WO2022166884A1 - 用于治疗心脏瓣膜或血管钙化的冲击波装置用电极和冲击波装置 - Google Patents

用于治疗心脏瓣膜或血管钙化的冲击波装置用电极和冲击波装置 Download PDF

Info

Publication number
WO2022166884A1
WO2022166884A1 PCT/CN2022/074972 CN2022074972W WO2022166884A1 WO 2022166884 A1 WO2022166884 A1 WO 2022166884A1 CN 2022074972 W CN2022074972 W CN 2022074972W WO 2022166884 A1 WO2022166884 A1 WO 2022166884A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
insulating layer
electrode assembly
conductor
shock wave
Prior art date
Application number
PCT/CN2022/074972
Other languages
English (en)
French (fr)
Inventor
丁上上
崔玉虎
陈剑锋
张一�
Original Assignee
沛嘉医疗科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沛嘉医疗科技(苏州)有限公司 filed Critical 沛嘉医疗科技(苏州)有限公司
Publication of WO2022166884A1 publication Critical patent/WO2022166884A1/zh
Priority to US18/366,345 priority Critical patent/US20230389947A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B17/22022Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement using electric discharge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B2017/22025Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement applying a shock wave
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22062Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation to be filled with liquid

Definitions

  • Heart valve calcification is the main pathological manifestation of heart valve stenosis and regurgitation, which usually occurs in the elderly; vascular calcification is a common common cause of atherosclerosis, hypertension, diabetic vascular disease, vascular damage, chronic kidney disease and aging. pathological manifestations.
  • the prior art shock wave device 900 for treating heart valve calcification includes a shock wave transmitter 920 and a balloon 910 .
  • the shock wave transmitter 920 includes an electrode cable and an electrode assembly 922, the electrode cable receives and conducts voltage/current pulses, and the electrode assembly 922 is electrically connected to the electrode cable for receiving the voltage/current pulses to generate shock waves.
  • the balloon 910 wraps around the shock wave launcher 920 and has retractable, foldable and insulating properties.
  • the balloon 910 also has a through hole for liquid to flow in, so that the inside of the balloon 910 is filled with liquid.
  • the balloon 910 After the interior of the balloon 910 is filled with liquid, the balloon 910 is inflated so that at least a portion of the outer surface of the balloon 910 is in contact with the calcified heart valve or blood vessel (hereinafter sometimes simply referred to as "calcified lesions” or “calcified lesions of the heart”). valve or blood vessel”).
  • the shock wave generated by the electrode assembly 922 is conducted radially to the surface of the balloon 910 through the liquid inside the balloon 910, and further conducted to the calcified lesion through the surface of the balloon.
  • the compressive stress of the shock wave can cause the calcified tissue in the calcified lesion to rupture.
  • a shock wave of appropriate intensity is sufficient to destroy the calcified tissue without placing additional burden on the soft tissue surrounding the calcified tissue.
  • the electrode assembly of the shock wave device in the prior art is mainly composed of a metal conductor and an insulating sheath, and higher energy is often required for the treatment of calcified lesions.
  • the voltage between the positive and negative electrodes of the shock wave electrode may reach 7-10KV, and the electrode discharges It will generate strong thermal energy and mechanical energy, which will cause destructive impact to the shock wave electrode structure, and cause a great test to the life of the shock wave electrode.
  • the accommodating space is often reduced, making it difficult for the balloon of the shock wave device to smoothly enter the calcified lesion. Therefore, there is a need for improvement in improving the accuracy and effectiveness of treatment for the location of calcified lesions, increasing the service life of shock wave electrodes under high pressure, and optimizing the design of electrode control systems.
  • the invention provides an electrode assembly for a shock wave device for treating heart valve or blood vessel calcification.
  • the electrode assembly can effectively reduce the attenuation of shock waves during conduction, and achieve a satisfactory therapeutic effect on heart valve or blood vessel calcification.
  • the electrode assembly of the present invention can significantly prolong the service life of the electrode and the shock wave device.
  • the electrode assembly of the present invention can also enable the shock wave device to quickly enter the calcified lesions in the blood vessel, thereby effectively shortening the operation time.
  • the present invention also provides a shock wave device using the electrode assembly of the present invention, a control system for controlling the shock wave device of the present invention, and a method for treating heart valve or blood vessel calcification using the shock wave device of the present invention.
  • an aspect of the embodiments of the present invention provides an electrode assembly for a shock wave device, the electrode assembly is disposed inside a balloon of the shock wave device, and the electrode assembly includes:
  • the first insulating layer has an elongated hollow structure
  • the inner electrode is located inside the first insulating layer
  • At least one of the first electrical conductor and the external electrode has a protrusion extending from the first electrical conductor and the external electrode. One extends toward the other of the first electrical conductor and the external electrode along the outer peripheral surface of the first insulating layer.
  • the electrode assembly further includes at least one second electrical conductor disposed on at least a portion of the outer peripheral surface of the first insulating layer and located on the first insulating layer. Between the conductor and the outer electrode, there are insulating gaps between the first conductor and the second conductor and between the second conductor and the outer electrode.
  • the electrode assembly includes 2 to 5 second electrical conductors.
  • connection portion is formed at the end of the inner electrode, and the connection portion electrically connects or disconnects the inner electrode and the first conductor with the axial movement of the inner electrode.
  • the inner electrode is a ring-shaped electrode with a wall thickness of 0.05-0.2 mm.
  • the outer electrode is a ring-shaped electrode with a wall thickness of 0.05 ⁇ 0.2 mm.
  • the first electrical conductor is a ring-shaped electrical conductor with a wall thickness of 0.05-0.2 mm.
  • the second electrical conductor is a ring-shaped electrical conductor with a wall thickness of 0.05-0.2 mm.
  • the electrode assembly according to an aspect of an embodiment of the present invention further includes a second insulating layer disposed inside the first insulating layer, and the inner electrode is disposed at an end of the second insulating layer on at least a portion of the outer peripheral surface.
  • the second insulating layer is a cylindrical insulating layer with an inner diameter of 0.3-0.4 mm and a wall thickness of 0.1-0.2 mm.
  • shock wave device which is characterized by comprising the aforementioned electrode assembly of the present invention.
  • Another aspect of the embodiments of the present invention provides a method for treating vascular wall calcification, characterized in that the aforementioned shock wave device of the present invention is used to treat the calcified part of the blood vessel.
  • an electrode assembly for a shock wave device for treating heart valve or blood vessel calcification can be provided.
  • the electrode assembly can not only effectively reduce the attenuation of shock waves during conduction, but also effectively prolong the service life of the electrode assembly, thereby safely and reliably achieving satisfactory therapeutic effects.
  • the shock wave device of the present invention is simple to operate, and the requirement for the operator to be skilled in operation is significantly reduced, so that the operation time can be significantly shortened, the burden of the treatment object can be reduced, the operation success rate can be improved, and the operation process can be effectively reduced. various risks.
  • FIG. 1 is a schematic structural diagram of a shock wave device in the prior art
  • FIG. 2 is a schematic structural diagram of an embodiment of the shock wave device of the present invention.
