WO2022166925A1 - 氧化钼焙烧系统 - Google Patents

氧化钼焙烧系统 Download PDF

Info

Publication number
WO2022166925A1
WO2022166925A1 PCT/CN2022/075191 CN2022075191W WO2022166925A1 WO 2022166925 A1 WO2022166925 A1 WO 2022166925A1 CN 2022075191 W CN2022075191 W CN 2022075191W WO 2022166925 A1 WO2022166925 A1 WO 2022166925A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
rotary kiln
inlet
hot air
flue gas
Prior art date
Application number
PCT/CN2022/075191
Other languages
English (en)
French (fr)
Inventor
杜国山
刘振举
唐建文
羡鹏飞
周文龙
桑园
李少华
Original Assignee
中国恩菲工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120368504.4U external-priority patent/CN214620594U/zh
Priority claimed from CN202110182521.3A external-priority patent/CN112902657B/zh
Application filed by 中国恩菲工程技术有限公司 filed Critical 中国恩菲工程技术有限公司
Publication of WO2022166925A1 publication Critical patent/WO2022166925A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases

Definitions

  • the invention relates to the technical field of molybdenum smelting, in particular to a molybdenum oxide roasting system.
  • the roasting of molybdenum concentrate generally adopts a flash dryer and an internal heating rotary kiln.
  • the molybdenum concentrate is fed into the flash dryer through a feeder.
  • This flash dryer is equipped with an independent heat source, and an indirect heat exchange hot blast furnace is generally used.
  • the disadvantage is that the energy consumption is high, and the coal consumption of the hot blast furnace is large, which greatly increases the roasting cost of molybdenum concentrate and wastes energy.
  • the rotary kiln has been transformed to save energy, and the heat generated in the high-temperature zone of the rotary kiln is used in the low-temperature zone, saving part of the heat.
  • a molybdenum concentrate self-heating roasting device is proposed.
  • the heat exchanger on the rotary kiln conducts the heat from the outer part of the middle section of the rotary kiln body to the desulfurization low temperature zone of the rotary kiln head, changing the rotary kiln. Warm field, save energy.
  • a rotary kiln for roasting molybdenum oxide with a waste heat utilization system is also proposed, in which the hot air is returned to the rotary kiln after heat exchange with roasting exhaust gas.
  • the inventors of the present application have found that only part of the heat of molybdenum concentrate roasting is recovered, and the full recycling of energy cannot be realized, and the related technology does not form continuous production, the automation level is low, and the efficiency is low.
  • the solubility of molybdenum oxide is low.
  • the present invention aims to solve one of the technical problems in the related art at least to a certain extent.
  • the embodiment of the present invention proposes a molybdenum oxide roasting system that can fully recycle heat, reduce energy consumption, and have a high degree of automation, which can also improve the solubility of molybdenum oxide.
  • the molybdenum oxide roasting system includes: a first rotary kiln, the first rotary kiln has a first feed inlet, a first flue gas outlet, a first hot air inlet, a first flue gas inlet and a first A discharge port; a first heat exchanger, the first heat exchanger is arranged on the first rotary kiln, and the first heat exchanger has a first heat exchange air inlet and a first heat exchange hot air outlet; hot air a distributor, the hot air distributor has a hot air distribution inlet, a first hot air distribution outlet and a second hot air distribution outlet, the hot air distribution inlet is connected to the first heat exchange hot air outlet, and the first hot air distribution outlet Connected to the first hot air inlet; the second rotary kiln, the second rotary kiln has a second feed port, a second flue gas outlet, a second hot air inlet and a second discharge port, the second feed port The port is connected with the first hot air inlet;
  • the molybdenum oxide roasting system according to the embodiment of the present invention, all heat can be recycled, energy consumption can be reduced, the degree of automation can be improved, and the solubility of molybdenum oxide can be improved.
  • the molybdenum oxide roasting system further includes a first dust collector, the first dust collector has a first dust collector inlet, a dry exhaust gas outlet and a first dust collector outlet, the first dust collector The inlet is connected with the drying outlet, and the first dust collecting outlet is connected with the first feed inlet.
  • the molybdenum oxide roasting system further includes a second dust collector, the second dust collector has a second dust collection inlet, a third flue gas outlet and a second dust collection outlet, the second dust collector The dust collection inlet is connected with the second heat exchange flue gas outlet, and the second dust collection outlet is connected with the first dust collection inlet.
  • the first dust collector and the second dust collector are both bag dust collectors.
  • the first feed port and the first flue gas outlet are adjacent to the first end of the first rotary kiln, the first discharge port, the first hot air inlet and the first end of the rotary kiln
  • the first flue gas inlet is adjacent to the second end of the rotary kiln.
  • the second feed port and the second flue gas outlet are adjacent to the first end of the second rotary kiln, and the second hot air inlet and the second discharge port are adjacent to the first end of the second rotary kiln The second end of the second rotary kiln.
  • the first heat exchanger includes a plurality of heat exchange tubes, and the heat exchange tubes are attached to the outer wall of the first rotary kiln along the circumferential direction of the first rotary kiln and along the circumference of the first rotary kiln.
  • the axial direction of the first rotary kiln is located in the middle of the first rotary kiln.
  • the molybdenum oxide roasting system further includes a first fan and a second fan, the air outlet of the first fan is connected to the first heat exchange air inlet, and the air outlet of the second fan is connected to the The second heat exchange air inlets are connected.
  • the molybdenum oxide roasting system further includes an acid production subsystem, and the acid production subsystem is connected to the third flue gas outlet.
  • the solubility of molybdenum oxide discharged from the second outlet is greater than 90%.
  • FIG. 1 is a schematic structural diagram of a molybdenum oxide roasting system according to an embodiment of the present invention.
  • the first rotary kiln 1 The first rotary kiln 1
  • High temperature crusher 12 first crushing inlet 121, first crushing outlet 122,
  • Cooler 13 first cooling inlet 131, first cooling outlet 132,
  • Conveyor 14 elevator 15 , silo 16 , packaging machine 17 , first feeder 18 , second feeder 19 , silo pump 20 .
  • the molybdenum oxide roasting system includes a first rotary kiln 1, a first heat exchanger 2, a hot air distributor 3, a second rotary kiln 4, a second heat exchanger 5 and a drying bed 6.
  • the first rotary kiln 1 has a first feeding port 101 , a first flue gas outlet 102 , a first hot air inlet 103 , a first flue gas inlet 104 and a first discharging port 105 .
  • the first heat exchanger 2 is provided on the first rotary kiln 1 , and the first heat exchanger 2 has a first heat exchange air inlet 201 and a first heat exchange hot air outlet 202 . It should be noted that the first heat exchanger 2 rotates together with the first rotary kiln 1 , and the first heat exchanger 2 is arranged in the high temperature region of the first rotary kiln 1 .
