WO2020001527A1 - 波束的选择方法、装置和存储介质 - Google Patents

波束的选择方法、装置和存储介质 Download PDF

Info

Publication number
WO2020001527A1
WO2020001527A1 PCT/CN2019/093232 CN2019093232W WO2020001527A1 WO 2020001527 A1 WO2020001527 A1 WO 2020001527A1 CN 2019093232 W CN2019093232 W CN 2019093232W WO 2020001527 A1 WO2020001527 A1 WO 2020001527A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
beam group
spectral efficiency
terminal
terminals
Prior art date
Application number
PCT/CN2019/093232
Other languages
English (en)
French (fr)
Inventor
张鹏程
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3104373A priority Critical patent/CA3104373C/en
Priority to EP19826354.3A priority patent/EP3799326B1/en
Publication of WO2020001527A1 publication Critical patent/WO2020001527A1/zh
Priority to US17/131,307 priority patent/US11606227B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • Embodiments of the present application relate to the field of communications technologies, and in particular, to a method, an apparatus, and a storage medium for selecting a beam.
  • MBB Mobile Broadband
  • UMTS Universal Mobile Telecommunications System
  • the number of channels of the main equipment is usually increased to increase the vertical dimension partition of the service information channel, improve the spectrum efficiency, and then increase the network capacity.
  • the present application provides a beam selection method, device, and storage medium, which can determine the optimal coverage beam group, which will not only improve the splitting gain, increase the network capacity expansion effect, but also improve the overall coverage effect.
  • an embodiment of the present application provides a beam selection method, including:
  • each of the beam groups includes at least one beam, and each beam covers at least one terminal;
  • the target beam group is determined according to the second spectral efficiency of each beam group.
  • At least one terminal includes a terminal in the cell, a neighbor station, or a neighbor terminal in the neighbor cell.
  • the network device measures the SRS to determine the first spectrum efficiency of each terminal, and then calculates the second spectrum efficiency of each beam group, thereby determining the target beam group.
  • the network device measures the SRS to determine the first spectrum efficiency of each terminal, and then calculates the second spectrum efficiency of each beam group, thereby determining the target beam group.
  • the optimal coverage beam group can be determined, which will not only improve the split gain, increase the network capacity expansion effect, but also improve the overall coverage effect.
  • the measuring the channel sounding reference signal SRS sent by at least one terminal separately to determine the first spectrum efficiency of each terminal includes:
  • the determining the first spectral efficiency of each of the terminals in the local cell according to the power level of each first beam includes:
  • the first spectrum efficiency of each of the terminals in the own cell is determined according to each of the SINRs.
  • the beam with the highest power level is selected as the service beam of the terminal, and the other beams are used as the interference beam of the terminal.
  • the SINR is calculated, and the first spectrum efficiency of the terminal is calculated according to the calculated SINR and the Shannon formula or the demodulation threshold table.
  • the calculating the second spectral efficiency of each beam group according to the first spectral efficiency of each of the terminals includes:
  • the calculating the second spectral efficiency of each beam group according to the first spectral efficiency of each of the terminals includes:
  • the determining a target beam group according to the second spectral efficiency of each beam group includes:
  • the multi-beam can be adjusted to better improve the spectrum efficiency gain under the multi-beam coverage.
  • the determining a target beam group according to the second spectral efficiency of each beam group includes:
  • a beam group whose second spectral efficiency is greater than a first preset threshold is determined as the target beam group.
  • the network device determines the second spectral efficiency of each beam group according to the foregoing manner, it will compare the second spectral efficiency of each beam group and sort each second spectral efficiency in descending order.
  • the first p second beam sets with greater spectral efficiency are selected as target beam sets, where the p target beam sets are beam sets with optimal coverage.
  • the network device may also determine the beam group whose second spectral efficiency is greater than the first preset threshold as the target beam group.
  • the measuring the SRS sent by each terminal in the cell to determine an equivalent channel response of each first beam corresponding to the cell includes:
  • Is the channel response of the received P physical channels Is the multi-beam weight, Represents the weight coefficient of the first beam m on the channel p; Is the weight vector of the first beam m on the used channel; Represents the equivalent channel response of each first beam obtained after weighting processing.
  • the calculating a power level of each first beam according to an equivalent channel response of each first beam includes:
  • the method further includes:
  • the beam group of the fourth beam is determined as a non-target beam group.
  • the network device after determining the power level of each third beam corresponding to the neighboring cell, the network device will determine the third beam with the highest power level, where the third beam with the highest power level is the one with the highest interference. For the third beam, the network device may exclude the beam group including the third beam with the highest power level, that is, determine the non-target beam group.
  • the beam group containing the third beam with the most interference is determined as the non-target beam group, in this way, considering the interference situation between stations or cells, the downlink optimal coverage beam group can be determined, thereby improving the overall coverage effect.
  • the network device After determining the power level of each third beam corresponding to the neighboring cell, the network device will determine a fourth beam whose power level is greater than a second preset threshold, where the power level is greater than the second preset threshold.
  • the four beams are the beams with large interference, and the network device may exclude the beam group including the fourth beam, and determine that it is a non-target beam group.
  • the beam group containing the fourth beam with a large interference is determined as a non-target beam group, in this way, since the interference situation between stations or cells is considered, the optimal downlink beam group can be determined, thereby improving the overall coverage effect. .
  • the method further includes:
  • the beams whose beam coverage level is not greater than the threshold S (for example, 10 dB) can be divided into a group.
  • an embodiment of the present application provides a beam selection device, including:
  • a determining unit configured to measure a channel sounding reference signal SRS sent by at least one terminal separately, and determine a first spectrum efficiency of each terminal;
  • a calculation unit configured to calculate a second spectrum efficiency of each beam group according to the first spectrum efficiency of each of the terminals; wherein each of the beam groups includes at least one beam, and each beam covers at least one terminal;
  • the determining unit is further configured to determine a target beam group according to the second spectrum efficiency of each beam group.
  • the determining unit is specifically configured to:
  • the determining unit is specifically configured to:
  • the first spectrum efficiency of each of the terminals in the own cell is determined according to each of the SINRs.
  • the calculation unit is specifically configured to:
  • the calculation unit is specifically configured to:
  • the determining unit is specifically configured to:
  • the determining unit is specifically configured to:
  • a beam group whose second spectral efficiency is greater than a first preset threshold is determined as the target beam group.
  • the determining unit is specifically configured to:
  • Is the channel response of the received P physical channels Is the multi-beam weight, Represents the weight coefficient of the first beam m on the channel p; Is the weight vector of the first beam m on the used channel; Represents the equivalent channel response of each first beam obtained after weighting processing.
  • the calculation unit is specifically configured to:
  • the determining unit is further configured to measure an SRS sent by at least one terminal in a neighboring cell, and determine an equivalent channel response of each third beam corresponding to the neighboring cell;
  • the calculation unit is further configured to calculate a power level of each third beam according to an equivalent channel response of each third beam;
  • the determining unit is further configured to determine a third beam with the highest power level, and determine a beam group including the third beam with the highest power level as a non-target beam group, or include the power level
  • the beam group of the fourth beam that is greater than the second preset threshold is determined as a non-target beam group.
  • the apparatus further includes:
  • a grouping unit is configured to group a plurality of the first beams according to a coverage range of the plurality of the first beams to obtain a plurality of beam groups.
  • the apparatus provided in the second aspect of the present application may be a network device or a chip in the network device, and the network device or the chip has a function of implementing a beam selection method in the foregoing aspects or any possible manners thereof .
  • the functions may be implemented by hardware, and may also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the network device includes a processing unit and a transceiver unit, the processing unit may be a processor, the transceiver unit may be a transceiver, the transceiver includes a radio frequency circuit, and optionally, the communication device further includes a storage unit
  • the storage unit may be a memory, for example.
  • the network device includes a storage unit, the storage unit is configured to store a computer execution instruction, the processing unit is connected to the storage unit, and the processing unit executes the computer execution instruction stored in the storage unit to cause all the The method for selecting a beam in the network device performing the above aspects or any of its possible ways is described.
  • the chip includes a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiving unit may be an input / output interface, a pin, or a circuit on the chip.
