WO2022166081A1 - 一种纳微复合球及其制备方法和应用 - Google Patents

一种纳微复合球及其制备方法和应用 Download PDF

Info

Publication number
WO2022166081A1
WO2022166081A1 PCT/CN2021/102314 CN2021102314W WO2022166081A1 WO 2022166081 A1 WO2022166081 A1 WO 2022166081A1 CN 2021102314 W CN2021102314 W CN 2021102314W WO 2022166081 A1 WO2022166081 A1 WO 2022166081A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
micro
sphere
spheres
hole
Prior art date
Application number
PCT/CN2021/102314
Other languages
English (en)
French (fr)
Inventor
徐方成
曹一洲
蔡佳达
Original Assignee
厦门大学
中国大洋矿产资源研究开发协会(中国大洋事务管理局)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学, 中国大洋矿产资源研究开发协会(中国大洋事务管理局) filed Critical 厦门大学
Publication of WO2022166081A1 publication Critical patent/WO2022166081A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components

Definitions

  • the invention relates to the technical field of biological materials, in particular to a nano-micro composite sphere and a preparation method and application thereof.
  • Bio cells contain a variety of protein molecules and nucleic acid molecules.
  • the target protein molecules or nucleic acid molecules can be obtained from a large number of biological samples through separation, purification and detection of many steps.
  • single colony and single cell are mainly obtained by single colony technology of petri dish and single particle technology of optical micromanipulation, and then the genome is obtained by pure culture and molecular sequencing.
  • it is difficult for these biological methods to obtain single particles of proteins, nucleic acids or viruses because the individuals of these biomolecules or biological particles are extremely small, belonging to the nanometer or micrometer scale, and can only be seen under an electron microscope. Therefore, it is necessary to find new materials or methods that can be used for the separation of biomolecules or bioparticles, which can be applied to the separation and purification of biomolecules or bioparticles.
  • Nanospheres are particles with a diameter of nanometer or micrometer.
  • the nanospheres disclosed in the prior art are mainly used as immune adjuvants or purification of proteins and nucleic acids, and do not have the purposes of separating single virus particles or direct separation of trace proteins. . Since nano-microspheres are close to virus particles and biomolecules in size, it is considered to be applied to the direct separation of virus single particles and trace biomolecules through the transformation or modification of nano-microspheres.
  • the present invention provides a nano-micro composite sphere and a preparation method and application thereof.
  • the present invention adopts following technical scheme:
  • a nano-micro composite sphere is composed of a micro-sphere and a nano-sphere, the surface of the micro-sphere has nano-pores, the nano-sphere is embedded in the nano-pore on the surface of the micro-sphere, and the diameter of the micro-sphere is 1-25 ⁇ m , the diameter of the nanospheres is 5-1500nm.
  • the surface of the microsphere is modified with fluorescence or quantum dots, and the interior of the sphere is modified with magnetism.
  • microspheres are high molecular polymer microspheres.
  • the surface of the nanospheres is modified by amination, carboxylation, biotinylation or quantum dots.
  • nanospheres are silica nanospheres.
  • a preparation method of nano-micro composite ball comprises the following steps:
  • the nano-through hole mask removes the nano-through hole mask, keep the nano-film, and lay a layer of nano-spheres on the nano-film.
  • the diameter of the nano-spheres is 0-30 nm larger than the diameter of the nano-holes on the micro-spheres.
  • the nanospheres above the nanopores are pressed into the nanopores on the microspheres to form nano-micro composite spheres;
  • the preparation of the chip containing the cylindrical micropore array described in step S1 is as follows: using the porous ceramic filter plate as the chip substrate, and depositing a layer with a thickness of 10-10 mm on the surface of the porous ceramic filter plate by magnetic sputtering. 500nm silicon dioxide film, and then use the reactive ion etching method to process the cylindrical hole array, the diameter of the cylindrical hole is 50-400nm larger than that of the arrayed microsphere, the hole depth is 30-750nm smaller than the diameter of the microsphere, and the distance between the walls of two adjacent holes is 3-25 ⁇ m.
  • the thickness of the porous ceramic filter plate is 0.5-6 mm
  • the filtration pore size is 0.05-3 ⁇ m
  • the filtration pressure is 0.02-0.35 MPa.
  • the preparation of the chip containing the tapered micro-hole array described in step S1 is as follows: using a single crystal silicon plate as a base material, a double-sided etching method is used to process the tapered hole array, and the hole depth is 30 mm smaller than the diameter of the micro-sphere. -750nm, the distance between two adjacent hole walls is 3-25 ⁇ m, and the chip thickness in the hole array area is 2-20 ⁇ m.
  • nano-micro composite spheres can be used for capturing, detecting and separating biological particles or biological molecules.
  • the present invention has the following advantages compared with the background technology:
  • the preparation method of the nano-micro composite sphere of the present invention has the advantages of high efficiency, rapidity and low cost
  • the nanospheres on the prepared nano-micro composite spheres contain modified groups and have excellent ability to adsorb viruses, proteins and nucleic acids, while the surface of the microspheres has no specific adsorption effect on viruses, but the surface of the microspheres has no specific adsorption effect on viruses. , can be modified to detect signal molecules, such as fluorescence, quantum dots, etc., and the inside of the microspheres can contain nano-magnetic particles;
  • nanospheres and microspheres Through the combination of nanospheres and microspheres, three functions of capture, detection and separation of biological particles or biomolecules, such as single virus particles, trace proteins or trace nucleic acids, can be realized.
  • FIG. 1 is a schematic diagram of a silicon chip preparation process
  • Fig. 2 is the process schematic diagram of the cross-flow filtration method array microsphere
  • Figure 3 is a schematic diagram of the preparation process of nano-micro composite spheres
  • FIG. 4 is a schematic diagram of the preparation process of the ceramic chip.
  • the present embodiment provides a preparation method of nano-micro composite spheres, the details are as follows:
  • a commercially available 2-inch, double-sided polished silicon wafer with a thickness of 50 ⁇ m is used as the chip substrate;
  • the diameter of the micro-sphere is 5 ⁇ m, made of polystyrene material, and the ball contains nano-magnetic particles, and there is no remanence when the external magnetic field is removed;
  • the diameter of the nano-sphere is 1300 nm, two Silicon oxide material, surface amination modification.
  • a tapered micro-hole chip is prepared by a double-sided etching method, and the etching process is shown in Figure 1.
  • a Cr mask layer with a thickness of 300 nm was formed on the front side of the silicon wafer by ion sputtering, and a Si 3 N 4 mask layer with a thickness of 300 nm was formed on the back side of the silicon wafer by chemical vapor deposition, and then on the front and back sides.
  • the surface is coated with photoresist to form the structure shown in Figure 1(A); as shown in Figure 1(B), the micro-hole array pattern on the Cr mask layer and the Si 3 N 4 mask are separated by photolithography.
  • the rectangle on the layer is transferred to the photoresist; as shown in Figure 1 (C), (D), the front side is etched with a tapered hole, and the back side is thinned by etching to form a through hole, that is, the front side is first cerium nitrate.