  • the first heat exchange air inlet 201 is provided at the left end of the first heat exchanger 2
  • the first heat exchange hot air outlet 202 is provided at the right end of the first heat exchanger 2 .
  • the hot air distributor 3 has a hot air distribution inlet 301, a first hot air distribution outlet 302 and a second hot air distribution outlet 303.
  • the hot air distribution inlet 301 is connected to the first heat exchange hot air outlet 202, and the first hot air distribution outlet 302 is connected to the first hot air.
  • Inlet 103 is connected.
  • the second rotary kiln 4 has a second feed port 401, a second flue gas outlet 402, a second hot air inlet 403 and a second discharge port 404.
  • the second feed port 401 is connected to the first discharge port 105, and the second feed port 401 is connected to the first discharge port 105.
  • the flue gas outlet 402 is connected to the first flue gas inlet 104
  • the second hot air inlet 403 is connected to the second hot air distribution outlet 303 .
  • the second feeder 19 is provided at the second feed port 401 .
  • the second heat exchanger 5 has a second heat exchange flue gas inlet 501, a second heat exchange flue gas outlet 502, a second heat exchange air inlet 503 and a second heat exchange air outlet 504.
  • the second heat exchange flue gas inlet 501 is connected to The first flue gas outlet 102 is connected.
  • the drying bed 6 has a drying inlet 601 , a drying hot air inlet 602 and a drying outlet 603 .
  • the first feeder 18 is arranged between the first rotary kiln 1 and the drying bed 6 , and the feed end of the first feeder 18 is connected to the drying outlet 603 .
  • the discharge end of 18 is connected to the first feed port 101 .
  • the first feeder 18 can quantitatively transport materials into the first rotary kiln 1 .
  • the first heat exchanger 2 converts the heat generated by the first rotary kiln 1 into high-temperature hot air, and divides the high-temperature hot air into two paths. Enter the first rotary kiln 1 and drive the sulfur-containing flue gas into the second heat exchanger 5, and the second heat exchanger 5 discharges the hot air generated after the sulfur-containing flue gas heat exchange to the drying bed 6 for molybdenum concentrate. After drying, the other way enters the second rotary kiln 4 after being distributed by the hot air distributor 3 for deep oxidation of the second rotary kiln 4 and maintaining the heat balance in the second rotary kiln 4 .
  • the molybdenum oxide can be deeply oxidized, and the solubility of the molybdenum oxide can be improved.
  • the molybdenum oxide roasting system further includes a first dust collector 7, the first dust collector 7 has a first dust collection inlet 701, a dry exhaust gas outlet 702 and a first dust collection outlet 703, and the first dust collection inlet 701 is connected with the drying outlet 603 , and the first dust collecting outlet 703 is connected with the first feeding port 101 .
  • the first dust collection outlet 703 is connected to the first feeder 18 .
  • the first feeder 18 can quantitatively transport the materials in the first dust collector 7 to the first rotary kiln 1 , so as to improve the roasting efficiency of the first rotary kiln 1 and the production quality of molybdenum oxide.
  • the molybdenum oxide roasting system further includes a second dust collector 8, the second dust collector 8 has a second dust collection inlet 801, a third flue gas outlet 802 and a second dust collection outlet 803, the second dust collector 8 has a second dust collector
  • the dust inlet 801 is connected with the second heat exchange flue gas outlet 502
  • the second dust collection outlet 803 is connected with the first dust collection inlet 701 .
  • the first dust collector 7 may also be provided with a third dust collection inlet 704
  • the second dust collection outlet 803 may also be connected to the third dust collection inlet 704 .
  • the molybdenum oxide roasting system further includes a silo pump 20, the feed port of the silo pump 20 is connected to the second dust collection outlet 803, and the discharge port of the silo pump 20 is connected to the first dust collection inlet 701 ,
  • the discharge port of the silo pump 20 can also be optionally connected to the third dust collection inlet.
  • the dust in the flue gas can be treated and the pollution can be reduced. production efficiency.
  • the first dust collector 7 and the second dust collector 8 are both bag dust collectors. It can be understood that the type of the dust collector in the embodiment of the present application is not limited to this, for example, it may also be an electric precipitator, a wet precipitator, an electric bag precipitator or a cyclone precipitator.
  • the first feed port 101 and the first flue gas outlet 102 are adjacent to the first end of the first rotary kiln 1 (the left end of the first rotary kiln 1 as shown in FIG. 1 ), and the first discharge The port 105, the first hot air inlet 103 and the first flue gas inlet 104 are adjacent to the second end of the rotary kiln (the right end of the first rotary kiln 1 as shown in FIG. 1).
  • the second feed port 401 and the second flue gas outlet 402 are adjacent to the first end of the second rotary kiln 4 (the left end of the second rotary kiln 4 as shown in FIG. 1 ), and the second hot air inlet 403 and the second outlet 404 are adjacent to the second end of the second rotary kiln 4 (the right end of the second rotary kiln 4 as shown in FIG. 1 ).
  • the first heat exchanger 2 includes a plurality of heat exchange tubes, and the plurality of heat exchange tubes are attached to the outer wall of the first rotary kiln 1 along the circumferential direction of the first rotary kiln 1 and along the first rotary kiln 1 .
  • the axial direction of 1 is located in the middle of the first rotary kiln 1 .
  • the plurality of heat exchange tubes are arranged in parallel with each other, and the heat exchange tubes are arranged coaxially with the first rotary kiln 1 , and the dimensions of the plurality of heat exchange tubes in the axial direction of the first rotary kiln 1 are the same.
  • the molybdenum oxide roasting system of the embodiment of the present invention can improve the heat exchange efficiency by arranging a plurality of heat exchange tubes.
  • the molybdenum oxide roasting system further includes a first fan 9 and a second fan 10, the air outlet of the first fan 9 is connected to the first heat exchange air inlet 201, and the air outlet of the second fan 10 is connected to the second heat exchanger The hot air inlet 503 is connected.
  • first fan 9 is a variable frequency fan and the air volume it generates can be adjusted.
  • second fan 10 can also be a variable frequency fan and the air volume it generates can be adjusted.
  • the first fan 9 can be directly connected to the first rotary kiln 1 and rotate with the first rotary kiln 1 , or can be set on the ground and connected to the first rotary kiln through a sliding sealing ring. 1 is connected.
  • the air inlet end of the first fan 9 can be connected to the oxygen pipeline, so as to reduce the oxygen content in the hot air generated by the first rotary kiln 1. Increase to 25%-30%.