  • FIG. 3 is a schematic diagram of a use state of an embodiment of the shock wave device of the present invention.
  • FIGS. 4A-4C are schematic views of embodiments of an electrode assembly for a shock wave device of the present invention.
  • FIG. 5 is a schematic diagram of a modified example of the electrode assembly for a shock wave device of the present invention.
  • 6A and 6B are schematic views of a modified example of the electrode assembly for a shock wave device of the present invention.
  • shock wave is a general term for various forms of waves (such as pressure waves, etc.) that can be generated by the electrode assembly during discharge, and is not used to limit specific wave forms.
  • distal end or end of a component such as a shock wave device or electrode assembly refers to the end toward the tip of the lead that enters the subject during surgery
  • proximal end of the shock wave device or component thereof “Base end” refers to the end toward the handle that remains outside the subject's body during surgery.
  • plural refers to two or more than two, and in view of this, in the embodiment of the present invention, “plurality” may also be understood as “at least two”.
  • the character "/”, unless otherwise specified, generally indicates that the associated objects are an "or" relationship.
  • valve and “valve” are collective terms for valves including mitral, tricuspid, and aortic valves.
  • valves and blood vessels with calcified lesions are sometimes simply referred to as “calcified heart valves and blood vessels” or “calcified lesions”.
  • a shock wave device 100 includes at least one balloon 10 .
  • the balloon 10 has a balloon body therein.
  • the balloon body of the balloon 10 is cylindrical after inflation.
  • the shapes of the two end portions of the balloon 10 in the longitudinal direction are not particularly limited.
  • the balloon 10 of the shock wave device of the present invention may also have other shapes.
  • the balloon 10 may be formed from a polymeric material as a semi-compliant or non-compliant balloon, with stretchable, collapsible, and insulating properties.
  • the material for forming the balloon 10 is not particularly limited, for example, it may be nylon, polyether block amide (PEBA), polyethylene terephthalate (PET), or the like.
  • the balloon 10 also has at least one through hole, and the at least one through hole communicates with the connecting pipe, and is used for injecting liquid into the inside of the balloon 10 to inflate the balloon 10 . After the interior of the balloon 10 is filled with liquid, the balloon 10 is inflated so that at least a portion of the outer surface of the balloon 10 is in contact with the calcified heart valve or blood vessel (calcified lesion).
  • At least one shock wave transmitter is arranged inside the balloon 10, and the shock wave transmitter is used for receiving voltage/current pulses and generating shock waves.
  • the shock wave transmitter includes at least one electrode cable that receives and conducts voltage/current pulses and at least one electrode assembly 40 that is electrically connected to the electrode cable for receiving the voltage/current pulses to generate shock waves.
  • the shock wave generated by the electrode assembly 40 is radially conducted to the surface of the balloon 10 through the liquid inside the balloon 10 , and then conducted to the calcified lesion through the surface of the balloon.
  • the balloon 10 of the shock wave device 100 is positioned at, for example, a blood vessel location.
  • the position of the electrode assembly 40 in the balloon 10 corresponds to the calcified lesion, so that the distance between the electrode assembly 40 and the calcified lesion is the shortest.
  • the length of the body portion of the balloon 10 is 20-60mm, eg 20mm, 35mm, 40mm, 55mm or 60mm.
  • the length of the balloon 10 is too long, there is a possibility of causing damage to the heart tissue during the operation, and it is too difficult to bend the shock wave device during the delivery of the interventional operation.
  • the length of the balloon 10 is too short, it will increase the difficulty of positioning the shock wave device during the operation.
  • the liquid injected into the inside of the balloon 10 used in the shock wave device 100 of the present invention is not particularly limited.
  • the liquid may be an electrolyte liquid, such as physiological saline, or the like, or the liquid may be a non-electrolyte liquid, such as glycerol, and the like.
  • the balloon 10 of the shock wave device 100 of the present invention can be designed as a disposable consumable or a reusable consumable. When it is a reusable consumable, it needs to be sterilized before use.
  • the electrode assembly 40 includes an inner insulating layer 401 , an inner electrode 402 , an outer insulating layer 403 , a first electrical conductor 404 a and an outer electrode 405 .
  • the inner insulating layer 401 is the second insulating layer, which is located at the innermost side of the electrode assembly 40 .
  • the inner insulating layer 401 is an elongated hollow insulator made of insulating material.
  • the inner insulating layer 401 can be used as a guide cavity through which a guide wire or other components of the shock wave device can be passed.
  • the inner insulating layer 401 may protrude relative to other components of the electrode assembly 40 when it is used, for example, as a guide cavity.
  • the inner insulating layer 401 is hermetically connected between both ends of the balloon 10 and the balloon 10 .
  • the insulating material constituting the inner insulating layer 401 is not particularly limited, but is preferably a high-voltage resistant material such as polyimide or polytetrafluoroethylene.
  • the shape of the outer insulating layer 403 is not particularly limited, but as shown in FIG. 4C , it is preferably an insulating sheath with an annular cross-section.
  • the inner diameter of the inner insulating layer 401 in the shape of the annular insulating sheath is 0.3-0.4 mm, preferably 0.3-0.35 mm.
  • the thickness of the inner insulating layer 401 is preferably 0.1 to 0.2 mm, preferably 0.1 to 0.15 mm.
  • the electrode assembly 40 of the present invention may not be provided with the inner insulating layer 401 .
  • the inner electrode 402 is disposed outside the inner insulating layer 401 and covers at least a part of the outer peripheral surface of the end of the inner insulating layer 401 . And the end of the inner electrode 402 is exposed by the end of the outer insulating layer 403 .
  • the end of the inner electrode 402 may be aligned with the end of the outer insulating layer 403 , or, alternatively, the end of the inner electrode 402 may protrude from the end of the outer insulating layer 403 .
  • the inner electrode 402 is electrically connected to the power supply unit via one wire of the electrode cable.
  • the material constituting the internal electrode 402 is not particularly limited, and may be any electrical conductor, but is preferably a metal material such as copper, silver, and tungsten.
  • the shape of the inner electrode 402 is not particularly limited, but preferably, as shown in FIG. 4C , the inner electrode 402 is a ring-shaped electrode with a circular cross-section.
  • the thickness of the annular inner electrode 402 is 0.05 to 0.2 mm, preferably 0.1 to 0.15 mm.
  • the outer insulating layer 403 is a first insulating layer with an elongated hollow structure, and both the inner insulating layer 401 and the inner electrode 402 are located in the inner space of the outer insulating layer 403 .
  • the inner electrode 402 is provided in the gap between the inner insulating layer 401 and the outer insulating layer 403 .
  • the end of the inner electrode 402 is exposed by the end of the outer insulating layer 403 .
  • the end of the inner electrode 402 may be aligned with the end of the outer insulating layer 403 , or, alternatively, the end of the inner electrode 402 may protrude from the end of the outer insulating layer 403 .
  • the material constituting the outer insulating layer 403 is not particularly limited, and may be any insulator, but is preferably a high-voltage resistant material such as polyimide or polytetrafluoroethylene.
  • the shape of the outer insulating layer 403 is not particularly limited, but as shown in FIG. 4C , it is preferably an insulating sheath with an annular cross-section.
  • the thickness of the outer insulating layer in the shape of the insulating sheath is 0.1 to 0.2 mm, preferably 0.1 to 0.15 mm.