  • the photoresist was removed with ammonium solution, and the micro-hole array pattern was transferred to the Cr layer, and then a tapered micro-hole array structure was formed by anisotropic etching with KOH solution.
  • Etch thinning then reduce the etching rate and slowly etch until the tip of the nano-hole, and finally form a nano-hole as shown in Figure 1(E), and then etch at a slow speed for a period of time to adjust the nano-hole to Micron-level holes; remove the remaining Cr mask layer and Si 3 N 4 mask layer to obtain a chip containing micro-holes with a tapered hole array as shown in FIG. 1(F).
  • PS polystyrene
  • the prepared silicon chip was placed in a microfiltration device, and the bottom surface of the chip was supported by porous ceramics. From bottom to top were the bottom liquid channel, porous ceramic pad, silicon chip and top liquid channel. The side with the micropore array is facing up, and the fluid channels at the bottom and top are connected to micro-syringe pumps, which can perfuse and aspirate liquid or gas.
  • the polystyrene microspheres containing nano-magnetic particles inside are dispersed in ultrapure water at a certain concentration, and injected from the top with a syringe pump, as shown in Figure 2(A), forming a cross flow: part of the liquid is perpendicular to the chip surface Flow in the direction of flow (filter flow), part of the liquid flows along the upper surface of the chip (tangential flow), and the liquid perpendicular to the surface of the chip brings the micro-spheres into the micro-pores on the chip. With the increase of the micro-spheres embedded in the micro-pores, the flow rate of the filtered flow gradually decreases.
  • the bottom flow channel is changed to suction to form a negative pressure, and the micro-spheres arrayed in the micro-holes are sucked.
  • the liquid flow of the tangential flow is increased, as shown in Fig. 2(B), the excess microspheres are brought out of the chip surface.
  • the cross-flow filtration endpoint is determined by detecting the presence of microspheres in the tangential flow effluent.
  • the Fanghua film powder is dissolved in a chloroform solution to obtain a Fanghua solution with a mass concentration of 0.3%, and a nano film is formed on a silicon wafer by a leaching method.
  • the method of preparing the carrier network by transmission electron microscope is to spray a layer of nano-carbon on the surface of the film, and then use a sharp blade to cut the Fanghua film coated on the silicon wafer flatly, and then spray carbon on the other side to make the Fanghua film evenly.
  • the final thickness is about 20 nm; the prepared Fanghua film is covered on the chip with arrayed microspheres as shown in Figure 3(A), and after pressing, the Fanghua film and the chip are fixed in the non-microsphere array area.
  • a 20nm silicon nitride film is used, and a focused ion beam (FIB) is used to punch through holes to obtain a nano-hole mask.
  • FIB focused ion beam
  • larger-sized nano-spheres are used.
  • the mask nano-holes The diameter of 1250nm, the hole array structure and center distance are the same as the array on the chip.
  • the nano-via mask is placed above the Fanghua film, and the mask is used for reactive ion etching.
  • the Fanghua film is carved through and A hole with a diameter of 1250 nm and a depth of 1250 nm was formed on the top of the PS microsphere, as shown in Figure 3(D).
  • PDMS polydimethylsiloxane block
  • the Fanghua film was cut with a sharp scalpel to separate the Fanghua film from the chip, and the nanospheres that were not pressed into the nanopores were removed by tearing off the Fanghua film.
  • the nano-micro composite spheres prepared in this example are composed of nano-spheres embedded in nano-pores on the surface of the micro-spheres, wherein the micro-spheres are polystyrene micro-spheres with a diameter of 5 ⁇ m, and the inside of the spheres contains nano-magnetic particles. Remanent magnetism, no adsorption capacity; nanospheres are silica nanospheres with a diameter of 1300nm, the surface is aminated, and has adsorption capacity.
  • the nanospheres in the above nano-micro composite spheres prepared in this example can be used to capture biological particles or biomolecules. Limited by the surface area of the nanospheres, a single biological particle or biomolecule is adsorbed on the surface of the nanospheres; while the surface of the microspheres is It does not adsorb biological particles or biomolecules, the surface can be modified by fluorescence, quantum dots, etc., and the inside of the sphere can contain magnetic substances, so that the microsphere can be used for detection and separation of composite spheres; The three functions of capture, detection and separation can be applied to the separation of biological particles or biomolecules such as viruses, trace proteins or trace nucleic acids. .
  • the present embodiment provides a preparation method of nano-micro composite spheres, the details are as follows:
  • a commercially available porous ceramic is used as the chip substrate, the thickness is 3mm, the average filtration pore size is 0.45-0.8 ⁇ m, the diameter of the microsphere is 2 ⁇ m, the polystyrene material, the nanometer magnetic particles inside the sphere, the diameter of the nanosphere is 100nm, the silica material, the surface Amination modification.
  • a cylindrical micro-hole chip is prepared by dry etching, and the etching process is shown in FIG. 4 .
  • a dense silicon dioxide film with a thickness of 50 nm was sputtered once, and a layer of photoresist was uniformly coated on the dense silicon dioxide film by spin coating.
  • PS polystyrene
  • the prepared silicon chip is placed in a microfiltration device, and the bottom surface of the chip is supported by porous ceramics. From bottom to top, there are a bottom liquid channel, a porous ceramic backing plate, a silicon chip and a top liquid channel. The side with the micropore array is facing up, and the fluid channels at the bottom and top are connected to micro-syringe pumps, which can perfuse and aspirate liquid or gas.
  • the polystyrene microspheres containing nano-magnetic particles inside are dispersed in ultrapure water at a certain concentration, and injected from the top with a syringe pump to form a cross flow: part of the liquid flows perpendicular to the chip surface (filter flow), and part of the liquid flows in the direction perpendicular to the chip surface.
  • the liquid flows along the top surface of the chip (tangential flow), and the liquid perpendicular to the chip surface brings the microspheres into the micropores on the chip. With the increase of the micro-spheres embedded in the micro-pores, the flow rate of the filtered flow gradually decreases.
  • the bottom flow channel is changed to suction to form a negative pressure to suck the micro-spheres arrayed in the micro-holes.
  • the liquid flow of the tangential flow is increased, and the excess microspheres are carried out of the chip surface.
  • the cross-flow filtration endpoint is determined by detecting the presence of microspheres in the tangential flow effluent.
  • the Fanghua film powder is dissolved in a chloroform solution to obtain a Fanghua solution with a mass concentration of 0.3%, and a nano film is formed on a silicon wafer by a leaching method.
  • the method of preparing the carrier network by transmission electron microscope is to spray a layer of nano-carbon on the surface of the film, and then use a sharp blade to cut the Fanghua film coated on the silicon wafer flatly, and then spray carbon on the other side to make the Fanghua film evenly.