  • the processing unit may execute computer execution instructions stored in the storage unit, so that the chip executes the beam selection method in the foregoing aspects or any possible manners thereof.
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, and the storage unit may also be a storage unit (for example, a storage unit) outside the chip in the network device.
  • Read-only memory (ROM) or other types of static storage devices eg, random access memory (RAM) that can store static information and instructions.
  • the above-mentioned processor may be a central processing unit (CPU), a microprocessor, or an application specific integrated circuit (ASIC), or one or more for controlling the above aspects or It is an integrated circuit of a program that executes a beam selection method in any of its possible ways.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • an embodiment of the present application further provides a network device, and the network device may include a processor and a memory;
  • the memory is used to store program instructions
  • the processor is configured to call and execute a program instruction stored in the memory, and execute the beam selection method according to any one of the first aspects.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method described in any one of the first aspects is executed. Beam selection method.
  • the embodiment of the present application further provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute the beam selection method provided in the first aspect of the embodiment of the present application.
  • an embodiment of the present application further provides a chip.
  • a computer program is stored on the chip, and when the computer program is executed by the processor, the method for selecting a beam provided in the first aspect is performed.
  • the beam selection method, device, and storage medium provided in the embodiments of the present application.
  • the network device measures the channel sounding reference signal SRS sent by at least one terminal, determines the first spectrum efficiency of each terminal, and determines the first spectrum efficiency of each terminal. Efficiency, calculating the second spectral efficiency of each beam group; wherein each beam group includes at least one beam, each beam covers at least one terminal, and the target beam group is determined according to the second spectral efficiency of each beam group. Because the network device measures the SRS to determine the first spectrum efficiency of each terminal, and then calculates the second spectrum efficiency of each beam group, thereby determining the target beam group. In this way, according to the second frequency of each beam group Efficiency, can determine the interference situation between cells, so that the optimal coverage beam group can be determined, which will not only improve the split gain, increase the network capacity expansion effect, but also improve the overall coverage effect.
  • FIG. 1 is a schematic flowchart of a beam selection method according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic diagram of effects before and after multi-beam adjustment
  • FIG. 3 is a schematic structural diagram of a beam selection apparatus 30 according to an embodiment of the present application.
  • FIG. 4 is another schematic structural diagram of a beam selection apparatus 40 according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • Terminal also known as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device , User agent, or user device.
  • the terminal can be a station (ST) in a wireless local area network (WLAN), a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (wireless local loop) , WLL) stations, personal digital processing (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, such as , Terminal equipment in a fifth-generation (5G) network or terminal equipment in a future evolved public land mobile network (PLMN) network, in a new air interface (NR) communication system Terminal equipment, etc.
  • 5G fifth-generation
  • PLMN future evolved public land mobile network
  • NR new air interface
  • the terminal may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices, which are the general name for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a device that is worn directly on the body or is integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also powerful functions through software support, data interaction, and cloud interaction.
  • Broad-spectrum wearable smart devices include full-featured, large-sized, full or partial functions that do not rely on smart phones, such as smart watches or smart glasses, and only focus on certain types of application functions, and need to cooperate with other devices such as smart phones Use, such as smart bracelets, smart jewelry, etc. for physical signs monitoring.
  • the network device may be a device for communicating with a mobile device.
  • the network device may be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, or it may be
  • the base station (nodeB, NB) in WCDMA can also be an evolutionary base station (eNB or eNodeB) in LTE, or a relay station or access point, or an in-vehicle device, a wearable device, and a network in the future 5G network Equipment, or network equipment in a future evolved PLMN network, or a new generation base station (gNodeB) in an NR system.
  • the unit in this application refers to a functional unit or a logical unit. It can be in the form of software and its function can be implemented by the processor executing program code; it can also be in the form of hardware.
  • the beam selection method provided in the embodiments of the present application can be applied to a multi-antenna base station system, and particularly to how to select a downlink optimal coverage beam group.
  • the number of channels of the main equipment is usually increased to increase the vertical dimension partition of the service information channel, improve the spectrum efficiency, and then increase the network capacity.
  • the installation of the antenna azimuth angle of the base station, the planning of the base station, and the distribution of users in the split cell it will cause the loss of the split gain, which will affect the network capacity expansion effect.
  • a network device measures a channel sounding reference signal SRS sent by at least one terminal, determines a first spectrum efficiency of each terminal, and according to each terminal, Calculate the second spectral efficiency of each beam group; wherein each beam group includes at least one beam, each beam covers at least one terminal, and the target beam group is determined according to the second spectral efficiency of each beam group . Because the network device measures the SRS to determine the first spectrum efficiency of each terminal, and then calculates the second spectrum efficiency of each beam group, thereby determining the target beam group. In this way, according to the second frequency of each beam group Efficiency, can determine the interference situation between cells, so that the optimal coverage beam group can be determined, which will not only improve the split gain, increase the network capacity expansion effect, but also improve the overall coverage effect.
  • SRS channel sounding reference signal
  • FIG. 1 is a schematic flowchart of a beam selection method according to Embodiment 1 of the present application.
  • an embodiment of the present application provides a beam selection method.
  • the method may be performed by any device that executes a beam selection method, and the device may be implemented by software and / or hardware.
  • the apparatus may be integrated in a network device.
  • the method in this embodiment may include:
  • Step 101 The SRS sent by at least one terminal is measured to determine the first spectrum efficiency of each terminal.
  • the network device receives a sounding reference signal (SRS) sent by at least one terminal, and measures the received at least one uplink SRS signal to determine the first spectrum efficiency of each terminal.
  • SRS sounding reference signal
  • at least one terminal includes a terminal in the cell, a neighbor station, or a neighbor terminal in the neighbor cell.
  • the network device measures the SRS sent by at least one terminal to determine the first spectrum efficiency of each terminal, which may be performed in the following manner:
  • the SRS sent by each terminal in the cell is measured separately.
  • To determine the equivalent channel response of each first beam corresponding to the cell and then calculate the power level of each first beam based on the equivalent channel response of each first beam, and then according to the power of each first beam Level to determine the first spectrum efficiency of each terminal in the cell.
  • the received SRS is measured to determine the equivalent channel response of each first beam corresponding to the cell.
  • the formula Determine the equivalent channel response of each first beam where: Is the channel response of the received P physical channels, Is the multi-beam weight, Represents the weight coefficient of the first beam m on the channel p, m is an integer greater than zero and less than or equal to M, and M is the number of the first beams; Is the weight vector of the first beam m on the used channel; Represents the equivalent channel response of each first beam obtained after weighting processing.
  • the power level of each first beam that is, the equivalent power on each first beam.
  • the first spectrum efficiency of each terminal in the cell is determined according to the power level of each first beam.
  • a signal beam and an interference plus noise ratio of each terminal in the cell can be calculated by separately determining a service beam and an interference beam of each terminal in the cell, and according to the service beam and the interference beam. to interference (SINR), and to determine the first spectrum efficiency of each terminal in the cell according to each SINR.
  • SINR interference
  • the network device selects the beam with the highest power level as the service beam of the terminal and the other beams as the interference beam of the terminal.
  • the SINR is calculated, and the first spectrum efficiency of the terminal is calculated according to the calculated SINR and the Shannon formula or the demodulation threshold table.
  • the SINR is converted according to the level difference, and the first spectrum efficiency of each terminal is calculated according to the Shannon formula or the demodulation threshold table.
  • Step 102 Calculate the second spectrum efficiency of each beam group according to the first spectrum efficiency of each terminal.
  • Each beam group includes at least one beam, and each beam covers at least one terminal.
  • the first beams may be grouped according to the coverage of the M first beams to obtain multiple beam groups, where each beam is Each group includes at least one beam, and each beam covers at least one terminal.
  • the beams whose beam coverage level is not greater than the threshold S may be divided into a group, etc.
  • the threshold S for example, 10 dB
  • multiple first beams may also be grouped according to other rules.
  • the network device After the network device determines the first spectrum efficiency of the multiple terminals covered by each beam, it will calculate the second spectrum efficiency of each beam group according to the first spectrum efficiency.