  • the length of the inner electrode 402 exposed from the distal end of the outer insulating layer 403 is not particularly limited.
  • the first electrical conductor 404a is provided on at least a part of the outer peripheral surface of the distal end of the outer insulating layer 403 .
  • the ends of the first electrical conductors 404a may be aligned with the ends of the outer insulating layer 403 , or, alternatively, the ends of the first electrical conductors 404a may protrude from the ends of the outer insulating layer 403 . But preferably, the end of the first electrical conductor 404a is aligned with the end of the outer insulating layer 403 .
  • the electrode assembly 40 in addition to the first electrical conductor 404a, also has at least one second electrical conductor 404b. As shown in FIG. 4B , the first electrical conductors 404 a are disposed on the outer peripheral surface of the end of the outer insulating layer 403 , and the second electrical conductors 404 b are arranged at intervals in sequence toward the base end of the outer insulating layer 403 .
  • first electrical conductor 404a nor the second electrical conductor 404b are electrically connected to the power supply unit, and therefore do not have any polarity.
  • the material constituting the conductor 404 is not particularly limited, and may be any conductor, but is preferably a metal material such as stainless steel and copper.
  • the shape of the conductor 404 is not particularly limited, and the respective shapes of the first conductor 404a and the second conductor 404b may be the same or different. However, as shown in FIG. 4C , it is preferably an annular shape covering a part of the outer peripheral surface of the outer insulating layer 403 .
  • the thicknesses of the annular conductors 404 are each 0.1 to 0.2 mm, preferably 0.1 to 0.15 mm.
  • the specific number of the second electrical conductors 404b in the electrode assembly 40 is not limited. However, preferably, the number of the second conductors 404b of the electrode assembly 40 is 1-5, more preferably 2-3.
  • the external electrode 405 is provided at the base end of the outer insulating layer 403 and covers a part of the outer peripheral surface of the outer insulating layer 403 .
  • the outer electrode 405 is electrically connected to the power supply unit through one wire of the electrode cable.
  • the material constituting the external electrode 405 is not particularly limited, but is preferably a metal material such as stainless steel and copper.
  • the shape of the outer electrode 405 is not particularly limited, but is preferably an annular shape covering the outer peripheral surface of the base end of the outer insulating layer 403 as shown in FIG. 4C .
  • the thickness of the annular outer electrode 405 is 0.05 to 0.2 mm, preferably 0.1 to 0.15 mm.
  • an insulating gap is provided between the first conductor 404 a provided on the outer peripheral surface of the outer insulating layer 403 and the outer electrode 405 .
  • the media at the first discharge point and the plurality of second discharge points are simultaneously broken down and the shock wave energy is released.
  • the shock waves generated at the first discharge point (the head end of the electrode assembly 40 ) are conducted radially along the axial direction of the electrode assembly 40
  • the shock waves generated at the plurality of second discharge points are conducted radially along the radial direction of the electrode assembly 40 .
  • the electrode assembly 40 of the present invention is not suitable for the calcification of heart valves and blood vessels, especially the calcification of coronary blood vessels, which makes it difficult for the balloon of the shock wave device to enter the calcified lesions.
  • the head end of the electrode assembly 40 can be discharged first to perform preliminary treatment on the calcified lesion, so that the calcified lesion can be softened. That is, the discharge at the tip of the electrode assembly 40 can pre-expand the blood vessel with severe calcification, so that the balloon 10 of the shock wave device can smoothly enter the calcified lesion.
  • the electrode assembly 40 of the present invention can achieve a more satisfactory effect when treating a subject with severe coronary artery calcification.
  • the discharge gap (discharge distance) D 1 at the first discharge point is fixed, and the size of D 1 is about the wall thickness of the outer insulating layer 403 .
  • the discharge gap at the second discharge point is D 2 .
  • the length of D 2 is greater than the length of D 1 to apply more energy to the calcified lesion.
  • D 2 may be appropriately pre-adjusted according to the degree of calcification of the heart valve or blood vessel of the subject.
  • the size of D 2 can be adjusted according to actual needs during the operation to achieve the best therapeutic effect.
  • D 2 can be reduced to be smaller than D 1 , so that the energy can be concentrated at the first discharge point; and when the balloon enters the calcified lesion, D 2 can be increased so that D 2 >D 1 , Thus, more energy is concentrated in the second discharge point.
  • the outer electrode 405 can be connected to a control device at the handle (not shown in the figure) at the base end of the shock wave device via an insulated guide wire (not shown in the figure), so that the outer electrode 405 can be move, thereby resizing D2.
  • D 2 is 0.2mm-0.9mm, preferably 0.2mm-0.5mm.
  • the outer electrode 405 and/or the first conductor 404a may have a protrusion 409 .
  • the protruding portion 409 of the external electrode 405 extends from the end of the external electrode 405 along the outer peripheral surface of the outer insulating layer 403 toward the first conductor 404a, but does not contact the first conductor 404a.
  • the first conductor 404a may have a protrusion extending from the base end of the first conductor 404a along the outer peripheral surface of the outer insulating layer 403 toward the outer electrode 405 but not in contact with the outer electrode 405 part 409 (not shown in the figure).
  • the first conductor 404a and the external electrode 405 may have protrusions 409, respectively.
  • any one or more of the plurality of second electrical conductors 404b may have a protruding portion 409 .
  • the arrangement of the protruding portion 409 of the second electrical conductor 404b is similar to that of the first electrical conductor 404a and the protruding portion of the outer electrode 405 , that is, from one end of the second electrical conductor 404b along the outer periphery of the outer insulating layer 403 to the outer insulating layer 403
  • the base end or end of the electrode extends, but does not contact the adjacent first conductor 404a/second conductor 404b/external electrode 405.
  • the provision of the protruding portion 409 makes the discharge gap D 2 at the second discharge point 408 no longer uniform in the entire circumferential direction of the electrode assembly 40 .
  • D2 will become smaller, and thus the discharge will also occur between the protrusions 409 and the corresponding first electrical conductor 404a/external electrode 405, rather than over the entire
  • the second discharge point 408 occurs randomly.
  • the release and conduction directions of the shock waves can be controlled, and the shock waves can be released in a directional manner, thereby further improving the quality effect.
  • the shape of the protruding portion 409 is not particularly limited.
  • the inner electrode 402 can move along the axial direction of the outer insulating layer 403 inside the outer insulating layer 403 .
  • the specific way to control the movement of the inner electrode 402 is not particularly limited.
  • the inner electrode 402 can be connected to the control device at the handle (not shown in the figure) at the base end of the shock wave device via an insulating guide wire (not shown in the figure), so as to The inner electrode 402 can be moved by the guide wire and the control device.
  • the balloon of the shock wave device when treating the heart valve and blood vessel calcification, especially the treatment object with severe blood vessel wall calcification, the balloon of the shock wave device can easily enter the calcified lesion through pre-expansion, and the balloon can easily enter the calcified lesions. After entering the calcified lesion, the tip discharge of the electrode assembly 40 can be cancelled, thereby focusing energy on the treatment of the calcified lesion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Surgical Instruments (AREA)