  • the final thickness is about 20 nm; the prepared Fanghua film is covered on the chip with arrayed microspheres, and after pressing, the Fanghua film is fixed to the chip in the non-microsphere array area.
  • a 20nm silicon nitride film is used, and a focused ion beam (FIB) is used to punch through holes to obtain a nano-hole mask.
  • FIB focused ion beam
  • larger-sized nano-spheres are used.
  • the mask nano-holes The diameter of 95nm, the hole array structure and center distance are the same as the array on the chip.
  • the nano through-hole mask on the Fanghua film, use it as a mask to perform reactive ion etching, etch through the Fanghua film and form a hole with a diameter of 95nm and a depth of 95nm on the top of the PS microsphere, and remove the nanohole
  • a certain concentration of surface amination-modified silica nanospheres were dropped on the surface of the Fanghua film, and the diameter of the nanospheres was 100 nm, and a tightly arranged monolayer film was formed by spin coating.
  • nano-micro composite spheres prepared in this example consist of nano-spheres embedded in nano-pores on the surface of the micro-spheres, wherein the micro-spheres are polystyrene micro-spheres with a diameter of 2 ⁇ m. Remanent magnetism, no adsorption capacity; nanospheres are silica nanospheres with a diameter of 100nm, the surface is aminated, and has adsorption capacity.
  • the nanospheres in the above nano-micro composite spheres prepared in this example can be used to capture biological particles or biomolecules. Limited by the surface area of the nanospheres, a single biological particle or biomolecule is adsorbed on the surface of the nanospheres; while the surface of the microspheres is It does not adsorb biological particles or biomolecules, the surface can be modified by fluorescence, quantum dots, etc., and the interior of the sphere can contain magnetic substances, so that the microsphere can be used for detection and separation of composite spheres; The three functions of capture, detection and separation can be applied to the separation of biological particles or biomolecules such as viruses, trace proteins or trace nucleic acids. .
  • the present embodiment provides a preparation method of nano-micro composite spheres, the details are as follows:
  • a commercially available porous ceramic is used as the chip substrate, the thickness is 3mm, the average filtration pore size is 0.45-0.8 ⁇ m, the diameter of the microsphere is 2 ⁇ m, the polystyrene material, the nanometer magnetic particles inside the sphere, the diameter of the nanosphere is 100nm, the silica material, the surface Amination modification.
  • a cylindrical micro-hole chip is prepared by dry etching, and the etching process is shown in FIG. 4 .
  • a dense silicon dioxide film with a thickness of 50 nm is sputtered once, and a layer of photoresist is evenly coated on the dense silicon dioxide film by spin coating, and the mask is covered by a photolithography process.
  • the circular hole pattern array with a diameter of 2.2 ⁇ m and a distance of 5 ⁇ m between the two hole walls is transferred to the photoresist, and the porous ceramic filter plate after photoetching is transferred to a reactive ion etching machine.
  • the etching gas is chlorine
  • the mixture of boron (BCl3) and chlorine (Cl2) is etched through the silicon dioxide film and the porous ceramic to form a cylindrical hole array with a diameter of 2.2 ⁇ m, a depth of 1.7 ⁇ m, and an interval of 5 ⁇ m between adjacent hole walls.
  • PS polystyrene
  • the prepared silicon chip is placed in a microfiltration device, and the bottom surface of the chip is supported by porous ceramics. From bottom to top, there are a bottom liquid channel, a porous ceramic backing plate, a silicon chip and a top liquid channel. The side with the micropore array is facing up, and the fluid channels at the bottom and top are connected to micro-syringe pumps, which can perfuse and aspirate liquid or gas.
  • the polystyrene microspheres containing nano-magnetic particles inside are dispersed in ultrapure water at a certain concentration, and injected from the top with a syringe pump to form a cross flow: part of the liquid flows perpendicular to the chip surface (filter flow), and part of the liquid flows in the direction perpendicular to the chip surface.
  • the liquid flows along the top surface of the chip (tangential flow), and the liquid perpendicular to the chip surface brings the microspheres into the micropores on the chip. With the increase of micro-spheres embedded in micro-pores, the flow rate of the filtered flow gradually decreases.
  • the bottom flow channel is changed to suction to form a negative pressure, and the micro-spheres arrayed in the micro-holes are sucked. At this time, the liquid flow of the tangential flow is increased, and the excess microspheres are carried out of the chip surface.
  • the cross-flow filtration endpoint is determined by detecting the presence of microspheres in the tangential flow effluent.
  • the Fanghua film powder is dissolved in a chloroform solution to obtain a Fanghua solution with a mass concentration of 0.3%, and a nano film is formed on a silicon wafer by a leaching method.
  • the method of preparing the carrier network by transmission electron microscope is to spray a layer of nano-carbon on the surface of the film, and then use a sharp blade to cut the Fanghua film coated on the silicon wafer flatly, and then spray carbon on the other side to make the Fanghua film evenly.
  • the final thickness is about 20 nm; the prepared Fanghua film is covered on the chip with arrayed microspheres, and after pressing, the Fanghua film is fixed to the chip in the non-microsphere array area.
  • a 20nm silicon nitride film is used, and a focused ion beam (FIB) is used to punch through holes to obtain a nano-hole mask.
  • FIB focused ion beam
  • larger-sized nano-spheres are used.
  • the mask nano-holes The diameter of 95nm, the hole array structure and center distance are the same as the array on the chip.
  • the nano through-hole mask on the Fanghua film, use it as a mask to perform reactive ion etching, etch through the Fanghua film and form a hole with a diameter of 95nm and a depth of 95nm on the top of the PS microsphere, and remove the nanohole
  • a certain concentration of surface amination-modified silica nanospheres were dropped on the surface of the Fanghua film, and the diameter of the nanospheres was 100 nm, and a tightly arranged monolayer film was formed by spin coating.
  • nano-micro composite spheres prepared in this example consist of nano-spheres embedded in nano-pores on the surface of the micro-spheres, wherein the micro-spheres are polystyrene micro-spheres with a diameter of 2 ⁇ m. Remanent magnetism, no adsorption capacity; nanospheres are silica nanospheres with a diameter of 100nm, the surface is aminated, and has adsorption capacity.
  • the nanospheres in the above nano-micro composite spheres prepared in this example can be used to capture biological particles or biomolecules. Limited by the surface area of the nanospheres, a single biological particle or biomolecule is adsorbed on the surface of the nanospheres; while the surface of the microspheres is It does not adsorb biological particles or biomolecules, the surface can be modified by fluorescence, quantum dots, etc., and the interior of the sphere can contain magnetic substances, so that the microsphere can be used for detection and separation of composite spheres; The three functions of capture, detection and separation can be applied to the separation of biological particles or biomolecules such as viruses, trace proteins or trace nucleic acids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种纳微复合球及其制备方法和应用,所述制备方法具有高效快速、低成本的优点,所制得的纳微复合球由纳米球镶嵌在微米球表面的纳米孔中组成,微米球和纳米球表面均可根据实际需要进行表面修饰,微米球内部含有磁性颗粒,所述纳微复合球可用于生物颗粒或生物分子的捕获、检测和分离。