  • the number of terminals covered by each beam in each beam group may be counted, and according to a formula Or formula Calculating a second beam set of each spectral efficiency K ⁇ , wherein, se (k) is the k-th spectral efficiency, a first terminal, k is an integer greater than zero and less than the N i, M being a first beam in each beam group Quantity, N i is the number of terminals covered by each first beam in each beam group; i is a positive integer greater than or equal to zero and less than M-1.
  • the network device can count the number of serving terminals on each first beam. Or formula Calculating a second beam set of each spectral efficiency K ⁇ , wherein, se (k) is the k-th spectral efficiency, a first terminal, k is an integer greater than zero and less than the N i, M being a first beam in each beam group Number, N i is the number of terminals covered by each first beam in each beam group, and i is a positive integer greater than or equal to zero and less than M-1.
  • the comprehensive capacity spectral efficiency of each beam group can be calculated , That is, the second spectral efficiency KE ⁇ of each beam group, that is, by calculating the average of the spectral efficiency of multiple terminals covered by each first beam, and the average of the spectral efficiency of all the first beams in each beam group
  • the second spectrum efficiency of each beam group can be obtained by adding.
  • the number of terminals covered by each first beam in each beam group may also be counted, and the coverage within each beam group may be determined The second beam with the largest number of terminals, and obtain the number of terminals covered by the second beam; according to the formula Calculate the second spectral efficiency KE ⁇ of each beam group.
  • se (k) is the k-th spectral efficiency
  • a first terminal k is an integer greater than zero and is smaller than N i
  • M being the number of first beams in each beam group
  • i is a positive integer greater than or equal to zero and less than M
  • N x is the number of terminals covered by the second beam.
  • the network device can count the number of serving terminals on each beam, select the second beam with the largest number of serving terminals, and obtain the number of serving terminals N x on the second beam. Calculate the second spectral efficiency KE ⁇ of each beam group.
  • a beam group includes beam a, beam b, and beam c
  • the number of serving users on beam a is 6, that is, the number of terminals covered by beam a is 6, and the number of terminals covered by beam b
  • the number is 7, the number of terminals covered by beam c is 3, then the second beam with the most number of terminals covered in the beam group is beam b, and the number of terminals N x covered by the second beam is 7.
  • the network device will be based on the formula The second spectral efficiency of the beam group can be calculated.
  • Step 103 Determine a target beam group according to the second spectrum efficiency of each beam group.
  • the network device can determine the target beam group according to the second spectral efficiency, where the determined target beam group is a beam with optimal coverage. group.
  • the network device may sort the second spectrum efficiency of each beam group in descending order and select the first p beam groups.
  • p is a positive integer.
  • the network device determines the second spectral efficiency of each beam group according to the foregoing manner, it will compare the second spectral efficiency of each beam group, and sort each second spectral efficiency in descending order. , Select the first p second beam group with greater spectral efficiency as the target beam group, where the p target beam groups are the beam groups with the best coverage.
  • the network device may also determine a beam group whose second spectral efficiency is greater than a first preset threshold as a target beam group.
  • the first preset threshold can be set according to actual conditions or experience.
  • the embodiment of the present application does not limit it here.
  • the network device may determine the distribution information of the terminals covered by each beam group, and select at least one of the distribution information within a preset range.
  • the first beam group and at least one second beam group with the second largest spectral efficiency in the first beam group are determined as the target beam group.
  • the network device selects the second beam group with the highest spectral efficiency from the at least one first beam group as the target beam group. .
  • the network device can determine the distribution information of the terminals covered by each beam group by calculating the variance of the distribution number of the terminals covered by each beam group.
  • the preset range may be selected according to actual conditions or experience. For specific values of the preset range, this embodiment of the present application does not limit this.
  • the multi-beam can be adjusted to better improve the spectrum efficiency gain under the multi-beam coverage.
  • the network device will measure the SRS sent by at least one terminal in the neighboring cell, determine the equivalent channel response of each third beam corresponding to the neighboring cell, and calculate each channel based on the equivalent channel response of each third beam.
  • the power level of three third beams determine the third beam with the highest power level, and determine the beam group containing the third beam with the highest power level as a non-target beam group, or the power level containing the third beam may also be included
  • the beam group of the fourth beam that is greater than the second preset threshold is determined as a non-target beam group.
  • the network device measures the SRS sent by at least one terminal in the neighboring cell, determines the equivalent channel response of each third beam corresponding to the neighboring cell, and calculates each based on the equivalent channel response of each third beam.
  • the method of the power level of the third beam is similar to the method of determining the equivalent channel response and power level of each first beam corresponding to the cell in step 101, and details are not described herein again.
  • the network device After the network device determines the power level of each third beam corresponding to the neighboring cell, it will determine the third beam with the highest power level, where the third beam with the highest power level is the third beam with the highest interference, then The network device may exclude the beam group including the third beam with the highest power level, that is, determine the non-target beam group.
  • the beam group containing the third beam with the most interference is determined as the non-target beam group, in this way, considering the interference situation between stations or cells, the downlink optimal coverage beam group can be determined, thereby improving the overall coverage effect.
  • the network device After determining the power level of each third beam corresponding to the neighboring cell, the network device will determine a fourth beam whose power level is greater than a second preset threshold, where the power level is greater than the second preset threshold.
  • the four beams are the beams with large interference, and the network device may exclude the beam group including the fourth beam, and determine that it is a non-target beam group.
  • the beam group containing the fourth beam with a large interference is determined as a non-target beam group, in this way, since the interference situation between stations or cells is considered, the optimal downlink beam group can be determined, thereby improving the overall coverage effect. .
  • Figure 2 is a schematic diagram of the effects before and after multi-beam adjustment. As shown in Fig. 2, before the multi-beam adjustment, the interference between the beams is large and the beam coverage is poor. After the adjustment, the optimal downlink coverage beam group can be determined, reducing the interference between the beams, and improving the overall coverage effect.
  • An embodiment of the present invention provides a beam selection method, in which a network device measures a channel sounding reference signal SRS sent by at least one terminal, determines a first spectrum efficiency of each terminal, and calculates each according to the first spectrum efficiency of each terminal.
  • the second spectrum efficiency of the beam group each beam group includes at least one beam, and each beam covers at least one terminal, and the target beam group is determined according to the second spectrum efficiency of each beam group.
  • the network device measures the SRS to determine the first spectrum efficiency of each terminal, and then calculates the second spectrum efficiency of each beam group, thereby determining the target beam group.
  • the optimal coverage beam group can be determined, which will not only improve the split gain, increase the network capacity expansion effect, but also improve the overall coverage effect.
  • FIG. 3 is a schematic structural diagram of a beam selection device 30 according to an embodiment of the present application.
  • the beam selection device 30 may include:
  • the determining unit 11 is configured to measure a channel sounding reference signal SRS sent by at least one terminal, respectively, to determine a first spectrum efficiency of each terminal;
  • the calculating unit 12 is configured to calculate a second spectrum efficiency of each beam group according to the first spectrum efficiency of each of the terminals; wherein each of the beam groups includes at least one beam, and each beam covers at least one terminal;
  • the determining unit 11 is further configured to determine a target beam group according to the second spectrum efficiency of each beam group.
  • the determining unit 11 is specifically configured to:
  • the determining unit 11 is specifically configured to:
  • the first spectrum efficiency of each of the terminals in the own cell is determined according to each of the SINRs.
  • calculation unit 12 is specifically configured to:
  • calculation unit 12 is specifically configured to:
  • the determining unit 11 is specifically configured to:
  • the determining unit 11 is specifically configured to:
  • a beam group whose second spectral efficiency is greater than a first preset threshold is determined as the target beam group.
  • the determining unit 11 is specifically configured to:
  • Is the channel response of the received P physical channels Is the multi-beam weight, Represents the weight coefficient of the first beam m on the channel p; Is the weight vector of the first beam m on the used channel; Represents the equivalent channel response of each first beam obtained after weighting processing.