Abstract

本发明提供一种用于冲击波装置电极组件,该电极组件设置在所述冲击波装置的球囊内部,其特征在于,包括:第一绝缘层,该第一绝缘层具有细长中空结构;内电极;该内电极位于第一绝缘层内部;第一导电体,该第一导电体设置在第一绝缘层末端的外周面的至少一部分上;以及外电极,该外电极设置在第一绝缘层的基端的外周面的至少一部分上,使得所述该外电极与所述第一导电体之间具有绝缘间隙。该电极组件不仅能够有效地降低冲击波在传导过程中的衰减,而且能够有效地延长电极组件的使用寿命,从而安全可靠地实现令人满意的治疗效果。

Description

用于治疗心脏瓣膜或血管钙化的冲击波装置用电极和冲击波装置 技术领域
本发明属于医疗技术领域,具体涉及一种治疗心脏瓣膜或血管钙化的冲击波装置用电极、使用该电极的冲击波装置以及一种用于治疗动物心脏瓣膜或血管钙化的方法。
背景技术
心脏瓣膜钙化是心脏瓣膜狭窄和返流等主要的病理表现,通常发生于老年人群;血管钙化是动脉粥样硬化、高血压、糖尿病血管病变、血管损伤、慢性肾病和衰老等普遍存在的共同的病理表现。
目前,由于具有容易操作及球囊预扩的优点,冲击波球囊技术已被用于治疗心脏瓣膜或血管钙化。如图1所示,现有技术的治疗心脏瓣膜钙化的冲击波装置900,包括冲击波发射器920和球囊910。冲击波发射器920包括电极线缆和电极组件922,电极线缆接收并传导电压/电流脉冲,电极组件922与电极线缆电性连接,用于接收电压/电流脉冲以产生冲击波。球囊910包裹于冲击波发射器920外部,并具有可伸缩、可折叠和绝缘性能。球囊910还具有供液体流入的通孔,用于使球囊910内部被注满液体。当球囊910内部被注满液体后,球囊910充盈使得球囊910的外表面的至少一部分与存在钙化病变的心脏瓣膜或血管(以下有时简称为“钙化病变处”或“钙化病变的心脏瓣膜或血管”)相接触。电极组件922所产生的冲击波经由球囊910内部的液体被径向传导至球囊910表面,进而经球囊的表面被传导至钙化病变处。当冲击波被传导至钙化病变处时,冲击波的压缩应力会导致钙化病变处的钙化组织断裂。适当强度的冲击波能够满足即破坏钙化组织而又不会对于钙化组织周围的软组织产生额外负担。
然而,现有技术的冲击波装置的电极组件主要由金属导体和绝缘护套组成,而在钙化病变治疗时往往需要更高的能量,冲击波电极正负极之间电压可能达到7-10KV,电极放电时会产生强烈的热能和机械能,对于冲击波电极结构会造成破坏性的冲击,对冲击波电极的寿命造成了极大的考验。另外,在瓣膜或血管钙化严重的情况下,往往导致可容纳空间变小,使得冲击波装置的球囊难以顺利地进入钙化病变处。因此,在针对钙化病变位置提高治疗的准确性和有效性、在高压状态下提高冲击波电极的使用寿命以及优化设计电极控制系统等方面存在改进的需求。
发明内容
本发明提供一种治疗心脏瓣膜或血管钙化的冲击波装置用电极组件,该电极组件能够有效地降低冲击波在传导过程中的衰减,对心脏瓣膜或血管钙化实现令人满意的治疗效果。此外本发明的电极组件能够显著地延长电极和冲击波装置的使用寿命。本发明的电极组件还能够使冲击波装置迅速地进入血管中的钙化病变处,有效地缩短手术时间。此外本发明还提供一种使用本发明的电极组件的冲击波装置,用于控制本发明的冲击波装置的控制系统以及一种使用本发明的冲击波装置治疗心脏瓣膜或血管钙化的方法。
为解决上述技术问题,本发明的实施例的一个方面提供一种用于冲击波装置电极组件,该电极组件设置在所述冲击波装置的球囊内部,该电极组件包括:
第一绝缘层,该第一绝缘层具有细长中空结构;
内电极;该内电极位于所述第一绝缘层内部;
第一导电体,该第一导电体设置在所述第一绝缘层末端的外周面的至少一部分上;以及
外电极,该外电极设置在所述第一绝缘层的基端的外周面的至少一部分上,使得所述该外电极与所述第一导电体之间具有绝缘间隙。
根据本发明的实施例的一个方面的电极组件,所述第一导电体和所述外电极中的至少一个具有突出部,所述突出部从所述第一导电体和所述外电极中的一个沿着所述第一绝缘层的外周面朝向所述第一导电体和所述外电极中的另一个延伸。
根据本发明的实施例的一个方面的电极组件,还包括至少一个第二导电体,该至少一个第二导电体设置在所述第一绝缘层的外周面的至少一部分上并位于所述第一导电体与所述外电极之间,使得所述第一导电体与该第二导电体之间以及该第二导电体与所述外电极之间均具有绝缘间隙。
根据本发明的实施例的一个方面的电极组件,所述电极组件包括两个以上所述第二导电体,并且任意相邻的两个所述第二导电体之间具有绝缘间隙。
根据本发明的实施例的一个方面的电极组件,至少一个所述第二导电体具有突出部,所述突出部从所述第二导电体沿着所述第一绝缘层的外周面向所述第一绝缘层的基端或末端延伸。
根据本发明的实施例的一个方面的电极组件,所述第一导电体、所述第二导电体和所述外电极总共具有两个以上突出部,并且所述两个以上突出部在所述第一绝缘层的圆周方向上间隔角度α,α=360°/N,其中N为所述突出部的数量。
根据本发明的实施例的一个方面的电极组件,所述电极组件包括2~5个第二导电体。
根据本发明的实施例的一个方面的电极组件,所述内电极在所述第一绝缘层内部能够沿所述第一绝缘层的长度方向移动,并且
所述内电极的末端形成有连接部,所述连接部随所述内电极的轴 向移动而使所述内电极与所述第一导电体之间电连接或电断开。
根据本发明的实施例的一个方面的电极组件,所述内电极是壁厚为0.05~0.2mm的环状电极。
根据本发明的实施例的一个方面的电极组件,所述外电极是壁厚为0.05~0.2mm的环状电极。
根据本发明的实施例的一个方面的电极组件,所述第一导电体是壁厚为0.05~0.2mm的环状导电体。
根据本发明的实施例的一个方面的电极组件,所述第一绝缘层是壁厚为0.05~0.2mm的筒状绝缘层。
根据本发明的实施例的一个方面的电极组件,所述第二导电体是壁厚为0.05~0.2mm的环状导电体。
根据本发明的实施例的一个方面的电极组件,还包括第二绝缘层,该第二绝缘层设置在所述第一绝缘层的内部,且所述内电极设置在该第二绝缘层的末端的外周面的至少一部分上。
根据本发明的实施例的一个方面的电极组件,所述第二绝缘层是内径为0.3~0.4mm、壁厚为0.1~0.2mm的筒状绝缘层。
本发明的实施例的另一个方面提供一种冲击波装置,其特征在于,包括前述本发明的电极组件。
本发明的实施例的再一个方面提供一种用于处理血管壁钙化的方法,其特征在于,使用前述的本发明的冲击波装置对血管的钙化部位进行处理。
根据本发明的一个实施例,能够提供一种治疗心脏瓣膜或血管钙化的冲击波装置用电极组件。该电极组件不仅能够有效地降低冲击波在传导过程中的衰减,而且能够有效地延长电极组件的使用寿命,从而安全可靠地实现令人满意的治疗效果。此外,本发明的冲击波装置操作简单,对操作者的操作熟练地的要求显著降低,从而能够显著地缩短手术时间,减轻治疗对象的负担,进而提高手术成功率,并有效地减少手术过程中的各种风险。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是现有技术的冲击波装置的结构示意图;
图2是本发明的冲击波装置的一个实施例的结构示意图;
图3是本发明的冲击波装置的一个实施例的使用状态示意图;
图4A~4C是本发明的用于冲击波装置的电极组件的实施例的示意图;
图5是本发明的用于冲击波装置的电极组件的改进例的示意图;并且
图6A和6B是本发明的用于冲击波装置的电极组件的改进例的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