  • the molybdenum oxide roasting system further includes an acid-generating subsystem 11 , and the acid-generating subsystem 11 is connected to the third flue gas outlet 802 .
  • the roasting system in the embodiment of the present invention can remove SO 2 in the flue gas by being arranged in the acid making subsystem 11 , thereby reducing environmental pollution.
  • the solubility of molybdenum oxide discharged from the second outlet 404 is greater than 90%.
  • the molybdenum oxide roasting system further includes a high temperature crusher 12, the high temperature crusher 12 is arranged between the first rotary kiln 1 and the second rotary kiln 4, and the high temperature crusher 12 includes a first crushing inlet 121 and a second rotary kiln 12.
  • a crushing outlet 122, the first crushing inlet 121 is connected with the first material outlet 105, and the first crushing outlet 122 is connected with the second feeding port 401.
  • the high temperature crusher 12 is located directly below the first outlet 105 and directly above the second inlet 401 to achieve the lowest conveying stroke and reduce the heat loss of molybdenum oxide.
  • the package of the molybdenum oxide particles can be opened, and the particle size can be refined, which is beneficial to the second rotary kiln 4 Deep oxidation of molybdenum oxide.
  • the molybdenum oxide roasting system further includes a cooler 13 , and the cooler 13 is disposed directly below the second outlet 404 , and the cooler 13 cools the molybdenum oxide produced by the second rotary kiln 4 .
  • the cooler 13 has a first cooling inlet 131 and a first cooling outlet 132, and the first cooling inlet 131 is connected with the second outlet 404.
  • the cooler 13 is a water-cooled spiral cooler 13 . It can be understood that, the cooler 13 in the embodiment of the present invention is not so obvious.
  • the molybdenum oxide roasting system further includes a packaging subsystem, which is connected to the second outlet 404, and the packaging subsystem includes a conveyor 14, an elevator 15, a silo 16, and a packaging machine 17.
  • the conveyor 14 is located directly below the first cooling outlet 132, and is used to transport the molybdenum oxide discharged from the second rotary kiln 4.
  • the elevator 15 is used to lift the molybdenum oxide discharged from the conveyor 14.
  • the inlet of the silo 16 is connected to the elevator 15.
  • the discharge ports are connected, the silo 16 is used to store molybdenum oxide, and the packaging machine 17 is arranged directly below the silo 16, and the packaging machine 17 is used to pack the molybdenum oxide.
  • the conveyor 14 can be connected with multiple sets of roasting systems, so as to realize the parallel production of multiple sets of roasting systems, and improve the production efficiency of molybdenum oxide.
  • the molybdenum oxide roasting system in the embodiment of the present invention can automatically transport, store and pack the molybdenum oxide produced by the roasting system by being arranged in the packaging subsystem, thereby improving the automation degree of molybdenum oxide production.
  • the molybdenum concentrate continuously enters the drying bed 6, and the hot air generated by the second heat exchanger 5 enters the drying bed 6 to continuously dry the molybdenum concentrate.
  • the hot air carries the molybdenum concentrate and enters the first dust collector 7, and the dried tail gas is directly discharged into the The dust collector 7 is discharged.
  • the molybdenum concentrate has a molybdenum-containing grade of 38%-60% and a moisture content of less than 15%.
  • the equipment for continuously transporting the molybdenum concentrate to the drying bed 6 can be a screw feeder or a rigid impeller.
  • the moisture content of the molybdenum concentrate after drying in the drying bed 6 is less than 6%.
  • the air volume and temperature of the hot air used in the drying bed 6 generated by the second heat exchanger 5 can be adjusted according to the water content of the molybdenum concentrate and the feeding amount. Specifically, the temperature of the drying hot air is 200-350°C.
  • the molybdenum concentrate in the first dust collector 7 enters the first rotary kiln 1 quantitatively through the first feeder 18, and the molybdenum concentrate undergoes an oxidation reaction in the first rotary kiln 1 to produce industrial molybdenum oxide.
  • the proportion of MoO 3 in the industrial molybdenum oxide in the rotary kiln 1 is 60%-70%.
  • the industrial molybdenum oxide in the first rotary kiln 1 enters the high-temperature crusher 12 for crushing, and the crushed industrial molybdenum oxide enters the second rotary kiln 4 for deep oxidation, and is discharged into the cooler 13 through the second discharge port 404 , after passing through the cold zone of the cooler 13, it is discharged to the packaging subsystem for storage and packaging.
  • the solubility rate of the industrial molybdenum oxide discharged from the second outlet 404 is greater than 90%, that is, the proportion of MoO 3 in the industrial molybdenum oxide is greater than 90%.
  • the first fan 9 blows cold air into the first heat exchanger 2, and after the heat exchange, the heat generated by the first rotary kiln 1 is converted into high-temperature hot air.
  • the hot air distributor 3 After the hot air distributor 3 is distributed, it re-enters the first rotary kiln 1 and drives the sulfur-containing flue gas into the second heat exchanger 5.
  • the second heat exchanger 5 discharges the hot air generated after the heat exchange of the sulfur-containing flue gas to dry
  • the bed 6 is used for drying the molybdenum concentrate, and the other way enters the second rotary kiln 4 after being distributed by the hot air distributor 3 for deep oxidation of the second rotary kiln 4 and maintaining the heat balance in the second rotary kiln 4 .
  • the sulfur-containing flue gas generated in the first rotary kiln 1 is discharged into the second heat exchanger 5 through the first flue gas outlet 102, and the second heat exchanger 5 uses the hot air generated by the heat exchange of the sulfur-containing flue gas for the drying bed. 6.
  • the molybdenum concentrate is dried, and the sulfur-containing flue gas after cooling enters the second dust collector 8 for dust collection, and the dust collected in the second dust collector 8 is re-discharged into the first dust collector 7, and the second The flue gas in the dust collector 8 enters the acid production subsystem 11 to produce acid or sodium sulfite.
  • the sulfur content in the sulfur-containing flue gas produced by the first rotary kiln 1 is 2%-4.5%.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between the two components, unless otherwise expressly qualified.
  • installed installed
  • connected connected
  • fixed a detachable connection
  • it can be a mechanical connection or an electrical connection or can communicate with each other
  • it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between the two components, unless otherwise expressly qualified.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • a first feature "on” or “under” a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the terms “one embodiment,” “some embodiments,” “example,” “specific example,” or “some examples” and the like mean a specific feature, structure, material, or description described in connection with the embodiment or example. Features are included in at least one embodiment or example of the invention. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