  • calculation unit 12 is specifically configured to:
  • the determining unit 11 is further configured to measure an SRS sent by at least one terminal in a neighboring cell, and determine an equivalent channel response of each third beam corresponding to the neighboring cell;
  • the calculation unit 12 is further configured to calculate a power level of each third beam according to an equivalent channel response of each third beam;
  • the determining unit 11 is further configured to determine a third beam with the highest power level, and determine a beam group including the third beam with the highest power level as a non-target beam group, or include the power level
  • the beam group of the fourth beam that is greater than the second preset threshold is determined as a non-target beam group.
  • FIG. 4 is another schematic structural diagram of a beam selection apparatus 40 according to an embodiment of the present application. Based on the embodiment shown in FIG. 3, the apparatus further includes a grouping unit 13.
  • the grouping unit 13 is configured to group a plurality of the first beams according to a coverage range of the plurality of the first beams to obtain a plurality of beam groups.
  • the beam selection device shown in the embodiments of the present application can execute the technical solution of the beam selection method shown in any one of the foregoing embodiments.
  • the implementation principles and beneficial effects are similar, and details are not described herein again.
  • each unit of the above device is only a division of logical functions. In actual implementation, it may be fully or partially integrated into a physical entity, or it may be physically separated. And these units can all be implemented in the form of software calling through processing elements; they can also be all implemented in hardware; some units can also be implemented through software calling through processing elements, and some units can be implemented through hardware.
  • the sending unit may be a separately established processing element, or it may be integrated and implemented in a certain chip of the network device. In addition, it may also be stored in the form of a program in the memory of the network device and processed by a certain network device. The component calls and performs the function of the sending unit.
  • the implementation of other units is similar.
  • each step of the above method or each unit above may be completed by an integrated logic circuit of hardware in a processor element or an instruction in the form of software.
  • the above sending unit is a unit that controls sending, and can send information through a sending device of the network device, such as an antenna and a radio frequency device.
  • the above units may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (ASICs), or one or more microprocessors (digital integrated processors) , DSP), or one or more field programmable gate array (FPGA).
  • ASICs application specific integrated circuits
  • DSP digital integrated processors
  • FPGA field programmable gate array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or another processor that can call a program.
  • CPU central processing unit
  • SOC system-on-a-chip
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device includes: an antenna 110, a radio frequency device 120, and a baseband device 130.
  • the antenna 110 is connected to the radio frequency device 120.
  • the radio frequency device 120 receives the information sent by the terminal device through the antenna 110, and sends the information sent by the terminal device to the baseband device 130 for processing.
  • the baseband device 130 processes the information of the terminal device and sends it to the radio frequency device 120.
  • the radio frequency device 120 processes the information of the terminal device and sends it to the terminal device via the antenna 110.
  • each of the above units is implemented in the form of a processing element scheduler.
  • the baseband device 130 includes a processing element 131 and a storage element 132, and the processing element 131 calls a program stored by the storage element 132 to execute method.
  • the baseband device 130 may further include an interface 133 for exchanging information with the radio frequency device 120.
  • the interface is, for example, a common public radio interface (CPRI).
  • the above units may be one or more processing elements configured to implement the above method. These processing elements are disposed on the baseband device 130.
  • the processing elements herein may be integrated circuits, for example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs. These integrated circuits can be integrated together to form a chip.