Description

一种纳微复合球及其制备方法和应用 技术领域
本发明涉及生物材料技术领域,特别涉及一种纳微复合球及其制备方法和应用。
背景技术
生物细胞含有多种蛋白分子和核酸分子,在常规生物学中,通常通过很多步骤的分离、纯化和检测,才能在大量的生物样品中得到目的蛋白分子或核酸分子。在常规生物学中,主要通过培养皿的单菌落技术、光学显微操作的单颗粒技术,来获得单菌落、单细胞,进而通过纯培养和分子测序,获得基因组。但这些生物学方法难以获得蛋白、核酸或病毒单颗粒,这是因为这些生物分子或生物颗粒的个体极其微小,属于纳米或微米尺度,需要在电子显微镜下才能看到。因此,需要寻找新的可用于生物分子或生物颗粒分离的材料或方法,以应用于生物分子或生物颗粒的分离和纯化。
纳微球是直径在纳米级或微米级的颗粒,现有技术公开的纳微球主要作为免疫佐剂使用或者蛋白和核酸的纯化,不具有分离单个病毒颗粒或者痕量蛋白的直接分离等用途。由于纳微球在尺寸上与病毒颗粒、生物分子较为接近,因此考虑通过对纳微球的改造或修饰,将其应用于病毒单颗粒、痕量生物分子的直接分离。
发明内容
为解决上述问题,本发明提供了一种纳微复合球及其制备方法和应用。
本发明采用以下技术方案:
一种纳微复合球,由微米球和纳米球组成,所述微米球表面具有纳米孔,所述纳米球镶嵌在所述微米球表面的纳米孔中,所述微米球的直径为1-25μm,所述纳米球直径为5-1500nm。
进一步地,所述微米球的表面经荧光或量子点修饰,球内部经磁性修饰。
进一步地,所述微米球采用高分子聚合物微球。
进一步地,所述纳米球表面经氨基化、羧基化、生物素化或量子点修饰。
进一步地,所述纳米球采用二氧化硅纳米球。
一种纳微复合球的制备方法,该方法包括如下步骤:
S1、制备含有圆柱形微米孔阵列或者锥形微米孔阵列的芯片;
S2、采用错流过滤法将微米球阵列于所述芯片的微米孔中,一个孔洞只含一个微米球,微米球高出所述芯片表面30-750nm;
S3、在微米球上方贴一层纳米薄膜,所述纳米薄膜的厚度为5-40nm;
S4、用纳米通孔掩膜板压住微米球,使微米球顶部形成一小平面,采用反应离子刻蚀法在微米球顶部刻蚀一个纳米孔,所述纳米孔直径为5-1500nm,深度5-1500nm;
S5、移去所述纳米通孔掩膜板,保留纳米薄膜,铺一层纳米球于纳米薄膜上,纳米球的直径比微米球上的纳米孔直径大0-30nm,用压印法将位于纳米孔上方的纳米球压入微米球上的纳米孔中,形成纳微复合球;
S6、移除覆盖在芯片表面的纳米薄膜,清除掉未压入微米孔的纳米球,得到含纳微复合球阵列的芯片。
进一步地,步骤S1中所述含有圆柱形微米孔阵列的芯片的制备具体为:以多孔陶瓷过滤板作为芯片基材,采用磁溅射法在多孔陶瓷过滤板表面淀积一层厚度为10-500nm的二氧化硅薄膜,然后采用反应离子刻蚀法加工圆柱孔阵列,圆柱孔直径比被阵列的微米球大50-400nm,孔深比微米球直径小30-750nm,相邻两孔壁间距3-25μm。
进一步地,所述多孔陶瓷过滤板的厚度为0.5-6mm,过滤孔径0.05-3μm,过滤压力0.02-0.35MPa。
进一步地,步骤S1中所述含有锥形微米孔阵列的芯片的制备具体为:以单晶硅板作为基材,采用双面刻蚀法加工锥形孔阵列,孔深比微米球直径小30-750nm,相邻两孔壁间距3-25μm,孔阵列区的芯片厚度2-20μm。
一种纳微复合球的应用,所述纳微复合球可用于生物颗粒或生物分子的捕获、检测和分离。
采用上述技术方案后,本发明与背景技术相比,具有如下优点:
1、本发明的纳微复合球的制备方法具有高效快速、低成本的优点;
2、所制得的纳微复合球上的纳米球含有修饰基团,具有优良的吸附病毒、蛋白和核酸的能力,而微米球的表面对病毒没有特异性的吸附作用,但微米球的表面,可修饰上检测信号分子,如荧光、量子点等,微米球内部可含有纳米磁性颗粒;
3、通过纳米球和微米球的结合,可实现对生物颗粒或生物分子,如病毒单颗粒、痕量蛋白或痕量核酸的捕获、检测和分离三种功能。
附图说明
图1为硅芯片制备过程示意图;
图2为错流过滤法阵列微米球的过程示意图;
图3为纳微复合球制备过程示意图;
图4为陶瓷芯片制备过程示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一
本实施例提供了一种纳微复合球的制备方法,具体如下:
1、主要材料:
以市售的2英寸、厚度50μm双面抛光硅片作为芯片基材;微米球直径5μm,聚苯乙烯材料,球内部含有纳米磁性颗粒,移除外磁场无剩磁;纳米球直径1300nm,二氧化硅材料,表面氨基化修饰。
2、制备过程:
(1)制备含有锥形孔阵列微米孔的芯片;
采用双面刻蚀法制备锥形微米孔芯片,刻蚀工艺如图1所示。在硅片的正面利用离子溅射形成一层厚度为300nm的Cr掩膜层,在硅片的背面利用化学气相淀积形成一层厚度为300nm的Si 3N 4掩膜层,然后在正背面表面均涂上光刻胶,形成如图1(A)所示的结构;如图1(B)所示,利用光刻工艺分别将Cr掩膜层上的微米孔阵列图案和Si 3N 4掩膜层上的矩形转移到光刻胶上;如图1(C)、(D)所示,正面刻蚀锥形孔,背面通过刻蚀将硅片减薄形成通孔,即正面先用硝酸铈铵溶液去除光刻胶,并将微米孔阵列图案转移到Cr层,然后用KOH溶液异向刻蚀形成锥形微孔阵列结构,背面同样利用KOH溶液大面积地刻蚀背面,先进行快速刻蚀减薄,然后调低刻蚀速率慢慢刻蚀一直到纳米孔的孔尖,最终形成如图1(E)中的形成纳米通孔,再慢速刻蚀一段时间,将纳米孔调整为微米级别的孔洞;去除剩余的Cr掩膜层和Si 3N 4掩膜层即可得到如图1(F)所示的含有锥形孔阵列微米孔的芯片。
