WO2022165956A1 - 复合材料、制备方法、壳体、壳体的制备方法和电机 - Google Patents

复合材料、制备方法、壳体、壳体的制备方法和电机 Download PDF

Info

Publication number
WO2022165956A1
WO2022165956A1 PCT/CN2021/083655 CN2021083655W WO2022165956A1 WO 2022165956 A1 WO2022165956 A1 WO 2022165956A1 CN 2021083655 W CN2021083655 W CN 2021083655W WO 2022165956 A1 WO2022165956 A1 WO 2022165956A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
parts
fibers
preparation
metal alloy
Prior art date
Application number
PCT/CN2021/083655
Other languages
English (en)
French (fr)
Inventor
张栋葛
周道畅
Original Assignee
无锡小天鹅电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡小天鹅电器有限公司 filed Critical 无锡小天鹅电器有限公司
Publication of WO2022165956A1 publication Critical patent/WO2022165956A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present application relates to the technical field of polymer composite materials, in particular, to a composite material, a preparation method, a casing, a preparation method of the casing, and a motor.
  • BMC Bulk Molding Compounds
  • the present application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • a first aspect of the present application provides a composite material.
  • the second aspect of the present application also provides a preparation method.
  • a third aspect of the present application also provides a housing.
  • a fourth aspect of the present application also provides a method for preparing a casing.
  • a fifth aspect of the present application also provides a motor.
  • a first aspect of the present application proposes a composite material, comprising: resin, fiber and metal alloy; wherein, the fiber includes conductive fiber.
  • the composite materials provided herein include resins, conductive fibers, and metal alloys.
  • the metal alloy is melted and directionally gathered at the position of the conductive fiber nodes, thereby forming a three-dimensional fiber network skeleton, that is, the conductive fiber nodes are directionally welded by using the alloy material. It effectively reduces the electrical resistance and thermal resistance at the node position of the conductive fiber, and also enhances its fracture toughness.
  • the composite material also has good formability, low cost, high processing convenience, is suitable for industrialized mass production, and meets various needs of users.
  • the conductive fibers include metal fibers, carbon fibers or other fibers capable of conducting electricity.
  • the melting point of the metal alloy is less than 160°C.
  • the composite material uses a metal alloy with a lower melting point as a raw material.
  • the metal alloy can be melted during the molding process of the composite material, so that the fiber nodes can be welded directionally through the molten metal alloy to construct a three-dimensional fiber network skeleton, which can effectively reduce the resistance and thermal resistance of the fiber node position, and also enhances its fracture toughness.
  • it can reduce the temperature parameters required for composite material molding, avoid resin decomposition, help reduce the possibility of silver streak marks, scorching and other defects, and improve the reliability of composite materials.
  • the conductive fibers in the fibers account for 10% to 90% by weight.
  • the fibers include part of the conductive fibers, and the electrical conductivity and thermal conductivity of the composite material can be improved by adding the conductive fibers.
  • the weight portion of the conductive fibers in the fibers is limited to 10% to 90%, so as to take into account the properties of the composite material. preparation cost.
  • the weight part of the metal alloy is 2% to 50% of the weight part of the fiber, so that the weight parts of the conductive fibers and the metal alloy in the raw material are similar, so that the metal alloy can be directionally gathered at the fiber node position as much as possible. Welding of conductive fiber nodes increases the continuity between fibers, thereby reducing electrical and thermal resistance at fiber node locations.
  • the composite material further includes at least one of the following: a low shrinkage agent, a filler, a mold release agent, an initiator, and a thickener.
  • the volume shrinkage rate of the resin is relatively large, the volume shrinkage rate of the prepared composite material is also relatively large, so that the prepared product has problems such as cracks, subsidence spots, and denaturation.
  • a low shrinkage agent can be added to the resin.
  • fillers By adding fillers, the compactness and surface smoothness of composite materials can be improved.
  • release agent By adding a release agent, the composite material is prevented from adhering to the mold or other board surface, which facilitates the release of the mold and is beneficial to the molding process.
  • an initiator By adding an initiator, the cross-linking curing and polymer cross-linking reaction of polyester are promoted, and the processing and molding efficiency is improved. Thickeners are used to increase the viscosity of composite materials.
  • BMC Bulk Molding Compounds
  • BMC material is a dough-like prepreg made of GF (chopped glass fiber), UP (unsaturated resin), MD (filler) and various additives, which are fully mixed. It has electrical insulation, heat resistance, and flame resistance. Various excellent properties such as high mechanical strength, chemical resistance, weather resistance, dimensional stability and so on.
  • the composite material includes the following raw materials by weight: 50-100 parts of resin, 50-200 parts of fiber, 30-60 parts of low shrinkage agent, 100-300 parts of filler, and 1 part of mold release agent. ⁇ 10 parts, 0.1-4 parts of initiator, 0-5 parts of thickener, 1-200 parts of metal alloy.
  • the raw materials of resin, low shrinkage agent, fiber, filler, mold release agent, initiator, thickener and metal alloy are optimized and selected, combined with the reasonable ratio of each component raw material, the comprehensive optimization can be selected.
  • the excellent performance of each component raw material On the one hand, the products prepared from composite materials have excellent thermal conductivity and resistivity, and at the same time have the advantages of light weight, flame resistance, high mechanical strength, chemical resistance, weather resistance, dimensional stability, etc., and have no pollution and low cost. , high processing convenience.
  • the temperature and pressure required for the composite material forming process can be reduced, and the processing and preparation are facilitated.
  • the thermal conductivity of the composite material without using conductive fibers and metal alloys as raw materials is 0.6W/m ⁇ K ⁇ 0.7W/m ⁇ K, and the resistivity is 30 ⁇ cm ⁇ 40 ⁇ cm.
  • the thermal conductivity of the composite material of the example is 5W/m ⁇ K ⁇ 17W/m ⁇ K, and the resistivity is 0.12 ⁇ cm ⁇ 0.5 ⁇ cm.
  • the composite material further includes at least one of the following: a coloring agent, an antioxidant, a heat stabilizer, an ultraviolet absorber, an antistatic agent, and a surfactant.
  • the composite material further includes at least one of the following: a coloring agent, an antioxidant, a heat stabilizer, an ultraviolet absorber, an antistatic agent, and a surfactant.
  • Colorants are used to color composite materials, and antioxidants are used to alleviate or inhibit the oxidation process of composite materials, thereby preventing composite materials from aging and extending their service life.
  • Thermal stabilizers are used to improve the thermal stability of composite materials.
  • UV absorbers are used to improve the photostability of composite materials and prevent composite materials from decomposing and fading after exposure to light.
  • Antistatic agents are used to reduce the accumulation of static charges in composite materials and prevent potential safety hazards in production and life due to static electricity.
  • Surfactants are used to facilitate material mixing.
  • the weight part of the dyeing agent can be reasonably set according to the required color, and similarly, functional materials such as antioxidants, heat stabilizers, ultraviolet absorbers, antistatic agents, and surfactants can be added as required.
  • the fibers also include non-metal fibers;
  • the composite material includes the following raw materials by weight: 55-65 parts of resin, 45-55 parts of glass fibers, 90-110 parts of conductive fibers, and low shrinkage agent 35-45 parts, fillers 150-190 parts, release agent 1-3 parts, initiator 0.8-1.2 parts, thickener 0.3-0.6 parts, metal alloy 10-30 parts.
  • the fibers also include non-metallic fibers, wherein the non-metallic fibers include at least one of the following: fibers with high fiber strength such as glass fibers, aramid fibers, and basalt fibers, so as to enhance the mechanical properties of the composite material, and at the same time Helps to reduce costs.
  • fibers with high fiber strength such as glass fibers, aramid fibers, and basalt fibers, so as to enhance the mechanical properties of the composite material, and at the same time
  • fibers with high fiber strength such as glass fibers, aramid fibers, and basalt fibers
  • the products prepared from composite materials have excellent thermal conductivity and resistivity, and at the same time have the advantages of light weight, flame resistance, high mechanical strength, chemical resistance, weather resistance, dimensional stability, etc., and have no pollution and low cost. , high processing convenience.
  • the temperature and pressure required for the composite material forming process can be reduced, and the processing and preparation are facilitated.
  • the metal alloy includes at least one of the following: bismuth, tin, lead, indium, silver, and aluminum.