本发明属于钼冶炼技术领域,本发明公开了一种氧化钼焙烧系统,包括第一回转窑、第一换热器、热风分配器、第二回转窑、第二换热器、干燥床和第一进料机,第一回转窑一端与第二换热器相连,第一回转窑另一端与第二回转窑相连,第一换热器设在第一回转窑上,热风分配器的一端与第一换热器相连,热风分配器的另一端分别于第一回转窑和第二回转窑相连,第二换热器的一端与第一回转窑相连,第二换热器另一端与干燥床相连,第一进料机设在所述干燥床与所述第一回转窑之间。

Description

氧化钼焙烧系统
相关申请的交叉引用
本申请基于申请号为202110182521.3、申请日为2021年02月07日的中国专利申请,和申请号为202120368504.4、申请日为2021年02月07日的中国专利申请提出,并要求以上中国专利申请的优先权,以上中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及钼冶炼技术领域,具体涉及一种氧化钼焙烧系统。
背景技术
目前,钼精矿的焙烧普遍采用闪蒸干燥机和内热式回转窑,钼精矿经加料机加入闪蒸干燥机,这种闪蒸干燥机设有独立的热源,一般采用间接换热热风炉来提供干燥所需的热能,其缺点是能耗较高,热风炉煤耗量大,大大增加了钼精矿的焙烧成本,浪费了能源。
相关技术中,对回转窑进行了节能改造,将回转窑高温区产生的热量用于低温区,节约了部分热量。例如,相关技术中,提出了一种钼精矿自热式焙烧装置,在回转窑上换热器,将回转窑窑体中段的外侧部分热量传导至回转窑窑头脱硫低温区,改变回转窑温场,节约能源。
相关技术中,还提出了一种带有废热利用系统的焙烧氧化钼用回转窑,利用焙烧尾气换热后热风返回到回转窑的窑型。然而本申请的发明人研究发现,仅对钼精矿焙烧部分热量进行了回收,无法实现能量的全部循环利用,并且相关技术并未形成连续化生产,自动化水平低,效率低,相关技术中生产出的氧化钼的可溶率较低。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的实施例提出一种热量全部循环利用、能耗降低、自动化程度高的氧化钼焙烧系统,可还提高氧化钼的可溶率。
根据本发明实施例的氧化钼焙烧系统,包括:第一回转窑,所述第一回转窑具有第一进料口、第一烟气出口、第一热风进口、第一烟气进口和第一出料口;第一换热器,所述第一换热器设在所述第一回转窑上,所述第一换热器具有第一换热进风口和第一换热热风出口;热风分配器,所述热风分配器具有热风分配进风口、第一热风分配出口和第二热风分配出口,所述热风分配进风口与所述第一换热热风出口相连,所述第一热风分配出口与所述第一热风进口相连;第二回转窑,所述第二回转窑具有第二进料口、第二烟气出口、第二热风进口和第二出料口,所述第二进料口与所述第一出料口相连,所述第二烟气出口与所述第一烟气进口相连,所述第二热风进口与所述第二热风分配出口 相连;第二换热器,所述第二换热器具有第二换热烟气进口、第二换热烟气出口、第二换热进风口和第二换热出风口,所述第二换热烟气进口与所述第一烟气出口相连;干燥床,所述干燥床具有干燥进料口、干燥热风进口和干燥出料口,所述干燥热风进口与所述第二换热出风口相连,所述干燥出料口与所述第一进料口相连;第一进料机,第一进料机设在所述干燥床与所述第一回转窑之间。
根据本发明实施例的氧化钼焙烧系统,能够将热量全部循环利用、降低能耗、提高自动化程度,可还提高氧化钼的可溶率。
在一些实施例中,所述氧化钼焙烧系统还包括第一收尘器,所述第一收尘器具有第一收尘进口、干燥尾气出口和第一收尘出口,所述第一收尘进口与所述干燥出料口相连,所述第一收尘出口与所述第一进料口相连。
在一些实施例中,所述氧化钼焙烧系统还包括第二收尘器,所述第二收尘器具有第二收尘进口、第三烟气出口和第二收尘出口,所述第二收尘进口与所述第二换热烟气出口相连,所述第二收尘出口与所述第一收尘进口相连。
在一些实施例中,所述第一收尘器和所述第二收尘器均为布袋收尘器。
在一些实施例中,所述第一进料口和所述第一烟气出口邻近所述第一回转窑的第一端,所述第一出料口、所述第一热风进口和所述第一烟气进口邻近所述回转窑的第二端。
在一些实施例中,所述第二进料口、所述第二烟气出口邻近所述第二回转窑的第一端,所述第二热风进口和所述第二出料口邻近所述第二回转窑的第二端。
在一些实施例中,所述第一换热器包括多个换热管,所述换热管沿所述第一回转窑的周向贴设在所述第一回转窑的外壁上且沿所述第一回转窑的轴向位于所述第一回转窑的中间。
在一些实施例中,所述氧化钼焙烧系统还包括第一风机和第二风机,所述第一风机的出风口与所述第一换热进风口相连,所述第二风机的出风口与所述第二换热进风口相连。
在一些实施例中,所述氧化钼焙烧系统还包括制酸子系统,所述制酸子系统与所述第三烟气出口相连。
在一些实施例中,所述第二出料口排出的氧化钼可溶率大于90%。
附图说明
图1是根据本发明实施例的氧化钼焙烧系统的结构示意图。
