WO2022165699A1 - 一种定位的方法及装置 - Google Patents

一种定位的方法及装置 Download PDF

Info

Publication number
WO2022165699A1
WO2022165699A1 PCT/CN2021/075225 CN2021075225W WO2022165699A1 WO 2022165699 A1 WO2022165699 A1 WO 2022165699A1 CN 2021075225 W CN2021075225 W CN 2021075225W WO 2022165699 A1 WO2022165699 A1 WO 2022165699A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
position spectrum
spectra
area
value
Prior art date
Application number
PCT/CN2021/075225
Other languages
English (en)
French (fr)
Inventor
李洋漾
任广梅
王情
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/075225 priority Critical patent/WO2022165699A1/zh
Publication of WO2022165699A1 publication Critical patent/WO2022165699A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the field of wireless communication, and more particularly, to a method and apparatus for positioning.
  • the multi-antenna technology of large-scale antenna arrays can generate high-gain, tunable beamforming to improve signal coverage. It concentrates the beam in a very narrow range through beamforming technology, improves the directivity of the signal, and plays a great role in angle positioning and time delay positioning.
  • the delay parameter and the angle parameter only the delay or angle information of the first path is used. Once the first path is judged incorrectly, the positioning accuracy will be greatly deteriorated.
  • the amount of computation is increased. Therefore, how to improve the positioning accuracy and reduce the amount of calculation has become an urgent problem to be solved in the industry.
  • the present application provides a positioning method and device, which can effectively improve the positioning accuracy and reduce the amount of calculation in the positioning process.
  • a positioning method including: determining a first area, where the first area is a geographic area where the coverage of multiple first devices overlaps; acquiring multiple first location spectrums, the multiple first The position spectrum is determined according to the first area, the plurality of first position spectra are in one-to-one correspondence with the plurality of first devices, each first position spectrum is the position spectrum of the corresponding first device in the first area, and each first position spectrum is a position spectrum of the corresponding first device in the first area.
  • the position spectrum is determined according to the positional relationship between the corresponding first device and the second device; the second position spectrum is determined according to a plurality of first position spectra; the position of the second device in the first area is determined according to the second position spectrum.
  • the first device may be a network device
  • the second device may be a terminal device
  • the overlapping area of the coverage of each first device in the plurality of first devices is the first area, and the first position spectrum of each first device in the first area is acquired, and the first position spectrum of each first device is obtained.
  • the spectral processing can obtain a second position spectrum, so that the position of the second device can be determined according to the second position spectrum.
  • the value of the beam parameter of each first device in the first area is greater than or equal to the first threshold, and the beam parameter includes the reference signal received power intensity corresponding to the beam, At least one of the received signal strength corresponding to the beam and the time delay power spectrum strength corresponding to the beam.
  • determining the second position spectrum according to a plurality of first position spectra includes: averaging the plurality of first position spectra to obtain the second position spectrum; or A second position spectrum is obtained by superimposing the first position spectrum.
  • determining the second position spectrum according to a plurality of first position spectra includes: acquiring a plurality of third position spectra, the plurality of third position spectra and the plurality of first position spectra
  • the position spectra are in one-to-one correspondence, and each third position spectrum is a position spectrum in which a position spectrum value less than or equal to the second threshold in the corresponding first position spectrum is set to 0; the second position spectrum is obtained by superimposing multiple third position spectra. location spectrum.
  • determining the second position spectrum according to a plurality of first position spectra includes: acquiring a plurality of third position spectra, the plurality of third position spectra and the plurality of first position spectra
  • the position spectra are in one-to-one correspondence, and each third position spectrum is a position spectrum in which the position spectrum value of the corresponding first position spectrum that is less than or equal to the second threshold is set to 0; the average processing of multiple third position spectra is obtained.
  • Second position spectrum is a position spectrum in which the position spectrum value of the corresponding first position spectrum that is less than or equal to the second threshold is set to 0; the average processing of multiple third position spectra is obtained.
  • a third position spectrum corresponding to the position spectrum value that is less than or equal to the second threshold in the plurality of first position spectrums is set to 0, and the third position spectrum is superimposed or averaged to obtain the second position spectrum.
  • the position spectrum can effectively suppress multipath, thereby improving the positioning accuracy.
  • each first position spectrum is composed of at least one fourth position spectrum, and the at least one fourth position spectrum is in one-to-one correspondence with at least one second region, and the Each fourth position spectrum is the position spectrum of the first device corresponding to each first position spectrum in the corresponding second area, and the at least one second area is obtained by dividing the first area; the first position spectrum is determined according to the second position spectrum.
  • the position of the second device in the first region includes: determining the position of the second device according to the second region corresponding to the position spectrum value in the second position spectrum.
  • the second position spectrum is determined by a plurality of first position spectra, each first position spectrum is a set of at least one fourth position spectrum, and the at least one fourth position spectrum is a The position spectrum of at least one second region, the at least one second region is obtained by dividing the first region by each first device, therefore, the first region can be determined by the second region corresponding to the position spectrum value in the second position spectrum.
  • the position of the second device so that the amount of calculation can be reduced when positioning the second device.
  • determining the position of the second device according to the position spectrum value in the second position spectrum includes: determining the first position spectrum value from the second position spectrum, The first position spectrum value is the largest position spectrum value in the second position spectrum, and the second area corresponding to the first position spectrum value is the position of the second device.
  • the maximum position spectrum value is determined from the second position spectrum, so that the second device can be positioned according to the second area corresponding to the maximum position spectrum value.
  • the calculation amount can be effectively reduced, and on the other hand It is beneficial to improve the positioning accuracy.
  • determining the position of the second device according to the position spectrum value in the second position spectrum includes: determining the second position spectrum value from the second position spectrum, and the second The position spectrum value is a position spectrum value in the second position spectrum that is greater than or equal to the third threshold, and the second region corresponding to the second position spectrum value is the position of the second device.
  • the method further includes: counting the number of first devices in each of the at least two second regions, wherein the position spectrum value corresponds to at least There are two second areas, and the second area with the largest number of first devices is the location of the second device.
  • a positioning apparatus in a second aspect, includes a processing unit, and the processing unit is configured to: determine a first area, where the first area is a geographic area where the coverage areas of a plurality of first devices overlap; a communication unit, The communication unit is used to obtain a plurality of first position spectra, the plurality of first position spectra are determined according to the first area, the plurality of first position spectra are in one-to-one correspondence with the plurality of first devices, and each first position spectrum corresponds to The position spectrum of the first device in the first area, each first position spectrum is determined according to the positional relationship between the corresponding first device and the second device; the processing unit is also used for a plurality of first position spectrums determining the second position spectrum; the processing unit is further configured to determine the position of the second device in the first area according to the second position spectrum.
  • the first device may be a network device
  • the second device may be a terminal device
  • the overlapping area of the coverage of each first device in the plurality of first devices is the first area, and the first position spectrum of each first device in the first area is acquired, and the first position spectrum of each first device is obtained.
  • the spectral processing can obtain a second position spectrum, so that the position of the second device can be determined according to the second position spectrum.
  • the value of the beam parameter of each first device in the first area is greater than or equal to the first threshold, and the beam parameter includes the reference signal received power intensity corresponding to the beam, At least one of the received signal strength corresponding to the beam and the time delay power spectrum strength corresponding to the beam.
  • the processing unit is further configured to perform averaging processing on a plurality of first position spectra to obtain a second position spectrum; or superimpose a plurality of first position spectra to obtain a second position spectrum.
  • the communication unit is further configured to acquire a plurality of third position spectra, the plurality of third position spectra are in one-to-one correspondence with the plurality of first position spectra, and each third The position spectrum is a position spectrum in which a position spectrum value smaller than the second threshold in the corresponding first position spectrum is set to 0; the processing unit is further configured to superimpose a plurality of third position spectrums to obtain a second position spectrum.
  • the communication unit is further configured to acquire a plurality of third position spectra, the plurality of third position spectra are in one-to-one correspondence with the plurality of first position spectra, and each third The position spectrum is a position spectrum in which a position spectrum value smaller than the second threshold in the corresponding first position spectrum is set to 0; the processing unit is further configured to perform averaging processing on a plurality of third position spectra to obtain a second position spectrum.
  • each first position spectrum is composed of at least one fourth position spectrum
  • the at least one fourth position spectrum is in one-to-one correspondence with at least one second region
  • each first position spectrum is composed of at least one fourth position spectrum.
  • the four-position spectrum is that each first position spectrum is the position spectrum of the corresponding first device in the corresponding second region, and at least one second region is obtained by dividing the first region; the processing unit is further configured to calculate according to the second position spectrum The second region corresponding to the mid-position spectrum value determines the position of the second device.
  • the processing unit is further configured to determine a first position spectrum value from the second position spectrum, where the first position spectrum value is the largest position spectrum value in the second position spectrum , the second region corresponding to the first position spectrum value is the position of the second device.
  • the processing unit is further configured to determine a second position spectrum value from the second position spectrum, where the second position spectrum value is greater than or equal to the third position spectrum value in the second position spectrum.
  • the position spectrum value of the threshold value, and the second region corresponding to the second position spectrum value is the position of the second device.
  • the processing unit is further configured to count the number of first devices in each of the at least two second regions, wherein the position spectrum value corresponds to at least Two second areas, the second area with the largest number of first devices is the location of the second device.
  • a communication apparatus comprising a memory and a processor, the memory is used for storing a computer program, and the processor is used for calling and running the computer program from the memory, so that the communication apparatus is used for executing the above-mentioned first aspect and Methods in various implementations of the first aspect.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program runs on a computer, various implementations such as the first aspect and the first aspect are implemented. The method in the method is executed.
  • the present application provides a computer program product, the computer program product includes computer program code, when the computer program code is run on a computer, the method as in the first aspect and various implementations of the first aspect is executed .
  • the present application provides a chip system including a processor for invoking and running a computer program from a memory, so that the methods in the first aspect and various implementations of the first aspect are performed.
  • FIG. 1 is a schematic diagram of a scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a positioning method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a positioning method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another positioning method provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a positioning area division provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of another positioning area division provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication apparatus 700 provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication apparatus 800 provided by an embodiment of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code Wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 shows a schematic diagram of an application scenario of an embodiment of the present application.
  • the application scenario may include at least one network device (only one network device 101 is shown in the figure) and at least one terminal device (two terminal devices are shown in FIG. 1 , 102 and 103 respectively).
  • the network device 101 side can be configured with a massive MIMO array, for example, 64, 128, 256 or 1024 antennas or other numbers of antennas can be configured. usage efficiency.
  • the above-mentioned beamforming technology is a signal processing technology used for directional signal transmission or reception in the sensor array. It can effectively superimpose the signals by adjusting the phase of each antenna to generate stronger signal gain to overcome path loss, thereby improving the efficiency of wireless signals. Transmission quality is guaranteed.
  • Beamforming technology can focus the energy of the wireless signal to form a directional beam (beam), so that the energy of the signal is concentrated in the direction of the receiving end.
  • the beam is directional, and different beams can have different transmissions. direction.
  • the narrower the beam the greater the signal gain.
  • the receiving end may not receive high-quality wireless signals. Therefore, for the network device as the transmitting end, the network device side needs to use multiple beams with different directions to completely cover the cell it serves. Taking the example shown in FIG. 1 , the network device 101 can transmit wireless signals in different directions using beams 104 , 105 and 106 with different directions.
  • the beam 104 carries the information to communicate with the terminal device 102
  • the beam 105 carries the information to communicate with the terminal device 103 . It should be understood that there are more beams, or multiple beams are used to communicate with a terminal device, which does not impose any limitation on the embodiment of the present application.
  • the network device may be any device with a wireless transceiver function.
  • the device includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) , base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WiFi) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc.
  • evolved Node B evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS home base station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • It can also be 5G, such as NR , a gNB in the system, or, a transmission point (TRP or TP), one or a group of (including multiple antenna panels) antenna panels of a base station in a 5G system, or, it can also be a network node that constitutes a gNB or a transmission point, Such as baseband unit (BBU), or distributed unit (distributed unit, DU) and so on.
  • BBU baseband unit
  • DU distributed unit
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer function.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, medium access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC medium access control
  • PHY physical layer.
  • AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • the higher-layer signaling such as the RRC layer signaling
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment, and the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) , can also belong to the base station corresponding to the small cell, where the small cell can include: urban cell (metro cell), micro cell (micro cell), pico cell (pico cell), femto cell (femto cell), etc. , these small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • a macro base station for example, a macro eNB or a macro gNB, etc.
  • the small cell can include: urban cell (metro cell), micro cell (micro cell), pico cell (pico cell), femto cell (femto cell), etc.
  • these small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission
  • a terminal device may also be referred to as user equipment (user equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user equipment.
  • user equipment user equipment
  • UE user equipment
  • an access terminal a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user equipment.
  • the terminal device may be a device that provides voice/data connectivity to the user, such as a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminals can be: mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function (such as notebook computer, palmtop computer, etc.), mobile internet device (mobile internet device, MID), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in unmanned driving (self driving), wireless terminals in remote medical (remote medical) Terminal, wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home, cellular phone, cordless Telephone, session initiation protocol (SIP) telephone, wireless local loop (WLL) station, personal digital assistant (PDA), handheld device, computing device or connection with wireless communication capabilities
  • wearable devices can also be called wearable smart devices, which is a general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones. Use, such as all kinds of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device may also be a terminal device in an internet of things (Internet of things, IoT) system.
  • IoT Internet of things
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • IoT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • terminal equipment can also include sensors such as smart printers, train detectors, and gas stations.
  • the main functions include collecting data (part of terminal equipment), receiving control information and downlink data of network equipment, and sending electromagnetic waves to transmit uplink data to network equipment. .
  • a beam is a communication resource.
