WO2022166075A1 - 电容结构及其制备方法 - Google Patents

电容结构及其制备方法 Download PDF

Info

Publication number
WO2022166075A1
WO2022166075A1 PCT/CN2021/101299 CN2021101299W WO2022166075A1 WO 2022166075 A1 WO2022166075 A1 WO 2022166075A1 CN 2021101299 W CN2021101299 W CN 2021101299W WO 2022166075 A1 WO2022166075 A1 WO 2022166075A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
predetermined
organic layer
layer
metal
Prior art date
Application number
PCT/CN2021/101299
Other languages
English (en)
French (fr)
Inventor
苏星松
白卫平
郁梦康
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/601,702 priority Critical patent/US20230103489A1/en
Publication of WO2022166075A1 publication Critical patent/WO2022166075A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/10Metal-oxide dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material

Definitions

  • the present application relates to the field of semiconductor technology, and in particular, to a capacitor structure and a preparation method thereof.
  • Capacitor structures are widely used in semiconductor structures as a charge-storing element.
  • the capacitive structure generally includes two electrodes disposed opposite to each other, and a dielectric layer between the two electrodes.
  • the material of the dielectric layer is usually oxide, such as zirconia, hafnium oxide or perovskite.
  • oxide such as zirconia, hafnium oxide or perovskite.
  • the semiconductor structure continues to shrink, the requirements for the charge capacity of the capacitor structure are getting higher and higher.
  • a doped dielectric layer is prepared, a metal organic layer is formed, and then the metal organic layer is oxidized to form a metal oxide layer, and then a doped organic layer is formed on the metal oxide, and then the doped organic layer is formed.
  • the layer is oxidized to form a doped oxide layer, and the metal oxide layer and the doped oxide layer constitute a doped dielectric layer.
  • the concentration of the doped oxide in the above-mentioned doped dielectric layer is relatively high, and the doping effect is poor, thereby affecting the performance of the capacitor structure.
  • the present application provides a capacitor structure and a manufacturing method thereof to partially improve the technical problem of poor performance of the capacitor structure.
  • the present application provides a method for preparing a capacitor structure, comprising: forming a dielectric layer on a first electrode, the dielectric layer including a metal oxide layer doped with a predetermined oxide, and a part of the dielectric layer is formed.
  • the predetermined oxide and the metal oxide share oxygen atoms;
  • a second electrode is formed on the dielectric layer, and the first electrode, the dielectric layer and the second electrode constitute the capacitor structure.
  • a dielectric layer is formed on the first electrode, the dielectric layer includes a metal oxide layer doped with a predetermined oxide, and part of the predetermined oxide and the metal oxide share oxygen atom.
  • the content of oxygen can be reduced, thereby reducing the influence of the preset oxide on reducing the dielectric constant of the dielectric layer; and then forming a second electrode on the dielectric layer , to form a capacitor structure, and the obtained capacitor structure has better performance.
  • the doping effect of the preset oxide in the metal oxide layer is good, which further improves the performance of the capacitor structure.
  • the present application provides a capacitor structure, comprising two electrodes disposed opposite to each other, and a dielectric layer located between and in contact with the two electrodes, the dielectric layer comprising A metal oxide layer doped with a predetermined oxide, and part of the predetermined oxide and the metal oxide share oxygen atoms.
  • the capacitor structure provided by the present application includes two opposite electrodes and a dielectric layer located between the two electrodes, the dielectric layer is in contact with the two electrodes, and the dielectric layer includes a metal oxide doped with a predetermined oxide
  • some predetermined oxides in the metal oxide layer share oxygen atoms with the metal oxide.
  • the content of oxygen can be reduced, thereby reducing the influence of the preset oxide on reducing the dielectric constant of the dielectric layer, so as to improve the performance of the capacitor structure, and on the other hand
  • the doping effect of the predetermined oxide in the metal oxide layer is good, which further improves the performance of the capacitor structure.
  • FIG. 1 is a flowchart of a method for preparing a capacitor structure in an embodiment of the present application
  • Fig. 2 is the structural schematic diagram after the metal organic matter layer is formed on the first electrode in the embodiment of the application;
  • FIG. 3 is a schematic structural diagram after forming a preset organic layer in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a metal oxide layer doped with a predetermined oxide in an embodiment of the present application
  • FIG. 5 is a schematic diagram of a shared oxygen atom in forming a metal oxide layer doped with a predetermined oxide according to an embodiment of the present application
  • FIG. 6 is a schematic structural diagram after forming the second electrode in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of forming a metal organic layer on a metal oxide layer doped with a predetermined oxide according to an embodiment of the present application
  • FIG. 8 is a schematic structural diagram of an embodiment of the present application after forming an undoped metal oxide layer
  • FIG. 9 is a flow chart of forming three metal oxide layers doped with a predetermined oxide in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram after providing the first electrode in the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of the first metal oxide layer doped with a predetermined oxide in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a second metal oxide layer doped with a predetermined oxide in an embodiment of the present application
  • FIG. 13 is a schematic structural diagram of a third metal oxide layer doped with a predetermined oxide in an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of forming a second electrode on the third metal oxide layer doped with a predetermined oxide according to an embodiment of the present application;
  • 15 is a schematic diagram of sharing oxygen atoms in two adjacent metal oxide layers doped with a predetermined oxide according to an embodiment of the present application
  • 16 is a schematic structural diagram of a first electrode of a capacitor structure in an embodiment of the present application.
  • Figure 17 is a sectional view at A in Figure 16;
  • FIG. 18 is a schematic structural diagram of a dielectric layer of a capacitor structure in an embodiment of the present application.
  • Figure 19 is a sectional view at B in Figure 18;
  • FIG. 20 is a schematic structural diagram of a capacitor structure in an embodiment of the present application.
  • FIG. 21 is a cross-sectional view at C in FIG. 20 .
  • the capacitive structure generally includes two electrodes disposed opposite to each other, and a dielectric layer located between the two electrodes.
  • the dielectric layer may comprise a doped metal oxide layer, eg, hafnium oxide doped with silicon oxide or zirconium oxide doped with silicon oxide.
  • a metal organic layer is generally formed, and then the metal organic layer is oxidized to form a metal oxide layer; a predetermined organic layer is formed on the metal oxide, and then the predetermined organic layer is oxidized.
  • the treatment forms a preset oxide layer, and the preset oxide layer and the metal oxide layer are formed with a doped metal oxide layer.
  • the dielectric layer formed by the above method on the one hand, the preset organic layer has a high degree of oxidation, resulting in The concentration of the preset oxide is relatively high.
  • the preset oxide layer and the metal oxide layer are arranged in layers, and the doping effect of the preset oxide is poor.
  • An embodiment of the present application provides a method for fabricating a capacitor structure.
  • the fabrication method when a dielectric layer is formed, part of the metal oxide in the metal oxide layer and part of the preset oxide doped in the metal oxide layer Sharing of oxygen atoms, by sharing oxygen atoms in part of the preset oxide and part of the metal oxide, can reduce the oxygen content in the metal oxide layer, thereby reducing the influence of the preset oxide on reducing the dielectric constant of the dielectric layer.
  • FIG. 1 is a flowchart of a method for fabricating a capacitor structure in an embodiment of the present application
  • FIGS. 2 to 14 are schematic structural diagrams of each stage of the capacitor structure in the fabrication process.
  • the following describes the preparation method of the capacitor structure with reference to FIG. 1 to FIG. 14 .
  • the preparation method of the capacitor structure includes the following steps:
  • Step S101 forming a dielectric layer on the first electrode, the dielectric layer includes a metal oxide layer doped with a predetermined oxide, and part of the predetermined oxide and the metal oxide share oxygen atoms.
  • the first electrode 10 may be a metal electrode.
  • the material of the first electrode 10 may be aluminum (Al), copper (Cu), silver (Ag), gold (Au), molybdenum (Mo), nickel (Ni) , one or more of cobalt (Co), titanium (Ti) or tungsten (W).
  • the first electrode 10 in the embodiment of the present application may be a titanium nitride (TiN) electrode.
  • the first electrode 10 can be formed by a deposition process, for example, by a chemical vapor deposition (Chemical Vapor Deposition, CVD for short) process, a physical vapor deposition (Physical Vapor Deposition, PVD for short) process or Atomic Layer Deposition (Atomic Layer Deposition, ALD for short)
  • CVD chemical Vapor Deposition
  • PVD Physical Vapor Deposition
  • ALD Atomic Layer Deposition
  • the process forms the first electrode 10 .
  • the embodiment of the present application is not limited to this, and the first electrode 10 may also be formed by other processes, such as an electroplating process.
  • a dielectric layer is formed on the first electrode 10, and the dielectric layer includes a metal oxide layer 20 doped with a predetermined oxide.
  • the predetermined oxides include non-metal oxides, and some of the predetermined oxides and metal oxides share oxygen atoms 3 .
  • the non-metal atom 2 in the preset oxide may share the oxygen atom 3 with the metal atom 1 in the metal oxide to reduce the content of oxygen.
  • the mass fraction of the metal oxide in the metal oxide layer 20 doped with the predetermined oxide may be 90%-99%, and the mass fraction of the non-metal oxide may be 1%-10%.
  • the metal oxide layer doped with the predetermined oxide in the dielectric layer may be formed by the following process:
  • a metal organic layer 21 is formed on the first electrode 10 .
  • the metal organic layer 21 may contain one or more of hafnium, zirconium, barium or strontium.
  • the metal organic layer 21 may be formed on the first electrode 10 through a deposition process, for example, the metal organic layer 21 is formed on the first electrode 10 through an atomic layer deposition process.
  • a predetermined organic layer 22 is formed on the metal organic layer 21 .
  • the predetermined organic layer 22 may be a non-metallic organic layer, and the non-metallic organic layer may contain non-metals such as silicon.
  • the non-metal organic layer may be formed on the metal organic layer 21 by a deposition process, for example, the non-metal organic layer is formed on the metal organic layer 21 by an atomic layer deposition process.
  • the metal organic layer 21 and the predetermined organic layer 22 are oxidized to form a metal oxide layer 20 doped with a predetermined oxide.
  • the metal oxide may include hafnium oxide , zirconia or perovskite, such as barium titanate (BaTiO 3 ) or strontium titanate (SrTiO 3 ) and the like.
  • the doped predetermined oxide may include silicon oxide.
  • ozone may be used to oxidize the metal organic layer 21 and the predetermined organic layer 22 , so that the metal organic is oxidized to a metal oxide, and the predetermined organic is oxidized to a predetermined oxide.
  • the time for the oxidation treatment may be less than or equal to 10 minutes, and the metal organic matter and the predetermined organic matter are sufficiently oxidized.
  • the performance of the capacitor structure is improved.
  • some of the preset oxides and some of the metal oxides share the oxygen atom 3, which can also avoid the delamination of the preset oxides and the metal oxides, thereby further improving the performance of the capacitor structure.
  • Step S102 forming a second electrode on the dielectric layer, and the first electrode, the dielectric layer and the second electrode form a capacitor structure.
  • the second electrode 30 may be a metal electrode, and exemplarily, the second electrode 30 may be a titanium nitride electrode.
  • the material and formation of the second electrode 30 can be referred to the first electrode 10 , and details are not repeated here.
  • the first electrode 10, the dielectric layer and the second electrode 30 constitute a capacitance structure.
  • a dielectric layer is formed on the first electrode 10 , wherein the dielectric layer includes a metal oxide layer 20 doped with a predetermined oxide, and part of the predetermined oxide is Shares an oxygen atom 3 with metal oxides.
  • the concentration of the preset oxide can be reduced, thereby reducing the influence of the preset oxide on the dielectric constant of the dielectric layer;
  • Two electrodes 30 are used to form a capacitor structure, and the obtained capacitor structure has better performance.
  • part of the predetermined oxide and the metal oxide share the oxygen atoms 3
  • the doping effect of the predetermined oxide in the metal oxide layer is good, and the density is good.
  • the step of forming the dielectric layer on the first electrode 10 further includes: performing a cleaning process on the metal organic layer 21 ; and/or performing a cleaning process on the predetermined organic layer 22 .
  • purging of metal organics and/or preset organics can reduce surface residues of metal organics and/or preset organics, thereby reducing contamination and impact on subsequent processes.
  • cleaning may be performed after the step of forming the metal organic layer 21 on the first electrode 10 and after the step of forming the predetermined organic layer 22 on the metal organic layer 21 .
  • the cleaning treatment time may be 0-10 min, and the cleaning treatment gas may include nitrogen (N2) or argon (Ar).
  • the embodiment of the present application is not limited to this, and the gas for cleaning can also be other inert gas.
  • the preparation method of the capacitor structure further includes:
  • the metal organic layer 21 is formed on the metal oxide layer doped with a predetermined oxide.
  • the metal organic layer 21 may be a non-metal organic layer formed on the metal oxide layer 20 doped with a predetermined oxide by an atomic layer deposition process.
  • the metal organic layer 21 is oxidized to form an undoped metal oxide layer 23 .
  • the gas for the oxidation treatment may be ozone, and the time for the oxidation treatment may be 0-10 min.
  • the metal oxide of the undoped metal oxide layer 23 may be the same as or different from the metal oxide of the metal oxide layer 20 doped with a predetermined oxide, which is not limited in this embodiment of the present application.
  • the preparation method of the capacitor structure further includes:
  • a metal organic layer is formed on the metal oxide layer doped with a predetermined oxide.
  • a predetermined organic layer is formed on the metal organic layer.
  • the metal organic layer and the predetermined organic layer are oxidized to form a metal oxide layer doped with a predetermined oxide. Repeating forming a metal organic layer on the metal oxide layer doped with a predetermined oxide, forming a predetermined organic layer on the metal organic layer, and oxidizing the metal organic layer and the predetermined organic layer, until the formation includes n-1
  • the metal oxide layer 20 is doped with a predetermined oxide, and the dielectric layer includes an n-layer metal oxide layer 20 doped with a predetermined oxide.
  • the dielectric layer includes an n-layer metal oxide layer 20 doped with a predetermined oxide
  • a metal oxide layer 20 doped with a predetermined oxide is first formed on the first electrode 10 , and then the remaining n ⁇ 1 layers of metal oxide layers 20 doped with predetermined oxides are formed on this layer.
  • the preparation of the remaining n-1 layers of the metal oxide layer 20 doped with a predetermined oxide can refer to this layer.
  • the preparation method of the capacitor structure includes the following steps:
  • Step S201 providing a first electrode, as shown in FIG. 10 .
  • Step S202 a metal organic layer is formed on the first electrode.
  • Step S203 forming a predetermined organic layer on the metal organic layer.
  • Step S204 oxidizing the metal organic layer and the predetermined organic layer to form a first metal oxide layer doped with a predetermined oxide, as shown in FIG. 11 .
  • Step S205 forming a metal organic layer on the first metal oxide layer doped with a predetermined oxide.
  • Step S206 forming a predetermined organic layer on the metal organic layer.
  • Step S207 oxidizing the metal organic layer and the predetermined organic layer to form a second metal oxide layer doped with a predetermined oxide, as shown in FIG. 12 .
  • Step S208 forming a metal organic layer on the second metal oxide layer doped with a predetermined oxide.
  • Step S209 forming a predetermined organic layer on the metal organic layer.
  • Step S210 oxidizing the metal organic layer and the predetermined organic layer to form a first metal oxide layer doped with a predetermined oxide, as shown in FIG. 13 .
  • Step S211 forming a second electrode on the third metal oxide layer doped with a predetermined oxide.