附图标记:
第一回转窑1
第一进料口101,第一烟气出口102,第一热风进口103,第一烟气进口104,第一出料口105,
第一换热器2,
第一换热进风口201,第一换热热风出口202,
热风分配器3,
热风分配进风口301,第一热风分配出口302,第二热风分配出口303,
第二回转窑4,
第二进料口401,第二烟气出口402,第二热风进口403,第二出料口404,
第二换热器5,
第二换热烟气进口501,第二换热烟气出口502,第二换热进风口503,第二换热出风口504,
干燥床6,
干燥进料口601,干燥热风进口602,干燥出料口603,
第一收尘器7,
第一收尘进口701,干燥尾气出口702,第一收尘出口703,第三收尘进口704,
第二收尘器8,
第二收尘进口801,第三烟气出口802,第二收尘出口803,
第一风机9,第二风机10,制酸子系统11,
高温破碎机12,第一破碎进口121,第一破碎出口122,
冷却器13,第一冷却进口131,第一冷却出口132,
输送机14,提升机15,料仓16,包装机17,第一进料机18,第二进料机19,仓式泵20。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
如图1所示,根据本发明实施例的氧化钼焙烧系统包括第一回转窑1、第一换热器2、热风分配器3、第二回转窑4、第二换热器5和干燥床6。
第一回转窑1具有第一进料口101、第一烟气出口102、第一热风进口103、第一烟气进口104和第一出料口105。
第一换热器2设在第一回转窑1上,第一换热器2具有第一换热进风口201和第一换热热风出口202。需要说明的是,第一换热器2跟随第一回转窑1一起转动,第一换热器2设在第一回转窑1的高温区。
如图1所示,具体地,第一换热进风口201设在第一换热器2的左端,第一换热热风出口202设在第一换热器2的右端。
热风分配器3具有热风分配进风口301、第一热风分配出口302和第二热风分配出口303,热风分配进风口301与第一换热热风出口202相连,第一热风分配出口302与第一热风进口103相连。
第二回转窑4具有第二进料口401、第二烟气出口402、第二热风进口403和第二出料口404,第二进料口401与第一出料口105相连,第二烟气出口402与第一烟气进 口104相连,第二热风进口403与第二热风分配出口303相连。如图1所示,第二进料口401处设有第二进料机19。
第二换热器5具有第二换热烟气进口501、第二换热烟气出口502、第二换热进风口503和第二换热出风口504,第二换热烟气进口501与第一烟气出口102相连。
干燥床6具有干燥进料口601、干燥热风进口602和干燥出料口603,干燥热风进口602与第二换热出风口504相连,干燥出料口603与第一进料口101相连。如图1所示,第一进料机18设在第一回转窑1和干燥床6之间,且第一进料机18的进料端与干燥出料口603相连,第一进料机18的出料端与第一进料口101相连。第一进料机18能够定量的将物料输送至第一回转窑1内。
根据本发明实施例的氧化钼焙烧系统,第一换热器2将第一回转窑1产生的热量转换为高温热风,并将高温热风分为两路,一路经过热风分配器3的分配后重新进入第一回转窑1内并带动含硫烟气进入第二换热器5内,第二换热器5将含硫烟气换热后产生的热风排至干燥床6用于对钼精矿进行干燥,另一路经过热风分配器3的分配后进入第二回转窑4内用于第二回转窑4的深度氧化和维持第二回转窑4内的热平衡。通过第一回转窑1和第二回转窑4的焙烧,能够对氧化钼进行深度氧化,提高氧化钼的可溶率。
在一些实施例中,氧化钼焙烧系统还包括第一收尘器7,第一收尘器7具有第一收尘进口701、干燥尾气出口702和第一收尘出口703,第一收尘进口701与干燥出料口603相连,第一收尘出口703与第一进料口101相连。
如图1所示,具体地,第一收尘出口703与第一进料机18相连。第一进料机18能够将第一收尘器7内的物料定量的输送至第一回转窑1中,提高第一回转窑1的焙烧效率和氧化钼的生产质量。
在一些实施例中,氧化钼焙烧系统还包括第二收尘器8,第二收尘器8具有第二收尘进口801、第三烟气出口802和第二收尘出口803,第二收尘进口801与第二换热烟气出口502相连,第二收尘出口803与第一收尘进口701相连。
如图1所示,具体地,第一收尘器7上还可设在第三收尘进口704,第二收尘出口803还可与第三收尘进口704相连。
在一些实施例中,氧化钼焙烧系统还包括仓式泵20,仓式泵20的进料口与第二收尘出口803相连,仓式泵20的出料口与第一收尘进口701相连,当然,仓式泵20的出料口还可以选择与第三收尘进口相连。
本发明实施例的氧化钼焙烧系统,通过设置第二收尘器8,能够处理烟气中的灰尘,减小污染,通过设置仓式泵20,提高烟气中灰尘的输送效率,提高焙烧系统的生产效率。