  • the metal alloy includes one or more of bismuth, tin, lead, indium, silver, and aluminum with low melting point and high electrical conductivity, and the above-mentioned metal alloy is added to the composite material to make the composite material forming process
  • metal alloys are melted and oriented to gather at the nodes of conductive fibers to form a three-dimensional network skeleton of fibers, thereby effectively reducing the electrical resistance and thermal resistance at the nodes of conductive fibers, and enhancing their fracture toughness.
  • the electrical and thermal conductivity of the product is greatly improved.
  • a preparation method is also proposed for preparing the composite material proposed in the first aspect.
  • the preparation method includes: subjecting resin and metal alloy to agitation to obtain a mixture; subjecting the mixture and fibers to agitation , to obtain a composite material.
  • the resin and the metal alloy are first stirred uniformly, and then the fibers are added to continue stirring to obtain the composite material.
  • the dispersion of the metal alloy is avoided after the fiber is added.
  • the metal alloy powder with low melting point will be melted, and the metal alloy will be melted and aggregated in the fiber directionally.
  • the position of the conductive fiber node in the conductive fiber node is formed, and the three-dimensional network skeleton of the fiber is formed, that is, the conductive fiber node is directionally welded by the alloy material, which effectively reduces the electrical resistance and thermal resistance of the conductive fiber node position, and also enhances its fracture toughness. While ensuring that the product prepared from the composite material has excellent surface finish, compactness and mechanical strength, the electrical and thermal conductivity of the product is greatly improved.
  • the resin, low shrinkage agent, thickener and initiator are first stirred at a high speed by a disperser ( 1500rpm ⁇ 4000rpm, 10min ⁇ 60min) dispersion, so that the low shrinkage agent and the initiator can be quickly and uniformly mixed with the resin to obtain the first mixture (resin paste).
  • a disperser 1500rpm ⁇ 4000rpm, 10min ⁇ 60min
  • the first mixture, mold release agent, filler, and low-melting point metal alloy powder into a kneader for stirring and dispersion (30rpm ⁇ 60rpm, 3min ⁇ 20min).
  • the resin, the low shrinkage agent, the initiator, the thickening agent and the dyeing agent are stirred together to obtain the first mixture.
  • a shell is also proposed, and the raw material of the shell includes the composite material proposed in the first aspect, or the composite material obtained by the preparation method proposed in the second aspect. Therefore, the shell has all the beneficial effects of the composite material proposed in the first aspect, or the composite material obtained by the preparation method proposed in the second aspect.
  • a method for preparing a shell includes: subjecting the composite material proposed in the first aspect, or the composite material obtained by the preparation method proposed in the second aspect, to a molding or injection molding process, get the shell.
  • the molding conditions are: the mold temperature is 100°C ⁇ 160°C; the mold clamping time is 10s ⁇ 300s; the injection molding conditions are: the temperature is 100°C ⁇ 160°C; the time is 20s ⁇ 300s .
  • the pressure during the molding or injection molding process is 70kg/cm 2 to 150kg/cm 2 .
  • a motor comprising: the casing proposed in the third aspect, or the casing obtained by the method for preparing a casing proposed in the fourth aspect. Therefore, the motor has all the beneficial effects of the casing proposed in the third aspect, or the casing obtained by the manufacturing method of the casing proposed in the fourth aspect.
  • the motor can be applied to electrical equipment such as washing machines, vacuum cleaners, range hoods, and air conditioners.
  • FIG. 1 shows a microscopic schematic diagram of a composite material according to an embodiment of the present application
  • Fig. 2 shows the microscopic schematic diagram of the composite material in Fig. 1 after molding
  • FIG. 3 shows a schematic flowchart of a preparation method according to an embodiment of the present application.
  • the present application proposes a composite material, comprising: resin, fibers and metal alloys; wherein, the fibers include conductive fibers.
  • conductive fibers and metal alloys are added to the composite material, so that during the molding process of the composite material, as shown in FIG.
  • the fiber three-dimensional network skeleton that is, the conductive fiber nodes are welded directionally using alloy materials, thereby effectively reducing the electrical resistance and thermal resistance of the conductive fiber nodes, and also enhancing their fracture toughness.
  • the composite material also has good formability, low cost, high processing convenience, is suitable for industrialized mass production, and meets various needs of users.
  • the composite material further includes at least one of the following: a low shrinkage agent, a filler, a mold release agent, an initiator, and a thickener.
  • the volume shrinkage rate of the resin is relatively large, the volume shrinkage rate of the prepared composite material is also relatively large, so that the prepared product has problems such as cracks, subsidence spots, and denaturation.
  • a low shrinkage agent can be added to the resin.
  • fillers By adding fillers, the compactness and surface smoothness of composite materials can be improved.
  • release agent By adding a release agent, the composite material is prevented from adhering to the mold or other board surface, which facilitates the release of the mold and is beneficial to the molding process.
  • an initiator By adding an initiator, the cross-linking curing and polymer cross-linking reaction of polyester are promoted, and the processing and molding efficiency is improved. Thickeners are used to increase the viscosity of composite materials.
  • the composite material includes the following raw materials by weight: 50-100 parts of resin, 50-200 parts of fiber, 30-60 parts of low shrinkage agent, 100-300 parts of filler, 1-10 parts of mold release agent, and 0.1-10 parts of initiator. 4 parts, 0-5 parts thickener, 1-200 parts metal alloy.
  • the quality of each component raw material can be comprehensively optimized. Excellent performance.
  • the products prepared from composite materials have excellent thermal conductivity and resistivity, and at the same time have the advantages of light weight, flame resistance, high mechanical strength, chemical resistance, weather resistance, dimensional stability, etc., and have no pollution and low cost. , high processing convenience.
  • the temperature and pressure required for the composite material forming process can be reduced, and the processing and preparation are facilitated.
  • the fibers also include non-metal fibers;
  • the composite material includes the following raw materials by weight: 55-65 parts of resin, 45-55 parts of non-metal fibers, 90-110 parts of conductive fibers, 35-45 parts of low shrinkage agent, and 150 parts of filler. ⁇ 190 parts, 1-3 parts of mold release agent, 0.8-1.2 parts of initiator, 0.3-0.6 parts of thickener, 10-30 parts of metal alloy.
  • the non-metallic fibers include at least one of the following fibers: glass fibers, aramid fibers, basalt fibers and other fibers with relatively high fiber strength, thereby enhancing the mechanical properties of the composite material and helping to reduce costs.
  • the thermal conductivity of the composite material without using metal alloys and conductive fibers as raw materials is 0.6W/m ⁇ K ⁇ 0.7W/m ⁇ K, and the resistivity is 30 ⁇ cm ⁇ 40 ⁇ cm.
  • the thermal conductivity of the composite material of the example is 5W/m ⁇ K ⁇ 17W/m ⁇ K, and the resistivity is 0.12 ⁇ cm ⁇ 0.5 ⁇ cm.
  • the weight part of the metal alloy is 2% to 50% of the weight part of the fiber, so that the weight parts of the conductive fiber and the metal alloy in the raw material are similar, so that the metal alloy can be oriented as much as possible. It is conducive to welding conductive fiber nodes, enhances the continuity between fibers, and reduces the electrical resistance and thermal resistance at the fiber node position.
  • resins include unsaturated polyester resins and/or epoxy resins; unsaturated polyester resins include isophthalic resins, bisphenol A vinyl polyesters, epoxy-modified vinyl polyesters, o-phthalic resins, etc.
  • unsaturated polyesters include isophthalic resins, bisphenol A vinyl polyesters, epoxy-modified vinyl polyesters, o-phthalic resins, etc.
  • the resin viscosity is 2000mPa ⁇ s ⁇ 18000mPa ⁇ s, for example, 2500mPa ⁇ s, 4000mPa ⁇ s, 6800mPa ⁇ s, 10000mPa ⁇ s, 12000mPa ⁇ s, 15500mPa ⁇ s, etc.
  • the solid content is 50% ⁇ 70%, which is conducive to improving Water resistance, weather resistance and fiber wettability of composites.
  • the low shrinkage agent includes at least one of the following: saturated polyester type low shrinkage agent, polyethylene (PE), polyvinyl chloride (PVC), polystyrene (PS), polymethyl methacrylate (PMMA), polyvinyl acetate Graft-modified substances such as ester (PVA); viscosity of low shrinkage additive ⁇ 6000mPa ⁇ s, such as 5780mPa ⁇ s, 4420mPa ⁇ s, 4100mPa ⁇ s, 3800mPa ⁇ s, 3200mPa ⁇ s, 2800mPa ⁇ s, 2400mPa ⁇ s etc., the lower the viscosity of the low-shrinkage additive, the better its fluidity, then under the condition of low temperature and low pressure, the dispersion of the low-shrinkage agent in the prepared composite material is also better, the appearance of the product is more uniform, and there are fewer defects .