  • the first electrode 10 , the second electrode 30 , and the three metal oxide layers 20 doped with a predetermined oxide between the first electrode 10 and the second electrode 30 constitute the embodiment of the present application. Capacitive structure.
  • the predetermined oxide and the metal oxide in the metal oxide layer 20 in which each layer is doped with a predetermined oxide may be the same or different.
  • the metal oxide in the upper metal oxide layer and the predetermined oxide in the lower metal oxide layer may also share one oxygen atom, which are respectively located in the metal oxide layer.
  • the number of oxygen atoms shared by the metal oxide and the predetermined oxide in the two layers is smaller than the number of oxygen atoms shared by the metal oxide and the predetermined oxide in the same layer.
  • the mass fraction of the non-metal oxide in each metal oxide layer 20 doped with a predetermined oxide may be different.
  • the mass fractions of the non-metal oxides in the two metal oxide layers 20 may be different.
  • the mass fraction of the non-metal oxide in the upper metal oxide layer 20 is smaller than the mass fraction of the non-metal oxide in the lower metal oxide layer 20 . It can be understood that the doping concentration of the upper metal oxide layer 20 is lower, and the doping concentration of the lower metal oxide layer 20 is higher.
  • the metal oxide layer 20 in the lower layer When forming the metal oxide layer 20 in the lower layer, after oxidation treatment is performed on the metal organic layer and the predetermined organic layer, a mixture of metal atoms, oxygen atoms and predetermined atoms is formed in the interface between the original metal organic layer and the predetermined organic layer. Covalent bonds, such as the formation of metal-oxygen-non-metal covalent bonds, and part of metal oxides and part of preset oxides also exist in the interface.
  • the metal oxide layer 20 in the lower layer When forming the metal oxide layer 20 in the lower layer, after the metal-organic layer and the preset organic layer are oxidized, most or all of the preset atoms in the interface between the original metal-organic layer and the preset organic layer form metal atoms, Covalent bonds between oxygen atoms and preset atoms, for example, most or all of the preset atoms form metal-oxygen-non-metal covalent bonds, and some metal oxides exist in the original metal organic layer.
  • a metal organic layer 21 , a predetermined organic layer 22 , a metal organic layer 21 , a predetermined organic layer 22 , a metal organic layer 21 , and a predetermined organic layer may also be sequentially deposited on the first electrode 10 .
  • the layer 22 After the layer 22 is formed, the above-mentioned three-layer metal-organic layer 21 and the three-layer preset organic layer 22 are simultaneously oxidized.
  • An embodiment of the present application also provides a capacitor structure, the capacitor structure includes two electrodes and a dielectric layer, the two electrodes are usually disposed opposite to each other, and the dielectric layer is located between and in contact with the two electrodes .
  • the capacitor structure includes two electrodes and a dielectric layer, the two electrodes are usually disposed opposite to each other, and the dielectric layer is located between and in contact with the two electrodes .
  • one of the electrodes is the first electrode, and the other electrode is the second electrode.
  • the first electrode 10 may include a plurality of electrode columns and a bottom plate connecting the electrode columns
  • the second electrode 30 may include a plurality of electrode sleeves and a connection plate connecting the electrode sleeves.
  • the electrode sleeves are in one-to-one correspondence with the electrode posts, and the electrode sleeves are sleeved outside the corresponding electrode posts.
  • the cross-sectional shape of the electrode column may be circular
  • the cross-sectional shape of the electrode sleeve may be circular.
  • the first electrode 10 and the second electrode 30 may be metal electrodes.
  • the material of the first electrode 10 and the second electrode 30 may be titanium nitride (TiN).
  • the first electrode 10 and the second electrode 30 may be formed by a deposition process.
  • the dielectric layer may include a metal oxide layer 20 doped with a predetermined oxide, and some of the predetermined oxide and the metal oxide share oxygen atoms .
  • the metal oxide may include hafnium oxide, zirconium oxide, or perovskite
  • the predetermined oxide may include non-metal oxides, such as silicon oxide.
  • the metal oxide layer 20 doped with a predetermined oxide may be formed by the following steps: forming a metal organic layer 21 ; forming a predetermined organic layer 22 on the metal organic layer 21 ; An oxidation process is performed to form a metal oxide layer 20 doped with a predetermined oxide.
  • the metal organic layer 21 and the preset organic layer 22 can be formed by atomic layer deposition process to form a thinner film layer, the gas for the oxidation treatment can be ozone, and the oxidation treatment time is 0-10min, so that the metal organic matter and The preset organics are fully oxidized.
  • some predetermined oxides and metal oxides share oxygen atoms, so that the content of oxygen in the metal oxide layer 20 doped with the predetermined oxides is reduced, and the dielectric layer caused by the predetermined oxides is reduced.
  • the effect of reducing the dielectric constant thereby improving the performance of the capacitor structure.
  • some of the preset oxides and metal oxides share oxygen atoms, which can also reduce or avoid delamination of the preset oxides and metal oxides, improve the doping effect of the preset oxides, and further improve the performance of the capacitor structure.
  • the capacitor structure in the embodiment of the present application may be formed through the following processes: providing a substrate with a plurality of capacitor contacts arranged at intervals; forming a support layer on the substrate, and forming a support layer with a high aspect ratio in the support layer.
  • a plurality of capacitance holes, and each capacitance hole exposes a corresponding capacitance contact; a first electrode is formed on the inner surface of the capacitance hole; a dielectric layer is formed on the first electrode; a second electrode is formed on the dielectric layer, and the first electrode is formed on the dielectric layer.
  • Two electrodes are filled in the capacitor hole; the dielectric layer may include a metal oxide layer 20 doped with a predetermined oxide.
  • the dielectric layer may include at least two metal oxide layers 20 doped with a predetermined oxide, and at least two metal oxide layers 20 doped with a predetermined oxide are stacked.
  • the dielectric layer includes three metal oxide layers 20 doped with a predetermined oxide, as shown in FIG. 18 and FIG. 19 , the three metal oxide layers 20 doped with a predetermined oxide are composed of The inner and outer layers are sequentially sleeved on the first electrode 10, and the layers are in contact with each other.
  • the dielectric layer includes three metal oxide layers 20 doped with predetermined oxides, as shown in FIG. 16 and FIG. 17 , when the capacitor structure is formed, the first electrode 10 is provided; as shown in FIGS. 18 to 19 . , forming three metal oxide layers 20 doped with predetermined oxides on the first electrode 10 in sequence; as shown in FIG. 20 to FIG. 21 , the outermost layer of metal oxide layers doped with predetermined oxides A second electrode 30 is formed on 20 to form a capacitor structure.
  • the dielectric layer may further include an undoped metal oxide layer, and the undoped metal oxide layer and the metal oxide layer 20 doped with a predetermined oxide are stacked and arranged.
  • a metal oxide layer 20 doped with a predetermined oxide is disposed on the first electrode 10
  • an undoped metal oxide layer is disposed on the metal oxide layer 20 doped with a predetermined oxide.
  • the capacitor structure provided by the embodiment of the present application includes two electrodes disposed opposite to each other and a dielectric layer located between the two electrodes, the dielectric layer is in contact with the two electrodes, and the dielectric layer includes a metal oxide of a predetermined oxide layer, part of the predetermined oxide in the metal oxide layer shares oxygen atoms with the metal oxide.
  • the content of oxygen can be reduced, thereby reducing the influence of the preset oxide on reducing the dielectric constant of the dielectric layer, and improving the performance of the capacitor structure; on the other hand
  • the doping effect of the preset oxide is good, which further improves the performance of the capacitor structure.
  • references to the terms “one embodiment,” “some embodiments,” “illustrative embodiments,” “examples,” “specific examples,” or “some examples” and the like are meant to incorporate embodiments A particular feature, structure, material, or characteristic described or exemplified is included in at least one embodiment or example of the present application.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