  • the above modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device 130 includes a SOC chip to implement the above method.
  • the chip may integrate a processing element 131 and a storage element 132, and the processing element 131 may call the stored program of the storage element 132 to implement the above method or the functions of the above units; or, at least one integrated circuit may be integrated in the chip.
  • the functions of some units are implemented in the form of a program called by a processing element, and the functions of some units are implemented in the form of an integrated circuit.
  • the above network device includes at least one processing element, a storage element, and a communication interface, and at least one of the processing elements is configured to execute the method provided by the foregoing method embodiment.
  • the processing element may perform some or all of the steps in the above method embodiments in a first manner: that is, a program stored in a storage element is executed; or in a second manner: that is, through an integrated logic circuit of hardware in a processor element Some or all of the steps in the above method embodiments are performed in a combined manner; of course, the methods provided in the above method embodiments may also be performed in combination with the first and second modes.
  • the processing elements here are the same as described above, and may be general-purpose processors, such as a central processing unit (CPU), or one or more integrated circuits configured to implement the above methods, such as one or more specific Integrated circuits (application specific integrated circuits, ASICs), or one or more microprocessors (digital processing processors, DSPs), or one or more field programmable gate arrays (FPGAs), etc.
  • CPU central processing unit
  • ASICs application specific integrated circuits
  • DSPs digital processing processors
  • FPGAs field programmable gate arrays
  • a storage element may be a single memory or a collective term for multiple storage elements.
  • the present application further provides a storage medium including a readable storage medium and a computer program, where the computer program is used to implement a beam selection method provided by any of the foregoing embodiments.
  • the present application also provides a program product, which includes a computer program (ie, an execution instruction), and the computer program is stored in a readable storage medium.
  • a computer program ie, an execution instruction
  • At least one processor of the network device may read the computer program from a readable storage medium, and the at least one processor executes the computer program to cause the network device to implement the beam selection method provided by the foregoing various embodiments.
  • An embodiment of the present application further provides a beam selection device, including at least one storage element and at least one processing element.
  • the at least one storage element is used to store a program, and when the program is executed, the beam selection device is executed. Operation of the network device in any of the above embodiments.
  • All or part of the steps for implementing the foregoing method embodiments may be completed by a program instructing related hardware.
  • the aforementioned program can be stored in a readable memory.
  • the steps including the foregoing method embodiments are executed; and the aforementioned memory (storage medium) includes: read-only memory (English: read-only memory (ROM), RAM, flash memory, hard disk, solid state hard disk) , Magnetic tape, floppy disk, optical disc, and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种波束的选择方法、装置和存储介质,该方法包括:分别对至少一个终端发送的信道探测参考信号SRS进行测量,确定各所述终端的第一频谱效率;根据各所述终端的第一频谱效率,计算各波束组的第二频谱效率;其中,各所述波束组中均包括至少一个波束,每个波束覆盖至少一个终端;根据各波束组的第二频谱效率,确定目标波束组。本申请提供的波束的选择方法、装置和存储介质能够确定出最优覆盖波束组,不仅会提高劈裂增益,提高网络容量的扩容效果,而且可以提升整体的覆盖效果。

Description

波束的选择方法、装置和存储介质
本申请要求于2018年06月28日提交中国专利局、申请号为201810689743.2、申请名称为“波束的选择方法、装置和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种波束的选择方法、装置和存储介质。
背景技术
随着移动宽带(MobileBroadband,MBB)的发展和用户数量的增加,网络容量日益成为移动通信系统(UniversalMobileTelecommunications System,UMTS)发展的瓶颈,常见的扩大网络容量的方式主要集中在新增频谱、新增站点,新增多扇区组网,或者采用劈裂天线。
现有技术中,通过劈裂天线扩大网络容量时,通常是通过增加主设备通道的数量,来增加业务信息通道垂直维度分区,提高频谱效率,进而提升网络容量。
然而,由于受基站的天线方位夹角的安装、基站规划以及劈裂小区内用户分布的影响,会造成劈裂增益的损失,从而影响网络容量的扩容效果。
发明内容
本申请提供一种波束的选择方法、装置和存储介质,能够确定出最优覆盖波束组,不仅会提高劈裂增益,提高网络容量的扩容效果,而且可以提升整体的覆盖效果
第一方面,本申请实施例提供一种波束的选择方法,包括:
分别对至少一个终端发送的信道探测参考信号SRS进行测量,确定各所述终端的第一频谱效率;
根据各所述终端的第一频谱效率,计算各波束组的第二频谱效率;其中,各所述波束组中均包括至少一个波束,每个波束覆盖至少一个终端;
根据各波束组的第二频谱效率,确定目标波束组。
在上述方案中,至少一个终端包括本小区终端、邻站或者邻区边界终端等。