  • the beams may be wide beams, or narrow beams, or other types of beamforming techniques may be beamforming techniques or other techniques.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology. Different beams can be considered as different resources. The same information or different information can be sent through different beams. Optionally, multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • a beam may include one or more antenna ports for transmitting data channels, control channels and sounding signals, etc.
  • a transmit beam may refer to the distribution of signal strengths formed in different directions in space after a signal is transmitted through an antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the beam may be, for example, a spatial filter.
  • this application does not exclude the possibility of defining other terms in future agreements to represent the same or similar meanings.
  • Antenna panel The signal of wireless communication needs to be received and transmitted by the antenna, and multiple antenna elements can be integrated on one panel.
  • One RF link can drive one or more antenna elements.
  • the terminal device may include multiple antenna panels, and each antenna panel includes one or more beams.
  • the network device may also include multiple antenna panels, each antenna panel including one or more beams.
  • the antenna panel may in turn be represented as an antenna array or an antenna subarray.
  • An antenna panel may include one or more antenna arrays/sub-arrays.
  • An antenna panel can be controlled by one or more oscillators.
  • the radio frequency link may also be referred to as a receive channel and/or a transmit channel, a receiver branch, or the like.
  • An antenna panel can be driven by one RF link or by multiple RF links. Therefore, the antenna panel in the embodiment of the present application may also be replaced with a radio frequency chain, or multiple radio frequency chains driving one antenna panel, or one or more radio frequency chains controlled by a crystal oscillator.
  • Beam radiation pattern refers to the beam gain of a beam in different horizontal and vertical directions. If the beam radiation pattern is observed from the xoy plane, it can be seen that the coverage area of each beam is approximately an ellipse. Multiple wide/narrow beams cover a certain pitch and azimuth area together.
  • Time of arrival It can also be called time of flight, which can be understood as the propagation time of no electrical signal from a single transmitter to a remote single receiver, that is, the space transmission time from network equipment to user equipment. .
  • Received signal strength indicator It can also be called received signal power. Including the average value of the power of pilot signal and data signal, adjacent cell interference signal, noise signal, etc.
  • Hyperbola A trajectory in which the absolute value of the distance difference between two fixed points in the plane is equal to a constant is called a hyperbola.
  • the trajectory is the possible spatial trajectory of the user equipment, and the two fixed points are the two fixed points. base stations.
  • the spatial trajectory of the user equipment is one of the hyperbolas.
  • Codebook In this embodiment of the present application, a set of used precoding matrices may be referred to as a codebook.
  • the commonly used positioning methods are the angle positioning technology and the time delay positioning technology. The following two technologies are briefly introduced.
  • Angle positioning technology is a long-term positioning technology.
  • the base station estimates the position-angle relationship between the base station and the UE by measuring the received signal or measuring and feeding back the transmitted signal through the UE, and then through multiple groups of this position-angle relationship. Position the UE.
  • the angle positioning technology may also be combined with other positioning technologies such as time and field strength, and the specific algorithm for obtaining the UE position through the angle will not be described in this embodiment of the present application.
  • the time-delay positioning technology treats the UE as a particle, and multiple base stations use the time-delay information relative to the particle to determine the location of the UE.
  • the specific scheme of this technology is as follows. Multiple base stations measure the received signal or measure and report the transmitted signal, calculate the delay relationship between the base station and the UE, and select a reference base station to calculate the positioning between each base station and the reference base station. The arrival delay of the reference signal is poor. Each group of signal arrival delay differences can determine that the UE is on one branch of the hyperbola, and then locate the UE through multiple groups of arrival delay differences.
  • the time-delay positioning technology may be combined with positioning technologies such as angle and field strength, and the specific algorithm for obtaining the UE position through time-delay will not be described in this embodiment of the present application.
  • the first step is to perform parameter estimation, that is, to perform angle parameter estimation or time delay parameter estimation.
  • the second step will use the parameter estimation results obtained in the first step to perform a positioning solution.
  • the above two solutions both start from a single base station for positioning, and cannot use the relevant information between multiple stations.
  • most of the information will be lost during parameter estimation, and only the time delay of the first path or the angle information of the first path will be used. If the judgment of the first path is wrong, the positioning accuracy will deteriorate sharply, and in the indoor scene with complex multipath, The first path information is difficult to guarantee the correct judgment.
  • the embodiment of the present application is beneficial to improve the positioning accuracy and reduce the amount of calculation through a new positioning technology.
  • the embodiments of the present application will be described in detail with reference to the accompanying drawings.
  • S210 Determine a first area, where the first area is a geographic area where the coverage areas of multiple first devices overlap.
  • each of the multiple first devices when multiple first devices communicate with the same second device, each of the multiple first devices has a coverage area, and the geographic area in which the coverage areas of the multiple devices overlap may be Call it the first area. It can also be understood that each of the multiple first devices will send a beam to the second device, and use the beam to communicate with the second device. At this time, the beams emitted by the multiple first devices may generate an overlapping area in the geographic area, and the overlapping area may be referred to as a first area.
  • the first device is a base station and the second device is a terminal device as an example for description.
  • Fig. 3 shows three first devices 301, 302, 303 respectively, and these three first devices communicate with terminal devices (not shown) respectively.
  • the first devices 301 transmits beam 1, beam 2 and beam 3
  • the first device 302 transmits beam 4
  • beam 5 and beam 6
  • the first device 303 transmits beam 7, beam 8 and beam 9.
  • the overlapping area of beam 1, beam 5 and beam 9 constitutes the first area
  • the shaded area in FIG. 3 is the first area.
  • the value of the beam parameters of each first device in the first area is greater than or equal to the first threshold, and these beam parameters include the received power intensity of the reference signal corresponding to the beam, the received signal intensity corresponding to the beam, and the delay power spectrum intensity corresponding to the beam. at least one of. It can be understood that the beam parameters carried by the beams emitted by each first device are greater than the first threshold, and the overlapping area of these beams greater than the first threshold is the first area. It can also be understood that each first device can determine a corresponding area according to the first threshold, each first device reports the determined area to the positioning center, and the positioning center can use the information reported by each first device.
  • each first device reports its determined area to one of the first devices through the Xn interface, and the first device can use the information reported by each first device.
  • the first area is determined, and the specific implementation manner is not limited too much in this embodiment of the present application.
  • the first threshold corresponding to different beam parameters can be the same or different.
  • the first threshold when the beam parameter is the received power of the reference signal, the first threshold is a, and when the beam parameter is the delay power spectrum intensity corresponding to the beam , the first threshold is b, where a and b can be the same or different.
  • the first threshold when multiple beam parameters are considered, the first threshold may be determined jointly by the values of multiple beam parameters.
  • the first threshold A threshold may be a value that is jointly determined based on these two parameters. It should be understood that the embodiments of the present application are only exemplary descriptions, and do not limit too much. For the sake of brevity, the present application uses beam energy for description, and the beam energy may be any one of the above parameters.
  • the first threshold may be a default value determined by the positioning center, or may be the number of reported beams.
  • the implementation may be as follows, assuming that the first threshold value is 5, the number of beams reported by the first device 301 is 5, and these 5 beams are the first device 301. Among the 5 beams with the strongest energy, the number of beams reported by the first device 302 is 5. Similarly, these 5 beams are also the 5 beams with the strongest energy in the first device 302, and so on. It can also be that after the positioning center receives the beams sent by all the first devices, it calculates them through the first threshold.
  • the positioning center receives the beams sent by each first device, and the corresponding The beams are sorted by energy, and the beams are selected according to the first threshold, etc., and then the first area is determined.
  • This embodiment of the present application does not provide too much description on this.
  • the first threshold is 10 dB
  • the beam energy corresponding to beam 1 emitted by the first device 301 is 15 dB
  • the beam energy corresponding to beam 2 is 12 dB
  • the beam energy corresponding to beam 3 is 9 dB
  • the first device 302 transmits
  • the beam energy corresponding to beam 4 is 13dB
  • the beam energy corresponding to beam 5 is 11dB
  • the beam energy corresponding to beam 6 is 8dB
  • the beam energy corresponding to beam 7 emitted by the first device 303 is 8dB
  • the beam corresponding to beam 8 The energy is 9dB
  • the beam energy corresponding to beam 9 is 13dB.
  • the beams larger than the first threshold in the first device 301 include beam 1 and beam 2
  • the beams larger than the first threshold in the first device 302 include beam 4 and beam 5
  • the beams larger than the first threshold in the first device 303 include beam 9.
  • beam 1, beam 5 and beam 9 constitute an overlapping area, that is, the first area.
  • overlap in the embodiments of the present application is to indicate the property of the first region, and it can also be replaced with “coincident”, “intersection”, “intersection”, etc., that is to say, the “overlap” is for the purpose of The property of the first area is pointed out, that is, the part where the beam energy emitted by multiple first devices covers each other, and this application does not exclude the possibility that those skilled in the art may use other words to express the same or similar meanings.
  • the number of first devices, the number of beams transmitted by the first device, and the beam energy corresponding to each beam listed above are only examples, and should not constitute any limitation to the present application. This application does not limit the number of first devices, the number of beams, the energy of the beams, and the range of the overlapping area.
  • the first region may be determined by a rectangular coordinate system, a cylindrical coordinate system or a spherical coordinate system.
  • each first device can determine an area according to the first threshold, and the determination of the area can adopt the rectangular coordinate system, cylindrical coordinate system or spherical coordinate system, etc. in the above, after each first device is determined, it is The determined area is sent to the positioning center, and may also be sent to a certain first device to determine the first area.
  • a rectangular coordinate system, a cylindrical coordinate system, or a spherical coordinate system may also be used, which is not limited in this application.
  • the first region involves various coordinate systems, which may specifically include a rectangular coordinate system, a cylindrical coordinate system, a spherical coordinate system, and the like. These coordinate systems should not constitute any limitation to this application. This application does not exclude the possibility of defining the use of other coordinate systems to determine the first region in future protocols.
  • the first area may be a fan-shaped area, a circular area, a rectangular area, a triangular area, or a branch of a hyperbola determined by the time difference of arrival (TDOA) of the two first devices.
  • TDOA time difference of arrival
  • the first region is the region shown in (1) in FIG. 5 , and its shape is roughly square. It should be understood that the shape of the first region may also be a rectangle, a circle, etc. A square is taken as an example for illustration, and for other shapes, reference may be made to the embodiments of the present application.
  • S220 Acquire a plurality of first position spectra, the first position spectra are determined according to the first region, the plurality of first position spectra are in one-to-one correspondence with the plurality of first devices, and each first position spectrum is a corresponding first position spectrum The position spectrum of the device in the first area, each first position spectrum is determined according to the positional relationship between the corresponding first device and the second device.
  • step 220 the first area has been determined, and at this time, the first position spectrum of each first device in the first area needs to be acquired.
  • the process of determining the first position spectrum in the first area by each first device is shown in FIG. 4 .
  • Each first device divides the first area into at least one second area.
  • each first device will divide the first area, and when each first device divides the first area, the number of the divided areas may be the same or not. different.
  • the number of divisions may be one, that is, it is not processed, and the number of divisions may be more than one, which is not limited too much in this embodiment of the present application.
  • the first device 301 divides the first area to obtain 16 second areas as shown in (1) in FIG. 5; the first device 302 divides the first area, Four second areas as shown in (2) in FIG. 5 can be obtained; the first device 302 divides the first areas to obtain one second area as shown in (2) in FIG. 5 .
  • the first area is divided into different numbers of square grids, which may also be divided into rectangular grids, triangular grids, and circular areas. Do not make any restrictions.
  • the second area in the embodiment of the present application is obtained by completely dividing the first area, which may be completely or not completely divided into equal parts of the first area.
  • the "second area” here can also be replaced with "grid”, “sub-area”, etc., that is to say, the "second area” is the name of each area after the first area is divided.
  • This application The embodiments do not exclude the possibility that those skilled in the art may use other words to express the same or similar meanings.
  • vision refers to dividing the first area into multiple small areas, which may also be replaced by “cutting”, “gridization”, “gridization”, etc.
  • cutting may also be replaced by "cutting”, “gridization”, “gridization”, etc.
  • gridization may also be replaced by "cutting”, “gridization”, “gridization”, etc.
  • the embodiments of the present application do not exclude this Those skilled in the art may use other words to express the possibility of the same or similar meanings.
  • each first device calculates a fourth position spectrum of each second region in the at least one second region, where the at least one fourth position spectrum corresponds to the at least one second region one-to-one.
  • the first position spectrum of each first device is composed of at least one fourth position spectrum.
  • the general process for each first device to obtain a position spectrum is: after dividing the first area into one or more second areas, construct a space Steering vector, and then calculate the autocorrelation function according to the channel data of the first device, and perform subspace decomposition. Finally, the position spectrum is calculated by the steering vector and the subspace decomposed vector.
  • the first area is gridded, for example, the first area is divided into 16 second areas (grids), that is, (1) in FIG. 4 can be referred to.
  • the space steering vector which can be:
  • p represents the center position of the second device in each grid
  • ⁇ j (p) represents the delay value between the jth first device and the position p.
  • the expression can be: In the above formula (1), replacing x with ⁇ j (p), the formula where N is the number of subcarriers, and ⁇ f is the subcarrier spacing.
  • i represents the ith grid
  • the dimension of is the number of subcarriers ⁇ the number of subcarriers, represents the third position spectrum of the jth first device in the ith grid.
  • I represents the number of grids divided by the first area, that is, one or more second areas.
  • I may be 16.
  • MF matched filter
  • MUSIC multiple signal classification algorithm
  • MVDR minimum variance distortionless response
  • other methods which are not limited too much in the embodiments of the present application.
  • the general process for each first device to obtain the first position spectrum is: after dividing the first area into one or more second areas, constructing The spatial steering vector, and then the sample autocorrelation function is jointly calculated according to the respective beams of the first device in the first region, or a plurality of first regions greater than the first threshold, and subspace decomposition is performed. Finally, the position spectrum is calculated by the steering vector and the subspace decomposed vector. It should be noted here that in the process of angle positioning, a position spectrum is constructed by combining multiple beams or energy information.
  • the first area is gridded, for example, the first area is divided into 16 second areas (grids), that is, (1) in FIG. 4 can be referred to.
  • the space steering vector which can be:
  • C T represents the codebook (weight) set corresponding to multiple beams
  • a j (p) represents the array popularity (steering vector) of the j-th first device
  • p represents the second device in each the center position of the grid.
  • calculate the fourth position spectrum of the jth first device in each grid and the calculation method can refer to the above formulas (2) to (4).
  • the embodiment of the present application will not repeat them.
  • the dimension of is the number of beams ⁇ the number of beams, which is not described in this application.
  • the first position spectrum of each first device in the first area is calculated by using the time delay information and the angle information, and in this process, the time delay information and the angle information can also be combined to calculate the first position spectrum.
  • the position spectrum the embodiment of the present application does not limit this too much, that is to say, the first position spectrum obtained by those skilled in the art based on the same concept should fall within the protection scope of the present application.
  • S230 Determine a second position spectrum according to the plurality of first position spectra.
  • the first position spectrum J j (p) of each first device is calculated by using the time delay information or the angle information.
  • the second position spectrum can be obtained by superimposing the first position spectrum corresponding to each first device.
  • J all J 1 (p)+J 2 (p)+...+J k (p) (6)
  • k is a positive integer, which indicates that there are k first devices in total.
  • J j (p) may be a numerical value, and may also be a vector or a matrix, which is not limited too much in this embodiment of the present application.
  • the second position spectrum may be a superposition of the first position spectrum of each first device in the first region. That is, the first position spectrum of each first device in the first region needs to be calculated and superimposed.