在一些实施例中,第一收尘器7和第二收尘器8均为布袋收尘器。可以理解的是,本申请实施例中的收尘器种类并不限于此,例如还可以是电收尘器、湿式收尘器、电袋收尘器或旋风收尘器。
在一些实施例中,第一进料口101和第一烟气出口102邻近第一回转窑1的第一端(如图1中所示的第一回转窑1的左端),第一出料口105、第一热风进口103和第一 烟气进口104邻近回转窑的第二端(如图1中所示的第一回转窑1的右端)。
在一些实施例中,第二进料口401、第二烟气出口402邻近第二回转窑4的第一端(如图1中所示的第二回转窑4的左端),第二热风进口403和第二出料口404邻近第二回转窑4的第二端(如图1中所示的第二回转窑4的右端)。
在一些实施例中,第一换热器2包括多个换热管,多个换热管沿第一回转窑1的周向贴设在第一回转窑1的外壁上且沿第一回转窑1的轴向位于第一回转窑1的中间。
如图1所示,多个换热管彼此之间平行布置,且换热管与第一回转窑1同轴布置,多个换热管在第一回转窑1的轴向上的尺寸相同。
本发明实施例的氧化钼焙烧系统,通过设置多个换热管,能够提高换热效率。
在一些实施例中,氧化钼焙烧系统还包括第一风机9和第二风机10,第一风机9的出风口与第一换热进风口201相连,第二风机10的出风口与第二换热进风口503相连。
需要说明的是,第一风机9为变频风机且其产生的风量可调节,可以理解的是,第二风机10也可以为变频风机且其产生的风量可调节。
如图1所示,具体地,第一风机9可直接与第一回转窑1相连,并跟随第一回转窑1一起转动,也可以设在地面上,并通过滑动密封环与第一回转窑1相连。
需要说明的是,为了维持焙烧系统的热平衡,减小空气进入第一回转窑1,第一风机9的进风端可与氧气管道相连,将第一回转窑1产生的热风内的含氧量提高至25%-30%。
在一些实施例中,氧化钼焙烧系统还包括制酸子系统11,制酸子系统11与第三烟气出口802相连。
本发明实施例的焙烧系统,通过设在制酸子系统11,可脱去烟气中的SO 2,减小环境污染。
在一些实施例中,第二出料口404排出的氧化钼可溶率大于90%。
在一些实施例中,氧化钼焙烧系统还包括高温破碎机12,高温破碎机12设在第一回转窑1和第二回转窑4之间,且高温破碎机12包括第一破碎进口121和第一破碎出口122,第一破碎进口121与第一出料口105相连,第一破碎出口122与第二进料口401相连。
需要说明的是,高温破碎机12设在第一出料口105的正下方且位于第二进料口401的正上方,实现最低的输送行程,减小氧化钼的热量损失。
本发明实施例的氧化钼焙烧系统,通过在第一回转窑1和第二回转窑4之间设置高温破碎机12,能够打开氧化钼颗粒的包裹,细化粒径,有利于第二回转窑4对氧化钼的深度氧化。
在一些实施例中,氧化钼焙烧系统还包括冷却器13,冷却器13设在第二出料口404的正下方,冷却器13对第二回转窑4产生的氧化钼进行冷却。
如图1所示,冷却器13具有第一冷却进口131和第一冷却出口132,第一冷却进口 131与第二出料口404相连。具体地,冷却器13为水冷螺旋冷却器13。可以理解的是,本发明实施例中的冷却器13并不显于此。
在一些实施例中,氧化钼焙烧系统还包括包装子系统,包装子系统与第二出料口404相连,包装子系统包括输送机14、提升机15、料仓16和包装机17,输送机14设在第一冷却出口132的正下方,用于输送第二回转窑4排出的氧化钼,提升机15用于提升有输送机14排出的氧化钼,料仓16的进口与提升机15的出料口相连,料仓16用于存储氧化钼,包装机17设在料仓16的正下方,包装机17用于对包装氧化钼。
需要说明的是,输送机14上可以与多套焙烧系统相连,实现多套焙烧系统的并联生产,提高了氧化钼的生产效率。
本发明实施例的氧化钼焙烧系统,通过设在包装子系统,能够将焙烧系统生产出的氧化钼进行自动化的输送、存储和包装,提高氧化钼生产的自动化程度。
下面参照图1描述本发明实施例的氧化钼焙烧系统的运行原理。
钼精矿连续进入干燥床6,第二换热器5产生的热风进入干燥床6对钼精矿连续干燥,热风携带钼精矿进入第一收尘器7,干燥后的尾气直接排出第一收尘器7排出。
需要说明的是,钼精矿的范围为含钼品位38%-60%,含水率小于15%。将钼精矿连续输送至干燥床6的设备可以为螺旋给料机或刚式叶轮。经过干燥床6干燥后的钼精矿的含水率小于6%。
第二换热器5产生的用于干燥床6使用的热风的风量及温度可以根据钼精矿含水量及加料量调节,具体地,干燥热风的温度为200-350℃。
第一收尘器7内的钼精矿通过第一进料机18定量的进入第一回转窑1内,钼精矿在第一回转窑1内发生氧化反应,生产出工业氧化钼,第一回转窑1内的工业氧化钼中的MoO 3的占比为60%-70%。
第一回转窑1内的工业氧化钼进入高温破碎机12内进行破碎,破碎后的工业氧化钼进入第二回转窑4内进行深度氧化,并通过第二出料口404排至冷却器13内,经过冷却器13冷区后排至包装子系统进行存储和包装。第二出料口404排出的工业氧化钼的可溶率大于90%,即工业氧化钼的MoO 3的占比大于90%。