由于网络设备通过对SRS进行测量,确定出各终端的第一频谱效率后,并以此计算出各波束组的第二频谱效率,从而确定目标波束组,这样,根据各波束组的第二频率效率,可以确定出小区间的干扰情况,从而可以确定出最优覆盖波束组,以此不仅会提高劈裂增益,提高网络容量的扩容效果,而且可以提升整体的覆盖效果。
在一种可能的实现方式中,所述分别对至少一个终端发送的信道探测参考信号SRS进行测量,确定各所述终端的第一频谱效率,包括:
分别对本小区内的各终端发送的所述SRS进行测量,确定本小区对应的每个第一波束的等效信道响应;
根据所述每个第一波束的等效信道响应,计算所述每个第一波束的功率电平;
根据所述每个第一波束的功率电平,确定本小区内的各所述终端的第一频谱效率。
在一种可能的实现方式中,所述根据所述每个第一波束的功率电平,确定本小区内的各所述终端的第一频谱效率,包括:
分别确定本小区内的各所述终端的服务波束和干扰波束;
根据所述服务波束和所述干扰波束,计算本小区内的各所述终端的信号与干扰加噪声比SINR;
根据各所述SINR,确定本小区内的各所述终端的第一频谱效率。
在上述方案中,网络设备在计算出各个第一波束的功率电平之后,将选择功率电平最大的波束作为该终端的服务波束,将其他波束作为该终端的干扰波束。在确定出该终端的服务波束和干扰波束后,将计算SINR,并根据计算出的SINR以及香农公式或者解调门限表计算该终端的第一频谱效率。
在一种可能的实现方式中,所述根据各所述终端的第一频谱效率,计算各波束组的第二频谱效率,包括:
统计每个波束组内各第一波束所覆盖的终端的数量;
根据公式
Figure PCTCN2019093232-appb-000001
或者公式
Figure PCTCN2019093232-appb-000002
计算各波束组的第二频谱效率KΕΛΛ,其中,se(k)为第k个终端的第一频谱效率,k为大于等于零且小于N i的整数,M为各波束组内的第一波束的数量,N i为各波束组内每个第一波束覆盖的终端数;i为大于等于零且小于M-1的正整数。
在一种可能的实现方式中,所述根据各所述终端的第一频谱效率,计算各波束组的第二频谱效率,包括:
统计每个波束组内各第一波束所覆盖的终端的数量;
确定每个波束组内覆盖终端数量最多的第二波束,并获取所述第二波束所覆盖的终端数;
根据公式
Figure PCTCN2019093232-appb-000003
计算各波束组的第二频谱效率KΕΛΛ,其中,se(k)为第k个终端的第一频谱效率,k为大于等于零且小于N i的整数,M为各波束组内的第一波束的数量,N i为各波束组内每个第一波束覆盖的终端数,i为大于等于零且小于M的正整数,N x为所述第二波束所覆盖的终端数。
在一种可能的实现方式中,所述根据各波束组的第二频谱效率,确定目标波束组,包括:
确定各所述波束组所覆盖的终端的分布信息;
选择所述分布信息处于预设范围内的至少一个第一波束组;
将所述至少一个第一波束组内所述第二频谱效率最大的第二波束组确定为所述目标波束组。
由于可以根据上行SRS的测量的结果,进行下行覆盖波束的增益评估,从而可以对多波束进行调整,以更好的提升多波束覆盖下的频谱效率收益。
在一种可能的实现方式中,所述根据各波束组的第二频谱效率,确定目标波束组,包括:
将各波束组的第二频谱效率按照从大到小的顺序进行排序,选择前p个波束组作为所述目标波束组;其中,p为正整数;或者,
将所述第二频谱效率大于第一预设阈值的波束组确定为所述目标波束组。
在本方案中,网络设备根据前述方式确定出各波束组的第二频谱效率后,将比较各波束组的第二频谱效率,并按照从大到小的顺序将各第二频谱效率进行排序,选择前p个第二频谱效率较大的波束组作为目标波束组,其中,该p个目标波束组为覆盖最优的波束组。
另外,网络设备也可以将第二频谱效率大于第一预设阈值的波束组确定为目标波束组。
由于本申请中利用信道互易性,通过测量多个终端的上行参考信道的多波束电平,并对多波束电平值按照既定分组关系进行处理,得到每组内多波束间的互干扰水平、多波束空分复用情况下的频谱效率、多波束间的用户分布比例、站间或小区间干扰情况等,由此利用这些信息判断下行最优覆盖波束组,从而可以提升整体覆盖效果。
在一种可能的实现方式中,所述分别对本小区内的各终端发送的所述SRS进行测量,确定本小区对应的每个第一波束的等效信道响应,包括:
根据公式
Figure PCTCN2019093232-appb-000004
确定每个第一波束的所述等效信道响应;
其中,
Figure PCTCN2019093232-appb-000005
为接收的P个物理通道的信道响应,
Figure PCTCN2019093232-appb-000006
为多波束权值,
Figure PCTCN2019093232-appb-000007
表示第一波束m在通道p上的权值系数;
Figure PCTCN2019093232-appb-000008
为第一波束m在所用通道上的权值向量;
Figure PCTCN2019093232-appb-000009
表示通过加权处理后得到的各第一波束的等效信道响应。
在一种可能的实现方式中,所述根据所述每个第一波束的等效信道响应,计算所述每个第一波束的功率电平,包括:
根据公式
Figure PCTCN2019093232-appb-000010
计算所述每个第一波束的功率电平;
其中,
Figure PCTCN2019093232-appb-000011
表示第一波束m等效信道系数的范数,且
Figure PCTCN2019093232-appb-000012
h为信道系数序列;E表示上行接收通道增益;10*log 10()表示线性转对数操作;P m表示第一波束m的等效功率电平。
在一种可能的实现方式中,所述方法还包括:
对邻小区内的至少一个终端发送的SRS进行测量,确定邻小区对应的每个第三波束的等效信道响应;
根据所述每个第三波束的等效信道响应,计算所述每个第三波束的功率电平;
确定功率电平最大的第三波束,并将包含有所述功率电平最大的第三波束的波束组,确定为非目标波束组,或者将包含有所述功率电平大于第二预设阈值的第四波束的波束组确定为非目标波束组。
在上述方案中,网络设备在确定出邻小区对应的各第三波束的功率电平后,将确定功率电平最大的第三波束,其中,功率电平最大的第三波束即为干扰最大的第三波束,则网络设备可以将包含该功率电平最大的第三波束的波束组进行排除,即确定为非目标波束组。
由于将包含干扰最大的第三波束的波束组确定为非目标波束组,这样,由于考虑了站间或小区间的干扰情况,由此可以确定出下行最优覆盖波束组,从而提升整体覆盖效果。
另外,网络设备在确定出邻小区对应的各第三波束的功率电平后,将确定功率电平大于第二预设阈值的第四波束,其中,功率电平大于第二预设阈值的第四波束即为干扰较大的波束,则网络设备可以将包含该第四波束的波束组进行排除,即确定为非目标波束组。
由于将包含干扰较大的第四波束的波束组确定为非目标波束组,这样,由于考虑了站间或小区间的干扰情况,由此可以确定出下行最优覆盖波束组,从而提升整体覆盖效果。
在一种可能的实现方式中,所述方法还包括:
根据多个所述第一波束的覆盖范围,对多个所述第一波束进行分组,获得多个波束组。
在本方案中,可以将波束覆盖电平不大于门限S(例如10dB)的波束分为一组。
第二方面,本申请实施例提供一种波束的选择装置,包括:
确定单元,用于分别对至少一个终端发送的信道探测参考信号SRS进行测量,确定各所述终端的第一频谱效率;
计算单元,用于根据各所述终端的第一频谱效率,计算各波束组的第二频谱效率;其中,各所述波束组中均包括至少一个波束,每个波束覆盖至少一个终端;
所述确定单元,还用于根据各波束组的第二频谱效率,确定目标波束组。
在一种可能的实现方式中,所述确定单元,具体用于:
分别对本小区内的各终端发送的所述SRS进行测量,确定本小区对应的每个第一波束的等效信道响应;
根据所述每个第一波束的等效信道响应,计算所述每个第一波束的功率电平;
根据所述每个第一波束的功率电平,确定本小区内的各所述终端的第一频谱效率。
在一种可能的实现方式中,所述确定单元,具体用于:
分别确定本小区内的各所述终端的服务波束和干扰波束;
根据所述服务波束和所述干扰波束,计算本小区内的各所述终端的信号与干扰加噪声比SINR;
根据各所述SINR,确定本小区内的各所述终端的第一频谱效率。
在一种可能的实现方式中,所述计算单元,具体用于:
统计每个波束组内各第一波束所覆盖的终端的数量;
根据公式
Figure PCTCN2019093232-appb-000013
或者公式
Figure PCTCN2019093232-appb-000014
计算各波束组的第二频谱效率KΕΛΛ,其中,se(k)为第k个终端的第一频谱效率,k为大于等于零且小于N i的整数,M为各波束组内的第一波束的数量,N i为各波束组内每个第一波束覆盖的终端数;i为大于等于零且小于M-1的正整数。
在一种可能的实现方式中,所述计算单元,具体用于:
统计每个波束组内各第一波束所覆盖的终端的数量;
确定每个波束组内覆盖终端数量最多的第二波束,并获取所述第二波束所覆盖的终端数;
根据公式
Figure PCTCN2019093232-appb-000015
计算各波束组的第二频谱效率KΕΛΛ,其中,se(k)为第k个终端的第一频谱效率,k为大于等于零且小于N i的整数,M为各波束组内的第一波束的数量,N i为各波束组内每个第一波束覆盖的终端数,i为大于等于零且小于M的正整数,N x为所述第二波束所覆盖的终端数。
在一种可能的实现方式中,所述确定单元,具体用于:
确定各所述波束组所覆盖的终端的分布信息;
选择所述分布信息处于预设范围内的至少一个第一波束组;
将所述至少一个第一波束组内所述第二频谱效率最大的第二波束组确定为所述目标波束组。
在一种可能的实现方式中,所述确定单元,具体用于:
将各波束组的第二频谱效率按照从大到小的顺序进行排序,选择前p个波束组作为所述目标波束组;其中,p为正整数;或者,
将所述第二频谱效率大于第一预设阈值的波束组确定为所述目标波束组。
在一种可能的实现方式中,所述确定单元,具体用于:
根据公式
Figure PCTCN2019093232-appb-000016
确定每个第一波束的所述等效信道响应;
其中,
Figure PCTCN2019093232-appb-000017
为接收的P个物理通道的信道响应,
Figure PCTCN2019093232-appb-000018
为多波束权值,
Figure PCTCN2019093232-appb-000019
表示第一波束m在通道p上的权值系数;
Figure PCTCN2019093232-appb-000020
为第一波束m在所用通道上的权值向量;
Figure PCTCN2019093232-appb-000021
表示通过加权处理后得到的各第一波束的等效信道响应。
在一种可能的实现方式中,所述计算单元,具体用于:
根据公式
Figure PCTCN2019093232-appb-000022
计算所述每个第一波束的功率电平;
其中,
Figure PCTCN2019093232-appb-000023