(2)将聚苯乙烯(PS)微米球阵列于芯片上的微米孔中;
如图2所示,将制得的硅芯片置于微型过滤装置中,芯片底面用多孔陶瓷支撑,从下往上分别为底部液体通道、多孔陶瓷垫板、硅芯片和顶部液体通道。有微米孔阵列的一面朝上,底部和顶部的流体通道连接微型注射泵,可灌注和抽吸液体或者气体。将内部含纳米磁性颗粒的聚苯乙烯微米球以一定的浓度分散在超纯水中,用注射泵从顶部注入,如图2(A)所示,形成十字错流:部分液体垂直于芯片表面的方向流动(过滤流),部分液体沿着芯片上表面流动(切向流),垂直芯片表面的液体,将微米球带入芯片上的微米孔中。随着埋入微米孔的微米球的增多,过滤流的流量逐渐减少。等微米球阵列完成,底部流道改为抽吸,形成负压,将阵列于微米孔中的小球吸住。此时,加大切向流的液体流动,如图2(B)所示,多余的微米球被带出芯片表面。通过检测切向流流出液体中是否有微米球,确定十字错流过滤终点。
(3)在微米球上方贴一层纳米薄膜;
将方华膜粉末溶解在三氯甲烷溶液中,得到质量浓度为0.3%的方华溶液,采用浸提法在硅片上形成一层纳米薄膜。采用透射电镜制备载网的方法,在薄膜表面喷一层纳米碳,然后用锋利刀片将包覆在硅片上的方华膜平整地划破后,反过来将另外一面喷碳,方华膜最终厚度大约20nm;将制备好的方华膜覆盖在如图3(A)所示的阵列了微米球的芯片上,压紧后在非微米球阵列区,将方华膜与芯片固定。
(4)制备纳微复合球;
采用20nm的氮化硅薄膜,使用聚焦离子束(FIB)打通孔,得到纳米通孔掩模板,本实施例为了光学检测方便,采用较大尺寸的纳米球,相应地,掩膜板纳米通孔的直径1250nm,孔阵列结构和中心距与芯片上的阵列相同。如图3(B)所示,将纳米通孔掩膜板置于方华膜上方,以此为掩膜板进行反应离子刻蚀,如图3(C)所示,刻穿方华膜并在PS微米球顶部形成直径1250nm,深1250nm的孔,如图3(D)所示,移去纳米孔掩膜板,在方华膜表面滴加一定浓度的表面氨基化修饰的二氧化硅纳米球,纳米球的直径1300nm,采用旋涂法形成紧密排列的单层膜。以一定力度的将聚二甲基硅氧烷块(PDMS)压到铺满致密纳米球的方华膜上,如图3(E)所示,将纳米孔上的纳米球压到有缺口的微米球中,最后如图3(F)所示,用锋利的手术刀切割方华膜,使得方华膜与芯片分离,撕去方华膜将未压入纳米孔的纳米球去除。
本实施例制得的纳微复合球由纳米球镶嵌在微米球表面的纳米孔中组成,其中,微米球为聚苯乙烯微米球,直径5μm,球内部含有纳米磁性颗粒,移除外磁场无剩磁,不具有吸附能力;纳米球为二氧化硅纳米球,直径1300nm,表面氨基化修饰,具有吸附能力。
本实施例制得的上述纳微复合球中的纳米球可用于捕获生物颗粒或生物分子,受限于纳米球的表面积大小,单个生物颗粒或生物分子被吸附在纳米球表面;而微米球表面不吸附生物颗粒或生物分子,表面可荧光、量子点等修饰,球内部可含磁性物质,使得微米球可用于检测和分离复合球;因此, 上述纳微复合球同时具有对生物颗粒或生物分子的捕获、检测和分离三种功能,可应用于生物颗粒或生物分子如病毒、痕量蛋白或痕量核酸的分离。。
实施例二
本实施例提供了一种纳微复合球的制备方法,具体如下:
1、主要材料:
以市售的多孔陶瓷作为芯片基材,厚度3mm,平均过滤孔径0.45-0.8μm,微米球直径2μm,聚苯乙烯材料,球内部含纳米磁性颗粒,纳米球直径100nm,二氧化硅材料,表面氨基化修饰。
2、制备过程:
(1)制备含有锥形孔阵列微米孔的芯片;
采用干法刻蚀制备圆柱形微米孔芯片,刻蚀工艺如图4所示。首先,如图4(A)所示,在在多孔陶瓷表面,溅射一次致密的二氧化硅薄膜,厚度50nm,采用旋涂法在致密二氧化硅薄膜上均匀地涂上一层光刻胶,然后如图4(B)所示,利用光刻工艺将掩膜板上的直径为2.2μm,两孔壁间隔距离为5μm的圆孔图形阵列转移至光刻胶上,如图4(C)(D)所示,将光刻后的多孔陶瓷过滤薄板转移至反应离子刻蚀机中,采用刻蚀气体为氯化硼(BCl3)和氯气(Cl2)的混合气,刻穿二氧化硅薄膜和多孔陶瓷,最终形成直径为2.2μm、深度为1.7μm,相邻孔壁间隔为5μm的圆柱孔阵列。
(2)将聚苯乙烯(PS)微米球阵列于芯片上的微米孔中;
将制得的硅芯片置于微型过滤装置中,芯片底面用多孔陶瓷支撑,从下往上分别为底部液体通道、多孔陶瓷垫板、硅芯片和顶部液体通道。有微米孔阵列的一面朝上,底部和顶部的流体通道连接微型注射泵,可灌注和抽吸液体或者气体。将内部含纳米磁性颗粒的聚苯乙烯微米球以一定的浓度分散在超纯水中,用注射泵从顶部注入,形成十字错流:部分液体垂直于芯片表面的方向流动(过滤流),部分液体沿着芯片上表面流动(切向流),垂直芯片表面的液体,将微米球带入芯片上的微米孔中。随着埋入微米孔的微米球的增多,过滤流的流量逐渐减少。等微米球阵列完成,底部流道改为抽吸, 形成负压,将阵列于微米孔中的小球吸住。此时,加大切向流的液体流动,多余的微米球被带出芯片表面。通过检测切向流流出液体中是否有微米球,确定十字错流过滤终点。
(3)在微米球上方贴一层纳米薄膜;
将方华膜粉末溶解在三氯甲烷溶液中,得到质量浓度为0.3%的方华溶液,采用浸提法在硅片上形成一层纳米薄膜。采用透射电镜制备载网的方法,在薄膜表面喷一层纳米碳,然后用锋利刀片将包覆在硅片上的方华膜平整地划破后,反过来将另外一面喷碳,方华膜最终厚度大约20nm;将制备好的方华膜覆盖在的阵列了微米球的芯片上,压紧后在非微米球阵列区,将方华膜与芯片固定。