  • saturated polyester type low shrinkage agent polyethylene
  • PVC polyvinyl chloride
  • PS polys
  • Fillers include at least one of the following: talc, montmorillonite, china clay mica, kaolin, clay, calcium silicate, aluminum silicate, feldspar powder, acid clay, talc clay, sericite, sillimanite, bentonite, glass flakes, plates Rock powder, silicates such as silane, calcium carbonate, chalk, barium carbonate, magnesium carbonate, dolomite and other carbonates, barite powder, sedimentary calcium sulfate, plaster of paris, barium sulfate and other sulfates, water and alumina, etc.
  • the average particle size of the filler is 1 ⁇ m ⁇ 200 ⁇ m, such as 2.5 ⁇ m, 5 ⁇ m, 30 ⁇ m, 90 ⁇ m, 135 ⁇ m, 180 ⁇ m, and the like.
  • the release agent includes at least one of the following calcium stearate (calcium octadecanoate), zinc stearate (zinc octadecanoate), and barium stearate.
  • the average particle size of calcium stearate, zinc stearate or barium stearate is 30 ⁇ m to 100 ⁇ m, for example, 45 ⁇ m, 50 ⁇ m, 70 ⁇ m, 90 ⁇ m, so as to facilitate uniform mixing.
  • the number-average fiber length of the fibers is 3 ⁇ m to 1000 ⁇ m.
  • the number-average fiber length is less than 3 ⁇ m, the surface strength of the molded product is high, and it is difficult to meet the strength requirements of motor plastic sealing; when the number-average fiber length is greater than 1000 ⁇ m, during the molding process, the output will become unstable, The surface of the product is also rough.
  • the initiator that is, the polyester plasticizer, is used to promote the cross-linking curing and polymer cross-linking reaction of polyester.
  • the initiator includes at least one of the following: benzoyl peroxide (BPO), tert-butyl perbenzoate (TBPB), tert-butyl peroxy-2-ethylhexanoate (TBPO), triallyl isocyanurate acid ester (TAIC), dicumyl peroxide (DCP).
  • the metal fibers include at least one of the following: copper fibers, nickel fibers, aluminum fibers, metal-coated carbon fibers, metal-coated glass fibers, and carbon fibers.
  • the features defined in any of the above embodiments are included, and further: the melting point of the metal alloy is less than 160°C.
  • a metal alloy with a lower melting point is used as the raw material for the composite material.
  • the metal alloy can be melted during the molding process of the composite material, so that the fiber nodes can be welded directionally through the molten metal alloy to construct a three-dimensional fiber network skeleton, which can effectively reduce the resistance and thermal resistance of the fiber node position, and also enhances its fracture toughness.
  • it can reduce the temperature parameters required for composite material molding, avoid resin decomposition, help reduce the possibility of silver streak marks, scorching and other defects, and improve the reliability of composite materials.
  • metal alloy powders with a particle size of less than 100 ⁇ m can be used as raw materials for synthesizing composite materials, which is beneficial to the distribution of metal alloys at the nodes of the fibers, so that the constructed three-dimensional network skeleton of the fibers is more complete.
  • the metal alloy powders with smaller particle sizes are melted. Afterwards, unnecessary coating of fibers can be reduced, which is beneficial to reduce the usage amount of metal alloys, thereby saving the preparation cost of composite materials.
  • the metal alloy includes one or more of bismuth (Bi), tin (Sn), lead (Pb), indium (In), silver (Ag), and aluminum (Al) with low melting point and high electrical conductivity
  • the above-mentioned metal alloy is added to the composite material, so that during the molding process of the composite material, the metal alloy is melted and oriented to gather at the node position of the conductive fiber, thereby forming a three-dimensional network skeleton of the fiber, thereby effectively reducing the resistance and thermal resistance of the node position of the conductive fiber, and It also enhances its fracture toughness. While ensuring that the product prepared from the composite material has excellent surface finish, compactness and mechanical strength, the electrical and thermal conductivity of the product is greatly improved. For example, 5 ⁇ m bismuth/lead alloy powder.
  • the features defined in any one of the above embodiments are included, and further: the weight portion of the conductive fibers in the fibers is 10% to 90%.
  • the fibers include part of the conductive fibers, and the electrical conductivity and thermal conductivity of the composite material can be improved by adding the conductive fibers, and the weight portion of the conductive fibers in the fibers is limited to 10% to 90%, for example, 25%, 40%, 60%, 80% to take into account the preparation cost of composite materials.
  • the composite material further includes at least one of the following: a coloring agent, an antioxidant, a heat stabilizer, an ultraviolet absorber, an antistatic agent, Surfactant.
  • the composite material further includes at least one of the following: a coloring agent and an antioxidant.
  • Colorants are used to color composite materials.
  • Antioxidants are used to alleviate or inhibit the oxidation process of composite materials, thereby preventing the aging of composite materials and prolonging their service life.
  • Thermal stabilizers are used to improve the thermal stability of composite materials.
  • the UV absorber is used to improve the photostability of the composite material and prevent the composite material from decomposing and fading after being exposed to light.
  • Antistatic agents are used to reduce the accumulation of static charges in composite materials and prevent potential safety hazards in production and life due to static electricity.
  • Surfactants are used to facilitate material mixing.
  • the coloring agent includes pigments and dyes, but the heat resistance and chemical resistance properties of the dyes are relatively weak, so the composite material of this embodiment is for the purpose of coloring, and pigments can be added thereto.
  • the weight part of the dyeing agent can be reasonably set according to the required color, and similarly, functional materials such as antioxidants, heat stabilizers, ultraviolet absorbers, antistatic agents, and surfactants can be added as required.
  • a preparation method for preparing the composite material proposed in the embodiment of the first aspect.
  • the preparation method includes:
  • Step 202 stirring the resin and the metal alloy to obtain a mixture
  • step 204 the mixture and the fibers are stirred to obtain a composite material.
  • the resin and the metal alloy are first stirred uniformly, and then the fibers are added to continue stirring to obtain a composite material.
  • the dispersion of the metal alloy is avoided after the fiber is added.
  • the metal alloy powder with low melting point will melt, and the metal alloy is melted and aggregated in the fiber directionally.
  • the position of the conductive fiber node in the conductive fiber node is formed, and the three-dimensional network skeleton of the fiber is formed, that is, the conductive fiber node is directionally welded by the alloy material, which effectively reduces the electrical resistance and thermal resistance of the conductive fiber node position, and also enhances its fracture toughness. While ensuring that the product prepared from the composite material has excellent surface finish, compactness and mechanical strength, the electrical and thermal conductivity of the product is greatly improved.
  • the resin, low shrinkage agent, thickener and initiator are firstly dispersed by high-speed stirring through a disperser. (1500rpm ⁇ 4000rpm, 10min ⁇ 60min), so that the low shrinkage agent and the initiator can be quickly and uniformly mixed with the resin to obtain the first mixture (resin paste).
  • the resin, the low shrinkage agent, the initiator, the thickening agent and the dyeing agent are stirred together to obtain the first mixture.
  • a shell is provided, and the raw material of the shell includes the composite material proposed in the first aspect, or the composite material obtained by the preparation method proposed in the second aspect. Therefore, the shell has all the beneficial effects of the composite material proposed in the first aspect, or the composite material obtained by the preparation method proposed in the second aspect.
  • a method for preparing a shell including: the composite material proposed in the embodiment of the first aspect, or the composite material obtained by the preparation method proposed in the embodiment of the second aspect, to Compression or injection molding process to obtain the shell.
  • the metal alloys are melted and oriented to gather at the nodes of the conductive fibers, thereby forming a three-dimensional network skeleton of fibers. That is, the conductive fiber nodes are directionally welded by using the alloy material, thereby effectively reducing the electrical resistance and thermal resistance at the position of the conductive fiber nodes, and also enhancing their fracture toughness. Furthermore, while ensuring that the prepared casing has excellent surface finish, compactness and mechanical strength, the electrical conductivity and thermal conductivity of the casing are greatly improved.