表示第一波束m等效信道系数的范数,且
Figure PCTCN2019093232-appb-000024
h为信道系数序列;E表示上行接收通道增益;10*log 10()表示线性转对数操作;P m表示第一波束m的等效功率电平。
在一种可能的实现方式中,所述确定单元,还用于对邻小区内的至少一个终端发送的SRS进行测量,确定邻小区对应的每个第三波束的等效信道响应;
所述计算单元,还用于根据所述每个第三波束的等效信道响应,计算所述每个第三波束的功率电平;
所述确定单元,还用于确定功率电平最大的第三波束,并将包含有所述功率电平最大的第三波束的波束组确定为非目标波束组,或者将包含所述功率电平大于第二预设阈值的第四波束的波束组确定为非目标波束组。
在一种可能的实现方式中,所述装置还包括:
分组单元,用于根据多个所述第一波束的覆盖范围,对多个所述第一波束进行分组,获得多个波束组。
本申请第二方面提供的装置,可以是网络设备,也可以是网络设备内的芯片,所述网络设备或所述芯片具有实现上述各方面或其任意可能的方式中的波束的选择方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
所述网络设备包括:处理单元和收发单元,所述处理单元可以是处理器,所述收发单元可以是收发器,所述收发器包括射频电路,可选地,所述通信设备还包括存储单元,所述存储单元例如可以是存储器。当所述网络设备包括存储单元时,所述存储单元用于存储计算机执行指令,所述处理单元与所述存储单元连接,所述处理单元执行所述存储单元存储的计算机执行指令,以使所述网络设备执行上述各方面或其任意可能的方式中的波束的选择方法。
所述芯片包括:处理单元和收发单元,所述处理单元可以是处理器,所述收发单元可以是所述芯片上的输入/输出接口、管脚或电路等。所述处理单元可执行存储单元存储的计算机执行指令,以使所述芯片执行上述各方面或其任意可能的方式中的波束的选择方法。可选地,所述存储单元可以是所述芯片内的存储单元(例如,寄存器、缓存等),所述存储单元还可以是所述网络设备内的位于所述芯片外部的存储单元(例如,只读存储器(read-only memory,ROM))或可存储静态信息和指令的其他类型的静态存储设备(例如,随机存取存储器(random access memory,RAM))等。
上述提到的处理器可以是一个中央处理器(central processing unit,CPU)、微处理器或专用集成电路(application specific integrated circuit,ASIC),也可以是一个或多个用于控制上述各方面或其任意可能的方式的波束的选择方法的程序执行的集成电路。
第三方面,本申请实施例还提供一种网络设备,该网络设备可以包括处理器及存储器;
其中,所述存储器,用于存储程序指令;
所述处理器,用于调用并执行所述存储器中存储的程序指令,执行上述第一方面中任一项所述的波束的选择方法。
第四方面,本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,在计算机程序被处理器执行时,执行上述第一方面中任一项所述的波束的选择方法。
第五方面,本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行本申请实施例的第一方面提供的波束的选择方法。
第六方面,本申请实施例还提供一种芯片,芯片上存储有计算机程序,在计算机程序被处理器执行时,执行上述第一方面中提供的波束的选择方法。
本申请实施例提供的波束的选择方法、装置和存储介质,网络设备分别对至少一个终端发送的信道探测参考信号SRS进行测量,确定各终端的第一频谱效率,并根据各终端的第一频谱效率,计算各波束组的第二频谱效率;其中,各波束组中均包括至少一个波束,每个波束覆盖至少一个终端,根据各波束组的第二频谱效率,确定目标 波束组。由于网络设备通过对SRS进行测量,确定出各终端的第一频谱效率后,并以此计算出各波束组的第二频谱效率,从而确定目标波束组,这样,根据各波束组的第二频率效率,可以确定出小区间的干扰情况,从而可以确定出最优覆盖波束组,以此不仅会提高劈裂增益,提高网络容量的扩容效果,而且可以提升整体的覆盖效果。
附图说明
图1为本申请实施例一提供的波束的选择方法的流程示意图;
图2为对多波束调整前后的效果示意图;
图3为本申请实施例提供的一种波束的选择装置30的一结构示意图;
图4为本申请实施例提供的一种波束的选择装置40的另一结构示意图;
图5为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端可以是无线局域网(wireless local area networks,WLAN)中的站点(station,ST),可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代通信(fifth-generation,5G)网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备,新空口(new radio,NR)通信系统中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
2)网络设备,可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(access point,AP),GSM或CDMA中的基站(base transceiver station,BTS),也可以是WCDMA中的基站(nodeB,NB),还可以是LTE中的演进型基站(evolutional node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,或NR系统中的新一代基站(new generation node B,gNodeB)等。
3)本申请中的单元是指功能单元或逻辑单元。其可以为软件形式,通过处理器执 行程序代码来实现其功能;也可以为硬件形式。
4)“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“以上”或“以下”等所描述的范围包括边界点。
本领域技术人员可以理解,本申请实施例提供的波束的选择方法,可以应用于多天线基站系统中,尤其应用于如何选择下行最优覆盖波束组中。
现有技术中,通过劈裂天线扩大网络容量时,通常是通过增加主设备通道的数量,来增加业务信息通道垂直维度分区,提高频谱效率,进而提升网络容量。然而,由于受基站的天线方位夹角的安装、基站规划以及劈裂小区内用户分布的影响,会造成劈裂增益的损失,从而影响网络容量的扩容效果。
本申请实施例考虑到这些情况,提出一种波束的选择方法,该方法中网络设备分别对至少一个终端发送的信道探测参考信号SRS进行测量,确定各终端的第一频谱效率,并根据各终端的第一频谱效率,计算各波束组的第二频谱效率;其中,各波束组中均包括至少一个波束,每个波束覆盖至少一个终端,根据各波束组的第二频谱效率,确定目标波束组。由于网络设备通过对SRS进行测量,确定出各终端的第一频谱效率后,并以此计算出各波束组的第二频谱效率,从而确定目标波束组,这样,根据各波束组的第二频率效率,可以确定出小区间的干扰情况,从而可以确定出最优覆盖波束组,以此不仅会提高劈裂增益,提高网络容量的扩容效果,而且可以提升整体的覆盖效果。
图1为本申请实施例一提供的波束的选择方法的流程示意图。如图1所示,本申请实施例提供了一种波束的选择方法,该方法可以由任意执行波束的选择方法的装置来执行,该装置可以通过软件和/或硬件实现。本实施例中,该装置可以集成在网络设备中。如图2所示,本实施例的方法可以包括:
步骤101、分别对至少一个终端发送的SRS进行测量,确定各终端的第一频谱效率。
在本实施例中,假设系统一共存在P个发送接收物理通道,预置M个波束,且M个波束在覆盖上可以达到互补效果。
网络设备接收至少一个终端发送的信道探测参考信号(sounding reference signal;SRS),并对接收到的至少一个上行SRS信号进行测量,以确定各终端的第一频谱效率。其中,至少一个终端包括本小区终端、邻站或者邻区边界终端等。
在一种可能的实现方式中,网络设备通过对至少一个终端发送的SRS进行测量,以确定各终端的第一频谱效率,可以通过如下方式进行:分别对本小区内的各终端发送的SRS进行测量,确定本小区对应的每个第一波束的等效信道响应,然后根据每个第一波束的等效信道响应,计算每个第一波束的功率电平,再根据每个第一波束的功率电平,确定本小区内的各终端的第一频谱效率。
具体的,在接收到本小区内的各终端发送的SRS后,将对接收到的SRS进行测量,以确定本小区对应的每个第一波束的等效信道响应。在具体的实现过程中,可以根据 公式
Figure PCTCN2019093232-appb-000025
确定每个第一波束的等效信道响应,其中,
Figure PCTCN2019093232-appb-000026
为接收的P个物理通道的信道响应,
Figure PCTCN2019093232-appb-000027
为多波束权值,
Figure PCTCN2019093232-appb-000028
表示第一波束m在通道p上的权值系数,m为大于零且小于等于M的整数,M为第一波束的数量;
Figure PCTCN2019093232-appb-000029
为第一波束m在所用通道上的权值向量;
Figure PCTCN2019093232-appb-000030
表示通过加权处理后得到的各第一波束的等效信道响应。
在计算出每个第一波束的等效信道响应后,将计算每个第一波束的功率电平,即每个第一波束上的等效功率。
在具体的实现过程中,可以根据公式
Figure PCTCN2019093232-appb-000031
计算每个第一波束的功率电平,其中,
Figure PCTCN2019093232-appb-000032
表示第一波束m等效信道系数的范数,且
Figure PCTCN2019093232-appb-000033
h为信道系数序列;E表示上行接收通道增益;10*log 10()表示线性转对数操作;P m表示第一波束m的等效功率电平,其中,m为大于零且小于等于M的整数,M为第一波束的数量。
进一步地,网络设备在计算出各个第一波束的功率电平之后,将根据每个第一波束的功率电平,确定本小区内的各终端的第一频谱效率。在一种可能的实现方式中,可以通过分别确定本小区内的各终端的服务波束和干扰波束,并根据服务波束和干扰波束,计算本小区内的各终端的信号与干扰加噪声比(signal to interference plus noise ratio;SINR),并根据各SINR,确定本小区内的各终端的第一频谱效率。
具体的,针对每个终端来说,网络设备在计算出各个第一波束的功率电平之后,将选择功率电平最大的波束作为该终端的服务波束,将其他波束作为该终端的干扰波束。在确定出该终端的服务波束和干扰波束后,将计算SINR,并根据计算出的SINR以及香农公式或者解调门限表计算该终端的第一频谱效率。