  • the positioning center obtains the first position of each first device
  • the second position spectrum can be determined according to multiple first position spectra.
  • each first position spectrum needs to be calculated under the same density.
  • the first position of the first device 301 The spectrum is a 4 ⁇ 4 matrix, and the first position spectrum of the first device 302 is a 2 ⁇ 2 matrix, then the first position spectrum of the first device 302 needs to be transformed into a 4 ⁇ 4 matrix in order to match the position spectrum of the first device 301 Superposition is performed, that is, for the first position spectrum of the first device 301 , ie, a 4 ⁇ 4 matrix, each value in the matrix corresponds to a fourth position spectrum, and a fourth position spectrum corresponds to a second region.
  • there are 16 grids (second area) in total one grid corresponds to one position spectrum, these 16 grids have a total of 16 fourth position spectra, and these 16 fourth positions correspond to Each value in a 4x4 matrix.
  • each first device is in the same second region Four-position spectral stacking.
  • the second position spectrum is a matrix of the third position spectrum after superposition of multiple devices in each second region.
  • the specific alignment method can align the position spectrum with the sparser grid number to the position spectrum with the densest grid number, that is, (2) in Figure 5 and (3) in Figure 5 are aligned to ( 1); it is also possible to align the position spectrum with the denser grid number to the position spectrum with the most sparse grid number, that is, align (1) in Figure 5 and (2) in Figure 5 to (3) in Figure 5 .
  • a certain density can be between the position spectrum with the densest grid number and the position spectrum with the most sparse grid number.
  • superposition is performed to obtain the first position spectrum.
  • the way of aligning the position spectrum with the sparser grid number to the position spectrum with the most dense grid number may be, calculating the average value, median or maximum value of the position spectrum of the relatively sparse grid, for example , the average value for example, take the average value as the value of each raster when it is divided into the same number as the densest raster.
  • Aligning the location spectrum with the denser number of rasters to the location spectrum with the sparsest number of rasters can be done by computing the mean, median, or maximum value of the location spectrum for the denser rasters, for example, using the mean For example, take the mean as the value of each raster when it is merged to match the number of the least dense rasters.
  • the implementation method can be, (1) in Figure 5 (1) a 11 , a 12 , a 21 and a 22 are averaged, and the calculated The average value corresponds to the position spectrum of the grid where b 11 is located, the average value calculated by a 13 , a 14 , a 23 and a 24 corresponds to the position spectrum of the grid where b 12 is located, a 31 , a 32 , a 41 and a 42
  • the calculated average value corresponds to the position spectrum of the grid where b 21 is located, and the calculated average value of a 33 , a 34 , a 43 and a 44 corresponds to the position spectrum of the grid where b 22 is located.
  • the pair c 11 in (3) in FIG. 5 can be divided into four equal parts, and correspond to the four grids in (2) in FIG. 5 one-to-one. Therefore, the second position spectrum can be calculated under the same grid density.
  • averaging processing may also be performed on multiple first position spectra.
  • the averaging process on the plurality of first position spectra may be calculating a harmonic average of the plurality of first position spectra, or similar harmonic averaging processing may be performed on the plurality of first position spectra.
  • a similar harmonic mean can be:
  • a screening threshold which may also be called a second threshold, may also be added to each first device, and all the amplitudes of the position spectra in each first position spectrum that are less than or equal to the second threshold are set to 0 After that, the position spectrum greater than the second threshold is processed as shown in formula (6) or (7) to obtain the second position spectrum.
  • a plurality of third position spectra may be obtained from a plurality of first devices, the third position spectra are in one-to-one correspondence with the plurality of first position spectra, and each third position spectrum is the corresponding In the first position spectrum, a position spectrum whose value is less than or equal to the second threshold is set as a position spectrum of 0, and a plurality of third position spectrums are superimposed or averaged to obtain a second position spectrum. It may also be that, after the positioning center obtains multiple first position spectra, the position spectrum value less than or equal to the second threshold in each first position spectrum is set to 0 to obtain a corresponding third position spectrum, and then the multiple first position spectra are obtained. The three position spectra are superimposed or averaged to obtain a second position spectrum.
  • the corresponding second threshold value of each first device may be the same or different, which is not limited in this embodiment of the present application.
  • S240 Determine the position of the second device in the first area according to the second position spectrum.
  • the first position spectrum has been calculated above, and at this time, the position of the second device can be determined according to the second position spectrum, that is, the second device is positioned in the first area according to the second position spectrum.
  • the first position spectrum value is determined from the second position spectrum, the first position spectrum value is the largest position spectrum value in the second position spectrum, and the second region corresponding to the first position spectrum value is the location of the second device.
  • the center of the grid corresponding to the maximum value of J all is the position of the second device, and it may also be that the upper left corner of the grid corresponding to the maximum value of J all is the position of the second device. That is to say, any position of the grid corresponding to the maximum value of J all can be used as the position of the second device.
  • each value in the above matrix corresponds to the grid in Figure 6 from left to right and from top to bottom. That is, 12 corresponds to the grid numbered 1, 18 corresponds to the grid numbered 2, and so on.
  • the position spectrum value corresponding to the grid numbered 7 is the largest. Therefore, it can be determined that the grid numbered 7 is the position of the second device, wherein it can be considered that the center position of the grid 7 is the position of the second device, the upper left corner of the grid 7 may also be considered to be the position of the second device, or the lower right corner of the grid 7 may be considered to be the position of the second device.
  • This embodiment of the present application does not make any limitation on the specific location of the second device.
  • a second position spectrum value may also be determined from the second position spectrum, where the second position spectrum value is a position spectrum value in the second position spectrum that is greater than or equal to a third threshold, the second position spectrum value is The second area corresponding to the spectral value is the position of the second device.
  • the third threshold is 29, and when the number of grids greater than or equal to the third threshold is only one, the grid can be used as the location of the second device.
  • the grid where the median of the centers of multiple grids is located may be used as the position of the second device, or the center position of the multiple grids may be used as the second device. The location of the device.
  • the statistics are calculated in at least two second areas.
  • the number of first devices in each of the second regions in the region, wherein the second region with the largest number of first devices in the at least two second regions is the location of the second device. That is, when the number of grids greater than or equal to the third threshold is not unique or the number of grids corresponding to the maximum position spectrum value in the first position spectrum is not unique, the number of first devices in the grid can be counted.
  • a fourth threshold may be set to count the number of first devices in multiple grids corresponding to the first position spectrum value or the second position spectrum value, and a fourth threshold may be set to count the number of first devices in each grid greater than or the first number of devices equal to the fourth threshold.
  • the above-mentioned greater than or equal to the fourth threshold means that the fourth position spectrum of each first device in a certain grid is greater than or equal to the fourth threshold. Therefore, the grid with the largest number of first devices greater than or equal to the fourth threshold can be used as the location of the second device.
  • the number of the first device is 10
  • the second threshold is 27, the fourth threshold is 30, and the grids greater than or equal to the second threshold have 4
  • the numbers are 5, 7, 11, and 14, respectively.
  • 7 first devices greater than or equal to the fourth threshold in grid 7 and greater than or equal to the fourth threshold in grid 11
  • There are 5 first devices with the threshold value and there are 6 first devices with the threshold value greater than or equal to the fourth threshold value in grid 14, it can be concluded that the number of first devices greater than or equal to the fourth threshold value in grid 7 is the largest , so grid 7 can be used as the location of the second device.
  • the median of each grid can be selected, and the grid where the median is located is the position of the second device, Or the center position of the plurality of grids is used as the position of the second device.
  • step 240 for ease of understanding, the second position spectrum, the third threshold, and the fourth threshold are exemplified, and positive integers are used as examples for description, but these examples are only shown for ease of understanding, It may also be in the form of a complex number, such as a vector, a matrix, etc., which is not limited too much in this embodiment of the present application.
  • the overlapping area of the coverage of each first device in the plurality of first devices is the first area, and the first position spectrum of each first device in the first area is acquired, and the A position spectrum processing can obtain a second position spectrum, so that the position of the second device can be determined according to the second position spectrum.
  • the embodiments of the present application not only help to reduce the amount of calculation, but also may further improve the positioning accuracy.
  • pre-set and pre-defined may be pre-saved in a device (for example, including a terminal and a network device), a corresponding code, a table, or other methods that can be used to indicate relevant information
  • a device for example, including a terminal and a network device
  • a corresponding code for example, including a terminal and a network device
  • a table for example, a table, or other methods that can be used to indicate relevant information
  • the positioning method according to the embodiment of the present application has been described in detail above with reference to FIG. 1 to FIG. 6 .
  • the positioning device according to the embodiment of the present application will be described in detail with reference to FIG. 7 to FIG. 8 .
  • FIG. 7 shows a schematic block diagram of a positioning apparatus 700 according to an embodiment of the present application.
  • the positioning apparatus 700 may correspond to the first device of the method in FIG. 2 or the method in FIG. A chip on a device, a component, an integrated circuit, a sensor, a chip in a fusion module, etc., etc.
  • each module or unit in the positioning apparatus 700 is respectively used to perform each action or process performed in the method in the above-mentioned FIG. 2 or the method in the above-mentioned FIG. 4 .
  • the positioning device 700 includes a processing unit (module) 710 .
  • the positioning device may further include a communication unit (module) 720 , and the communication unit 720 is configured to execute the specific signal transmission and reception.
  • the device includes:
  • processing unit 710 is configured to determine a first area, where the first area is a geographic area where the coverage areas of multiple first devices overlap;
  • the communication unit 720 the communication unit 720 is used to obtain a plurality of first position spectra, the plurality of first position spectra are determined according to the first area, the plurality of first position spectra are in one-to-one correspondence with the plurality of first devices, and each first position
  • the spectrum is the position spectrum of the corresponding first device in the first area, and each first position spectrum is determined according to the positional relationship between the corresponding first device and the second device;
  • the processing unit 710 is further configured to determine a second position spectrum according to the plurality of first position spectra;
  • the processing unit 710 is further configured to determine the position of the second device in the first area according to the second position spectrum.
  • the overlapping area of the coverage of each first device in the plurality of first devices is the first area, and a first position spectrum of each first device in the first area is acquired , a second position spectrum can be obtained by processing a plurality of first position spectra, so that the position of the second device can be determined according to the second position spectra.
  • the embodiments of the present application not only help to reduce the amount of calculation, but also may further improve the positioning accuracy.
  • the value of the beam parameter of each first device in the first area is greater than or equal to the first threshold, and the beam parameter includes the reference signal received power intensity corresponding to the beam, the beam parameter corresponding to the beam. At least one of the received signal strength and the delay power spectrum strength corresponding to the beam.
  • processing unit 710 is further configured to:
  • a second position spectrum is obtained by superimposing a plurality of first position spectra.
  • the communication unit 720 is further configured to acquire a plurality of third position spectra, the plurality of third position spectra are in one-to-one correspondence with the plurality of first position spectra, and each third position spectrum
  • the processing unit is further configured to superimpose a plurality of third position spectra to obtain a second position spectrum, in order to set the position spectrum value of the corresponding first position spectrum which is smaller than the second threshold as 0.
  • the communication unit 720 is further configured to acquire a plurality of third position spectra, the plurality of third position spectra are in one-to-one correspondence with the plurality of first position spectra, and each third position spectrum
  • the processing unit is further configured to perform averaging processing on a plurality of third position spectra to obtain a second position spectrum, in order to set the position spectrum value of the corresponding first position spectrum less than the second threshold value to 0.
  • each first position spectrum is composed of at least one fourth position spectrum, at least one fourth position spectrum corresponds to at least one second region one-to-one, and each fourth position spectrum For each first position spectrum is the position spectrum of the corresponding first device in the corresponding second area, at least one second area is obtained by dividing the first area;
  • the processing unit 710 is further configured to determine the position of the second device according to the second region corresponding to the position spectrum value in the second position spectrum.
  • the processing unit 710 is further configured to determine a first position spectrum value from the second position spectrum, where the first position spectrum value is the largest position spectrum value in the second position spectrum, and the first position spectrum value is the largest position spectrum value in the second position spectrum.
  • the second region corresponding to a position spectrum value is the position of the second device.
  • the processing unit 710 is further configured to determine a second position spectrum value from the second position spectrum, where the second position spectrum value is greater than or equal to the third threshold in the second position spectrum.
  • the position spectrum value, the second region corresponding to the second position spectrum value is the position of the second device.
  • the processing unit 710 is further configured to count the number of first devices in each of the at least two second areas, where the location spectrum value corresponds to at least two The second area, where the second area with the largest number of first devices is the location of the second device.
  • FIG. 8 is another schematic block diagram of a communication apparatus 800 provided by an embodiment of the present application.
  • the communication device 800 includes a processor 810 , a transceiver 820 and a memory 830 .
  • the processor 810, the transceiver 820 and the memory 830 communicate with each other through an internal connection path, the memory 830 is used to store instructions, and the processor 810 is used to execute the instructions stored in the memory 830 to control the transceiver 820 to send signals and / or receive signals.
  • the communication apparatus 800 may correspond to the device in the foregoing method embodiments, and may be used to execute various steps and/or processes performed by the devices in the foregoing method embodiments.
  • the memory 830 may include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 830 may be a separate device or may be integrated into the processor 810 .
  • the processor 810 may be configured to execute the instructions stored in the memory 830, and when the processor 810 executes the instructions stored in the memory, the processor 810 is configured to execute various steps and/or processes in the above method embodiments.
  • the transceiver 820 may include a transmitter and a receiver.
  • the transceiver 820 may further include antennas, and the number of the antennas may be one or more.
  • the processor 810, the memory 830 and the transceiver 820 may be devices integrated on different chips.
  • the processor 810 and the memory 830 may be integrated in the baseband chip, and the transceiver 820 may be integrated in the radio frequency chip.
  • the processor 810, the memory 830 and the transceiver 820 may also be devices integrated on the same chip. This application does not limit this.
  • the communication apparatus 800 is a component configured in a device, such as a circuit, a chip, a chip system, and the like.
  • the transceiver 820 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 820, the processor 810 and the memory 830 can be integrated in the same chip, such as integrated in a baseband chip.
  • the present application also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program runs on a computer, the operations and/or processes in the method embodiments of the present application are executed. .
  • the present application also provides a computer program product, the computer program product includes computer program code or instructions, when the computer program code or instructions are run on a computer, the operations and/or processes in each method embodiment of the present application are executed.
  • the present application also provides a chip including a processor.
  • the memory for storing the computer program is provided independently of the chip, and the processor is configured to execute the computer program stored in the memory to cause the operations and/or processing in any one of the method embodiments to be performed.
  • the chip may also include a communication interface.
  • the communication interface may be an input/output interface or an interface circuit or the like.
  • the chip may also include a memory.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (such as data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets such as data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as stand-alone products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种定位方法及装置,用于定位领域,可以有效提升定位精度,减少定位过程中的计算量。该方法包括:确定第一区域,第一区域为多个第一设备的覆盖范围交叠的地理区域;获取多个第一位置谱,该多个第一位置谱根据第一区域确定,多个第一位置谱与多个第一设备一一对应,每个第一位置谱为所对应的第一设备在第一区域内的位置谱,每个第一位置谱是根据所对应的第一设备和第二设备之间的位置关系确定的;根据多个第一位置谱确定第二位置谱;根据第二位置谱确定第二设备在第一区域内的位置。