  • the molding conditions are as follows: the mold temperature is 100°C to 160°C, for example, 110°C, 120°C, 130°C, 150°C; the mold clamping time is 10s to 300s, such as 25s, 50s, 75s, 140s, 220s , 280s; the injection molding conditions are: the temperature is 100°C ⁇ 160°C, such as 110°C, 120°C, 130°C, 150°C; the time is 20s ⁇ 300s, such as 30s, 45s, 90s, 120s, 165s, 200s, 275s.
  • the pressure at the time of molding or injection molding is in the range of 70 kg/cm 2 to 150 kg/cm 2 , for example, 80 kg/cm 2 , 100 kg/cm 2 , 120 kg/cm 2 , and 145 kg/cm 2 .
  • a BMC material with high electrical conductivity and high thermal conductivity and a preparation method thereof are proposed.
  • the components of the BMC material in this embodiment are: unsaturated polyester resin 60phr (parts by weight), polystyrene (PS) 40phr, aluminum hydroxide 80phr, calcium carbonate 80phr, zinc stearate 2phr, calcium hydroxide 0.5phr, 1 phr of tert-butyl perbenzoate (TBPB), 50 phr of glass fiber, 100 phr of copper fiber, and 20 phr of Bi/Pb alloy powder with a melting point of 150°C.
  • PS polystyrene
  • TBPB tert-butyl perbenzoate
  • the preparation process of the agglomerate molding compound is to disperse all materials except aluminum hydroxide, calcium carbonate, zinc stearate, fiber and Bi/Pb alloy powder in the above-mentioned raw materials into a resin paste at 3000rpm and 20min through a high-speed disperser. . Then put resin paste, zinc stearate, aluminum hydroxide, calcium carbonate, Bi/Pb alloy powder into the kneader, and stir and disperse at 40 rpm for 10 minutes. After uniformity, add reinforcing fibers and continue to stir and disperse at 40 rpm for 5 minutes. The final bulk molding compound.
  • the low melting point metal alloy powder will be melted and directionally aggregated at the metal fiber node position, thereby effectively reducing the electrical resistance and thermal resistance at the fiber node position, so as to realize the electrical and thermal conductivity of the BMC material.
  • the thermal conductivity of the product after injection or compression molding is 15W/m ⁇ K, and the resistivity is 0.12 ⁇ cm.
  • the aluminum hydroxide is hydrated aluminum hydroxide, the molecular formula is Al(OH) 3 ⁇ xH 2 O, and x is a positive integer.
  • Unsaturated polyester resin is selected from o-phthalic unsaturated polyester resin, which has a solid content of more than 70%, a viscosity of 1800cps, and can form good wettability with reinforcing materials and fillers, and o-phthalic unsaturated polyester resin. Has good electrical and mechanical properties.
  • a BMC material with high electrical conductivity and high thermal conductivity and a preparation method thereof are proposed.
  • the components of the BMC material in this embodiment are: unsaturated polyester resin 80phr (parts by weight), polyethylene (PE) 50phr, china clay 220phr, calcium stearate 6phr, calcium hydroxide 0.35phr, benzoyl peroxide (BPO) 1phr, glass fiber 70phr, copper fiber 70phr, Bi/Pb alloy powder with melting point of 150°C 20phr.
  • unsaturated polyester resin 80phr parts by weight
  • PE polyethylene
  • china clay 220phr china clay 220phr
  • calcium stearate 6phr calcium hydroxide 0.35phr
  • benzoyl peroxide (BPO) 1phr glass fiber 70phr
  • copper fiber 70phr copper fiber 70phr
  • Bi/Pb alloy powder with melting point of 150°C 20phr Bi/Pb alloy powder with melting point of 150°C 20phr.
  • the preparation process of the agglomerate molding compound is to disperse all the above-mentioned raw materials except china clay, calcium stearate, fiber and Bi/Pb alloy powder through a high-speed disperser to form a resin paste at 2000rpm for 30min. Then put resin paste, calcium stearate, porcelain clay, Bi/Pb alloy powder into the kneader, and stir and disperse at 50 rpm for 6 minutes. After uniformity, add reinforcing fibers and continue to stir and disperse at 35 rpm for 4 minutes, and knead into the final dough mold plastic.
  • the low melting point metal alloy powder will be melted and directionally aggregated at the metal fiber node position, thereby effectively reducing the electrical resistance and thermal resistance at the fiber node position, so as to realize the electrical and thermal conductivity of the BMC material.