本申请属于半导体技术领域,具体涉及一种电容结构及其制备方法,用于解决电容结构性能较差的技术问题。该电容结构的制备方法包括:在第一电极上形成介电层,介电层包括掺杂有预设氧化物的金属氧化物层,且部分预设氧化物与金属氧化物共用氧原子;在介电层上形成第二电极,第一电极、介电层和第二电极形成电容结构。通过形成部分预设氧化物与部分金属氧化物共用氧原子的金属氧化物层,可以减少氧的含量,从而减小预设氧化物导致电容结构的介电常数降低的影响,以提高电容结构的性能。此外,使得预设氧化物可以较好地掺杂在金属氧化物层中,进一步提高电容结构的性能。

Description

电容结构及其制备方法
本申请要求于2021年02月03日提交中国专利局、申请号为202110150428.4、申请名称为“电容结构及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体技术领域,尤其涉及一种电容结构及其制备方法。
背景技术
随着科技的不断发展,半导体结构的应用越来越广,在计算机、通信等领域,都需要使用具有不同功能的半导体结构。电容结构作为一种存储电荷的元件,被广泛应用于半导体结构中。
电容结构一般包括相对设置的两个电极,以及位于两个电极之间的介电层。介电层的材质通常为氧化物,例如,氧化锆、氧化铪或者钙钛矿。随着半导体结构不断微缩,对电容结构的电荷容量要求也越来越高,上述材质难以满足电荷容量的需要,通常需要掺杂其他元素。相关技术中,制备有掺杂的介电层时,形成金属有机物层,其次对金属有机物层进行氧化处理,形成金属氧化物层,再金属氧化物上形成掺杂有机物层,之后对掺杂有机物层进行氧化处理,形成掺杂氧化物层,上述金属氧化物层和掺杂氧化物层构成有掺杂的介电层。
然而,上述有掺杂的介电层中掺杂氧化物的浓度较高,掺杂效果较差,进而影响电容结构的性能。
发明内容
有鉴于此,本申请提供一种电容结构及其制备方法,以部分改善电容结构性能较差的技术问题。
第一方面,本申请提供了一种电容结构的制备方法,包括:在第一电极上形成介电层,所述介电层包括掺杂有预设氧化物的金属氧化物层,且 部分所述预设氧化物与金属氧化物共用氧原子;在所述介电层上形成第二电极,所述第一电极、介电层和第二电极构成所述电容结构。
本申请提供的电容结构的制备方法至少具有如下优点:
本申请提供的电容结构的制备方法中,在第一电极上形成介电层,介电层包括掺杂有预设氧化物的金属氧化物层,且部分预设氧化物与金属氧化物共用氧原子。通过部分预设氧化物和金属氧化物共用氧原子,可以减小氧的含量,从而减小预设氧化物导致介电层的介电常数降低的影响;再在介电层上形成第二电极,以形成电容结构,所获得的电容结构具有较好的性能。此外,由于部分预设氧化物和金属氧化物共用氧原子,金属氧化物层中预设氧化物的掺杂效果好,进一步提高电容结构的性能。
第二方面,本申请提供了一种电容结构,包括相对设置的两个电极,以及位于两个所述电极之间且与两个所述电极相接触的介电层,所述介电层包括掺杂有预设氧化物的金属氧化物层,且部分所述预设氧化物与金属氧化物共用氧原子。
本申请提供的电容结构至少具有如下优点:
本申请提供的电容结构包括两个相对设置的电极以及位于这两个电极之间的介电层,介电层与两个电极相接触,介电层包括掺杂有预设氧化物的金属氧化物层,金属氧化物层中的部分预设氧化物与金属氧化物共用氧原子。通过部分预设氧化物和金属氧化物共用氧原子,一方面可以降低氧的含量,从而减小预设氧化物导致介电层的介电常数降低的影响,以提高电容结构的性能,另一方面金属氧化物层中预设氧化物的掺杂效果好,进一步提高电容结构的性能。
除了上面所描述的本申请解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的有益效果外,本申请提供的电容结构及其制备方法所能解决的其他技术问题、技术方案中包含的其他技术特征以及这些技术特征带来的有益效果,将在具体实施方式中作出进一步详细的说明。
附图说明
图1为本申请实施例中的电容结构的制备方法的流程图;
图2为本申请实施例中的在第一电极上形成金属有机物层后的结构示 意图;
图3为本申请实施例中的形成预设有机物层后的结构示意图;
图4为本申请实施例中的形成掺杂有预设氧化物的金属氧化物层后的结构示意图;
图5为本申请实施例中的形成掺杂有预设氧化物的金属氧化物层中共用氧原子的示意图;
图6为本申请实施例中的形成第二电极后的结构示意图;
图7为本申请实施例中的在掺杂有预设氧化物的金属氧化物层上形成金属有机物层后的结构示意图;
图8为本申请实施例中的形成无掺杂的金属氧化物层后的结构示意图;
图9为本申请实施例中的形成三层掺杂有预设氧化物的金属氧化物层的流程图;
图10为本申请实施例中的提供第一电极后的结构示意图;
图11为本申请实施例中的形成第一个掺杂有预设氧化物的金属氧化物层后的结构示意图;
图12为本申请实施例中的形成第二个掺杂有预设氧化物的金属氧化物层后的结构示意图;
图13为本申请实施例中的形成第三个掺杂有预设氧化物的金属氧化物层后的结构示意图;
图14为本申请实施例中的在第三个掺杂有预设氧化物的金属氧化物层上形成第二电极后的结构示意图;
图15为本申请实施例中的相邻两个掺杂有预设氧化物的金属氧化物层中共用氧原子的示意图;
图16为本申请实施例中的电容结构的第一电极的结构示意图;
图17为图16中A处的截面图;
图18为本申请实施例中的电容结构的介电层的结构示意图;
图19为图18中B处的截面图;
图20为本申请实施例中的电容结构的结构示意图;
图21为图20中C处的截面图。
具体实施方式
电容结构通常包括相对设置的两个电极,以及位于两个电极之间的介电层。介电层可以包括有掺杂的金属氧化物层,例如,掺杂有氧化硅的氧化铪或者掺杂有氧化硅的氧化锆。
相关技术中,制备上述电容结构时,一般形成金属有机物层,之后对金属有机物层进行氧化处理形成金属氧化物层;再在金属氧化物上形成预设有机物层,之后对预设有机物层进行氧化处理形成预设氧化物层,预设氧化物层和金属氧化物层形成有掺杂的金属氧化物层,然而,采用上述方法形成的介电层,一方面预设有机物层氧化程度高,导致预设氧化物的浓度较高,另一方面预设氧化物层和金属氧化物层分层设置,预设氧化物的掺杂效果较差。
本申请实施例提供一种电容结构的制备方法,在该制备方法中,形成介质层时,金属氧化物层中的部分金属氧化物与掺杂在该金属氧化物层中的部分预设氧化物共用氧原子,通过部分预设氧化物和部分金属氧化物共用氧原子,可以降低金属氧化物层中氧的含量,从而减小预设氧化物导致介电层的介电常数降低的影响。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参照图1至图14,图1为本申请实施例中的电容结构的制备方法的流程图,图2至图14为电容结构在制备过程中各阶段的结构示意图。下面结合图1至图14对电容结构的制备方法进行介绍,该电容结构的制备方法包括以下步骤:
步骤S101、在第一电极上形成介电层,介电层包括掺杂有预设氧化物的金属氧化物层,且部分预设氧化物与金属氧化物共用氧原子。
第一电极10可以为金属电极,示例性的,第一电极10的材质可以为铝(Al)、铜(Cu)、银(Ag)、金(Au)、钼(Mo)、镍(Ni)、钴(Co)、钛(Ti)或者钨(W)中的一种或者多种。示例性的,本申请实施例中的第一电极10可以为氮化钛(TiN)电极。
第一电极10可以通过沉积工艺形成,例如,通过化学气相沉积(Chemical Vapor Deposition,简称CVD)工艺、物理气相沉积(Physical  Vapor Deposition,简称PVD)工艺或者原子层沉积(Atomic Layer Deposition,简称ALD)工艺形成第一电极10。当然本申请实施例并不以此为限,第一电极10还可以通过其他工艺形成,例如电镀(Electroplating)工艺。
提供第一电极10之后,在第一电极10上形成介电层,介电层包括掺杂有预设氧化物的金属氧化物层20。其中,预设氧化物包括非金属氧化物,且部分预设氧化物与金属氧化物共用氧原子3。
例如,预设氧化物中的非金属原子2可以与金属氧化物中的金属原子1共用氧原子3,以减少氧的含量。掺杂有预设氧化物的金属氧化物层20中的金属氧化物的质量分数可以为90%-99%,非金属氧化物的质量分数可以为1%-10%。
示例性的,参照图2至图4,介电层中的掺杂有预设氧化物的金属氧化物层可以通过以下过程形成:
参照图2,在第一电极10上形成金属有机物层21。金属有机物层21可以含有铪、锆、钡或者锶中的一种或者多种。金属有机物层21可以通过沉积工艺形成在第一电极10上,例如,金属有机物层21通过原子层沉积工艺形成在第一电极10上。
参照图3,在金属有机物层21上形成预设有机物层22。预设有机物层22可以为非金属有机物层,非金属有机物层中可以含有硅等非金属。非金属有机物层可以通过沉积工艺形成在金属有机物层21上,例如,非金属有机物层通过原子层沉积工艺形成在金属有机物层21上。
参照图4,对金属有机物层21和预设有机物层22进行氧化处理,形成掺杂有预设氧化物的金属氧化物层20,形成的金属氧化物层20中,金属氧化物可以包括氧化铪、氧化锆或者钙钛矿,例如钛酸钡(BaTiO 3)或者钛酸锶(SrTiO 3)等。掺杂的预设氧化物可以包括氧化硅。
本申请实施例中,可以利用臭氧(O 3)对金属有机物层21和预设有机物层22进行氧化处理,使得金属有机物氧化为金属氧化物,预设有机物氧化为预设氧化物。氧化处理的时间可以小于或者等于10min,金属有机物和预设有机物充分氧化。
如图5所示,掺杂有预设氧化物的金属氧化物层20中,部分预设氧化物与部分金属氧化物共用氧原子3,减少掺杂有预设氧化物的金属氧化物层20中的氧的含量,以减少预设氧化物导致介电层的介电常数降低的影响, 从而提高电容结构的性能。此外,部分预设氧化物与部分金属氧化物共用氧原子3,还可以避免预设氧化物和金属氧化物分层,从而进一步提高电容结构的性能。
步骤S102、在介电层上形成第二电极,第一电极、介电层和第二电极构成电容结构。
参照图6,第二电极30可以为金属电极,示例性的,第二电极30可以为氮化钛电极。第二电极30的材质和形成可以参照第一电极10,在此不再赘述。第一电极10、介电层和第二电极30构成电容结构。
本申请实施例提供的电容结构的制备方法中,在第一电极10上形成介电层,其中,介电层包括掺杂有预设氧化物的金属氧化物层20,且部分预设氧化物与金属氧化物共用氧原子3。通过部分预设氧化物和金属氧化物共用氧原子3,可以降低预设氧化物的浓度,从而减小预设氧化物对介电层的介电常数的影响;再在介电层上形成第二电极30,以形成电容结构,所获得的电容结构具有较好的性能。此外,由于部分预设氧化物和金属氧化物共用氧原子3,金属氧化物层中预设氧化物的掺杂效果好,致密度较好。
本申请实施例中,在第一电极10上形成介电层的步骤中还包括:对金属有机物层21进行清洁处理(purge);和/或,对预设有机物层22进行清洁处理。例如,对金属有机物和/或预设有机物的进行吹扫,以减少金属有机物和/或预设有机物的表面残留,从而减少对后续过程的污染和影响。
示例性的,可以在第一电极10上形成金属有机物层21的步骤之后,以及在金属有机物层21上形成预设有机物层22的步骤之后均进行清洁处理。清洁处理的时间可以为0-10min,清洁处理的气体可以包括氮气(N2)或者氩气(Ar)。当然,本申请实施例并不以此为限,清洁处理的气体也可以为其他惰性气体。
本申请实施例中,对金属有机物层21和预设有机物层22进行氧化处理,形成掺杂有预设氧化物的金属氧化物层20的步骤之后,在介电层上形成第二电极30的步骤之前,电容结构的制备方法还包括:
在掺杂有预设氧化物的金属氧化物层上形成金属有机物层21。示例性的,参照图7,金属有机物层21可以为非金属有机物层,该层通过原子层沉积工艺形成在掺杂有预设氧化物的金属氧化物层20上。
如图8所示,形成金属有机物层21之后,对金属有机物层21进行氧化处理,形成无掺杂的金属氧化物层23。示例性的,氧化处理的气体可以为臭氧,氧化处理的时间可以为0-10min。无掺杂的金属氧化物层23的金属氧化物可以与掺杂有预设氧化物的金属氧化物层20中的金属氧化物相同,也可以不同,本申请实施例不对此进行限制。
本申请实施例中,对金属有机物层21和预设有机物层22进行氧化处理,形成掺杂有预设氧化物的金属氧化物层20的步骤之后,在介电层上形成第二电极30的步骤之前,电容结构的制备方法还包括:
在掺杂有预设氧化物的金属氧化物层上形成金属有机物层。在金属有机物层上形成预设有机物层。对金属有机物层和预设有机物层进行氧化处理,形成掺杂有预设氧化物的金属氧化物层。重复在掺杂有预设氧化物的金属氧化物层上形成金属有机物层、在金属有机物层上形成预设有机物层、对金属有机物层和预设有机物层进行氧化处理,直至形成包括n-1层掺杂有预设氧化物的金属氧化物层20,此时介电层包括n层掺杂有预设氧化物的金属氧化物层20。
也就是说,当介电层包括n层掺杂有预设氧化物的金属氧化物层20时,先在在第一电极10上形成一层掺杂有预设氧化物的金属氧化物层20,再在该层上形成其余n-1层掺杂有预设氧化物的金属氧化物层20。其余n-1层掺杂有预设氧化物的金属氧化物层20的制备可以参照该层。
示例性的,当介电层包括三层掺杂有预设氧化物的金属氧化物层20时,参照图9,电容结构的制备方法包括以下步骤:
步骤S201、提供第一电极,如图10所示。
步骤S202、第一电极上形成金属有机物层。
步骤S203、在金属有机物层上形成预设有机物层。