Description

一种定位的方法及装置 技术领域
本申请涉及无线通信领域,并且更具体地,涉及一种定位的方法及装置。
背景技术
随着通信技术的发展,人们对大容量,高可靠,低时延的网络需求越来越高。在第五代移动通信(5th-Generation,5G)系统中,仅仅利用低频通信已经不能满足日益增长的通信需求,因此高频通信越来越受到学界和业界的重视。然而由于高频信号在空间中能量衰减快,穿透能力弱,信号路损远大于低频信号。因此,为了在高频场景下对抗路径损耗,需要利用天线侧的增益来补偿这一部分损失,从而保证高频系统的覆盖。此外,由于在高频场景下,信号的波长更短,天线的体积更小,大规模天线阵的多天线技术也更适合于应用在高频场景。
大规模天线阵的多天线技术能够生成高增益、可调节的波束赋形来改善信号覆盖。其通过波束赋形技术将波束集中在很窄的范围内,提高了信号的方向性,对于角度定位和时延定位起到很大的作用。然而,在进行时延参数估计和角度参数估计时,只利用了首径的时延或角度信息,一旦首径判断错误,定位精度也会极具恶化。除此之外,通过对上述参数的估计,增加了计算量。因此,如何提高定位精度并减少计算量成为业界亟需解决的问题。
发明内容
本申请提供一种定位的方法及装置,可以有效提升定位精度,降低定位过程中的计算量。
第一方面,提供了一种定位的方法,包括:确定第一区域,第一区域为多个第一设备的覆盖范围交叠的地理区域;获取多个第一位置谱,该多个第一位置谱根据第一区域确定,多个第一位置谱与多个第一设备一一对应,每个第一位置谱为所对应的第一设备在第一区域内的位置谱,每个第一位置谱是根据所对应的第一设备和第二设备之间的位置关系确定的;根据多个第一位置谱确定第二位置谱;根据第二位置谱确定第二设备在第一区域内的位置。
应理解,该第一设备可以是网络设备,第二设备可以是终端设备。
上述技术方案中,多个第一设备中每个第一设备覆盖范围的交叠区域为第一区域,并获取每个第一设备在第一区域的第一位置谱,对多个第一位置谱处理可以得到第二位置谱,从而可以根据第二位置谱确定第二设备的位置。与角度定位和时延定位相比,本申请实施例不仅有利于降低计算量,还可能进一步提升定位精度。
结合第一方面,在第一方面的某些实现方式中,每个第一设备在第一区域内的波束参数的值大于或等于第一阈值,波束参数包括波束对应的参考信号接收功率强度、波束对应 的接收信号强度、波束对应的时延功率谱强度中的至少一种。
结合第一方面,在第一方面的某些实现方式中,根据多个第一位置谱确定第二位置谱,包括:对多个第一位置谱进行平均处理得到第二位置谱;或对多个第一位置谱叠加得到第二位置谱。
上述方案中,通过对多个第一位置谱进行平均处理,可以有效的抑制多径,降低多径的干扰,进而可以提升定位精度。
结合第一方面,在第一方面的某些实现方式中,根据多个第一位置谱确定第二位置谱,包括:获取多个第三位置谱,多个第三位置谱与多个第一位置谱一一对应,每个第三位置谱为将所对应的第一位置谱中小于或等于第二阈值的位置谱值设置为0的位置谱;对多个第三位置谱叠加得到第二位置谱。
结合第一方面,在第一方面的某些实现方式中,根据多个第一位置谱确定第二位置谱,包括:获取多个第三位置谱,多个第三位置谱与多个第一位置谱一一对应,每个第三位置谱为将所对应的第一位置谱中小于或等于第二阈值的位置谱值设置为0的位置谱;对多个第三位置谱进行平均处理得到第二位置谱。
上述方案中,通过对多个第一位置谱中小于或等于第二阈值的位置谱值设置为0得到与其对应的第三位置谱,并对该第三位置谱进行叠加或者平均处理得第二位置谱,可以有效的抑制多径,进而可以提升定位精度。
结合第一方面,在第一方面的某些实现方式中,所述每个第一位置谱由至少一个第四位置谱组成,至少一个第四位置谱与至少一个第二区域一一对应,该每个第四位置谱为每个第一位置谱所对应的第一设备在所对应的第二区域的位置谱,该至少一个第二区域通过划分第一区域得到;根据第二位置谱确定第二设备在第一区域内的位置包括:根据第二位置谱中位置谱值对应的第二区域确定所述第二设备的位置。
上述方案中,通过第二位置谱是由多个第一位置谱确定的,每个第一位置谱是至少一个第四位置谱的集合,而至少一个第四位置谱是每个第一设备在至少一个第二区域的位置谱,该至少一个第二区域是每个第一设备对第一区域进行划分得到的,因此,可以通过第二位置谱中的位置谱值对应的第二区域确定第二设备的位置,从而实现对第二设备的定位时,能够降低计算量。
结合第一方面,在第一方面的某些实现方式中,根据所述第二位置谱中的位置谱值确定第二设备的位置,包括:从第二位置谱中确定第一位置谱值,第一位置谱值为第二位置谱中最大的位置谱值,第一位置谱值对应的第二区域为第二设备的位置。
上述方案中,从第二位置谱中确定的最大位置谱值,从而可以根据该最大位置谱值对应的第二区域对第二设备进行定位,一方面可以有效降低计算量,另一方面也有利于提升定位精度。
结合第一方面,在第一方面的某些实现方式中,根据第二位置谱中的位置谱值确定第二设备的位置,包括:从第二位置谱中确定第二位置谱值,第二位置谱值为第二位置谱中大于或等于第三阈值的位置谱值,第二位置谱值对应的第二区域为第二设备的位置。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:统计至少两个第二区域中每个第二区域中的第一设备数量,其中,所述位置谱值对应至少两个第二区域,第一设备数量最多的第二区域为第二设备的位置。
第二方面,提供了一种定位的装置,该装置包括处理单元,该处理单元用于:确定第一区域,第一区域为多个第一设备的覆盖范围交叠的地理区域;通信单元,通信单元用于获取多个第一位置谱,多个第一位置谱根据第一区域确定,多个第一位置谱与多个第一设备一一对应,每个第一位置谱为所对应的第一设备在第一区域内的位置谱,每个第一位置谱是根据所对应的第一设备和第二设备之间的位置关系确定的;处理单元还用于根据多个第一位置谱确定第二位置谱;处理单元还用于根据第二位置谱确定第二设备在第一区域内的位置。
应理解,该第一设备可以是网络设备,第二设备可以是终端设备。
上述技术方案中,多个第一设备中每个第一设备覆盖范围的交叠区域为第一区域,并获取每个第一设备在第一区域的第一位置谱,对多个第一位置谱处理可以得到第二位置谱,从而可以根据第二位置谱确定第二设备的位置。与角度定位和时延定位相比,本申请实施例不仅有利于降低计算量,还可能进一步提升定位精度。
结合第二方面,在第二方面的某些实现方式中,每个第一设备在第一区域内的波束参数的值大于或等于第一阈值,波束参数包括波束对应的参考信号接收功率强度、波束对应的接收信号强度、波束对应的时延功率谱强度中的至少一种。
结合第二方面,在第二方面的某些实现方式中,处理单元还用于对多个第一位置谱进行平均处理得到第二位置谱;或对多个第一位置谱叠加得到第二位置谱。
结合第二方面,在第二方面的某些实现方式中,通信单元还用于获取多个第三位置谱,多个第三位置谱与多个第一位置谱一一对应,每个第三位置谱为将所对应的第一位置谱中小于第二阈值的位置谱值设置为0的位置谱;处理单元还用于对多个第三位置谱叠加得到第二位置谱。
结合第二方面,在第二方面的某些实现方式中,通信单元还用于获取多个第三位置谱,多个第三位置谱与多个第一位置谱一一对应,每个第三位置谱为将所对应的第一位置谱中小于第二阈值的位置谱值设置为0的位置谱;处理单元还用于对多个第三位置谱进行平均处理得到第二位置谱。
结合第二方面,在第二方面的某些实现方式中,每个第一位置谱由至少一个第四位置谱组成,至少一个第四位置谱与至少一个第二区域一一对应,每个第四位置谱为每个第一位置谱为所对应的第一设备在所对应的第二区域的位置谱,至少一个第二区域通过划分第一区域得到;处理单元还用于根据第二位置谱中位置谱值对应的第二区域确定第二设备的位置。
结合第二方面,在第二方面的某些实现方式中,处理单元还用于从第二位置谱中确定第一位置谱值,第一位置谱值为第二位置谱中最大的位置谱值,第一位置谱值对应的第二区域为所述第二设备的位置。
结合第二方面,在第二方面的某些实现方式中,处理单元还用于从第二位置谱中确定第二位置谱值,第二位置谱值为第二位置谱中大于或等于第三阈值的位置谱值,第二位置谱值对应的第二区域为第二设备的位置。
结合第二方面,在第二方面的某些实现方式中,处理单元还用于统计至少两个第二区域中每个第二区域中的第一设备数量,其中,所述位置谱值对应至少两个第二区域,所述第一设备数量最多的第二区域为第二设备的位置。
第三方面,提供了一种通信装置,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器调用并运行所述计算机程序,使得所述通信装置用于执行上述第一方面以及第一方面的各种实现方式中的方法。
第四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当计算机程序在计算机上运行时,使得如第一方面及第一方面的各种实现方式中的方法被执行。
第五方面,本申请提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得如第一方面及第一方面的各种实现方式中的方法被执行。
第六方面,本申请提供一种芯片系统,包括处理器,用于从存储器中调用并运行计算机程序,以使得如第一方面及第一方面的各种实现方式中的方法被执行。
附图说明
图1是本申请实施例提供的一种场景的示意图。
图2是本申请实施例提供的一种定位的方法的示意性流程图。
图3是本申请实施例提供的一种定位的方法的示意图。
图4是本申请实施例提供的另一种定位的方法的示意性流程图。
图5是本申请实施例提供的一种定位区域划分的示意性框图。
图6是本申请实施例提供的另一种定位区域划分的示意性框图。
图7是本申请实施例提供的通信装置700的示意性框图。
图8是本申请实施例提供的通信装置800的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)或全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统等。
图1示出了本申请实施例的应用场景的示意图。如图1所示,该应用场景中可以包括至少一个网络设备(图中仅示出一个网络设备101)和至少一个终端设备(图1中示出两个终端设备,分别为102和103)。
如图1中所示,网络设备101侧可以配置大规模天线(massive MIMO)阵列,例如可以配置64根、128根、256根或者1024根天线或者其他数量的天线,多天线通信可以提高频谱的利用效率。上述波束成形技术是传感器阵列中用于定向信号传输或接收的信号处理技术,能够通过调节各天线的相位使信号进行有效叠加,产生更强的信号的增益来克 服路损,从而为无线信号的传输质量提供保障。
波束成形技术可以对无线信号的能量产生聚焦,形成一个指向性波束(beam),使信号的能量集中在接收端所在的方向,换句话说,波束具有方向性,不同的波束可以具有不同的发射方向。通常波束越窄,信号增益越大。一旦波束的指向偏离接收端,接收端可能接收不到高质量的无线信号,因此对于网络设备作为发送端来说,网络设备侧需要使用多个不同指向的波束来完全覆盖其服务的小区。以图1所示为例,网络设备101可以使用不同指向的波束104、105和106向不同方向发射无线信号。其中,波束104携带与终端设备102进行通信的信息,波束105携带与终端设备103进行通信的信息。应理解,其还存在更多的波束,或者多个波束用于与一个终端设备进行通信,对本申请实施例不造成任何限定。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终 端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
为便于理解本申请实施例,首先对本文中涉及到的几个术语做简单说明。
1、波束(beam):波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束赋形的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。在NR协议中,波束例如可以是空间滤波器(spatial filter)。但应理解,本申请并不排除在未来的协议中定义其他的术语来表示相同或相似的含义的可能。
2、天线面板(panel):无线通信的信号需要由天线进行接收和发送,多个天线单元(antenna element)可以集成在一个panel上。一个射频链路可以驱动一个或多个天线单元。在本申请实施例中,终端设备可以包括多个天线面板,每个天线面板包括一个或者多个波束。网络设备也可以包括多个天线面板,每个天线面板包括一个或者多个波束。天线面板又可表示为天线阵列(antenna array)或者天线子阵列(antenna subarray)。一个天线面板可以包括一个或多个天线阵列/子阵列。一个天线面板可以有一个或多个晶振(oscillator)控制。射频链路又可以称为接收通道和/或发送通道,接收机支路(receiver branch)等。一个天线面板可以由一个射频链路驱动,也可以由多个射频链路驱动。因此本申请实施例中的天线面板也可以替换为射频链路或者驱动一个天线面板的多个射频链路或者由一个晶振控制的一个或多个射频链路。