  • the thermal conductivity of the product after injection or compression molding is 12W/m ⁇ K, and the resistivity is 0.2 ⁇ cm.
  • a motor is also provided, including: the housing provided by the embodiment of the third aspect, or the housing obtained by the manufacturing method of the housing provided by the embodiment of the fourth aspect. Therefore, the motor has all the beneficial effects of the housing provided by the embodiment of the third aspect, or the housing obtained by the manufacturing method of the housing provided by the embodiment of the fourth aspect.
  • the motor can be applied to electrical equipment such as washing machines, vacuum cleaners, range hoods, and air conditioners.
  • the term “plurality” refers to two or more, unless expressly defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed”, etc. should be understood in a broad sense.
  • “connected” may be a fixed connection, a detachable connection, or an integral connection;
  • “connected” may be a Directly connected or indirectly connected through an intermediary.
  • the specific meanings of the above terms in this application can be understood according to specific situations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本申请提供了一种复合材料、制备方法、壳体、壳体的制备方法和电机。其中,复合材料包括:树脂、纤维和金属合金;其中,纤维包括导电纤维。从而通过在复合材料添加导电纤维和金属合金,使得该复合材料成型过程中,利用金属合金熔融定向聚集于导电纤维节点位置,进而形成纤维三维网络骨架,进而有效降低导电纤维节点位置的电阻和热阻,而且还增强了其断裂韧性,在保证复合材料制备出的产品具有优异的表面光洁度、致密性和机械强度的基础上,实现了该产品的导电、导热性能的大幅度提升。

Description

复合材料、制备方法、壳体、壳体的制备方法和电机
本申请要求于2021年02月05日提交中国国家知识产权局、申请号为“2021101581134”、发明名称为“复合材料、制备方法、壳体、壳体的制备方法和电机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及高分子复合材料技术领域,具体而言,涉及一种复合材料、一种制备方法、一种壳体、一种壳体的制备方法和一种电机。
背景技术
目前,团状模塑料(Bulk Molding Compounds,BMC)材料常用于电气和电子领域在内的各种领域,但由于BMC材料为不导电材料且导热性较差,在用于包覆电机时,需要增加防电蚀结构,并且从设计上还需要考虑电机散热问题。相关技术中,塑封电机防电蚀方案主要是通过在BMC材料中加入大量碳纤维和导电炭黑,但该方案牺牲了材料的性能与成本优势,无法满足用户需求。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面提供了一种复合材料。
本申请的第二方面还提供了一种制备方法。
本申请的第三方面还提供了一种壳体。
本申请的第四方面还提供了一种壳体的制备方法。
本申请的第五方面还提供了一种电机。
有鉴于此,本申请的第一方面提出了一种复合材料,包括:树脂、纤维和金属合金;其中,纤维包括导电纤维。
本申请提供的复合材料包括树脂、导电纤维和金属合金。通过在复合材料添加导电纤维和金属合金,使得该复合材料成型过程中,利用金属合 金熔融定向聚集于导电纤维节点位置,进而形成纤维三维网络骨架,也即利用合金材料定向焊接导电纤维节点,从而有效降低导电纤维节点位置的电阻和热阻,而且还增强了其断裂韧性。在保证复合材料制备出的产品具有优异的表面光洁度、致密性和机械强度的基础上,实现了该产品的导电、导热性能的大幅度提升。进一步地,该复合材料还具有很好的成型性,成本低,加工便利性高,适合工业化批量生产,满足用户多方面的需求。
具体地,导电纤维包括金属纤维、碳纤维或其它能够导电的纤维。
根据本申请提供的上述的复合材料,还可以具有以下附加技术特征:
在上述技术方案中,进一步地,金属合金的熔点小于160℃。
在该技术方案中,复合材料采用熔点较低的金属合金作为原料。一方面,能够保证金属合金在复合材料在成型过程中能够熔融,从而通过熔融后的金属合金定向焊接纤维节点,以构建出纤维三维网络骨架,有效降低纤维节点位置的电阻和热阻,而且还增强了其断裂韧性。另一方面,能够降低复合材料成型所需的温度参数,避免树脂分解,有利于降低产生银条痕迹、烧焦等缺陷的可能性,提升复合材料的可靠性。
在上述任一技术方案中,进一步地,纤维中导电纤维所占的重量份为10%~90%。
在该技术方案中,纤维包括部分导电纤维,通过添加导电纤维能够提高复合材料的导电性能和导热性能,同时限定纤维中导电纤维所占的重量份为10%~90%,以兼顾复合材料的制备成本。
可以理解的是,金属合金的重量份为纤维的重量份的2%~50%,使得原料中导电纤维和金属合金的重量份相近,这样金属合金能够尽可能定向聚集于纤维节点位置,有利于焊接导电纤维节点,增强纤维间的连贯性,进而降低纤维节点位置的电阻和热阻。
在上述技术方案中,进一步地,复合材料还包括以下至少一种:低收缩剂、填料、脱模剂、引发剂、增稠剂。
在该技术方案中,由于树脂的体积收缩率比较大,因此制得的复合材料的体积收缩率也比较大,使得制备出的产品存在裂纹、沉陷斑点、变性等问题。为了减小固化收缩,可以在树脂中加入低收缩剂。通过添加填料 来提高复合材料制备出产品的密实度和表面的平滑性。通过添加脱模剂防止复合材料粘结到模具或其他板面,便于脱模,有利于成型加工。通过添加引发剂促进聚酯的交联固化和高分子交联反应,提高加工成型效率。增稠剂用于增加复合材料的粘度。
具体地,团状模塑(Bulk Molding Compounds,BMC)复合材料,又称作不饱和聚酯团状模塑料。BMC材料是由GF(短切玻璃纤维)、UP(不饱和树脂)、MD(填料)以及各种添加剂经充分混合而成的料团状预浸料,具有电气绝缘性、耐热性、耐燃性、高机械强度、耐化学性、耐候性、尺寸安定性等各种优异性能。
在上述任一技术方案中,进一步地,复合材料包括以下重量份的原料:树脂50~100份,纤维50~200份,低收缩剂30~60份,填料100~300份,脱模剂1~10份,引发剂0.1~4份,增稠剂0~5份,金属合金1~200份。
在该技术方案中,通过树脂、低收缩剂、纤维、填料、脱模剂、引发剂、增稠剂和金属合金的原材料进行优化选用,结合各组分原料的合理配比,能综合优化选用的各组分原材料的优异性能。一方面,使复合材料制备出的产品具有优异的导热系数和电阻率、同时具备质量轻、耐燃性、高机械强度、耐化学性、耐候性、尺寸安定性等优点,且无污染、成本低,加工便利性高。另一方面,能够降低复合材料成型处理时所需的温度和压力,便于加工制备。
具体地,相关技术中,未采用导电纤维和金属合金作为原料的复合材料能够达到的导热系数为0.6W/m·K~0.7W/m·K,电阻率为30Ωcm~40Ωcm,而本申请实施例的复合材料能够达到的导热系数为5W/m·K~17W/m·K,电阻率为0.12Ωcm~0.5Ωcm。
在上述任一技术方案中,进一步地,复合材料还包括以下中至少一种:染色剂、抗氧剂、热稳定剂、紫外吸收剂、抗静电剂、表面活性剂。
在该技术方案中,复合材料还包括以下中至少一种:染色剂、抗氧剂、热稳定剂、紫外吸收剂、抗静电剂、表面活性剂。染色剂用于对复合材料着色,抗氧剂用于缓解或抑制复合材料氧化过程的进行,从而阻止复合材料老化并延长其使用寿命。热稳定剂用于提升复合材料的热稳定性。紫外 吸收剂用于提升复合材料的光稳定性,防止复合材料光照后分解褪色。抗静电剂用于降低复合材料中的静电荷累积,防止由于静电导致的生产、生活中的安全隐患。表面活性剂用于促进材料混合。
具体地,染色剂的重量份可根据需要的颜色合理设置,同样的,抗氧剂、热稳定剂、紫外吸收剂、抗静电剂、表面活性剂等功能性材料可按需添加。
在上述任一技术方案中,进一步地,纤维还包括非金属纤维;复合材料包括以下重量份的原料:树脂55~65份,玻璃纤维45~55份,导电纤维90~110份,低收缩剂35~45份,填料150~190份,脱模剂1~3份,引发剂0.8~1.2份,增稠剂0.3~0.6份,金属合金10~30份。