在本申请中,“冲击波”是对电极组件在放电时所能够产生的各种形式波(诸如压力波等)的统称,而非用于限定具体波形式。
在本申请中,冲击波装置或电极组件等其部件的“远端”或“末端”是指朝向在手术过程中进入治疗对象体内的导线头端的一端,而冲击波装置或其部件的“近端”“基端”是指朝向在手术过程中留在治疗对象体外的手柄的一端。
在本申请中,“多个”是指两个或两个以上,鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
在本申请中,“心脏瓣膜”和“瓣膜”是对包括二尖瓣、三尖瓣和主动脉瓣在内的瓣膜的统称。在本申请中,“存在钙化病变的心脏瓣膜和血管”有时被简称为“钙化病变的心脏瓣膜和血管”或“钙化病变处”。
冲击波装置
如图2所示,本发明的一个实施例的冲击波装置100,包括至少一个的球囊10。球囊10中具有球囊主体。优选的,球囊10的球囊主体在充盈后为圆柱状。只要球囊10充盈后的球囊主体为圆柱状即可,对于球囊10在长度方向上两个端部的形状并未具体限定。本发明的冲击波装置的球囊10的也可以具有其他形状。
球囊10可以由聚合物材料形成为半顺应性或非顺应性球囊,并具有可伸缩、可折叠和绝缘性能。对形成球囊10的材料没有具体限制,例如可以是尼龙、聚醚嵌段酰胺(PEBA)或聚对苯二甲酸乙二酯(PET) 等。球囊10还具有至少一个通孔,该至少一个通孔与连接管相连通,用于将液体注入球囊10内部,使球囊10充盈。当球囊10内部被注满液体后,球囊10充盈使得球囊10的外表面的至少一部分与钙化病变的心脏瓣膜或血管(钙化病变处)相接触。
球囊10内部设置有至少一个冲击波发射器,冲击波发射器用于接收电压/电流脉冲并产生冲击波。冲击波发射器包括至少一个电极线缆和至少一个电极组件40,电极线缆接收并传导电压/电流脉冲,电极组件40与电极线缆电连接,用于接收电压/电流脉冲以产生冲击波。电极组件40所产生的冲击波经由球囊10内部的液体被径向传导至球囊10表面,进而经球囊的表面被传导至钙化病变处。
如图3所示,在手术过程中,将冲击波装置100的球囊10定位于例如血管位置处。优选的,使球囊10内的电极组件40的位置对应于钙化病变处,从而使电极组件40与钙化病变处的距离最短。
球囊10的主体部分的长度为20-60mm,例如20mm、35mm、40mm、55mm或者60mm。当球囊10的长度过长时,手术过程中存在对心脏组织造成损伤的可能性,并且介入手术过程中冲击波装置的输送时过弯难度过大。另一方面,当球囊10的长度过短时,则会增加手术过程中对冲击波装置进行定位的操作的难度。
对本发明的冲击波装置100中所使用的注入球囊10内部的液体没有具体限定。该液体可以是电解质液体,例如生理盐水等,或者该液体也可以是非电解质液体,例如甘油等。
本发明的冲击波装置100的球囊10可设计为一次性耗材或者重复使用耗材,当其为重复使用耗材时,使用之前需要进行消毒灭菌。
电极组件40
图4A~4C示出本发明的用于冲击波装置的电极组件的一个实例。如图4A,电极组件40包括内绝缘层401、内电极402、外绝缘层403、第一导电体404a和外电极405。
如图4A所示,内绝缘层401为第二绝缘层,其位于电极组件40的最内侧。优选地,内绝缘层401是由绝缘材料制成的细长中空绝缘体。内绝缘层401可以用作导向腔,使冲击波装置的导丝或其他部件从其内部空腔穿过。如果图4B所示,当内绝缘层401被用作诸如导向腔时,其可以相对于电极组件40的其他部件突出。并且,当用作导向腔时,内绝缘层401在球囊10的两端与球囊10之间密封连接。对构成内绝缘层401的绝缘材料没有特别限制,但优选为聚酰亚胺或聚四氟乙烯等耐高压材料。对外绝缘层403的形状没有特别限制,但如图4C所示,优选为横截面为环形的绝缘护套。环形绝缘护套形状的内绝缘层401的内径为0.3~0.4mm,优选为0.3~0.35mm。内绝缘层401的壁厚优选为0.1~0.2mm,优选为0.1~0.15mm。
当冲击波装置的导丝或其他部件不需要从电极组件40的内部穿过时,本发明的电极组件40可以不设置内绝缘层401。
如图4A所示,内电极402设置在内绝缘层401外侧,并覆盖内绝缘层401的末端的外周面的至少一部分。并且内电极402的末端由外绝缘层403的末端露出。内电极402的末端可以与外绝缘层403的末端对齐,或者,可替换地,内电极402的末端可以从外绝缘层403的末端突出。内电极402经由电极线缆的一个导线电连接至供电单元。对构成内电极402材料没有特别限制,可以为任何导电体,但优选为铜、银、钨等金属材料。对内电极402的形状没有特别限制,但优选地,如图4C所示,内电极402是横截面为圆形的环状电极。环状内电极402的壁厚为0.05~0.2mm、优选为0.1~0.15mm。
外绝缘层403为第一绝缘层,具有细长中空结构,内绝缘层401 和内电极402都位于外绝缘层403的内部空间中。具体而言,如图4A所示,内电极402设置在内绝缘层401与外绝缘层403之间的空隙中。内电极402的末端由外绝缘层403的末端露出。内电极402的末端可以与外绝缘层403的末端对齐,或者,可替换地,内电极402的末端可以从外绝缘层403的末端突出。
对构成外绝缘层403的材料没有特别限制,可以为任意绝缘体,但优选为聚酰亚胺或聚四氟乙烯等耐高压材料。对外绝缘层403的形状没有特别限制,但如图4C所示,优选为横截面为环形的绝缘护套。绝缘护套形状的外绝缘层的壁厚为0.1~0.2mm,优选为0.1~0.15mm。对于内电极402从外绝缘层403远端露出的长度没有特别限定。
第一导电体404a设置在外绝缘层403的末端的外周面的至少一部分上。第一导电体404a末端可以与外绝缘层403的末端对齐,或者,可替换地,第一导电体404a的末端可以从外绝缘层403的末端突出。但优选地,第一导电体404a的末端与外绝缘层403的末端对齐。
在本发明的一个实施例中,除了第一导电体404a之外,电极组件40还具有至少一个第二导电体404b。如图4B所示,第一导电体404a设置在外绝缘层403的末端的外周面上,第二导电体404b依次间隔地朝着外绝缘层403的基端方向排列布置。
第一导电体404a和第二导电体404b(以下有时统称为导电体404)均不与供电单元电连接,因此不具有任何极性。对构成导电体404的材料没有特别限制,可以为任何导电体,但优选为不锈钢、铜等金属材料。对导电体404的形状没有特别限制,并且第一导电体404a以及第二导电体404b的各自形状可以相同或不同。但优选为如图4C所示的覆盖外绝缘层403的外周面的一部分的环状形状。环状的导电体404的壁厚各自为0.1~0.2mm,优选为0.1~0.15mm。对电极组件40中第二导电体404b的具体数量没有限制。但优选地,电极组件40的第二 导电体404b的数量为1~5个,更优选为2~3个。
如图4A和4B所示,相对于导电体404,外电极405设置在外绝缘层403的基端处,并覆盖外绝缘层403的外周面的一部分。外电极405通过电极线缆的一个导线与供电单元电连接。对构成外电极405的材料没有特别限制,但优选为不锈钢、铜等金属材料。对外电极405的形状没有特别限制,但优选为如图4C所示的覆盖外绝缘层403的基端外周面的环状形状。环状的外电极405的壁厚为0.05~0.2mm,优选为0.1~0.15mm。