第一风机9将冷风吹入第一换热器2内,并进过换热后将第一回转窑1产生的热量转换为高温热风,通过热风分配器3将高温热风分为两路,一路经过热风分配器3的分配后重新进入第一回转窑1内并带动含硫烟气进入第二换热器5内,第二换热器5将含硫烟气换热后产生的热风排至干燥床6用于对钼精矿进行干燥,另一路经过热风分配器3的分配后进入第二回转窑4内用于第二回转窑4的深度氧化和维持第二回转窑4内的热平衡。
第一回转窑1内产生的含硫烟气通过第一烟气出口102排至第二换热器5内,第二换热器5将含硫烟气换热后产生的热风用于干燥床6对钼精矿进行干燥,降温后的含硫烟气进入第二收尘器8内收尘,第二收尘器8内收集的烟尘重新排至第一收尘器7内,第二收尘器8内的烟气进入制酸子系统11制酸或制备亚硫酸钠。
需要说明的是,第一回转窑1产生的含硫烟气中的硫含量为2%-4.5%。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本发明中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种氧化钼焙烧系统,其特征在于,包括:
    第一回转窑,所述第一回转窑具有第一进料口、第一烟气出口、第一热风进口、第一烟气进口和第一出料口;
    第一换热器,所述第一换热器设在所述第一回转窑上,所述第一换热器具有第一换热进风口和第一换热热风出口;
    热风分配器,所述热风分配器具有热风分配进风口、第一热风分配出口和第二热风分配出口,所述热风分配进风口与所述第一换热热风出口相连,所述第一热风分配出口与所述第一热风进口相连;
    第二回转窑,所述第二回转窑具有第二进料口、第二烟气出口、第二热风进口和第二出料口,所述第二进料口与所述第一出料口相连,所述第二烟气出口与所述第一烟气进口相连,所述第二热风进口与所述第二热风分配出口相连;
    第二换热器,所述第二换热器具有第二换热烟气进口、第二换热烟气出口、第二换热进风口和第二换热出风口,所述第二换热烟气进口与所述第一烟气出口相连;
    干燥床,所述干燥床具有干燥进料口、干燥热风进口和干燥出料口,所述干燥热风进口与所述第二换热出风口相连,所述干燥出料口与所述第一进料口相连;
    第一进料机,第一进料机设在所述干燥床与所述第一回转窑之间。
  2. 根据权利要求1所述的氧化钼焙烧系统,其特征在于,还包括第一收尘器,所述第一收尘器具有第一收尘进口、干燥尾气出口和第一收尘出口,所述第一收尘进口与所述干燥出料口相连,所述第一收尘出口与所述第一进料口相连。
  3. 根据权利要求2所述的氧化钼焙烧系统,其特征在于,还包括第二收尘器,所述第二收尘器具有第二收尘进口、第三烟气出口和第二收尘出口,所述第二收尘进口与所述第二换热烟气出口相连,所述第二收尘出口与所述第一收尘进口相连。
  4. 根据权利要求3所述的氧化钼焙烧系统,其特征在于,所述第一收尘器和所述第二收尘器均为布袋收尘器。
  5. 根据权利要求1所述的氧化钼焙烧系统,其特征在于,所述第一进料口和所述第一烟气出口邻近所述第一回转窑的第一端,所述第一出料口、所述第一热风进口和所述第一烟气进口邻近所述回转窑的第二端。
  6. 根据权利要求5所述的氧化钼焙烧系统,其特征在于,所述第二进料口、所述第二烟气出口邻近所述第二回转窑的第一端,所述第二热风进口和所述第二出料口邻近所述第二回转窑的第二端。
  7. 根据权利要求1所述的氧化钼焙烧系统,其特征在于,所述第一换热器包括多个换热管,所述换热管沿所述第一回转窑的周向贴设在所述第一回转窑的外壁上且沿所述第一回转窑的轴向位于所述第一回转窑的中间。
  8. 根据权利要求1所述的氧化钼焙烧系统,其特征在于,还包括第一风机和第二风机,所述第一风机的出风口与所述第一换热进风口相连,所述第二风机的出风口与所 述第二换热进风口相连。
  9. 根据权利要求2所述的氧化钼焙烧系统,其特征在于,还包括制酸子系统,所述制酸子系统与所述第三烟气出口相连。
  10. 根据权利要求1至9中任一项所述的氧化钼焙烧系统,其特征在于,所述第二出料口排出的氧化钼可溶率大于90%。
PCT/CN2022/075191 2021-02-07 2022-01-30 氧化钼焙烧系统 WO2022166925A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110182521.3 2021-02-07
CN202120368504.4U CN214620594U (zh) 2021-02-07 2021-02-07 氧化钼焙烧系统
CN202110182521.3A CN112902657B (zh) 2021-02-07 2021-02-07 氧化钼焙烧系统
CN202120368504.4 2021-02-07