步骤S204、对金属有机物层和预设有机物层进行氧化处理,形成第一个掺杂有预设氧化物的金属氧化物层,如图11所示。
步骤S205、在第一个掺杂有预设氧化物的金属氧化物层上形成金属有机物层。
步骤S206、在金属有机物层上形成预设有机物层。
步骤S207、对金属有机物层和预设有机物层进行氧化处理,形成第二个掺杂有预设氧化物的金属氧化物层,如图12所示。
步骤S208、在第二个掺杂有预设氧化物的金属氧化物层上形成金属有机物层。
步骤S209、在金属有机物层上形成预设有机物层。
步骤S210、对金属有机物层和预设有机物层进行氧化处理,形成第一个掺杂有预设氧化物的金属氧化物层,如图13所示。
步骤S211、在第三掺杂有预设氧化物的金属氧化物层上形成第二电极。参照图14,第一电极10、第二电极30,以及位于第一电极10和第二电极30之间的三个掺杂有预设氧化物的金属氧化物层20构成本申请实施例中的电容结构。
需要说明的是,上述各层掺杂有预设氧化物的金属氧化物层20中的预设氧化物和金属氧化物可以相同,也可以不同。参照图15,两个相邻的上述金属氧化物层中,位于上层的金属氧化物层中的金属氧化物与位于下层金属氧化物层中的预设氧化物也可以共用一个氧原子,分别位于两层中的金属氧化物和预设氧化物共用氧原子的数量小于位于同一层中的金属氧化物和预设氧化物共用氧原子的数量。
本申请实施例中,各掺杂有预设氧化物的金属氧化物层20中的非金属氧化物的质量分数可以不同。示例性的,当介电层包括两层掺杂有预设氧化物的金属氧化物层20时,这两层金属氧化物层20中的非金属氧化物的质量分数可以不同。
例如,位于上层的金属氧化物层20中的非金属氧化物的质量分数小于位于下层的金属氧化物层20中的非金属氧化物的质量分数。可以理解的是,位于上层的金属氧化物层20的掺杂浓度较低,位于下层的金属氧化物层20的掺杂浓度较高。
在形成上述位于下层的金属氧化物层20时,对金属有机物层和预设有机物层进行氧化处理后,在原金属有机物层和预设有机物层的界面中形成金属原子、氧原子和预设原子的共价键,例如形成金属-氧-非金属共价键,且该界面中还存在部分金属氧化物和部分预设氧化物。
在形成上述位于下层的金属氧化物层20时,对金属有机物层和预设有机物层进行氧化处理后,在原金属有机物层和预设有机物层的界面中预设原子大部分或者全部形成金属原子、氧原子和预设原子的共价键,例如预设原子大部分或者全部形成金属-氧-非金属共价键,在原金属有机物层中 存在部分金属氧化物。
需要说明的是,本申请实施例中还可以在第一电极10上依次沉积金属有机物层21、预设有机物层22、金属有机物层21、预设有机物层22、金属有机物层21、预设有机物层22后,再对上述三层金属有机物层21和三层预设有机物层22同时进行氧化处理。
本申请实施例中还提供一种电容结构,该电容结构包括两个电极和介电层,两个电极通常相对设置,介电层位于这两个电极之间,且与这两个电极相接触。为方便描述,其中一个电极为第一电极,另一个电极为第二电极。
参照图16至图21,第一电极10可以包括多个电极柱以及连接各电极柱的底板,第二电极30可以包括多个电极套以及连接各电极套的连接板。电极套与电极柱一一对应,且电极套套设在相对应的电极柱外。如图16和图17所示,电极柱的截面形状可以为圆形,电极套的截面形状可以为圆环形。
第一电极10与第二电极30可以为金属电极,例如第一电极10与第二电极30的材质可以为氮化钛(TiN),第一电极10与第二电极30可以通过沉积工艺形成。
第一电极10与第二电极30之间填充有介电层,介电层中可以包括掺杂有预设氧化物的金属氧化物层20,且部分预设氧化物与金属氧化物共用氧原子。示例性的,金属氧化物可以包括氧化铪、氧化锆或者钙钛矿,预设氧化物可以包括非金属氧化物,例如氧化硅。
掺杂有预设氧化物的金属氧化物层20可以通过以下步骤形成:形成金属有机物层21;在金属有机物层21上形成预设有机物层22;对金属有机物层21和预设有机物层22进行氧化处理,形成掺杂有预设氧化物的金属氧化物层20。
其中,金属有机物层21和预设有机物层22可以通过原子层沉积工艺形成,以形成较薄的膜层,氧化处理的气体可以为臭氧,氧化处理的时间为0-10min,以使得金属有机物和预设有机物得到充分氧化。
本申请实施例中,部分预设氧化物与金属氧化物共用氧原子,使得掺杂有预设氧化物的金属氧化物层20中的氧的含量降低,减少了预设氧化物导致介电层的介电常数降低的影响,从而提高了电容结构的性能。此外, 部分预设氧化物与金属氧化物共用氧原子,还可以减少或者避免预设氧化物和金属氧化物分层,提高了预设氧化物的掺杂效果,进一步提高电容结构的性能。
示例性的,本申请实施例中的电容结构可以通过以下过程形成:提供具有多个间隔设置的电容触点的基板;形成支撑层于基板上,支撑层中形成有具有较高的深宽比多个电容孔,且每个电容孔暴露相对应的电容触点;形成第一电极于电容孔内表面;形成介电层于第一电极上;形成第二电极于介电层上,且第二电极填充于电容孔中;其中介电层可以包括掺杂有预设氧化物的金属氧化物层20。
需要说明的是,介电层中可以包括至少两层掺杂有预设氧化物的金属氧化物层20,至少两层掺杂有预设氧化物的金属氧化物层20堆叠设置。示例性的,介电层包括三层掺杂有预设氧化物的金属氧化物层20,如图18和图19所示,这三层掺杂有预设氧化物的金属氧化物层20由内到外依次套设在第一电极10上,且各层之间相接触。
当介电层包括三层掺杂有预设氧化物的金属氧化物层20时,如图16和图17所示,形成电容结构时,提供第一电极10;如图18至图19所示,在第一电极10上依次形成三层掺杂有预设氧化物的金属氧化物层20;如图20至图21所示,在最外层掺杂有预设氧化物的金属氧化物层20上形成第二电极30,以形成电容结构。
需要说明的是,介电层中还可以包括无掺杂的金属氧化物层,且无掺杂的金属氧化物层与掺杂有预设氧化物的金属氧化物层20堆叠设置。示例性的,掺杂有预设氧化物的金属氧化物层20设置在第一电极10上,无掺杂的金属氧化物层设置在掺杂有预设氧化物的金属氧化物层20。无掺杂的金属氧化物层和掺杂有预设氧化物的金属氧化物层20可以设置有多个,本申请实施例不对此进行限制。
本申请实施例提供的电容结构包括两个相对设置的电极以及位于这两个电极之间的介电层,介电层与两个电极相接触,介电层包括预设氧化物的金属氧化物层,金属氧化物层中的部分预设氧化物与金属氧化物共用氧原子。通过部分预设氧化物和金属氧化物共用氧原子,一方面可以降低氧的含量,从而减小预设氧化物导致介电层的介电常数降低的影响,提高电容结构的性能;另一方面预设氧化物的掺杂效果好,进一步提高电容结构 的性能。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (20)