如图4A所示,设置在外绝缘层403的外周面上的第一导电体404a与外电极405之间具有绝缘间隙。并且如图4B所示,第一导电体404a与相邻的第二导电体404b之间具有绝缘间隙,外电极405与相邻的第二导电体404b之间具有绝缘间隙,并且任意两个相邻的第二导电体404b之间均具有绝缘间隙。
在如图4A所示的电极组件40中,当在内电极402和外电极405之间施加电压时,由于在内电极402与第一导电体404a之间以及第一导电体404a与外电极405之间均形成压差,因此,内电极402的末端与设置于外绝缘层403末端的第一导电体404a之间的间隙(第一放电点),第一导电体404b与外电极405之间的间隙处的介质被击穿并释放冲击波能量。在如图4B所示的电极组件40中,当在内电极402和外电极405之间施加电压时,根据串联分压原理,内电极402的末端与设置与外绝缘层403的末端的第一导电体404a之间(第一放电点),第一导电体404a与相邻的第二导电体404b之间的间隙处、多个第二导电体404b中任意相邻的两个第二导电体404b之间的各个间隙处以及与外电极405相邻的第二导电体404b与外电极405之间的间隙处(多个第二放电点)也存在压差。由于上述压差的存在,第一放电点和多个第二放电点处的介质被同时击穿并释放冲击波能量。第一放电点(电极组件40的头端)处产生的冲击波沿电极组件40的轴向方向放射状 传导,而多个第二放电点处产生的冲击波则沿电极组件40的径向方向放射状传导。
根据如上所述的电极组件40,可以实现多点同时放电。因此,相对于现有技术的单点放电的电极组件,本发明的电极组件40在对心脏瓣膜和血管的钙化、尤其是诸如冠脉血管钙化严重使得冲击波装置的球囊难以进入钙化病变处的治疗对象进行治疗时,可以首先通过电极组件40的头端放电,对钙化病变处进行初步治疗,使钙化病变处变软。即,电极组件40的头端放电能够对钙化严重的血管起到预扩张的作用,便于冲击波装置的球囊10顺利地进入钙化病变处。在球囊10顺利进入钙化病变处后,第二放电点处产生的冲击波能够对钙化病变处产生进一步作用。因此,本发明的电极组件40在对诸如冠脉血管钙化严重的治疗对象进行治疗时,能够取得更加令人满意的效果。
在图4A~4C所示的电极组件40中,第一放电点处的放电间隙(放电距离)D 1是固定的,D 1的大小约为外绝缘层403的壁厚。第二放电点处的放电间隙为D 2。对D 2的大小没有特别限制,但D1与D2之和,即总放电间隙D(D=D 1+D 2)应小于实际工作电压可击穿的最大距离D max。例如,以纯水为介质,当电压为6kV时,D max约为1mm。根据图4A所示的电极组件40,由于D 1是固定的,因此当增大D 2时,总放电间隙也相应增大,因此使得第二放电点408处产生的冲击波强度都能够得到增强。在本发明的一个实施例中,D 2的长度大于D 1的长度,以将更多的能量作用于钙化病变处。在本发明的一个实施例中,可以根据对象的心脏瓣膜或血管的钙化程度适当预先地调整D 2。在本发明的另一个实施例中,可以在手术期间根据实际需要调整D 2的大小,以实现最佳的治疗效果。例如,在预扩期间,可以使D 2缩小至小于D 1,使能量集中在第一放电点;而当球囊进入钙化病变处后,则可以增大D 2,使D 2>D 1,从而将更多的能量集中在第二放电点。例如,外电极405可以经由绝缘引导丝(图中未示出)与冲击波装置基端的手柄(图中未示出)处的控制装置连接,从而通过该引导丝和控制装置能够使 外电极405可以移动,从而调整D 2的大小。在本发明的一个实施方式中,D 2为0.2mm-0.9mm,优选为0.2mm-0.5mm。
如图5所示,在本发明的一个实施例中,外电极405和/或第一导电体404a可以具有突出部409。如图5所示,外电极405的突出部409从外电极405的末端沿着外绝缘层403的外周面朝向第一导电体404a延伸,但不与第一导电体404a接触。在本发明的另一个实施方式中,第一导电体404a可以具有从第一导电体404a的基端沿着外绝缘层403的外周面朝向外电极405延伸,但不与外电极405接触的突出部409(图中未示出)。在本发明的又一个实施方式中,第一导电体404a和外电极405可以分别具有突出部409。
如图5所示,在本发明的一个实施例中,多个第二导电体404b中的任意一个以上可以具有突出部409。第二导电体404b的突出部409的设置方式与第一导电体404a和外电极405的突出部相似,即,从第二导电体404b的一端沿着外绝缘层403的外周面向外绝缘层403的基端或末端延伸,但不与相邻的第一导电体404a/第二导电体404b/外电极405接触。
突出部409的设置使得第二放电点408处的放电间隙D 2在电极组件40的整个圆周方向上变得不再均匀。具体而言,设置有突出部409的位置处,D 2将变得更小,并且因此放电也将在突出部409与相应的第一导电体404a/外电极405之间发生,而不是在整个第二放电点408处随机发生。根据上述结构的电极组件40,能够控制冲击波的释放和传导方向,实现定向释放冲击波,从而进一步提高质量效果。对突出部409的形状没有特别限制。
对外电极405和多个导电体404各自的突出部409的数量,以及外电极405和多个导电体404上的突出部总数没有特别限制。但优选地,外电极405和多个导电体404中的任意一个只设置一个突出部409。 当外电极405和多个导电体404上的突出部总数为2个以上时,从如4C所示的电极组件40的末端观察时,该2个以上的突出部409在电极组件40的横切面的圆周上均匀分布。即,例如,当突出部409总数为N个时,该N个突出部在电极组件40的横切面的圆周上间隔的角度α=360°/N。具体而言,当N为2时,α为180°;当N为3时,α为120°,以此类推。对外电极405和多个导电体404上的突出部409的延伸方向没有特别限定,但优选地,每个第二放电点处只设置一个突出部。
在本发明的一个实施例中,内电极402在外绝缘层403内部可以沿外绝缘层403的轴向方向移动。对于控制内电极402移动的具体方式没有特别限定,例如,内电极402可以经由绝缘引导丝(图中未示出)与冲击波装置基端的手柄(图中未示出)处的控制装置连接,从而通过该引导丝和控制装置能够使内电极402移动。
在本发明的一个实施例中,如图6A所示,内电极402的末端处还具有连接部410。优选地,连接部410能在内电极402的移动过程中实现与第一导电体404a的末端相接触,使得内电极402与第一导电体404a产生电连接。根据上述结构的电极组件40,当预扩完成并且球囊进入血管的钙化病变处时,不再需要电极组件40的头端(第一放电点)放电,此时,通过如上所述使内电极402与第一导电体404a之间电连接而取消第一放电点处的放电,使放电只会在第二放电点处发生。因此,能够更加有效地对钙化病变处进行治疗。对于连接部410的具体形状没有特别限定,只要能够如上所述实现内电极与第导电体之间的电连接即可。
根据本发明的电极组件40,在对心脏瓣膜和血管钙化、尤其是血管壁钙化严重的治疗对象进行治疗时,能够通过预扩使冲击波装置的球囊容易地进入钙化病变处,并且在球囊进入钙化病变处后可以取消电极组件40的头端放电,从而将能量集中在对钙化病变处的治疗上。
尽管本发明的上述实施例以人为治疗对象,描述了本发明的冲击波装置的结构和用法。但本发明的冲击波装置的治疗对象不限于人,也可以是其它动物。例如,本发明的冲击波装置的专利对象可以是猫、狗等宠物,也可以是牛、马等大型动物,并且也可是熊猫等珍稀野生动物。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (17)

