCT/JP2021/003817 2021-02-03 2021-02-03 受信装置及びa/d変換方法 WO2022168189A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21924586.7A EP4266586A4 (en) 2021-02-03 2021-02-03 RECEIVING DEVICE AND A/D CONVERSION METHOD
PCT/JP2021/003817 WO2022168189A1 (ja) 2021-02-03 2021-02-03 受信装置及びa/d変換方法
CA3204256A CA3204256C (en) 2021-02-03 2021-02-03 Reception device and a/d conversion method
JP2022576357A JP7233625B1 (ja) 2021-02-03 2021-02-03 受信装置及びa/d変換方法
US18/203,470 US20230299860A1 (en) 2021-02-03 2023-05-30 Reception device and a/d conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003817 WO2022168189A1 (ja) 2021-02-03 2021-02-03 受信装置及びa/d変換方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/203,470 Continuation US20230299860A1 (en) 2021-02-03 2023-05-30 Reception device and a/d conversion method

Publications (1)

Publication Number Publication Date
WO2022168189A1 true WO2022168189A1 (ja) 2022-08-11

Family

ID=82741237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003817 WO2022168189A1 (ja) 2021-02-03 2021-02-03 受信装置及びa/d変換方法

Country Status (5)

Country Link
US (1) US20230299860A1 (ja)
EP (1) EP4266586A4 (ja)
JP (1) JP7233625B1 (ja)
CA (1) CA3204256C (ja)
WO (1) WO2022168189A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240036624A1 (en) * 2022-07-27 2024-02-01 Texas Instruments Incorporated Voltage identification signal decoder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224064A (ja) * 1995-11-16 1997-08-26 N T T Ido Tsushinmo Kk 増幅装置
JP2009200678A (ja) * 2008-02-20 2009-09-03 Ntt Docomo Inc 高効率フィードフォワード増幅器及びその制御方法
JP2010187334A (ja) * 2009-02-13 2010-08-26 Toshiba Corp 非線形歪み補償装置
WO2020178954A1 (ja) 2019-03-04 2020-09-10 三菱電機株式会社 受信装置および受信方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3471550B2 (ja) * 1997-01-30 2003-12-02 松下電器産業株式会社 A/d変換装置
WO2003067764A1 (fr) * 2002-01-30 2003-08-14 Advantest Corporation Appareil et procede de conversion a/n

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224064A (ja) * 1995-11-16 1997-08-26 N T T Ido Tsushinmo Kk 増幅装置
JP2009200678A (ja) * 2008-02-20 2009-09-03 Ntt Docomo Inc 高効率フィードフォワード増幅器及びその制御方法
JP2010187334A (ja) * 2009-02-13 2010-08-26 Toshiba Corp 非線形歪み補償装置
WO2020178954A1 (ja) 2019-03-04 2020-09-10 三菱電機株式会社 受信装置および受信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4266586A4

Also Published As

Publication number Publication date
CA3204256A1 (en) 2022-08-11
EP4266586A4 (en) 2024-02-07
JPWO2022168189A1 (ja) 2022-08-11
EP4266586A1 (en) 2023-10-25
CA3204256C (en) 2023-12-19
JP7233625B1 (ja) 2023-03-06
US20230299860A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
EP2207264B1 (en) Analogue to digital converting
KR100914700B1 (ko) 이득 제어 방법 및 장치
US20080096500A1 (en) Method for Calibrating Automatic Gain Control in Wireless Devices
US7583809B2 (en) Sound signal processing device and sound signal processing method
US7884745B2 (en) Analogue to digital conversion
JP2006524462A (ja) 利得補償
US7277511B2 (en) Two-stage non-linear filter for analog signal gain control in an OFDM receiver
US20230299860A1 (en) Reception device and a/d conversion method
WO2011086752A1 (ja) 増幅装置及び信号処理装置
AU5196700A (en) Adaptive gain and/or phase adjustment control system and method
US11641211B2 (en) Receiver device and reception method
US20100045375A1 (en) Device for the low-distortion transformation, particularly amplification of signals
JP5126364B2 (ja) 送信装置および調整値測定方法
KR101355381B1 (ko) I 신호 및 q 신호간의 임밸런스를 감소시키기 위한 수신장치 및 방법, 송신 장치 및 방법
WO2009128191A1 (ja) 振幅制御回路、ポーラ変調送信回路、及び、ポーラ変調方法
JP5100339B2 (ja) 電力増幅器
KR100450960B1 (ko) 디지털 가변 이득 증폭 장치 및 방법
US10797717B2 (en) Signal processing device and transceiver
JP2012034222A (ja) 無線装置
KR20160099975A (ko) 광대역 신호 송신이득 조절 장치 및 그 신호 처리 방법
GB2425227A (en) Analogue to digital conversion arrangement
JP2009117884A (ja) 無線通信システム及び無線信号合成方法
GB2425226A (en) Analogue to digital conversion with enhanced sensitivity mode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576357

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3204256

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021924586

Country of ref document: EP

Effective date: 20230719

NENP Non-entry into the national phase

Ref country code: DE