在该技术方案中,纤维还包括非金属纤维,其中,非金属纤维包括以下至少一种:玻璃纤维、芳纶纤维、玄武岩纤维等纤维强度较大的纤维,从而加强复合材料的机械性能,同时有利于降低成本。通过树脂、低收缩剂、非金属纤维、导电纤维、填料、增稠剂、脱模剂、引发剂、金属合金的原材料进行优化选用,结合各组分原料的合理配比,能综合优化选用的各组分原材料的优异性能。一方面,使复合材料制备出的产品具有优异的导热系数和电阻率、同时具备质量轻、耐燃性、高机械强度、耐化学性、耐候性、尺寸安定性等优点,且无污染、成本低,加工便利性高。另一方面,能够降低复合材料成型处理时所需的温度和压力,便于加工制备。
在上述任一技术方案中,进一步地,金属合金包括以下至少之一:铋、锡、铅、铟、银、铝。
在该技术方案中,金属合金包括低熔点、高导电性能的铋、锡、铅、铟、银、铝中的一种或多种,在复合材料中添加上述金属合金,使得该复合材料成型过程中,利用金属合金熔融定向聚集于导电纤维节点位置,进而形成纤维三维网络骨架,从而有效降低导电纤维节点位置的电阻和热阻,而且还增强了其断裂韧性。在保证复合材料制备出的产品具有优异的表面光洁度、致密性和机械强度的基础上,实现了该产品的导电、导热性能的大幅度提升。
根据本申请的第二方面,还提出了一种制备方法,用于制备第一方面 提出的复合材料,制备方法包括:将树脂和金属合金进行搅拌处理,得到混合物;将混合物和纤维进行搅拌处理,得到复合材料。
在该技术方案中,先将树脂和金属合金搅拌均匀,然后再加入纤维继续搅拌,得到复合材料。一方面,避免纤维加入后影响金属合金的分散,另一方面,该制备方法得到的复合材料在注塑成型或模压成型过程中,低熔点的金属合金粉末会熔融,利用金属合金熔融定向聚集于纤维中的导电纤维节点位置,进而形成纤维三维网络骨架,也即利用合金材料定向焊接导电纤维节点,从而有效降低导电纤维节点位置的电阻和热阻,而且还增强了其断裂韧性。在保证复合材料制备出的产品具有优异的表面光洁度、致密性和机械强度的同时,实现了该产品的导电、导热性能的大幅度提升。
进一步地,在添加低收缩剂、引发剂、脱模剂、增稠剂、填料等功能性材料的情况下,先将树脂、低收缩剂、增稠剂和引发剂通过分散机进行高速搅拌(1500rpm~4000rpm,10min~60min)分散,使得低收缩剂和引发剂能够快速与树脂混合均匀,得到第一混合物(树脂糊)。接着将第一混合物、脱模剂、填料、低熔点的金属合金粉末放入捏合机中进行搅拌分散(30rpm~60rpm,3min~20min),待搅拌均匀后得到第二混合物,并向第二混合物中加入纤维继续低速搅拌(30rpm~60rpm,3min~20min),从而在保证金属合金均匀分布的前提下,避免高速搅拌破环纤维结构,而且有利于降低能源消耗,提升生产效率,搅拌结束后得到所需的复合材料。
进一步地,若原料中有染色剂,则将树脂、低收缩剂、引发剂、增稠剂和染色剂一同进行搅拌得到第一混合物。
根据本申请的第三方面,还提出了一种壳体,壳体的原料包括第一方面提出的复合材料,或第二方面提出的制备方法得到的复合材料。因此,该壳体具有第一方面提出的复合材料,或第二方面提出的制备方法得到的复合材料的全部有益效果。
根据本申请的第四方面,还提出了一种壳体的制备方法,包括:将第一方面提出的复合材料,或第二方面提出的制备方法得到的复合材料,进行模压或注塑成型处理,得到壳体。
在该技术方案中,由于复合材料中添加有导电纤维和金属合金,在模 压或注塑成型处理过程中,利用金属合金熔融定向聚集于导电纤维节点位置,进而形成纤维三维网络骨架,也即利用合金材料定向焊接导电纤维节点,从而有效降低导电纤维节点位置的电阻和热阻,而且还增强了其断裂韧性。进而在保证制备出的壳体具有优异的表面光洁度、致密性和机械强度的同时,实现了壳体导电、导热性能的大幅度提升。
在上述技术方案中,进一步地,模压的条件为:模具温度为100℃~160℃;锁模的时间为10s~300s;注塑的条件为:温度为100℃~160℃;时间为20s~300s。
进一步地,在模压或注塑处理时的压力在70kg/cm 2~150kg/cm 2
根据本申请的第五方面,还提出了一种电机,包括:第三方面提出的壳体,或第四方面提出的壳体的制备方法得到的壳体。因此,该电机具有第三方面提出的壳体,或第四方面提出的壳体的制备方法得到的壳体的全部有益效果。
进一步地,电机可应用于洗衣机、吸尘器、吸油烟机、空调器等电器设备。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请一个实施例的复合材料微观示意图;
图2示出了图1中复合材料成型处理后的微观示意图;
图3示出了本申请一个实施例的制备方法的流程示意图。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图3描述根据本申请一些实施例所述的复合材料、制备方法、壳体、壳体的制备方法和电机。
实施例1:
根据本申请的第一方面的一个实施例,本申请提出了一种复合材料,包括:树脂、纤维和金属合金;其中,纤维包括导电纤维。
在该实施例中,如图1所示,在复合材料添加导电纤维和金属合金,使得该复合材料成型过程中,如图2所示,利用金属合金熔融定向聚集于导电纤维节点位置,进而形成纤维三维网络骨架,也即利用合金材料定向焊接导电纤维节点,从而有效降低导电纤维节点位置的电阻和热阻,而且还增强了其断裂韧性。在保证复合材料制备出的产品具有优异的表面光洁度、致密性和机械强度的基础上,实现了该产品的导电、导热性能的大幅度提升。进一步地,该复合材料还具有很好的成型性,成本低,加工便利性高,适合工业化批量生产,满足用户多方面的需求。
实施例2:
根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:复合材料还包括以下至少一种:低收缩剂、填料、脱模剂、引发剂、增稠剂。
在该技术方案中,由于树脂的体积收缩率比较大,因此制得的复合材料的体积收缩率也比较大,使得制备出的产品存在裂纹、沉陷斑点、变性等问题。为了减小固化收缩,可以在树脂中加入低收缩剂。通过添加填料来提高复合材料制备出产品的密实度和表面的平滑性。通过添加脱模剂防止复合材料粘结到模具或其他板面,便于脱模,有利于成型加工。通过添加引发剂促进聚酯的交联固化和高分子交联反应,提高加工成型效率。增稠剂用于增加复合材料的粘度。
具体地,复合材料包括以下重量份的原料:树脂50~100份,纤维50~200份,低收缩剂30~60份,填料100~300份,脱模剂1~10份,引发剂0.1~4 份,增稠剂0~5份,金属合金1~200份。
通过树脂、低收缩剂、纤维、填料、脱模剂、引发剂、增稠剂和金属合金的原材料进行优化选用,结合各组分原料的合理配比,能综合优化选用的各组分原材料的优异性能。一方面,使复合材料制备出的产品具有优异的导热系数和电阻率、同时具备质量轻、耐燃性、高机械强度、耐化学性、耐候性、尺寸安定性等优点,且无污染、成本低,加工便利性高。另一方面,能够降低复合材料成型处理时所需的温度和压力,便于加工制备。
进一步地,纤维还包括非金属纤维;复合材料包括以下重量份的原料:树脂55~65份,非金属纤维45~55份,导电纤维90~110份,低收缩剂35~45份,填料150~190份,脱模剂1~3份,引发剂0.8~1.2份,增稠剂0.3~0.6份,金属合金10~30份。
其中,非金属纤维包括以下至少一种:玻璃纤维、芳纶纤维、玄武岩纤维等纤维强度较大的纤维,从而加强复合材料的机械性能,同时有利于降低成本。
具体地,相关技术中,未采用金属合金和导电纤维作为原料的复合材料能够达到的导热系数为0.6W/m·K~0.7W/m·K,电阻率为30Ωcm~40Ωcm,而本申请实施例的复合材料能够达到的导热系数为5W/m·K~17W/m·K,电阻率为0.12Ωcm~0.5Ωcm。
可以理解的是,金属合金的重量份为纤维的重量份的2%~50%,使得原料中导电纤维和金属合金的重量份相近,这样金属合金能够尽可能定向聚集于导电纤维节点位置,有利于焊接导电纤维节点,增强纤维间的连贯性,进而降低纤维节点位置的电阻和热阻。
其中,树脂包括不饱和聚酯树脂和/或环氧树脂;不饱和聚酯树脂为间苯树脂、双酚A型乙烯基聚酯、环氧改性乙烯基聚酯、邻苯树脂等各类不饱和聚酯中的一种或多种。树脂粘度为2000mPa·s~18000mPa·s,例如,2500mPa·s、4000mPa·s、6800mPa·s、10000mPa·s、12000mPa·s、15500mPa·s等,固体含量在50%~70%,有利于提升复合材料的耐水性、耐候性和纤维浸润性。
低收缩剂包括以下至少之一:饱和聚酯型低收缩剂、聚乙烯(PE)、 聚氯乙烯(PVC)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚醋酸乙烯酯(PVA)等接枝改性类物质;低收缩添加剂的粘度≤6000mPa·s,例如5780mPa·s、4420mPa·s、4100mPa·s、3800mPa·s、3200mPa·s、2800mPa·s、2400mPa·s等,低收缩添加剂的粘度越小表示其流动性越好,那么在低温低压情况下,所制备得到的复合材料中低收缩剂的分散也比较好,产品的外观也就比较均匀,缺陷较少。
填料包括以下至少之一:滑石、蒙脱土、瓷土云母、高岭土、粘土、硅酸钙、硅酸铝、长石粉、酸性白土、滑石粘土、绢云母、硅线石、膨润土、玻璃片、板岩粉、硅烷等硅酸盐,碳酸钙、白垩、碳酸钡、碳酸镁、白云石等碳酸盐,重晶石粉、沉降性硫酸钙、熟石膏、硫酸钡等硫酸盐,水和氧化铝等的氢氧化物,氧化铝、氧化锑、氧化镁、二氧化钛、锌白、硅石、硅砂、石英、白炭黑、硅藻土等氧化物,二硫化钼等硫化物,板状的硅灰石,金属粉粒体等材质。通过添加填料来提高复合材料制备出产品的密实度和表面的平滑性。填料的平均粒度为1μm~200μm,例如2.5μm、5μm、30μm、90μm、135μm、180μm等。
脱模剂包括以下至少一种硬脂酸钙(十八酸钙盐)、硬脂酸锌(十八酸锌盐)和硬脂酸钡。硬脂酸钙,硬脂酸锌或硬脂酸钡的平均粒度为30μm~100μm,例如,45μm、50μm、70μm、90μm,以便于均匀混合。