3、波束辐射模式:指一个波束在不同水平、垂直方向上的波束增益,如果从xoy平面上观察波束辐射模式,可以看到每个波束覆盖区域近似于一个椭圆。多个宽/窄波束共同覆盖某一个俯仰和方位角区域。
4、到达时间(time of arrival,TOA):也可以称为飞行时间,其可以理解为无电信号从单个发射机到远程单个接收机的传播时间,即从网络设备到用户设备的空间传输时间。
5、接收信号强度(received signal strength indicator,RSSI):也可以称为接收信号功率。包括导频信号和数据信号,邻小区干扰信号,噪声信号等功率的平均值。
6、双曲线:平面内与两个定点的距离差的绝对值等于一个常数的轨迹称为双曲线,对于定位场景来说,该轨迹即为用户设备可能的空间轨迹,两个定点即为两个基站。当到达时间差确定时,用户设备的空间轨迹为双曲线其中的一支。
7、码本:在本申请实施例中可以将使用的预编码矩阵的集合称为码本。
目前,常用的定位方式是角度定位技术和时延定位技术,以下对这两种技术进行简单的介绍。
角度定位技术是一种长用的定位技术,基站通过对接收信号进行测量或通过UE对发送信号进行测量反馈,估计出基站和UE之间的位置角度关系,进而通过多组这种位置角度关系对UE进行定位。角度定位技术还可以与其他时间、场强等定位技术结合,具体通过角度获取UE位置的算法本申请实施例不再展开说明。
时延定位技术是将UE当做一个质点,多个基站利用相对该质点的时延信息确定UE所在的位置。该技术的具体方案如下,多个基站通过对接收信号进行测量或对发送信号进行测量上报,计算基站和UE之间的时延关系,并选取参考基站,计算各基站与参考基站之间的定位参考信号到达时延差。每一组信号到达时延差可以确定UE在双曲线的其中一支上,进而通过多组到达时延差对UE进行定位。时延定位技术可以与角度、场强等定位技术结合,具体通过时延获取UE位置的算法本申请实施例不再展开说明。
但在利用上述定位技术进行定位时,第一步均是进行参数估计,即进行角度参数估计或者时延参数估计。第二步则会通过第一步得到的参数估计结果进行定位解算。上述两个方案均从单个基站的出发以进行定位,无法利用多站之间的相关信息。除此之外,在进行参数估计会丢失大部分信息,只利用首径的时延或首径的角度信息,如果首径判断错误,那么定位精度急剧恶化,并且在多径复杂的室内场景,首径信息难以保证判断正确。
因此,本申请实施例通过一种新的定位技术有利于提高定位精度和减少计算量。以下,结合附图,对本申请实施例进行详细说明。
S210,确定第一区域,该第一区域为多个第一设备的覆盖范围交叠的地理区域。
具体而言,当多个第一设备与同一个第二设备进行通信时,多个第一设备中的每个第一设备均有一个覆盖范围,多个设备的覆盖范围交叠的地理区域可以称之为第一区域。还可以理解为,多个第一设备中每个第一设备均会向第二设备发送波束,使用该波束与第二设备进行通信。此时,该多个第一设备发射出的波束在地理区域上会产生重叠区域,该重叠区域可以称为第一区域。
示例性地,在本申请实施例中,以第一设备为基站,第二设备为终端设备为例进行说明。如图3所示,图3给出了三个第一设备分别为301,302,303,这三个第一设备分别与终端设备(未画出)进行通信,在图3中,第一设备301发射波束1、波束2和波束3,第一设备302发射波束4,波束5和波束6,第一设备303发射波束7、波束8和波束9。为了简洁,没有在图中画出所有波束,其中,波束1、波束5和波束9的重叠区域构成了第一区域,如图3中的阴影区域即为第一区域。
每个第一设备在第一区域的波束参数的值大于或等于第一阈值,这些波束参数包括波束对应的参考信号接收功率强度、波束对应的接收信号强度、波束对应的时延功率谱强度中的至少一种。其可以理解为,每个第一设备发射出的波束携带的波束参数大于第一阈值,这些大于第一阈值的波束的重叠区域为第一区域。还可以理解为,每个第一设备都可以根据第一阈值确定一个其对应的区域,每个第一设备将其确定的区域上报给定位中心,定位中心可以通过每个第一设备上报的信息可以确定这些区域的交集即为第一区域;或者,每个第一设备通过Xn接口将其确定的区域上报给其中的一个第一设备,该第一设备通过每个第一设备上报的信息可以确定第一区域,具体实现方式本申请实施例不做过多限定。
需要注意的是,不同的波束参数对应的第一阈值可以相同也可以不同,例如,当波束参数为参考信号接收功率时,第一阈值是a,当波束参数是波束对应的时延功率谱强度,第一阈值是b,其中a和b可以相同也可以不同。除此之外,当考虑到多个波束参数时,第一阈值可以是多个波束参数的值共同决定,例如,当同时考虑参考信号接收功率强度和波束对应的时延功率谱强度时,第一阈值可以是一个值,该值是根据这两个参数共同决定的。应理解,本申请实施例仅仅为示例性说明,不做过多限定。为了简洁,本申请用波束能量进行说明,该波束能量可以是上述参数的任意一种。
其中,第一阈值可以是定位中心确定的默认值,也可以是上报的波束个数。
示例性地,当第一阈值为上报的波束个数时,其实现方式可以为,假设第一阈值为5,则第一设备301上报的波束数量为5,这5个波束为第一设备301中能量最强的5个波束,第一设备302上报的波束数量为5,同理,这5个波束也为第一设备302中能量最强的5个波束等等。其还可以是,定位中心接收到所有第一设备发送的波束后,通过第一阈值对其进行计算,例如,定位中心收到每个第一设备发送的波束,对每个第一设备对应的波束进行能量排序,根据第一阈值选择波束等,进而确定第一区域。本申请实施例对此不做过多说明。
示例性地,假设第一阈值为10dB,第一设备301发射出的波束1对应的波束能量为15dB、波束2对应的波束能量为12dB、波束3对应的波束能量为9dB;第一设备302发 射出的波束4对应的波束能量为13dB、波束5对应的波束能量为11dB、波束6对应的波束能量为8dB;第一设备303发射出的波束7对应的波束能量为8dB、波束8对应的波束能量为9dB、波束9对应的波束能量为13dB。其中,第一设备301中大于第一阈值的波束有波束1和波束2,第一设备302中大于第一阈值的波束有波束4和波束5,第一设备303中大于第一阈值的波束有波束9。而在这些大于第一阈值的波束中,波束1、波束5和波束9构成交叠区域,即第一区域。
应理解,本申请实施例中的“交叠”是为了指出第一区域的性质,其还可以替换成“重合”、“交合”、“交集”等,也就是说,“交叠”是为了指出第一区域的性质,即多个第一设备发射出的波束能量相互覆盖的部分,本申请并不排除本领域技术人员用其他词语来表示相同或相似含义的可能。
还应理解,上文列举的第一设备的数量、第一设备发射波束的数量,以及各个波束对应的波束能量仅为示例,不应对本申请构成任何限定。本申请对于第一设备的数量,波束数量,波束的能量,交叠区域的范围均不作限定。
作为一个可选的实施例,第一区域可以是通过直角坐标系确定的、圆柱坐标系确定的或球坐标系确定的。
示例性地,每个第一设备可以根据第一阈值确定一个区域,该区域的确定可以采用上述中的直角坐标系或圆柱坐标系或球坐标系等,每个第一设备确定之后,将其确定的区域发送至定位中心,也可以发送至某一个第一设备处进行第一区域的确定。在确定第一区域的时也可以采用直角坐标系或圆柱坐标系或球坐标系,本申请对此不做过多限定。
应理解,第一区域涉及多种坐标系,具体可以包括直角坐标系、圆柱坐标系、球坐标系等。这些坐标系不应对本申请构成任何限定。本申请并不排除在未来的协议中定义使用其他坐标系来确定第一区域的可能。
作为一个可选的实施例,第一区域可以是扇形区域,圆形区域,矩形区域,三角形区域或两个第一设备的到达时间差(time difference of arrival,TDOA)确定的双曲线其中一支的一部分区域,本申请实施例对此不做限定。
示例性地,第一区域为如图5中的(1)所示的区域,其形状大致为正方形,应理解,其形状还可以为矩形,圆形等,本申请实施例以第一区域为正方形为例进行示例性说明,对于其他形状均可参照本申请实施例。
S220,获取多个第一位置谱,该第一位置谱根据第一区域确定,该多个第一位置谱与多个第一设备一一对应,每个第一位置谱为所对应的第一设备在所述第一区域内的位置谱,每个第一位置谱是根据所对应的第一设备和第二设备之间的位置关系确定的。
具体而言,在步骤220中,已经确定第一区域,此时需要获取每个第一设备在第一区域的第一位置谱。每个第一设备在第一区域确定第一位置谱的流程如图4所示。
S410,每个第一设备将第一区域分成至少一个第二区域。
具体而言,为了更加精确的对第二设备进行定位,每个第一设备会对第一区域进行划分,每个第一设备对第一区域划分时,其划分的区域的数量可以相同也可以不同。其划分的数量可以是一个,即不对其进行处理,划分的数量还可以多个,本申请实施例对此不做过多的限定。
示例性地,如5所示,第一设备301对第一区域进行划分,可以得到如图5中的(1) 所示的16个第二区域;第一设备302对第一区域进行划分,可以得到如图5中的(2)所示的4个第二区域;第一设备302对第一区域进行划分,可以得到如图5中的(2)所示的1个第二区域。
应理解,本申请实施例中将第一区域进行划分得到不同数量的正方形栅格,其还可以划分成矩形栅格,三角形栅格和圆形区域等,本申请实施例对第二区域的形状不做任何限定。
应理解,本申请实施例中的第二区域是将第一区域完全划分得到的,其可以是对第一区域完全等分,也可以不完全等分。应理解,这里的“第二区域”还可以替换为“栅格”,“子区域”等,也就说,“第二区域”是对第一区域划分之后的每一个区域的称呼,本申请实施例并不排除本领域技术人员用其他词语来表示相同或相似含义的可能。在本申请实施例中,我们为了方便阐述,将第二区域称为栅格。
还应理解,这里的“划分”是将第一区域分成多个小区域,其还可以替换成“切割”、“栅格化”、“网格化”等,本申请实施例并不排除本领域技术人员用其他词语来表示相同或相似含义的可能。
S420,每个第一设备计算在至少一个第二区域中的每个第二区域的第四位置谱,该至少一个第四位置谱与至少一个第二区域一一对应。
S430,每个第一设备的第一位置谱由至少一个第四位置谱构成。
作为一个可选的实施例,以利用时延信息进行定位为例进行说明,每个第一设备求位置谱的一般流程为,在将第一区域分成一个或多个第二区域后,构建空间导向矢量,然后根据该第一设备的信道数据计算自相关函数,并进行子空间分解。最后通过导向矢量和子空间分解后的向量计算位置谱。
示例性的,对于多个设备中的一个第一设备而言,例如第j个第一设备。首先其对第一区域进行了栅格化,例如将第一区域划分成16个第二区域(栅格),即可以参照图4中的(1)。然后构造空间导向向量,其可以为:
Figure PCTCN2021075225-appb-000001
其中,p代表第二设备在每个栅格的中心位置,τ j(p)代表第j个第一设备与位置p的时延值。一般而言,
Figure PCTCN2021075225-appb-000002
表达式可以为:
Figure PCTCN2021075225-appb-000003
在上述公式(1)中,用τ j(p)代替x,公式
Figure PCTCN2021075225-appb-000004
中的N为子载波数目,Δf为子载波间隔。
随后,获取第j个第一设备在第一区域对应的波束的子载波信道估计结果
Figure PCTCN2021075225-appb-000005
接下来,计算第j个第一设备在每个栅格的第四位置谱,其计算的方式可以如下:
Figure PCTCN2021075225-appb-000006
在上述公式(2)中,i表示第i个栅格,
Figure PCTCN2021075225-appb-000007
的维度是子载波数目×子载波数目,
Figure PCTCN2021075225-appb-000008
表示第j个第一设备在第i个栅格的第三位置谱。
Figure PCTCN2021075225-appb-000009
其中,
Figure PCTCN2021075225-appb-000010
表示矩阵
Figure PCTCN2021075225-appb-000011
的多个特征值的特征向量矩阵,
Figure PCTCN2021075225-appb-000012
为特征值矩阵。令
Figure PCTCN2021075225-appb-000013
中的最大特征值为
Figure PCTCN2021075225-appb-000014
则第j个第一设备在第一区域的第一位置谱为:
Figure PCTCN2021075225-appb-000015
其中,i=1表示的是第一个栅格,I表示第一区域所划分的栅格的数量,即一个或多个第二区域,例如,I可以为16。