(4)制备纳微复合球;
采用20nm的氮化硅薄膜,使用聚焦离子束(FIB)打通孔,得到纳米通孔掩模板,本实施例为了光学检测方便,采用较大尺寸的纳米球,相应地,掩膜板纳米通孔的直径95nm,孔阵列结构和中心距与芯片上的阵列相同。将纳米通孔掩膜板置于方华膜上方,以此为掩膜板进行反应离子刻蚀,刻穿方华膜并在PS微米球顶部形成直径95nm,深95nm的孔,移去纳米孔掩膜板,在方华膜表面滴加一定浓度的表面氨基化修饰的二氧化硅纳米球,纳米球的直径100nm,采用旋涂法形成紧密排列的单层膜。以一定力度的将聚二甲基硅氧烷块(PDMS)压到铺满致密纳米球的方华膜上,将纳米孔上的纳米球压到有缺口的微米球中,最后用锋利的手术刀切割方华膜,使得方华膜与芯片分离,撕去方华膜将未压入纳米孔的纳米球去除。
本实施例制得的纳微复合球由纳米球镶嵌在微米球表面的纳米孔中组成,其中,微米球为聚苯乙烯微米球,直径2μm,球内部含有纳米磁性颗粒,移除外磁场无剩磁,不具有吸附能力;纳米球为二氧化硅纳米球,直径100nm,表面氨基化修饰,具有吸附能力。
本实施例制得的上述纳微复合球中的纳米球可用于捕获生物颗粒或生物分子,受限于纳米球的表面积大小,单个生物颗粒或生物分子被吸附在纳米 球表面;而微米球表面不吸附生物颗粒或生物分子,表面可荧光、量子点等修饰,球内部可含磁性物质,使得微米球可用于检测和分离复合球;因此,上述纳微复合球同时具有对生物颗粒或生物分子的捕获、检测和分离三种功能,可应用于生物颗粒或生物分子如病毒、痕量蛋白或痕量核酸的分离。。
实施例三
本实施例提供了一种纳微复合球的制备方法,具体如下:
1、主要材料:
以市售的多孔陶瓷作为芯片基材,厚度3mm,平均过滤孔径0.45-0.8μm,微米球直径2μm,聚苯乙烯材料,球内部含纳米磁性颗粒,纳米球直径100nm,二氧化硅材料,表面氨基化修饰。
2、制备过程:
(1)制备含有锥形孔阵列微米孔的芯片;
采用干法刻蚀制备圆柱形微米孔芯片,刻蚀工艺如图4所示。首先,在在多孔陶瓷表面,溅射一次致密的二氧化硅薄膜,厚度50nm,采用旋涂法在致密二氧化硅薄膜上均匀地涂上一层光刻胶,利用光刻工艺将掩膜板上的直径为2.2μm,两孔壁间隔距离为5μm的圆孔图形阵列转移至光刻胶上,将光刻后的多孔陶瓷过滤薄板转移至反应离子刻蚀机中,采用刻蚀气体为氯化硼(BCl3)和氯气(Cl2)的混合气,刻穿二氧化硅薄膜和多孔陶瓷,最终形成直径为2.2μm、深度为1.7μm,相邻孔壁间隔为5μm的圆柱孔阵列。
(2)将聚苯乙烯(PS)微米球阵列于芯片上的微米孔中;
将制得的硅芯片置于微型过滤装置中,芯片底面用多孔陶瓷支撑,从下往上分别为底部液体通道、多孔陶瓷垫板、硅芯片和顶部液体通道。有微米孔阵列的一面朝上,底部和顶部的流体通道连接微型注射泵,可灌注和抽吸液体或者气体。将内部含纳米磁性颗粒的聚苯乙烯微米球以一定的浓度分散在超纯水中,用注射泵从顶部注入,形成十字错流:部分液体垂直于芯片表面的方向流动(过滤流),部分液体沿着芯片上表面流动(切向流),垂直芯片表面的液体,将微米球带入芯片上的微米孔中。随着埋入微米孔的微米 球的增多,过滤流的流量逐渐减少。等微米球阵列完成,底部流道改为抽吸,形成负压,将阵列于微米孔中的小球吸住。此时,加大切向流的液体流动,多余的微米球被带出芯片表面。通过检测切向流流出液体中是否有微米球,确定十字错流过滤终点。
(3)在微米球上方贴一层纳米薄膜;
将方华膜粉末溶解在三氯甲烷溶液中,得到质量浓度为0.3%的方华溶液,采用浸提法在硅片上形成一层纳米薄膜。采用透射电镜制备载网的方法,在薄膜表面喷一层纳米碳,然后用锋利刀片将包覆在硅片上的方华膜平整地划破后,反过来将另外一面喷碳,方华膜最终厚度大约20nm;将制备好的方华膜覆盖在的阵列了微米球的芯片上,压紧后在非微米球阵列区,将方华膜与芯片固定。
(4)制备纳微复合球;
采用20nm的氮化硅薄膜,使用聚焦离子束(FIB)打通孔,得到纳米通孔掩模板,本实施例为了光学检测方便,采用较大尺寸的纳米球,相应地,掩膜板纳米通孔的直径95nm,孔阵列结构和中心距与芯片上的阵列相同。将纳米通孔掩膜板置于方华膜上方,以此为掩膜板进行反应离子刻蚀,刻穿方华膜并在PS微米球顶部形成直径95nm,深95nm的孔,移去纳米孔掩膜板,在方华膜表面滴加一定浓度的表面氨基化修饰的二氧化硅纳米球,纳米球的直径100nm,采用旋涂法形成紧密排列的单层膜。以一定力度的将聚二甲基硅氧烷块(PDMS)压到铺满致密纳米球的方华膜上,将纳米孔上的纳米球压到有缺口的微米球中,最后用锋利的手术刀切割方华膜,使得方华膜与芯片分离,撕去方华膜将未压入纳米孔的纳米球去除。
本实施例制得的纳微复合球由纳米球镶嵌在微米球表面的纳米孔中组成,其中,微米球为聚苯乙烯微米球,直径2μm,球内部含有纳米磁性颗粒,移除外磁场无剩磁,不具有吸附能力;纳米球为二氧化硅纳米球,直径100nm,表面氨基化修饰,具有吸附能力。
本实施例制得的上述纳微复合球中的纳米球可用于捕获生物颗粒或生物 分子,受限于纳米球的表面积大小,单个生物颗粒或生物分子被吸附在纳米球表面;而微米球表面不吸附生物颗粒或生物分子,表面可荧光、量子点等修饰,球内部可含磁性物质,使得微米球可用于检测和分离复合球;因此,上述纳微复合球同时具有对生物颗粒或生物分子的捕获、检测和分离三种功能,可应用于生物颗粒或生物分子如病毒、痕量蛋白或痕量核酸的分离。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (10)