纤维的数均纤维长度为3μm~1000μm。数均纤维长度越小,复合材料的流动性越强,易于成型加工,数均纤维长度越大,复合材料的机械性能越强。当数均纤维长度小于3μm时,成型后的产品的表面强度较多,难以满足电机塑封的强度要求;当数均纤维长度大于1000μm时,在成型的过程中,出料会变得不稳定,产品的表面也比较毛糙。
引发剂,也即聚酯增塑剂,用于促进聚酯的交联固化和高分子交联反应。引发剂包括以下至少一种:过氧化苯甲酰(BPO)、过苯甲酸特丁酯(TBPB)、过氧化-2-乙基已酸叔丁酯(TBPO)、三烯丙基异氰脲酸酯(TAIC)、过氧化二异丙苯(DCP)。
金属纤维包括以下至少之一:铜纤维、镍纤维、铝纤维、镀金属碳纤维、镀金属玻璃纤维、碳纤维。
实施例3:
根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:金属合金的熔点小于160℃。
在该实施例中,复合材料采用熔点较低的金属合金作为原料。一方面,能够保证金属合金在复合材料在成型过程中能够熔融,从而通过熔融后的金属合金定向焊接纤维节点,以构建出纤维三维网络骨架,有效降低纤维节点位置的电阻和热阻,而且还增强了其断裂韧性。另一方面,能够降低复合材料成型所需的温度参数,避免树脂分解,有利于降低产生银条痕迹、烧焦等缺陷的可能性,提升复合材料的可靠性。
进一步地,可以采用粒度小于100μm的金属合金粉末作为合成复合材料的原料,有利于金属合金分布于纤维的节点处,使得构建出的纤维三维网络骨架更加完整,同时,粒度较小金属合金粉末熔融后能够较少对纤维的不必要包覆,有利于降低金属合金的使用量,进而节省复合材料的制备成本。
具体地,金属合金包括低熔点、高导电性能的铋(Bi)、锡(Sn)、铅(Pb)、铟(In)、银(Ag)、铝(Al)中的一种或多种,在复合材料中添加上述金属合金,使得该复合材料成型过程中,利用金属合金熔融定向聚集于导电纤维节点位置,进而形成纤维三维网络骨架,从而有效降低导电纤维节点位置的电阻和热阻,而且还增强了其断裂韧性。在保证复合材料制备出的产品具有优异的表面光洁度、致密性和机械强度的同时,实现了该产品的导电、导热性能的大幅度提升。例如,5μm的铋/铅合金粉末。
实施例4:
根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:纤维中导电纤维所占的重量份为10%~90%。
在该实施例中,纤维包括部分导电纤维,通过添加导电纤维能够提高复合材料的导电性能和导热性能,同时限定纤维中导电纤维所占的重量份为10%~90%,例如,25%、40%、60%、80%以兼顾复合材料的制备成本。
实施例5:
根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:复合材料还包括以下至少一种:染色剂、抗氧剂、热稳定剂、紫外吸收剂、抗静电剂、表面活性剂。
在该实施例中,复合材料还包括以下至少一种:染色剂、抗氧剂。染色剂用于对复合材料着色。抗氧剂用于缓解或抑制复合材料氧化过程的进行,从而阻止复合材料老化并延长其使用寿命。热稳定剂用于提升复合材料的热稳定性。紫外吸收剂用于提升复合材料的光稳定性,防止复合材料光照后分解褪色。抗静电剂用于降低复合材料中的静电荷累积,防止由于静电导致的生产、生活中的安全隐患。表面活性剂用于促进材料混合。
可以理解的是,染色剂包括颜料和染料,但是染料的耐热和耐化学药品的性质较弱,因此本实施例复合材料处于着色的目的,可以向其中加入颜料。
具体地,染色剂的重量份可根据需要的颜色合理设置,同样的,抗氧剂、热稳定剂、紫外吸收剂、抗静电剂、表面活性剂等功能性材料可按需添加。
实施例6:
如图3所示,根据本申请第二方面的一个实施例,提出了一种制备方法,用于制备第一方面实施例提出的复合材料,制备方法包括:
步骤202,将树脂和金属合金进行搅拌处理,得到混合物;
步骤204,将混合物和纤维进行搅拌处理,得到复合材料。
在该实施例中,先将树脂和金属合金搅拌均匀,然后再加入纤维继续搅拌,得到复合材料。一方面,避免纤维加入后影响金属合金的分散,另一方面,该制备方法得到的复合材料在注塑成型或模压成型过程中,低熔点的金属合金粉末会熔融,利用金属合金熔融定向聚集于纤维中的导电纤维节点位置,进而形成纤维三维网络骨架,也即利用合金材料定向焊接导电纤维节点,从而有效降低导电纤维节点位置的电阻和热阻,而且还增强了其断裂韧性。在保证复合材料制备出的产品具有优异的表面光洁度、致密性和机械强度的同时,实现了该产品的导电、导热性能的大幅度提升。
进一步地,在添加低收缩剂、引发剂、脱模剂、增稠剂、填料等功能 性材料的情况下,先将树脂、低收缩剂、增稠剂和引发剂通过分散机进行高速搅拌分散(1500rpm~4000rpm,10min~60min),使得低收缩剂和引发剂能够快速与树脂混合均匀,得到第一混合物(树脂糊)。接着将第一混合物、脱模剂、填料、低熔点的金属合金粉末放入捏合机中进行搅拌分散(30rpm~60rpm,3min~20min),待搅拌均匀后向捏合机中加入纤维继续低速搅拌(30rpm~60rpm,3min~20min),从而在保证金属合金均匀分布的前提下,避免高速搅拌破环纤维结构,而且有利于降低能源消耗,提升生产效率,搅拌结束后得到所需的复合材料。
可以理解的是,若原料中有染色剂,则将树脂、低收缩剂、引发剂、增稠剂和染色剂一同进行搅拌得到第一混合物。
实施例7:
根据本申请第三方面的一个实施例,提出了一种壳体,壳体的原料包括第一方面提出的复合材料,或第二方面提出的制备方法得到的复合材料。因此,该壳体具有第一方面提出的复合材料,或第二方面提出的制备方法得到的复合材料的全部有益效果。
实施例8:
根据本申请第四方面的一个实施例,提出了一种壳体的制备方法,包括:将第一方面实施例提出的复合材料,或第二方面实施例提出的制备方法得到的复合材料,进行模压或注塑成型处理,得到壳体。
在该实施例中,由于复合材料中添加有金属合金,在模压或注塑成型处理过程中,如图2所示,利用金属合金熔融定向聚集于导电纤维节点位置,进而形成纤维三维网络骨架,也即利用合金材料定向焊接导电纤维节点,从而有效降低导电纤维节点位置的电阻和热阻,而且还增强了其断裂韧性。进而在保证制备出的壳体具有优异的表面光洁度、致密性和机械强度的同时,实现了壳体导电、导热性能的大幅度提升。
进一步地,模压的条件为:模具温度为100℃~160℃,例如,110℃、120℃、130℃、150℃;锁模的时间为10s~300s,例如25s、50s、75s、140s、220s、280s;注塑的条件为:温度为100℃~160℃例如,110℃、120℃、130℃、150℃;时间为20s~300s,例如30s、45s、90s、120s、165s、200s、275s。
另外,在模压或注塑处理时的压力在70kg/cm 2~150kg/cm 2,例如,80kg/cm 2、100kg/cm 2、120kg/cm 2、145kg/cm 2
实施例9:
根据本申请的一个具体实施例,提出了一种高导电、高导热的BMC材料及其制备方法。
本实施例的BMC材料组分为:不饱和聚酯树脂60phr(重量份),聚苯乙烯(PS)40phr,氢氧化铝80phr,碳酸钙80phr,硬脂酸锌2phr,氢氧化钙0.5phr,过苯甲酸特丁酯(TBPB)1phr,玻璃纤维50phr,铜纤维100phr,熔点150℃的Bi/Pb合金粉末20phr。
团块状模塑料的制备过程为将上述原料中除了氢氧化铝、碳酸钙、硬脂酸锌、纤维和Bi/Pb合金粉末外的所有物质通过高速分散机,以3000rpm,20min分散成树脂糊。接着将树脂糊、硬脂酸锌、氢氧化铝、碳酸钙、Bi/Pb合金粉末放入捏合机中,并以40rpm搅拌分散10min,待均匀后加入增强纤维继续以40rpm搅拌分散5min,捏合成最终的团状模塑料。该团状模塑料在注塑或模压成型过程中,低熔点金属合金粉末会熔融,并定向聚集于金属纤维节点位置,从而有效降低纤维节点位置的电阻和热阻,从而实现BMC材料的导电和导热性能的大幅度提升。注塑或模压成型后的产品导热系数为15W/m·K,电阻率为0.12Ωcm。
进一步地,氢氧化铝为水合氢氧化铝,分子式为Al(OH) 3·xH 2O,x为正整数。不饱和聚酯树脂选用邻苯型不饱和聚酯树脂,其具有70%以上的固含量,粘度1800cps,并能够与增强材料和填料之间形成良好浸润性,而且邻苯型不饱和聚酯树脂具备良好的电学、力学特性。
实施例10:
根据本申请的另一个具体实施例,提出了一种高导电、高导热的BMC材料及其制备方法。
本实施例的BMC材料组分为:不饱和聚酯树脂80phr(重量份),聚聚乙烯(PE)50phr,瓷土220phr,硬脂酸钙6phr,氢氧化钙0.35phr,过过氧化苯甲酰(BPO)1phr,玻璃纤维70phr,铜纤维70phr,熔点150℃的Bi/Pb合金粉末20phr。
团块状模塑料的制备过程为将上述原料中除了瓷土、硬脂酸钙、纤维和Bi/Pb合金粉末外的所有物质通过高速分散机,以2000rpm,30min分散成树脂糊。接着将树脂糊、硬脂酸钙、瓷土、Bi/Pb合金粉末放入捏合机中,并以50rpm搅拌分散6min,待均匀后加入增强纤维继续以35rpm搅拌分散4min,捏合成最终的团状模塑料。该团状模塑料在注塑或模压成型过程中,低熔点金属合金粉末会熔融,并定向聚集于金属纤维节点位置,从而有效降低纤维节点位置的电阻和热阻,从而实现BMC材料的导电和导热性能的大幅度提升。注塑或模压成型后的产品导热系数为12W/m·K,电阻率为0.2Ωcm。
实施例11:
根据本申请的第五方面,还提出了一种电机,包括:第三方面实施例提出的壳体,或第四方面实施例提出的壳体的制备方法得到的壳体。因此,该电机具有第三方面实施例提出的壳体,或第四方面实施例提出的壳体的制备方法得到的壳体的全部有益效果。
进一步地,电机能够应用于洗衣机、吸尘器、吸油烟机、空调器等电器设备。