上述公式(2)至(4)中采用的是匹配滤波器(matched filter,MF),其还可以采用多重信号分类算法(multiple signal classification algorithm,MUSIC),最小方差无失真响应(minimum variance distortionless response,MVDR)等方式进行计算,本申请实施例对此不做过多限定。
作为一个可选的实施例,以利用角度信息进行定位为例进行说明,每个第一设备求第一位置谱的一般流程为,在将第一区域分成一个或多个第二区域后,构建空间导向矢量,然后根据该第一设备在第一区域各自对应波束,或者大于第一阈值的多个第一区域联合计算样本自相关函数,并进行子空间分解。最后通过导向矢量和子空间分解后的向量计算位置谱。这里需要注意的是,在角度定位过程中,联合多个波束或者能量信息构建位置谱。
示例性的,对于多个设备中的一个第一设备而言,例如第j个第一设备。首先其对第一区域进行了栅格化,例如将第一区域划分成16个第二区域(栅格),即可以参照图4中的(1)。然后构造空间导向向量,其可以为:
Figure PCTCN2021075225-appb-000016
在公式(3)中,C T代表多个波束对应的码本(权值)集合,a j(p)表示第j个第一设备的阵列流行(导向矢量),p代表第二设备在每个栅格的中心位置。
随后,获取第j个第一设备在第一区域对应的波束的子载波信道估计结果
Figure PCTCN2021075225-appb-000017
接下来,计算第j个第一设备在每个栅格的第四位置谱,其计算的方式可以参照上述公式(2)至(4),为了简洁,本申请实施例不再赘述。
需要注意的是,在利用上述公式(2)进行计算时,
Figure PCTCN2021075225-appb-000018
的维度是波束数目×波束数目,本申请对此不做过多描述。
应理解,上文中分别从利用时延信息和角度信息,计算了每个第一设备在第一区域的第一位置谱,在该过程中,还可以联合时延信息和角度信息来计算第一位置谱,本申请实施例对此不做过多的限定,也就是说,本领域的技术人员基于相同的构思得到的第一位置谱,都应落入本申请的保护范围内。
S230,根据多个第一位置谱确定第二位置谱。
上述过程中,利用时延信息或者角度信息,计算了每个第一设备的第一位置谱J j(p)。最后,将每个第一设备对应的第一位置谱进行叠加即可得到第二位置谱。即:
J all=J 1(p)+J 2(p)+...+J k(p)             (6)
其中,k为正整数,其表示总共有k个第一设备。
应理解,最终得到的J j(p)可以是一个数值,还可以是一个向量或者矩阵,本申请实施例对此不做过多限定。
第二位置谱可以是每个第一设备在第一区域的第一位置谱的叠加。也就是说,需要计算每个第一设备在第一区域中的第一位置谱,并将其进行叠加。
作为一个可选的实施例,当每个第一设备在第一区域分成的第二区域数量不一致时,需要对齐到同一密度下,也就是说,定位中心获取每个第一设备的第一位谱后,可以根据 多个第一位置谱确定第二位置谱,在计算第二位置谱时,需要将每个第一位置谱在同一密度下进行计算,例如,第一设备301的第一位置谱为4×4矩阵,第一设备302的第一位置谱为2×2矩阵,则需要将第一设备302的第一位置谱变换为4×4矩阵,才能与第一设备301的位置谱进行叠加,也就是说,对于第一设备301的第一位置谱,即4×4矩阵,矩阵中的每个值对应一个第四位置谱,一个第四位置谱对应一个第二区域。例如图5中的(1),总共有16个栅格(第二区域),一个栅格对应一个位置谱,这16个栅格总共有16个第四位置谱,这16个第四位置对应4×4矩阵中的每个值。
所以对多个第一位置谱进行叠加时,需要在栅格密度相同的情况下进行叠加,也可以理解为,当其对齐到同一密度下时,每个第一设备在同一第二区域的第四位置谱叠加。第二位置谱即为多个设备在每个第二区域的叠加后的第三位置谱的矩阵。
示例性地,从图5中,可以看出三个第一设备在第一区域内最终划分的栅格数量不一致,因此,需要将栅格对齐到同一密度下才能进行第一位置谱的叠加。其具体的对齐方式可以将栅格数量较稀疏的位置谱的对齐到栅格数量最密的位置谱,即将图5中的(2)和图5中的(3)对齐到图5中的(1);也可以将栅格数量较密的位置谱对齐到栅格数量最稀疏的位置谱,即将图5中的(1)和图5中的(2)对齐到图5中的(3)。其还可以是选择某一密度为参考,并对其到该密度下,这里的某一密度可以是介于栅格数量最密的位置谱和栅格数量最稀疏的位置谱之间。当对齐到同一密度下,再进行叠加,从而求出第一位置谱。
示例性地,将栅格数量较稀疏的位置谱对齐到栅格数量最密的位置谱对齐的方式可以为,计算较为稀疏的栅格的位置谱的平均值、中位数或最大值,例如,例平均值为例,将平均值作为其划分成与最密的每个栅格数量相同时,每个栅格的值。
将栅格数量较密的位置谱对齐到栅格数量最稀疏的位置谱对齐的方式可以为,计算较为密的栅格的位置谱的平均值、中位数或最大值,例如,以平均值为例,将平均值作为其合并为与密度最稀疏栅格数量一致时,每个栅格的值。
例如,如图5所示,图5中的(1)中有16个栅格,每个栅格对应的第三位置谱为,从左到右,再从上到下依次为:a 11、a 12、a 13、a 14、a 21、a 22、a 23、a 24、a 31、a 32、a 33、a 34、a 41、a 42、a 43和a 44;图5中的(2)中有4个栅格,每个栅格对应的第三位置谱为,从左到右,再从上到下依次为:b 11、b 12、b 21和b 22;图5中的(3)中有1个栅格,该栅格的位置谱为c 11。当对齐到某一密度时,例如对齐到图5中的(2),其实现方式可以为,图5中的(1)a 11、a 12、a 21和a 22求平均值,计算后的平均值对应b 11所在的栅格的位置谱,a 13、a 14、a 23和a 24计算出的平均值对应b 12所在栅格的位置谱,a 31、a 32、a 41和a 42计算出的平均值对应b 21所在栅格的位置谱,a 33、a 34、a 43和a 44计算出的平均值对应b 22所在的栅格的位置谱。图5中的(3)对c 11可以等分为四份,并与图5中的(2)中的四个栅格一一对应。从而可以对其到同一栅格密度下,进而进行第二位置谱的计算。
作为一个可选的实施例,还可以对多个第一位置谱进行平均处理。
示例性地,对多个第一位置谱进行平均处理可以是计算多个第一位置谱的调和平均,也可以对多个第一位置谱进行类似调和平均处理。
类似调和平均可以为:
Figure PCTCN2021075225-appb-000019
作为一个可选的实施例,还可以为每个第一设备加入筛选门限,也可以称为第二阈值,将每个第一位置谱中小于或等于第二阈值的位置谱幅度全部置为0之后,再将大于第二阈值的位置谱进行如公式(6)或(7)所示进行处理得到第二位置谱。对于定位中心而言,可以是从多个第一设备中获取多个第三位置谱,该第三位置谱与多个第一位置谱一一对应,每个第三位置谱为将所对应的第一位置谱中小于或等于第二阈值的位置谱值设置为0的位置谱,并对多个第三位置谱叠加或进行平均处理以得到第二位置谱。其还可以是,定位中心获得多个第一位置谱后,将每个第一位置谱中小于或等于第二阈值的位置谱值设置为0得到对应的第三位置谱,进而对多个第三位置谱叠加或进行平均处理以得到第二位置谱。
应理解,第三位置谱是每个第一设备自行计算得到时,每个第一设备的对应的第二阈值可以相同也可以不同,对此本申请实施例不做过多限定。
在上述方法中,通过对第一位置谱进行平均处理或者在每个第一设备中加入第二阈值,可以有效的抑制多径,从而提升定位精度。
还应理解,基于相同的构思,本领域的技术人员可以基于公式(1)至公式(7)做出数学变换或等价变形,得出其他公式以实现相同的功能。文中虽然未一一列举,但这些数学变换或等价变形均应落入本申请的保护范围内。
S240,根据该第二位置谱确定第二设备在第一区域内的位置。
具体而言,上文中已经计算出第一位置谱,此时,可以根据第二位置谱确定第二设备的位置,即根据第二位置谱在第一区域内对第二设备进行定位。
作为一个可选的实施例,从第二位置谱中确定第一位置谱值,该第一位置谱值为第二位置谱中最大的位置谱值,该第一位置谱值对应的第二区域为第二设备的位置。
示例性地,J all最大值对应的栅格的中心即为第二设备的位置,其还可以是J all最大值对应的栅格的左上角即为第二设备的位置。也就是说,J all最大值对应的栅格的任一位置均可以作为第二设备的位置。
例如,如图6所示,为了方便描述,我们对每一个栅格进行了编号,从左到右,从上到下依次为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16。其中,计算出的位置谱为:
Figure PCTCN2021075225-appb-000020
需要注意的是,上述矩阵中的每个数值从左到右,从上到下与图6中的栅格一一对应。也就是12对应编号为1的栅格,18对应编号为2的栅格,以此类推。
在上述位置谱中,可以看到,编号为7的栅格对应的位置谱值最大,因此,可以确定编号为7的栅格为第二设备的位置,其中,可以认为栅格7的中心位置为第二设备的位置,也可以认为栅格7的左上角为第二设备的位置,或者认为栅格7的右下角为第二设备的位置。本申请实施例对第二设备的具体位置不做任何限定。
作为一个可选的实施例,还可从第二位置谱中确定第二位置谱值,该第二位置谱值为 第二位置谱中大于或等于第三阈值的位置谱值,该第二位置谱值对应的第二区域为第二设备的位置。
示例性地,例如,第三阈值为29,当大于或等于第三阈值的栅格数量只有一个时,可以将该栅格作为第二设备的位置。但当大于或等于第三阈值的栅格数目不唯一时,可以将多个栅格中心的中位数所在的栅格作为第二设备的位置,或者这多个栅格的中心位置作为第二设备的位置。
作为一个可选的实施例,当上述最大位置谱值对应的区域为至少两个第二区域,或者第二位置谱值对应的区域为至少两个第二区域时,统计在至少两个第二区域中的每个第二区域中的第一设备数量,其中,至少两个第二区域中第一设备数量最多的第二区域为第二设备的位置。也就是说,当大于或等于第三阈值的栅格数目不唯一或者第一位置谱中的最大位置谱值对应的栅格数目不唯一时,可以统计栅格中的第一设备的数量。
具体而言,可以设置第四阈值,统计第一位置谱值或第二位置谱值对应的多个栅格中第一设备的数量,其可以设置一个第四阈值,统计每个栅格中大于或等于第四阈值的第一设备数量。上述提到的大于或等于第四阈值,是指每个第一设备在某个栅格的第四位置谱大于或等于第四阈值。从而可以将大于或等于第四阈值的第一设备数目最多的栅格作为第二设备的位置。
例如,如图6所示,以及上述提到的J all的矩阵,第一设备的数量为10个,第二阈值为27,第四阈值为30,大于或等于第二阈值的栅格有4个,其编号分别为5、7、11、14。其中,在栅格5中大于或等于第四阈值的第一设备有3个,在栅格7中大于或等于第四阈值的第一设备有7个,在栅格11中大于或等于第四阈值的第一设备有5个,在栅格14中大于或等于第四阈值的第一设备有6个,可以得出,在栅格7中大于或等于第四阈值的第一设备的数目最多,因此可以将栅格7作为第二设备的位置。
作为一个可选的实施例,当上述的大于或等于第四阈值的第一设备的数目相同时,可以选取各个栅格的中位数,其中位数所在的栅格为第二设备的位置,或者这多个栅格的中心位置作为第二设备的位置。
应理解,在步骤240中为了便于理解,对第二位置谱,第三阈值,第四阈值进行了举例说明,其采用了正整数为例进行说明,但这些示例仅为便于理解而示出,其还可以为复数形式,向量、矩阵等,本申请实施例对此不做过多限定。
应理解,上文中为了便于理解,分别结合不同的实现方式对上文步骤210至步骤230的具体实现过程做了详细说明。但这些示例仅为便于理解而示出,本领域的技术人员基于相同的构思,可以对上文中的数学公式、位置谱矩阵、栅格数量以及其他矩阵、向量等作出不同的设计,例如采用不同的维度、不同的形式等。这些设计都可以在本申请提供的实施例的基础上经过数学变换或等价替换而得到,因此都应落入本申请的保护范围内。
在本申请实施例中,多个第一设备中每个第一设备覆盖范围的交叠区域为第一区域,并获取每个第一设备在第一区域的第一位置谱,对多个第一位置谱处理可以得到第二位置谱,从而可以根据第二位置谱确定第二设备的位置。与角度定位和时延定位相比,本申请实施例不仅有利于降低计算量,还可能进一步提升定位精度。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本申请实施例中,“预先设定”、“预先定义”可以通过在设备(例如,包括终端和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
还应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
以上结合图1至图6对本申请实施例的定位的方法做了详细说明。以下,结合图7至图8对本申请实施例定位的装置进行详细说明。