  1. 一种用于冲击波装置电极组件,该电极组件设置在所述冲击波装置的球囊内部,其特征在于,包括:
    第一绝缘层,该第一绝缘层具有细长中空结构;
    内电极;该内电极位于所述第一绝缘层内部;
    第一导电体,该第一导电体设置在所述第一绝缘层末端的外周面的至少一部分上;以及
    外电极,该外电极设置在所述第一绝缘层的基端的外周面的至少一部分上,使得所述该外电极与所述第一导电体之间具有绝缘间隙。
  2. 根据权利要求1所述的电极组件,其特征在于,所述第一导电体和所述外电极中的至少一个具有突出部,所述突出部从所述第一导电体和所述外电极中的一个沿着所述第一绝缘层的外周面朝向所述第一导电体和所述外电极中的另一个延伸。
  3. 根据权利要求1或2所述的电极组件,其特征在于,还包括至少一个第二导电体,该至少一个第二导电体设置在所述第一绝缘层的外周面的至少一部分上并位于所述第一导电体与所述外电极之间,使得所述第一导电体与该第二导电体之间以及该第二导电体与所述外电极之间均具有绝缘间隙。
  4. 根据权利要求3所述的电极组件,其特征在于,所述电极组件包括两个以上所述第二导电体,并且任意相邻的两个所述第二导电体之间具有绝缘间隙。
  5. 根据权利要求4所述的电极组件,其特征在于,至少一个所述第二导电体具有突出部,所述突出部从所述第二导电体沿着所述第一绝缘层的外周面向所述第一绝缘层的基端或末端延伸。
  6. 根据权利要求3或4所述的电极组件,其特征在于,所述第一导电体、所述第二导电体和所述外电极总共具有两个以上突出部,并且所述两个以上突出部在所述第一绝缘层的圆周方向上间隔角度α,α=360°/N,其中N为所述突出部的数量。
  7. 根据权利要求3~6任意一项所述的电极组件,其特征在于,所述电极组件包括2~5个第二导电体。
  8. 根据权利要求1~7任意一项所述的电极组件,其特征在于,所述内电极在所述第一绝缘层内部能够沿所述第一绝缘层的长度方向移动,并且
    所述内电极的末端形成有连接部,所述连接部随所述内电极的轴向移动而使所述内电极与所述第一导电体之间电连接或电断开。
  9. 根据权利要求1~8任意一项所述的电极组件,其特征在于,所述内电极是壁厚为0.05~0.2mm的环状电极。
  10. 根据权利要求1~9任意一项所述的电极组件,其特征在于,所述外电极是壁厚为0.05~0.2mm的环状电极。
  11. 根据权利要求1~10任意一项所述的电极组件,其特征在于,所述第一导电体是壁厚为0.05~0.2mm的环状导电体。
  12. 根据权利要求1~11任意一项所述的电极组件,其特征在于,所述第一绝缘层是壁厚为0.05~0.2mm的筒状绝缘层。
  13. 根据权利要求3~7任意一项所述的电极组件,其特征在于,所述第二导电体是壁厚为0.05~0.2mm的环状导电体。
  14. 根据权利要求1~13任意一项所述的电极组件,其特征在于, 还包括第二绝缘层,该第二绝缘层设置在所述第一绝缘层的内部,且所述内电极设置在该第二绝缘层的末端的外周面的至少一部分上。
  15. 根据权利要求14所述的电极组件,其特征在于,所述第二绝缘层是内径为0.3~0.4mm、壁厚为0.1~0.2mm的筒状绝缘层。
  16. 一种冲击波装置,其特征在于,包括根据权利要求1~15任意一项所述的电极组件。
  17. 一种用于处理血管壁钙化的方法,其特征在于,使用权利要求16所述的冲击波装置对血管的钙化部位进行处理。
PCT/CN2022/074972 2021-02-05 2022-01-29 用于治疗心脏瓣膜或血管钙化的冲击波装置用电极和冲击波装置 WO2022166884A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/366,345 US20230389947A1 (en) 2021-02-05 2023-08-07 Electrode Assembly and Shock Wave Apparatus Using the Electrode Assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110164461.2 2021-02-05
CN202110164461.2A CN114869400A (zh) 2021-02-05 2021-02-05 用于治疗心脏瓣膜或血管钙化的冲击波装置用电极和冲击波装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074971 Continuation-In-Part WO2022166883A1 (zh) 2021-02-05 2022-01-29 电极组件和使用该电极组件的冲击波装置