  1. 一种纳微复合球,其特征在于:由微米球和纳米球组成,所述微米球表面具有纳米孔,所述纳米球镶嵌在所述微米球表面的纳米孔中,所述微米球的直径为1-25μm,所述纳米球直径为5-1500nm。
  2. 如权利要求1所述的一种纳微复合球,其特征在于:所述微米球的表面经荧光或量子点修饰,球内部经磁性修饰。
  3. 如权利要求2所述的一种纳微复合球,其特征在于:所述微米球采用高分子聚合物微球。
  4. 如权利要求1所述的一种纳微复合球,其特征在于:所述纳米球表面经氨基化、羧基化、生物素化或量子点修饰。
  5. 如权利要求4所述的一种纳微复合球,其特征在于:所述纳米球采用二氧化硅纳米球。
  6. 如权利要求1所述的一种纳微复合球的制备方法,其特征在于:该方法包括如下步骤:
    S1、制备含有圆柱形微米孔阵列或者锥形微米孔阵列的芯片;
    S2、采用错流过滤法将微米球阵列于所述芯片的微米孔中,一个孔洞只含一个微米球,微米球高出所述芯片表面30-750nm;
    S3、在微米球上方贴一层纳米薄膜,所述纳米薄膜的厚度为5-40nm;
    S4、用纳米通孔掩膜板压住微米球,使微米球顶部形成一小平面,采用反应离子刻蚀法在微米球顶部刻蚀一个纳米孔,所述纳米孔直径为5-1500nm,深度5-1500nm;
    S5、移去所述纳米通孔掩膜板,保留纳米薄膜,铺一层纳米球于纳米薄膜上,纳米球的直径比微米球上的纳米孔直径大0-30nm,用压印法将位于纳米孔上方的纳米球压入微米球上的纳米孔中,形成纳微复合球;
    S6、移除覆盖在芯片表面的纳米薄膜,清除掉未压入微米孔的纳米球,得到含纳微复合球阵列的芯片。
  7. 如权利要求6所述的一种纳微复合球的制备方法,其特征在于:步骤S1中所述含有圆柱形微米孔阵列的芯片的制备具体为:以多孔陶瓷过滤板作为芯 片基材,采用磁溅射法在多孔陶瓷过滤板表面淀积一层厚度为10-500nm的二氧化硅薄膜,然后采用反应离子刻蚀法加工圆柱孔阵列,圆柱孔直径比被阵列的微米球大50-400nm,孔深比微米球直径小30-750nm,相邻两孔壁间距3-25μm。
  8. 如权利要求7所述的一种纳微复合球的制备方法,其特征在于:所述多孔陶瓷过滤板的厚度为0.5-6mm,过滤孔径0.05-3μm,过滤压力0.02-0.35MPa。
  9. 如权利要求6所述的一种纳微复合球的制备方法,其特征在于:步骤S1中所述含有锥形微米孔阵列的芯片的制备具体为:以单晶硅板作为基材,采用双面刻蚀法加工锥形孔阵列,孔深比微米球直径小30-750nm,相邻两孔壁间距3-25μm,孔阵列区的芯片厚度2-20μm。
  10. 如权利要求1所述的一种纳微复合球的应用,其特征在于:所述纳微复合球可用于生物颗粒或生物分子的捕获、检测和分离。
PCT/CN2021/102314 2021-02-08 2021-06-25 一种纳微复合球及其制备方法和应用 WO2022166081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110180633.5A CN112973650B (zh) 2021-02-08 2021-02-08 一种纳微复合球及其制备方法和应用
CN202110180633.5 2021-02-08