图7示出了本申请实施例的定位的装置700的示意性框图,该定位的装置700可以对应上述图2中的方法或上述图4中的方法的第一设备,也可以是应用于第一设备上的芯片、组件、集成电路、传感器、融合模块等中的芯片等。并且,该定位的装置700中各模块或单元分别用于执行上述图2中的方法或上述图4中的方法中所执行的各动作或处理过程。
如图7所示,该定位装置700包括处理单元(模块)710,可选的,该定位的装置还可以包括通信单元(模块)720,通信单元720用于在处理单元710的驱动下执行具体的信号收发。
在一种可能的实现方式中,该装置包括:
处理单元,处理单元710用于确定第一区域,第一区域为多个第一设备的覆盖范围交叠的地理区域;
通信单元720,通信单元720用于获取多个第一位置谱,多个第一位置谱根据第一区域确定,多个第一位置谱与多个第一设备一一对应,每个第一位置谱为所对应的第一设备在第一区域内的位置谱,每个第一位置谱是根据所对应的第一设备和第二设备之间的位置关系确定的;
处理单元710还用于根据多个第一位置谱确定第二位置谱;
处理单元710还用于根据第二位置谱确定第二设备在第一区域内的位置。
在本申请实施例提供的定位的装置中,多个第一设备中每个第一设备覆盖范围的交叠区域为第一区域,并获取每个第一设备在第一区域的第一位置谱,对多个第一位置谱处理可以得到第二位置谱,从而可以根据第二位置谱确定第二设备的位置。与角度定位和时延定位相比,本申请实施例不仅有利于降低计算量,还可能进一步提升定位精度。
可选的,在本申请的一些实施例中,每个第一设备在第一区域内的波束参数的值大于或等于第一阈值,波束参数包括波束对应的参考信号接收功率强度、波束对应的接收信号强度、波束对应的时延功率谱强度中的至少一种。
可选的,在本申请的一些实施例中,该处理单元710还用于:
对多个第一位置谱进行平均处理得到第二位置谱;或
对多个第一位置谱叠加得到第二位置谱。
可选的,在本申请的一些实施例中,通信单元720还用于获取多个第三位置谱,多个第三位置谱与多个第一位置谱一一对应,每个第三位置谱为将所对应的第一位置谱中小于 第二阈值的位置谱值设置为0的位置谱;处理单元还用于对多个第三位置谱叠加得到第二位置谱。
可选的,在本申请的一些实施例中,通信单元720还用于获取多个第三位置谱,多个第三位置谱与多个第一位置谱一一对应,每个第三位置谱为将所对应的第一位置谱中小于第二阈值的位置谱值设置为0的位置谱;处理单元还用于对多个第三位置谱进行平均处理得到第二位置谱。
可选的,在本申请的一些实施例中,每个第一位置谱由至少一个第四位置谱组成,至少一个第四位置谱与至少一个第二区域一一对应,每个第四位置谱为每个第一位置谱为所对应的第一设备在所对应的第二区域的位置谱,至少一个第二区域通过划分第一区域得到;
处理单元710还用于根据第二位置谱中位置谱值对应的第二区域确定第二设备的位置。
可选的,在本申请的一些实施例中,处理单元710还用于从第二位置谱中确定第一位置谱值,第一位置谱值为第二位置谱中最大的位置谱值,第一位置谱值对应的第二区域为所述第二设备的位置。
可选的,在本申请的一些实施例中,处理单元710还用于从第二位置谱中确定第二位置谱值,第二位置谱值为第二位置谱中大于或等于第三阈值的位置谱值,第二位置谱值对应的第二区域为第二设备的位置。
可选的,在本申请的一些实施例中,处理单元710还用于统计至少两个第二区域中每个第二区域中的第一设备数量,其中,所述位置谱值对应至少两个第二区域,所述第一设备数量最多的第二区域为第二设备的位置。
图8是本申请实施例提供的通信装置800的另一示意性框图。如图8所示,该通信装置800包括处理器810、收发器820和存储器830。其中,处理器810、收发器820和存储器830通过内部连接通路互相通信,该存储器830用于存储指令,该处理器810用于执行该存储器830存储的指令,以控制该收发器820发送信号和/或接收信号。
应理解,该通信装置800可以对应于上述方法实施例中的设备,并且可以用于执行上述方法实施例中设备执行的各个步骤和/或流程。可选地,该存储器830可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器830可以是一个单独的器件,也可以集成在处理器810中。该处理器810可以用于执行存储器830中存储的指令,并且当该处理器810执行存储器中存储的指令时,该处理器810用于执行上述方法实施例中的各个步骤和/或流程。
其中,收发器820可以包括发射机和接收机。收发器820还可以进一步包括天线,天线的数量可以为一个或多个。该处理器810和存储器830与收发器820可以是集成在不同芯片上的器件。如,处理器810和存储器830可以集成在基带芯片中,收发器820可以集成在射频芯片中。该处理器810和存储器830与收发器820也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置800是配置在设备中的部件,如电路、芯片、芯片系统等。
其中,收发器820也可以是通信接口,如输入/输出接口、电路等。该收发器820与处理器810和存储器830都可以集成在同一个芯片中,如集成在基带芯片中。
此外,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当计算机程序在计算机上运行时,使得本申请各方法实施例中的操作和/或流程被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中的操作和/或流程被执行。
此外,本申请还提供一种芯片,芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得任意一个方法实施例中的操作和/或处理被执行。
进一步地,芯片还可以包括通信接口。通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,芯片还可以包括存储器。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储 在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种定位的方法,其特征在于,包括:
    确定第一区域,所述第一区域为多个第一设备的覆盖范围交叠的地理区域;
    获取多个第一位置谱,所述多个第一位置谱根据所述第一区域确定,所述多个第一位置谱与所述多个第一设备一一对应,每个第一位置谱为所对应的第一设备在所述第一区域内的位置谱,所述每个第一位置谱是根据所对应的第一设备和第二设备之间的位置关系确定的;
    根据所述多个第一位置谱确定第二位置谱;
    根据所述第二位置谱确定所述第二设备在所述第一区域内的位置。
  2. 如权利要求1所述的方法,其特征在于,所述每个第一设备在所述第一区域内的波束参数的值大于或等于第一阈值,所述波束参数包括波束对应的参考信号接收功率强度、波束对应的接收信号强度、波束对应的时延功率谱强度中的至少一种。
  3. 如权利要求1或2所述的方法,其特征在于,所述根据所述多个第一位置谱确定第二位置谱,包括:
    对所述多个第一位置谱进行平均处理得到所述第二位置谱;或
    对所述多个第一位置谱叠加得到所述第二位置谱。
  4. 如权利要求1或2所述的方法,其特征在于,所述根据所述多个第一位置谱确定第二位置谱,包括:
    获取多个第三位置谱,所述多个第三位置谱与所述多个第一位置谱一一对应,每个第三位置谱为将所对应的第一位置谱中小于或等于第二阈值的位置谱值设置为0的位置谱;
    对所述多个第三位置谱叠加得到所述第二位置谱。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述每个第一位置谱由至少一个第四位置谱组成,所述至少一个第四位置谱与至少一个第二区域一一对应,所述每个第四位置谱为所述每个第一位置谱所对应的第一设备在所对应的第二区域的位置谱,所述至少一个第二区域通过划分所述第一区域得到;
    所述根据所述第二位置谱确定所述第二设备在所述第一区域内的位置包括:
    根据所述第二位置谱中位置谱值对应的第二区域确定所述第二设备的位置。
  6. 如权利要求5所述的方法,其特征在于,所述根据所述第二位置谱中的位置谱值确定所述第二设备的位置,包括:
    从所述第二位置谱中确定第一位置谱值,所述第一位置谱值为所述第二位置谱中最大的位置谱值,所述第一位置谱值对应的第二区域为所述第二设备的位置。
  7. 如权利要求5或6所述的方法,其特征在于,所述根据所述第二位置谱中的位置谱值确定所述第二设备的位置,包括:
    从所述第二位置谱中确定第二位置谱值,所述第二位置谱值为第二位置谱中大于或等于第三阈值的位置谱值,所述第二位置谱值对应的第二区域为所述第二设备的位置。
  8. 如权利要求6或7所述的方法,其特征在于,所述方法还包括:
    统计至少两个第二区域中每个第二区域中的第一设备数量,其中,所述位置谱值对应 所述至少两个第二区域,所述第一设备数量最多的第二区域为所述第二设备的位置。
  9. 一种定位的装置,其特征在于,包括:
    处理单元,所述处理单元用于确定第一区域,所述第一区域为多个第一设备的覆盖范围交叠的地理区域;
    通信单元,所述通信单元用于获取多个第一位置谱,所述多个第一位置谱根据所述第一区域确定,所述多个第一位置谱与所述多个第一设备一一对应,每个第一位置谱为所对应的第一设备在所述第一区域内的位置谱,所述每个第一位置谱是根据所对应的第一设备和第二设备之间的位置关系确定的;
    所述处理单元还用于根据所述多个第一位置谱确定第二位置谱;
    所述处理单元还用于根据所述第二位置谱确定所述第二设备在所述第一区域内的位置。
  10. 如权利要求9所述的装置,其特征在于,所述每个第一设备在所述第一区域的波束参数的值大于或等于第一阈值,所述波束参数包括波束对应的参考信号接收功率强度、波束对应的接收信号强度、波束对应的时延功率谱强度中的至少一种。
  11. 如权利要求9或10所述的装置,其特征在于,所述处理单元还用于:
    对所述多个第一位置谱进行平均处理得到所述第二位置谱;或
    对所述多个第一位置谱叠加得到所述第二位置谱。
  12. 如权利要求9或10所述的装置,其特征在于,所述通信单元还用于获取多个第三位置谱,所述多个第三位置谱与所述多个第一位置谱一一对应,每个第三位置谱为将所对应的第一位置谱中小于第二阈值的位置谱值设置为0的位置谱;
    所述处理单元还用于对所述多个第三位置谱叠加得到所述第二位置谱。
  13. 如权利要求9至12中任一项所述的装置,其特征在于,所述每个第一位置谱由至少一个第四位置谱组成,所述至少一个第四位置谱与至少一个第二区域一一对应,所述每个第四位置谱为所述每个第一位置谱为所对应的第一设备在所对应的第二区域的位置谱,所述至少一个第二区域通过划分所述第一区域得到;
    所述处理单元还用于根据所述第二位置谱中位置谱值对应的第二区域确定所述第二设备的位置。
  14. 如权利要求13所述的装置,其特征在于,所述处理单元还用于从所述第二位置谱中确定第一位置谱值,所述第一位置谱值为所述第二位置谱中最大的位置谱值,所述第一位置谱值对应的第二区域为所述第二设备的位置。
  15. 如权利要求13或14所述的装置,其特征在于,所述处理单元还用于从所述第二位置谱中确定第二位置谱值,所述第二位置谱值为第二位置谱中大于或等于第三阈值的位置谱值,所述第二位置谱值对应的第二区域为所述第二设备的位置。
  16. 如权利要求14或15所述的装置,其特征在于,所述处理单元还用于统计至少两个第二区域中每个第二区域中的第一设备数量,其中,所述位置谱值对应所述至少两个第二区域,所述第一设备数量最多的第二区域为所述第二设备的位置。
  17. 一种通信装置,其特征在于,包括:
    处理器,所述处理器用于从存储器调用并运行所述计算机程序,使得所述通信装置执行如权利要求1至8中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机代码,当所述计算机代码在计算机上运行时,使得所述计算机执行权利要求1至8中任一项所述的方法。
  19. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行权利要求1至8中任一项所述的方法。
PCT/CN2021/075225 2021-02-04 2021-02-04 一种定位的方法及装置 WO2022165699A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/075225 WO2022165699A1 (zh) 2021-02-04 2021-02-04 一种定位的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/075225 WO2022165699A1 (zh) 2021-02-04 2021-02-04 一种定位的方法及装置