  1. 一种电容结构的制备方法,其特征在于,包括:
    在第一电极上形成介电层,所述介电层包括掺杂有预设氧化物的金属氧化物层,且部分所述预设氧化物与金属氧化物共用氧原子;
    在所述介电层上形成第二电极,所述第一电极、介电层和第二电极构成所述电容结构。
  2. 根据权利要求1所述的电容结构的制备方法,其特征在于,在第一电极上形成介电层的步骤包括:
    在所述第一电极上形成金属有机物层;
    在所述金属有机物层上形成预设有机物层;
    对所述金属有机物层和所述预设有机物层进行氧化处理,形成所述掺杂有预设氧化物的金属氧化物层。
  3. 根据权利要求2所述的电容结构的制备方法,其特征在于,对所述金属有机物层和所述预设有机物层进行氧化处理,形成所述掺杂有预设氧化物的金属氧化物层的步骤之后,在所述介电层上形成第二电极的步骤之前,所述电容结构的制备方法还包括:
    在所述掺杂有预设氧化物的金属氧化物层上形成所述金属有机物层;
    对所述金属有机物层进行氧化处理,形成无掺杂的金属氧化物层。
  4. 根据权利要求2所述的电容结构的制备方法,其特征在于,对所述金属有机物层和所述预设有机物层进行氧化处理,形成所述掺杂有预设氧化物的金属氧化物层的步骤之后,在所述介电层上形成第二电极的步骤之前,所述电容结构的制备方法还包括:
    在所述掺杂有预设氧化物的金属氧化物层上形成所述金属有机物层;
    在所述金属有机物层上形成所述预设有机物层;
    对所述金属有机物层和所述预设有机物层进行氧化处理,形成所述掺杂有预设氧化物的金属氧化物层;
    重复在所述掺杂有预设氧化物的金属氧化物层上形成所述金属有机物层、在所述金属有机物层上形成所述预设有机物层、对所述金属有机物层和所述预设有机物层进行氧化处理,直至形成包括n层所述掺杂有预设氧化物的金属氧化物层的介电层,其中,n大于等于2。
  5. 根据权利要求2所述的电容结构的制备方法,其特征在于,在第一电极上形成介电层的步骤中,利用原子层沉积工艺形成所述金属有机物层和所述预设有机物层。
  6. 根据权利要求5所述的电容结构的制备方法,其特征在于,在第一电极上形成介电层的步骤中:
    对所述金属有机物层进行清洁处理;和/或,对所述预设有机物层进行清洁处理。
  7. 根据权利要求2所述的电容结构的制备方法,其特征在于,对所述金属有机物层和所述预设有机物层进行氧化处理的步骤中,利用臭氧对所述金属有机物层和所述预设有机物层进行氧化处理。
  8. 根据权利要求7所述的电容结构的制备方法,其特征在于,所述氧化处理的时间小于或者等于10min。
  9. 根据权利要求1所述的电容结构的制备方法,其特征在于,所述金属氧化物的质量分数为90%-99%,所述预设氧化物的质量分数为1%-10%。
  10. 根据权利要求1所述的电容结构的制备方法,其特征在于,在第一电极上形成介电层的步骤包括:
    在所述第一电极上形成金属有机物层;
    在所述金属有机物层上形成预设有机物层;
    对所述金属有机物层和所述预设有机物层进行氧化处理,形成所述掺杂有预设氧化物的金属氧化物层;
    所述金属氧化物的质量分数为90%-99%,所述预设氧化物的质量分数为1%-10%。
  11. 根据权利要求1所述的电容结构的制备方法,其特征在于,在第一电极上形成介电层的步骤包括:
    在所述第一电极上形成金属有机物层;
    在所述金属有机物层上形成预设有机物层;
    对所述金属有机物层和所述预设有机物层进行氧化处理,形成所述掺杂有预设氧化物的金属氧化物层;
    对所述金属有机物层和所述预设有机物层进行氧化处理,形成所述掺杂有预设氧化物的金属氧化物层的步骤之后,在所述介电层上形成第二电极的步骤之前,所述电容结构的制备方法还包括:
    在所述掺杂有预设氧化物的金属氧化物层上形成所述金属有机物层;
    对所述金属有机物层进行氧化处理,形成无掺杂的金属氧化物层;
    所述金属氧化物的质量分数为90%-99%,所述预设氧化物的质量分数为1%-10%。
  12. 根据权利要求1所述的电容结构的制备方法,其特征在于,所述预设氧化物为非金属氧化物。
  13. 根据权利要求1所述的电容结构的制备方法,其特征在于,在第一电极上形成介电层的步骤包括:
    在所述第一电极上形成金属有机物层;
    在所述金属有机物层上形成预设有机物层;
    对所述金属有机物层和所述预设有机物层进行氧化处理,形成所述掺杂有预设氧化物的金属氧化物层;
    所述预设氧化物为非金属氧化物。
  14. 根据权利要求1所述的电容结构的制备方法,其特征在于,在第一电极上形成介电层的步骤包括:
    在所述第一电极上形成金属有机物层;
    在所述金属有机物层上形成预设有机物层;
    对所述金属有机物层和所述预设有机物层进行氧化处理,形成所述掺杂有预设氧化物的金属氧化物层;
    对所述金属有机物层和所述预设有机物层进行氧化处理,形成所述掺杂有预设氧化物的金属氧化物层的步骤之后,在所述介电层上形成第二电极的步骤之前,所述电容结构的制备方法还包括:
    在所述掺杂有预设氧化物的金属氧化物层上形成所述金属有机物层;
    对所述金属有机物层进行氧化处理,形成无掺杂的金属氧化物层;
    所述预设氧化物为非金属氧化物。
  15. 根据权利要求12所述的电容结构的制备方法,其特征在于,所述金属氧化物包括氧化铪、氧化锆或者钙钛矿,所述预设氧化物包括氧化硅。
  16. 根据权利要求1所述的电容结构的制备方法,其特征在于,在第一电极上形成介电层的步骤包括:
    在所述第一电极上形成金属有机物层;
    在所述金属有机物层上形成预设有机物层;
    对所述金属有机物层和所述预设有机物层进行氧化处理,形成所述掺杂有预设氧化物的金属氧化物层;
    所述预设氧化物为非金属氧化物,所述金属氧化物包括氧化铪、氧化锆或者钙钛矿,所述预设氧化物包括氧化硅。
  17. 一种电容结构,其特征在于,所述电容结构包括相对设置的两个电极,以及位于两个所述电极之间且与两个所述电极相接触的介电层,所述介电层包括掺杂有预设氧化物的金属氧化物层,且部分所述预设氧化物与金属氧化物共用氧原子。
  18. 根据权利要求17所述的电容结构,其特征在于,所述预设氧化物为非金属氧化物,所述金属氧化物的质量分数为90%-99%,所述非金属氧化物的质量分数为1%-10%。
  19. 根据权利要求17所述的电容结构,其特征在于,所述介电层包括堆叠设置的至少两个所述掺杂有预设氧化物的金属氧化物层。
  20. 根据权利要求17所述的电容结构,其特征在于,所述介电层还包括无掺杂的金属氧化物层,且所述无掺杂的金属氧化物层与所述掺杂有预设氧化物的金属氧化物层堆叠设置。
PCT/CN2021/101299 2021-02-03 2021-06-21 电容结构及其制备方法 WO2022166075A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/601,702 US20230103489A1 (en) 2021-02-03 2021-06-21 Capacitor structure and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110150428.4 2021-02-03
CN202110150428.4A CN112928210B (zh) 2021-02-03 2021-02-03 电容结构及其制备方法