在本申请中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于 本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种复合材料,其中,包括:
    树脂、纤维和金属合金;
    其中,所述纤维包括导电纤维。
  2. 根据权利要求1所述的复合材料,其中,
    所述金属合金的熔点小于160℃。
  3. 根据权利要求1所述的复合材料,其中,
    所述纤维中所述导电纤维所占的重量份为10%~90%。
  4. 根据权利要求1所述的复合材料,其中,
    所述复合材料还包括以下至少一种:低收缩剂、填料、脱模剂、引发剂、增稠剂。
  5. 根据权利要求4所述的复合材料,其中,
    所述复合材料包括以下重量份的原料:树脂50~100份,纤维50~200份,低收缩剂30~60份,填料100~300份,脱模剂1~10份,引发剂0.1~4份,增稠剂0~5份,金属合金1~200份。
  6. 根据权利要求4所述的复合材料,其中,
    所述纤维还包括非金属纤维;
    所述复合材料包括以下重量份的原料:树脂55~65份,非金属纤维45~55份,导电纤维90~110份,低收缩剂35~45份,填料150~190份,脱模剂1~3份,引发剂0.8~1.2份,增稠剂0.3~0.6份,金属合金10~30份。
  7. 根据权利要求1至6中任一项所述的复合材料,其中,
    所述复合材料还包括以下至少一种:染色剂、抗氧剂、热稳定剂、紫外吸收剂、抗静电剂、表面活性剂。
  8. 根据权利要求1至6中任一项所述的复合材料,其中,
    所述金属合金包括以下至少之一:铋、锡、铅、铟、银、铝。
  9. 一种制备方法,用于制备权利要求1至8中任一项所述的复合材料,其中,所述制备方法包括:
    将树脂和金属合金进行搅拌处理,得到混合物;
    将所述混合物和纤维进行搅拌处理,得到所述复合材料。
  10. 一种壳体,其中,
    所述壳体的原料包括如权利要求1至8中任一项所述的复合材料,或如权利要求9所述的制备方法得到的复合材料。
  11. 一种壳体的制备方法,其中,
    将如权利要求1至8中任一项所述的复合材料,或如权利要求9所述的制备方法得到的复合材料,进行模压或注塑成型处理,得到所述壳体。
  12. 根据权利要求11所述的壳体的制备方法,其中,
    所述模压的条件为:模具温度为100℃~160℃;锁模的时间为10s~300s;
    所述注塑的条件为:温度为100℃~160℃;时间为20s~300s。
  13. 一种电机,其中,包括:
    如权利要求10所述的壳体,或如权利要求11或12所述的壳体的制备方法得到的壳体。
PCT/CN2021/083655 2021-02-05 2021-03-29 复合材料、制备方法、壳体、壳体的制备方法和电机 WO2022165956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110158113.4A CN114874600A (zh) 2021-02-05 2021-02-05 复合材料、制备方法、壳体、壳体的制备方法和电机
CN202110158113.4 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022165956A1 true WO2022165956A1 (zh) 2022-08-11

Family

ID=82668035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083655 WO2022165956A1 (zh) 2021-02-05 2021-03-29 复合材料、制备方法、壳体、壳体的制备方法和电机

Country Status (2)

Country Link
CN (1) CN114874600A (zh)
WO (1) WO2022165956A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554678A (en) * 1994-05-19 1996-09-10 Yazaki Corporation Electromagnetic shielding composite
CN1761706A (zh) * 2003-03-14 2006-04-19 陶氏环球技术公司 导电热塑性聚合物组合物
CN101407637A (zh) * 2008-11-21 2009-04-15 华东理工大学 一类纤维增强复合材料及其制备方法
CN102786728A (zh) * 2012-07-09 2012-11-21 启东市远中液压机械厂 一种导电塑料
CN103665275A (zh) * 2013-11-30 2014-03-26 青岛科创塑料机械有限公司 一种高强度导电塑料
CN103975023A (zh) * 2011-12-09 2014-08-06 第一毛织株式会社 复合物及其模制品
CN104098834A (zh) * 2013-04-12 2014-10-15 中国石油化工股份有限公司 一种导电聚合物复合材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005012414A1 (de) * 2004-03-22 2005-10-27 Sumitomo Chemical Co. Ltd. Elektrisch leitender Verbundstoff
CN104099683B (zh) * 2013-04-12 2016-05-25 中国石油化工股份有限公司 一种聚合物/导电填料/金属复合纤维及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554678A (en) * 1994-05-19 1996-09-10 Yazaki Corporation Electromagnetic shielding composite
CN1761706A (zh) * 2003-03-14 2006-04-19 陶氏环球技术公司 导电热塑性聚合物组合物
CN101407637A (zh) * 2008-11-21 2009-04-15 华东理工大学 一类纤维增强复合材料及其制备方法
CN103975023A (zh) * 2011-12-09 2014-08-06 第一毛织株式会社 复合物及其模制品
CN102786728A (zh) * 2012-07-09 2012-11-21 启东市远中液压机械厂 一种导电塑料
CN104098834A (zh) * 2013-04-12 2014-10-15 中国石油化工股份有限公司 一种导电聚合物复合材料及其制备方法
CN103665275A (zh) * 2013-11-30 2014-03-26 青岛科创塑料机械有限公司 一种高强度导电塑料

Also Published As

Publication number Publication date
CN114874600A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN104629187B (zh) 一种多功能性聚丙烯复合材料及其制备方法
CN102051000B (zh) 一种电性能改善的tpv弹性体材料
CN102020833B (zh) 高成型速率、高流动的增强阻燃聚酯及其生产方法
CN102504500A (zh) Pet工程塑料、其制备方法和应用
CN102093675B (zh) 高cti值阻燃增强聚对苯二甲酸丁二醇酯材料及制备与应用
CN105602245A (zh) 阻燃导电尼龙66材料及其制备方法
EP0581541A1 (en) Electrically conductive resin compositions
CN102040773B (zh) 一种塑料合金、其制备方法和应用
CN105542447A (zh) 一种低黏度高热导率的导热绝缘塑料及其制备方法
CN107652688A (zh) 一种电磁屏蔽用高稳定性导电弹性体及其制备方法
CN110819048A (zh) 一种橡胶材料用石墨烯改性复合乳液及其制备方法
WO2022165956A1 (zh) 复合材料、制备方法、壳体、壳体的制备方法和电机
CN105885169A (zh) 一种耐磨、高强度复合电力电缆材料及其制备方法
WO2021109368A1 (zh) 复合抗静电剂及制备方法、抗静电聚甲醛及其制备方法
CN109679251A (zh) 一种用于高压电力输送的耐寒抗拉伸电缆料及其制备方法
CN106366621A (zh) 一种聚吡咯包覆复合填料提高热导率的复合电缆料
CN108003437A (zh) 一种高压直流电缆用石墨烯改性电缆料及其制备方法
CN104231588A (zh) 一种光伏接线盒盒体材料及其制备方法
CN105385033B (zh) 可回收聚丙烯/sebs/氧化石墨烯电缆料的制备方法
CN106633710A (zh) 一步法制备的无卤阻燃长玻纤增强pla复合材料及其制备方法
KR20170112929A (ko) 충격강도가 우수한 전기전도성 고분자 복합체, 전기전도성 수지 조성물 및 그 제조방법
CN104530634A (zh) 环保型高比例再生abs阻燃改性组合物及其制备方法与应用
CN108384143A (zh) 一种抗冻阻燃电缆料及其制备方法
CN110144098B (zh) 一种抗静电聚醚醚酮复合材料的制备方法
CN110760177B (zh) 导电聚苯醚/高抗冲聚苯乙烯组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923965

Country of ref document: EP

Kind code of ref document: A1