Publications (1)

Publication Number Publication Date
WO2022166081A1 true WO2022166081A1 (zh) 2022-08-11

Family

ID=76393073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102314 WO2022166081A1 (zh) 2021-02-08 2021-06-25 一种纳微复合球及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112973650B (zh)
WO (1) WO2022166081A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261786A (zh) * 2022-08-16 2022-11-01 华中科技大学鄂州工业技术研究院 一种Micro-CT探测器镀膜方法、一种掩膜

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973650B (zh) * 2021-02-08 2022-02-08 厦门大学 一种纳微复合球及其制备方法和应用
CN114307885B (zh) * 2022-01-20 2022-09-16 厦门大学 一种局部功能化修饰微球的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239295A (zh) * 2008-03-17 2008-08-13 苏州微纳科技有限公司 纳米微米复合微球的制备方法
CN103333967A (zh) * 2013-07-12 2013-10-02 湖南工程学院 一种基于微流控微珠阵列芯片的核酸检测方法
CN103962074A (zh) * 2014-02-28 2014-08-06 中国科学院化学研究所 一种中空亚微米球、其制备方法与应用
CN105219373A (zh) * 2014-06-05 2016-01-06 上海交通大学 一种载体颗粒及其制备方法
WO2020097717A1 (en) * 2018-11-13 2020-05-22 Silicycle Inc. Hydrophobicity/hydrophilicity-tunable organosiloxane nano-/microspheres and process to make them
CN112973650A (zh) * 2021-02-08 2021-06-18 厦门大学 一种纳微复合球及其制备方法和应用
CN112980806A (zh) * 2021-02-08 2021-06-18 厦门大学 基于纳微复合球的病毒单颗粒分离方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1212652C (zh) * 2002-07-19 2005-07-27 上海华虹(集团)有限公司 一种基于自组织的纳米颗粒图案的光刻方法
ATE442168T1 (de) * 2006-05-17 2009-09-15 Debiotech Sa Anisotrope nanoporíse beschichtungen für medizinische implantate
CN101158809B (zh) * 2007-11-20 2010-12-01 中国科学院光电技术研究所 应用聚苯乙烯球进行聚焦光刻成形亚波长微纳结构
CN102530855B (zh) * 2012-02-14 2014-01-01 中国人民解放军国防科学技术大学 月牙形金属纳米结构的制备方法
CN103646745B (zh) * 2013-12-16 2016-04-06 厦门大学 一种负载贵金属量子点的磁性复合微球及其制备方法
US10786569B2 (en) * 2015-07-31 2020-09-29 Wei Wu Lithographically defined nanoparticles for microwave absorption

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239295A (zh) * 2008-03-17 2008-08-13 苏州微纳科技有限公司 纳米微米复合微球的制备方法
CN103333967A (zh) * 2013-07-12 2013-10-02 湖南工程学院 一种基于微流控微珠阵列芯片的核酸检测方法
CN103962074A (zh) * 2014-02-28 2014-08-06 中国科学院化学研究所 一种中空亚微米球、其制备方法与应用
CN105219373A (zh) * 2014-06-05 2016-01-06 上海交通大学 一种载体颗粒及其制备方法
WO2020097717A1 (en) * 2018-11-13 2020-05-22 Silicycle Inc. Hydrophobicity/hydrophilicity-tunable organosiloxane nano-/microspheres and process to make them
CN112973650A (zh) * 2021-02-08 2021-06-18 厦门大学 一种纳微复合球及其制备方法和应用
CN112980806A (zh) * 2021-02-08 2021-06-18 厦门大学 基于纳微复合球的病毒单颗粒分离方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261786A (zh) * 2022-08-16 2022-11-01 华中科技大学鄂州工业技术研究院 一种Micro-CT探测器镀膜方法、一种掩膜

Also Published As

Publication number Publication date
CN112973650B (zh) 2022-02-08
CN112973650A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2022166081A1 (zh) 一种纳微复合球及其制备方法和应用
Lyu et al. 3D-printed surface-patterned ceramic membrane with enhanced performance in crossflow filtration
Ingham et al. Where bio meets nano: the many uses for nanoporous aluminum oxide in biotechnology
US8431034B2 (en) Manufacturing of nanopores
JP5311356B2 (ja) 有核赤血球濃縮回収用チップ及び有核赤血球濃縮回収方法
CN113773958B (zh) 细胞分析器件及使用了该细胞分析器件的细胞分析方法
CN107694347B (zh) 一种微孔阵列滤膜及其制备方法和应用
CN107523481B (zh) 一种基于微流控芯片的微纳生物粒子分选设备
US20140315295A1 (en) Polymer microfilters, devices comprising the same, methods of manufacturing the same, and uses thereof
CN103991837A (zh) 一种基于压电基底薄片的微纳米有序通孔阵列金属薄膜传感器及其制造方法
WO2017154951A1 (ja) 細胞外小胞の回収方法
KR20130066138A (ko) 나노채널 구조체를 구비하는 센서 및 그 제조방법
Lee et al. Selective protein transport through ultra-thin suspended reduced graphene oxide nanopores
CN112980806B (zh) 基于纳微复合球的病毒单颗粒分离方法
US11959841B2 (en) Device and method for isolating extracellular vesicles from biofluids
Mao et al. Attapulgite-based nanofiber membrane with oriented channels for high-efficiency oil-water separation
Liu et al. Filtration membrane with ultra-high porosity and pore size controllability fabricated by parylene c molding technique for targeted cell separation from bronchoalveolar lavage fluid (BALF)
WO2022236863A1 (zh) 一种表面具有功能化斑点的微球及其制备方法和应用
Lee et al. Construction of Membrane Sieves Using Stoichiometric and Stress‐Reduced Si3N4/SiO2/Si3N4 Multilayer Films and Their Applications in Blood Plasma Separation
US11860157B2 (en) Polymer microfilters, devices comprising the same, methods of manufacturing the same, and uses thereof
CN108840329A (zh) 一种独立自支撑石墨烯基超薄膜的制备方法
Fan et al. A novel polyethylene microfiltration membrane with highly permeable ordered ‘wine bottle’shaped through-pore structure fabricated via imprint and thermal field induction
JP6073072B2 (ja) ナノファイバー不織布を用いたろ過装置
CN113039262B (zh) 用于捕捉细胞外囊泡的器件、细胞外囊泡的保存方法和转送方法
JP7289128B2 (ja) クロスフローろ過装置の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924088

Country of ref document: EP

Kind code of ref document: A1