Publications (1)

Publication Number Publication Date
WO2022166884A1 true WO2022166884A1 (zh) 2022-08-11

Family

ID=82668399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074972 WO2022166884A1 (zh) 2021-02-05 2022-01-29 用于治疗心脏瓣膜或血管钙化的冲击波装置用电极和冲击波装置

Country Status (2)

Country Link
CN (1) CN114869400A (zh)
WO (1) WO2022166884A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117281580A (zh) * 2023-11-27 2023-12-26 沛嘉医疗科技(苏州)有限公司 一种用于处理组织钙化的电极装置及冲击波装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116784933A (zh) * 2022-09-26 2023-09-22 苏州润迈德医疗科技有限公司 一种冲击波球囊导管装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001135A (ja) * 2001-06-18 2003-01-07 Sumitomo Electric Ind Ltd 破砕装置用電極および破砕装置
JP2004181423A (ja) * 2002-12-05 2004-07-02 Sumitomo Electric Ind Ltd 破砕装置用電極および破砕装置
CN203564304U (zh) * 2013-07-08 2014-04-30 刘京山 体内液电碎石电极的冲击波导向管
US20170135709A1 (en) * 2015-11-18 2017-05-18 Shockwave Medical, Inc. Shock wave electrodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001135A (ja) * 2001-06-18 2003-01-07 Sumitomo Electric Ind Ltd 破砕装置用電極および破砕装置
JP2004181423A (ja) * 2002-12-05 2004-07-02 Sumitomo Electric Ind Ltd 破砕装置用電極および破砕装置
CN203564304U (zh) * 2013-07-08 2014-04-30 刘京山 体内液电碎石电极的冲击波导向管
US20170135709A1 (en) * 2015-11-18 2017-05-18 Shockwave Medical, Inc. Shock wave electrodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117281580A (zh) * 2023-11-27 2023-12-26 沛嘉医疗科技(苏州)有限公司 一种用于处理组织钙化的电极装置及冲击波装置
CN117281580B (zh) * 2023-11-27 2024-03-15 沛嘉医疗科技(苏州)有限公司 一种用于处理组织钙化的电极装置及冲击波装置

Also Published As

Publication number Publication date
CN114869400A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
JP7479449B2 (ja) 心臓弁又は血管の石灰化を治療するための装置及び方法
WO2022166884A1 (zh) 用于治疗心脏瓣膜或血管钙化的冲击波装置用电极和冲击波装置
EP4034004B1 (en) Low profile electrodes for a shock wave catheter
CN109688955B (zh) 双极组织消融装置以及其使用方法
EP3960099B1 (en) Device for generating forward directed shock waves
JP6526864B2 (ja) 超音波による神経調節システム
WO2022166881A1 (zh) 冲击波装置
RU2539988C9 (ru) Способ и система для облегчения прохождения проволочного проводника через закупоренные протоки
CN113855163B (zh) 一种冲击波电极组件、球囊导管装置以及医疗设备
CN113842190A (zh) 电极球囊导管
US20210212759A1 (en) Medical device
CN216167694U (zh) 电极球囊导管
WO2022166883A1 (zh) 电极组件和使用该电极组件的冲击波装置
US20220008128A1 (en) Medical device
US20230389947A1 (en) Electrode Assembly and Shock Wave Apparatus Using the Electrode Assembly
CN115463317A (zh) 一种冲击波球囊导管
US20170143405A1 (en) Apparatuses, systems and methods for treating ulcerative colitis and other inflammatory bowel diseases
CN215228131U (zh) 冲击波装置
CN218979093U (zh) 一种冲击波电极组件以及球囊导管装置
CN219021501U (zh) 消融导管及消融系统
CN218853312U (zh) 球囊导管装置
WO2024066203A1 (zh) 一种冲击波球囊导管装置
CN116942293A (zh) 消融装置
CN115068060A (zh) 冲击波发生组件及球囊导管
JP2022105952A (ja) 中隔穿刺デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749163

Country of ref document: EP

Kind code of ref document: A1