Publications (1)

Publication Number Publication Date
WO2022166075A1 true WO2022166075A1 (zh) 2022-08-11

Family

ID=76169819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101299 WO2022166075A1 (zh) 2021-02-03 2021-06-21 电容结构及其制备方法

Country Status (3)

Country Link
US (1) US20230103489A1 (zh)
CN (1) CN112928210B (zh)
WO (1) WO2022166075A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112928210B (zh) * 2021-02-03 2022-04-15 长鑫存储技术有限公司 电容结构及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604626A (zh) * 2008-06-13 2009-12-16 南亚科技股份有限公司 一种制作半导体电容元件的方法
CN103247622A (zh) * 2012-02-10 2013-08-14 南亚科技股份有限公司 含硅掺杂氧化锆的电容介电层及其电容结构
CN112928210A (zh) * 2021-02-03 2021-06-08 长鑫存储技术有限公司 电容结构及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763923B2 (en) * 2005-12-29 2010-07-27 Taiwan Semiconductor Manufacturing Co., Ltd. Metal-insulator-metal capacitor structure having low voltage dependence
CN101221981B (zh) * 2007-01-09 2010-06-23 财团法人工业技术研究院 具有混合高介电材料层的电子元件及其制造方法
JP2009170439A (ja) * 2008-01-10 2009-07-30 Panasonic Corp ゲート絶縁膜の形成方法
US8362454B2 (en) * 2008-08-12 2013-01-29 Industrial Technology Research Institute Resistive random access memory having metal oxide layer with oxygen vacancies and method for fabricating the same
EP2434529B1 (en) * 2010-09-28 2020-02-12 IMEC vzw Metal-insulator-metal capacitor for use in semiconductor devices and manufacuring method therfor
US8828836B2 (en) * 2011-06-06 2014-09-09 Intermolecular, Inc. Method for fabricating a DRAM capacitor
US8722504B2 (en) * 2011-09-21 2014-05-13 Intermolecular, Inc. Interfacial layer for DRAM capacitor
JP6087609B2 (ja) * 2012-12-11 2017-03-01 東京エレクトロン株式会社 金属化合物膜の成膜方法、成膜装置、および電子製品の製造方法
US20180096792A1 (en) * 2016-10-04 2018-04-05 Alexander Mikhailovich Shukh Magnetic Capacitor
US11121209B2 (en) * 2017-03-27 2021-09-14 International Business Machines Corporation Surface area enhancement for stacked metal-insulator-metal (MIM) capacitor
KR20200122175A (ko) * 2019-04-17 2020-10-27 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
US11817475B2 (en) * 2020-11-27 2023-11-14 Samsung Electronics Co., Ltd. Semiconductor device and semiconductor apparatus including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604626A (zh) * 2008-06-13 2009-12-16 南亚科技股份有限公司 一种制作半导体电容元件的方法
CN103247622A (zh) * 2012-02-10 2013-08-14 南亚科技股份有限公司 含硅掺杂氧化锆的电容介电层及其电容结构
CN112928210A (zh) * 2021-02-03 2021-06-08 长鑫存储技术有限公司 电容结构及其制备方法

Also Published As

Publication number Publication date
CN112928210B (zh) 2022-04-15
US20230103489A1 (en) 2023-04-06
CN112928210A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
CN100388488C (zh) 具有混合电介质层的半导体集成电路器件及其制造方法
EP1368822B1 (en) Rhodium-rich oxygen barriers
US8542523B2 (en) Method for fabricating a DRAM capacitor having increased thermal and chemical stability
US8574983B2 (en) Method for fabricating a DRAM capacitor having increased thermal and chemical stability
US8679939B2 (en) Manufacturable high-k DRAM MIM capacitor structure
KR100672766B1 (ko) 반도체 소자의 캐패시터 제조 방법
JPH06151712A (ja) 構造体およびコンデンサの製造方法
KR101368147B1 (ko) 커패시터들을 형성하는 방법
EP3246947B1 (en) Resistance change element and method for manufacturing same
US9536940B2 (en) Interfacial materials for use in semiconductor structures and related methods
JP2007013086A (ja) ナノ混合の誘電膜、それを有するキャパシタ及びその製造方法
KR100883139B1 (ko) 루테늄계 전극을 구비한 캐패시터 및 그 제조 방법
WO2022166075A1 (zh) 电容结构及其制备方法
KR100568516B1 (ko) 후처리 기술을 사용하여 아날로그 커패시터를 제조하는 방법
US20090296314A1 (en) Capacitor of semiconductor device and manufacturing method thereof
TWI274379B (en) MIM capacitor structure and method of manufacturing the same
KR102308177B1 (ko) 커패시터 및 이를 포함하는 메모리 소자
US7842581B2 (en) Methods of forming metal layers using oxygen gas as a reaction source and methods of fabricating capacitors using such metal layers
CN102751264B (zh) 具有金属双层的电容结构及其使用方法
CN110739395A (zh) 阻变存储器及其制备方法
US7501291B2 (en) Process for fabricating an integrated circuit including a capacitor with a copper electrode
KR100642752B1 (ko) 아날로그 커패시터 및 그 제조방법
US20040142535A1 (en) Method for forming metal-insulator-metal capacitor of semiconductor device
KR20220165626A (ko) 하이케이(High-K) 유전체 물질을 이용한 MIM 캐패시터 및 이의 제조 방법
US20240155824A1 (en) Semiconductor device manufacturing method and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924082

Country of ref document: EP

Kind code of ref document: A1