Publications (1)

Publication Number Publication Date
WO2022165699A1 true WO2022165699A1 (zh) 2022-08-11

Family

ID=82740733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075225 WO2022165699A1 (zh) 2021-02-04 2021-02-04 一种定位的方法及装置

Country Status (1)

Country Link
WO (1) WO2022165699A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143576A (zh) * 2010-01-29 2011-08-03 中兴通讯股份有限公司 终端定位系统和终端定位方法
CN102196557A (zh) * 2010-03-19 2011-09-21 微软公司 选择用于位置推断的信标
CN107529143A (zh) * 2017-09-25 2017-12-29 深圳市壹捌壹玖科技有限公司 终端定位方法、系统、装置和计算机存储介质
TW201930914A (zh) * 2018-01-04 2019-08-01 英屬維京群島商飛思捷投資股份有限公司 無線定位系統及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143576A (zh) * 2010-01-29 2011-08-03 中兴通讯股份有限公司 终端定位系统和终端定位方法
CN102196557A (zh) * 2010-03-19 2011-09-21 微软公司 选择用于位置推断的信标
CN107529143A (zh) * 2017-09-25 2017-12-29 深圳市壹捌壹玖科技有限公司 终端定位方法、系统、装置和计算机存储介质
TW201930914A (zh) * 2018-01-04 2019-08-01 英屬維京群島商飛思捷投資股份有限公司 無線定位系統及方法

Similar Documents

Publication Publication Date Title
US11929802B2 (en) Unmanned aerial vehicle communication
US20220053351A1 (en) Measurement Reporting Method and Apparatus
CN109845134B (zh) 快速毫米波小区获取
WO2017092536A1 (zh) 一种确定通信波束的方法及对应装置
US20220171014A1 (en) Relative angle-based positioning method and apparatus
US11303337B2 (en) Radiation pattern modification in the presence of interference sources in frequency division duplex (FDD) systems
US20220159736A1 (en) Signal transmission method and apparatus
CN112930702A (zh) 用于载波聚合/多无线电接入技术的群延迟校准
EP3360263A1 (en) Techniques to reduce radiated power for mimo wireless systems
WO2021227901A1 (zh) 一种定位方法、定位管理装置、接入网设备以及终端
US20220167181A1 (en) Reference signal transmission method and device
US20220263591A1 (en) Angle positioning method, apparatus, and device
WO2020001527A1 (zh) 波束的选择方法、装置和存储介质
WO2022228003A1 (zh) 波束切换的方法和装置
US20220150744A1 (en) Measurement reporting method and apparatus
US20230361847A1 (en) Selective radio frequency (rf) reference beam radiation in a wireless communications system (wcs) based on user equipment (ue) locations
WO2022103533A2 (en) Apparatus and method for low overhead frequency-averaged beam pattern feedback in millimeter wave positioning systems
CN109587699B (zh) 传输数据的方法和装置
WO2022165699A1 (zh) 一种定位的方法及装置
US11395156B2 (en) Downlink data transmission method, network device, and terminal
US11990977B1 (en) Beam training method and apparatus
WO2022267818A1 (zh) 一种移动性管理方法及通信装置
WO2021208742A1 (zh) 一种波束对准方法及装置
WO2022165695A1 (zh) 一种波束选择的方法及装置
CN117674930A (zh) 参考信号处理方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923724

Country of ref document: EP

Kind code of ref document: A1