Publications (1)

Publication Number Publication Date
WO2022166925A1 true WO2022166925A1 (zh) 2022-08-11

Family

ID=82740862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075191 WO2022166925A1 (zh) 2021-02-07 2022-01-30 氧化钼焙烧系统

Country Status (1)

Country Link
WO (1) WO2022166925A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201858864U (zh) * 2010-07-21 2011-06-08 洛阳栾川钼业集团股份有限公司 钼精矿自热式焙烧装置
CN107906529A (zh) * 2017-12-08 2018-04-13 神雾科技集团股份有限公司 一种双回转窑热解系统及方法
CN108149006A (zh) * 2017-12-25 2018-06-12 东北大学 辉钼精矿自热式旋流焙烧工艺及设备
WO2018107663A1 (zh) * 2016-12-12 2018-06-21 朱书红 物料加热装置
CN209101827U (zh) * 2018-10-24 2019-07-12 株洲火炬工业炉有限责任公司 一种回转窑余热回收系统
CN112010332A (zh) * 2020-09-08 2020-12-01 南京凯盛国际工程有限公司 一种氧化铝熟料制备系统及其工艺流程
CN112902657A (zh) * 2021-02-07 2021-06-04 中国恩菲工程技术有限公司 氧化钼焙烧系统
CN214620594U (zh) * 2021-02-07 2021-11-05 中国恩菲工程技术有限公司 氧化钼焙烧系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201858864U (zh) * 2010-07-21 2011-06-08 洛阳栾川钼业集团股份有限公司 钼精矿自热式焙烧装置
WO2018107663A1 (zh) * 2016-12-12 2018-06-21 朱书红 物料加热装置
CN107906529A (zh) * 2017-12-08 2018-04-13 神雾科技集团股份有限公司 一种双回转窑热解系统及方法
CN108149006A (zh) * 2017-12-25 2018-06-12 东北大学 辉钼精矿自热式旋流焙烧工艺及设备
CN209101827U (zh) * 2018-10-24 2019-07-12 株洲火炬工业炉有限责任公司 一种回转窑余热回收系统
CN112010332A (zh) * 2020-09-08 2020-12-01 南京凯盛国际工程有限公司 一种氧化铝熟料制备系统及其工艺流程
CN112902657A (zh) * 2021-02-07 2021-06-04 中国恩菲工程技术有限公司 氧化钼焙烧系统
CN214620594U (zh) * 2021-02-07 2021-11-05 中国恩菲工程技术有限公司 氧化钼焙烧系统

Similar Documents

Publication Publication Date Title
CN103471373A (zh) 穿透式逆流烘干装置
CN102603937B (zh) 氯化聚乙烯专用闪蒸干燥加内加热流化床干燥系统及工艺
CN203529952U (zh) 一种结晶氯化铝焙烧系统
CN112902657B (zh) 氧化钼焙烧系统
CN108149006B (zh) 辉钼精矿自热式旋流焙烧工艺及设备
CN201569251U (zh) 一种褐煤无氧干燥系统
CN214620594U (zh) 氧化钼焙烧系统
CN102530923B (zh) 一种炭素原料高温电煅烧系统及方法
CN201858864U (zh) 钼精矿自热式焙烧装置
WO2022166925A1 (zh) 氧化钼焙烧系统
CN202432879U (zh) 高温矿渣余热回收系统
CN208223178U (zh) 一种单一氧化稀土悬浮焙烧装置
CN104748573B (zh) 一种从回转窑取风取热的方法及可取风取热的回转窑系统
CN103803650B (zh) 一种生产三氧化钼的方法
CN212655487U (zh) 一种粘土、高岭土煅烧装置
CN102757030A (zh) 炭素原料高温煅烧产品冷却方法
CN104848684B (zh) 一种双出料粉体动态煅烧炉
CN204848302U (zh) 一种高温煅烧α-氧化铝生产节能装置
CN110980806A (zh) 一种循环煅烧生产五氧化二钒粉剂的设备和方法
CN206440107U (zh) 冶金原料的干燥装置
CN106705621A (zh) 冶金原料的干燥装置及应用该装置的干燥方法
CN112129089A (zh) 一种分级式生物质滚筒烘干机
CN207973683U (zh) 一种碳酸镁干燥煅烧加工中心
CN206308401U (zh) 一种氧化钼焙烧生产线
CN216919042U (zh) 一种高活性氧化镁生产用的动态煅烧炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749204

Country of ref document: EP

Kind code of ref document: A1