例如:通过计算各波束组内的服务波束和其他干扰波束的电平差,按照电平差换 算成SINR,并根据香农公式或者解调门限表计算每个终端的第一频谱效率。
步骤102、根据各终端的第一频谱效率,计算各波束组的第二频谱效率;其中,各波束组中均包括至少一个波束,每个波束覆盖至少一个终端。
在本实施例中,若系统中预置了M个第一波束,则可以根据这M个第一波束的覆盖范围,对这些第一波束进行分组,获得多个波束组,其中,每个波束组中均包括有至少一个波束,且每个波束都覆盖至少一个终端。
例如:可以将波束覆盖电平不大于门限S(例如10dB)的波束分为一组等,当然,在实际应用中,也可以按照其他的规则将多个第一波束进行分组。
网络设备在确定出被各波束覆盖的多个终端的第一频谱效率之后,将根据该些第一频谱效率,计算各波束组的第二频谱效率。
在一种可能的实现方式中,可以通过统计每个波束组内各波束所覆盖的终端的数量,并根据公式
Figure PCTCN2019093232-appb-000034
或者公式
Figure PCTCN2019093232-appb-000035
计算各波束组的第二频谱效率KΕΛΛ,其中,se(k)为第k个终端的第一频谱效率,k为大于等于零且小于N i的整数,M为各波束组内的第一波束的数量,N i为各波束组内每个第一波束覆盖的终端数;i为大于等于零且小于M-1的正整数。
具体的,网络设备可以统计每个第一波束上的服务终端个数,这样,将可以根据公式
Figure PCTCN2019093232-appb-000036
或者公式
Figure PCTCN2019093232-appb-000037
计算各波束组的第二频谱效率KΕΛΛ,其中,se(k)为第k个终端的第一频谱效率,k为大于等于零且小于N i的整数,M为各波束组内的第一波束的数量,N i为各波束组内每个第一波束覆盖的终端数,i为大于等于零且小于M-1的正整数,这样,根据上述公式,即可计算出各波束组的综合容量谱效率,即各波束组的第二频谱效率KΕΛΛ,也即通过计算出每个第一波束所覆盖的多个终端的频谱效率的均值,并将各波束组内所有第一波束对应的频谱效率的均值相加,即可获得各波束组的第二频谱效率。
在另一种可能的实现方式中,在计算各波束组的第二频谱效率时,还可以通过统计每个波束组内各第一波束所覆盖的终端的数量,并确定每个波束组内覆盖终端数量最多的第二波束,并获取第二波束所覆盖的终端数;根据公式
Figure PCTCN2019093232-appb-000038
计算各波束组的第二频谱效率KΕΛΛ。
其中,se(k)为第k个终端的第一频谱效率,k为大于等于零且小于N i的整数,M 为各波束组内的第一波束的数量,N i为各波束组内每个第一波束覆盖的终端数,i为大于等于零且小于M的正整数,N x为第二波束所覆盖的终端数。
具体的,网络设备可以统计每个波束上的服务终端个数,并选择出服务终端个数最多的第二波束,并获取该第二波束上的服务终端数N x,这样,将可以根据公式
Figure PCTCN2019093232-appb-000039
计算各波束组的第二频谱效率KΕΛΛ。
举例来说,若某个波束组内包括有波束a、波束b和波束c,其中,波束a上的服务用户数为6,即波束a所覆盖的终端数为6,波束b所覆盖的终端数为7,波束c所覆盖的终端数为3,则该波束组内覆盖终端数量最多的第二波束为波束b,且该第二波束所覆盖的终端数N x为7。这样,网络设备将根据公式
Figure PCTCN2019093232-appb-000040
即可计算出该波束组的第二频谱效率。
步骤103、根据各波束组的第二频谱效率,确定目标波束组。
在本实施例中,网络设备在计算出各波束组的第二频谱效率后,将可以根据该些第二频谱效率,确定目标波束组,其中,确定出的目标波束组为覆盖最优的波束组。
在一种可能的实现方式中,网络设备在确定出各波束组的第二频谱效率后,可以将各波束组的第二频谱效率按照从大到小的顺序进行排序,选择前p个波束组作为目标波束组,其中,p为正整数。
在本实施例中,网络设备根据前述方式确定出各波束组的第二频谱效率后,将比较各波束组的第二频谱效率,并按照从大到小的顺序将各第二频谱效率进行排序,选择前p个第二频谱效率较大的波束组作为目标波束组,其中,该p个目标波束组为覆盖最优的波束组。
由于本申请中利用信道互易性,通过测量多个终端的上行参考信道的多波束电平,并对多波束电平值按照既定分组关系进行处理,得到每组内多波束间的互干扰水平、多波束空分复用情况下的频谱效率、多波束间的用户分布比例、站间或小区间干扰情况等,由此利用这些信息判断下行最优覆盖波束组,从而可以提升整体覆盖效果。
在另一种可能的实现方式中,网络设备在确定出各波束组的第二频谱效率后,也可以将第二频谱效率大于第一预设阈值的波束组确定为目标波束组。
其中,第一预设阈值可以根据实际情况或者经验进行设置,对于第一预设阈值的具体取值,本申请实施例在此不做限制。
在再一种可能的实现方式中,网络设备在确定出各波束组的第二频谱效率后,可以确定各波束组所覆盖的终端的分布信息,并选择分布信息处于预设范围内的至少一个第一波束组,并至少一个第一波束组内第二频谱效率最大的第二波束组确定为目标波束组。
具体的,网络设备在选择出终端的分布信息处于预设范围内的至少一个第一波束 组后,再从这至少一个第一波束组中选择第二频谱效率最大的波束组,作为目标波束组。其中,在实际应用中,网络设备可以通过计算各波束组所覆盖的终端的分布数量的方差,来确定每个波束组所覆盖的终端的分布信息,其中,某个波束组所覆盖的终端的分布信息处于预设范围内,则说明该波束组内的终端分布较为均匀。另外,预设范围可以根据实际情况或者经验进行选取,对于预设范围的具体取值,本申请实施例对此不做限制。
由于可以根据上行SRS的测量的结果,进行下行覆盖波束的增益评估,从而可以对多波束进行调整,以更好的提升多波束覆盖下的频谱效率收益。
进一步地,为了防止邻小区的干扰,还需要统计各个波束对邻小区的干扰水平,并确定出干扰最大的波束,将包含该干扰最大的波束的波束组不作为目标波束组。具体的,网络设备将对邻小区内的至少一个终端发送的SRS进行测量,确定邻小区对应的每个第三波束的等效信道响应,根据每个第三波束的等效信道响应,计算每个第三波束的功率电平,确定功率电平最大的第三波束,并将包含有功率电平最大的第三波束的波束组确定为非目标波束组,或者也可以将包含有功率电平大于第二预设阈值的第四波束的波束组确定为非目标波束组。
其中,网络设备对邻小区内的至少一个终端发送的SRS进行测量,确定邻小区对应的每个第三波束的等效信道响应,并根据每个第三波束的等效信道响应,计算每个第三波束的功率电平的方法,与步骤101中确定本小区对应的各第一波束的等效信道响应以及功率电平的方法类似,此处不再赘述。
网络设备在确定出邻小区对应的各第三波束的功率电平后,将确定功率电平最大的第三波束,其中,功率电平最大的第三波束即为干扰最大的第三波束,则网络设备可以将包含该功率电平最大的第三波束的波束组进行排除,即确定为非目标波束组。
由于将包含干扰最大的第三波束的波束组确定为非目标波束组,这样,由于考虑了站间或小区间的干扰情况,由此可以确定出下行最优覆盖波束组,从而提升整体覆盖效果。
另外,网络设备在确定出邻小区对应的各第三波束的功率电平后,将确定功率电平大于第二预设阈值的第四波束,其中,功率电平大于第二预设阈值的第四波束即为干扰较大的波束,则网络设备可以将包含该第四波束的波束组进行排除,即确定为非目标波束组。
由于将包含干扰较大的第四波束的波束组确定为非目标波束组,这样,由于考虑了站间或小区间的干扰情况,由此可以确定出下行最优覆盖波束组,从而提升整体覆盖效果。
图2为对多波束调整前后的效果示意图,如图2所示,在对多波束进行调整之前,各波束之间的干扰较大,且波束覆盖较差,通过图1中的方式对多波束进行调整之后,可以确定出下行最优覆盖波束组,减小了各波束之间的干扰,且可以提升整体的覆盖效果。
本发明实施例提供一种波束的选择方法,网络设备分别对至少一个终端发送的信道探测参考信号SRS进行测量,确定各终端的第一频谱效率,并根据各终端的第一频谱效率,计算各波束组的第二频谱效率;其中,各波束组中均包括至少一个波束,每 个波束覆盖至少一个终端,根据各波束组的第二频谱效率,确定目标波束组。由于网络设备通过对SRS进行测量,确定出各终端的第一频谱效率后,并以此计算出各波束组的第二频谱效率,从而确定目标波束组,这样,根据各波束组的第二频率效率,可以确定出小区间的干扰情况,从而可以确定出最优覆盖波束组,以此不仅会提高劈裂增益,提高网络容量的扩容效果,而且可以提升整体的覆盖效果。
图3为本申请实施例提供的一种波束的选择装置30的一结构示意图,请参见图3所示,该波束的选择装置30可以包括:
确定单元11用于分别对至少一个终端发送的信道探测参考信号SRS进行测量,确定各所述终端的第一频谱效率;
计算单元12用于根据各所述终端的第一频谱效率,计算各波束组的第二频谱效率;其中,各所述波束组中均包括至少一个波束,每个波束覆盖至少一个终端;
所述确定单元11还用于根据各波束组的第二频谱效率,确定目标波束组。
可选的,所述确定单元11具体用于:
分别对本小区内的各终端发送的所述SRS进行测量,确定本小区对应的每个第一波束的等效信道响应;
根据所述每个第一波束的等效信道响应,计算所述每个第一波束的功率电平;
根据所述每个第一波束的功率电平,确定本小区内的各所述终端的第一频谱效率。
可选的,所述确定单元11具体用于:
分别确定本小区内的各所述终端的服务波束和干扰波束;
根据所述服务波束和所述干扰波束,计算本小区内的各所述终端的信号与干扰加噪声比SINR;
根据各所述SINR,确定本小区内的各所述终端的第一频谱效率。
可选的,所述计算单元12具体用于:
统计每个波束组内各第一波束所覆盖的终端的数量;
根据公式
Figure PCTCN2019093232-appb-000041
或者公式
Figure PCTCN2019093232-appb-000042
计算各波束组的第二频谱效率KΕΛΛ,其中,se(k)为第k个终端的第一频谱效率,k为大于等于零且小于N i的整数,M为各波束组内的第一波束的数量,N i为各波束组内每个第一波束覆盖的终端数;i为大于等于零且小于M-1的正整数。
可选的,所述计算单元12具体用于:
统计每个波束组内各第一波束所覆盖的终端的数量;
确定每个波束组内覆盖终端数量最多的第二波束,并获取所述第二波束所覆盖的终端数;
根据公式
Figure PCTCN2019093232-appb-000043
计算各波束组的第二频谱效率KΕΛΛ,其中,se(k)为 第k个终端的第一频谱效率,k为大于等于零且小于N i的整数,M为各波束组内的第一波束的数量,N i为各波束组内每个第一波束覆盖的终端数,i为大于等于零且小于M的正整数,N x为所述第二波束所覆盖的终端数。
可选的,所述确定单元11具体用于:
确定各所述波束组所覆盖的终端的分布信息;
选择所述分布信息处于预设范围内的至少一个第一波束组;
将所述至少一个第一波束组内所述第二频谱效率最大的第二波束组确定为所述目标波束组。
可选的,所述确定单元11具体用于:
将各波束组的第二频谱效率按照从大到小的顺序进行排序,选择前p个波束组作为所述目标波束组;其中,p为正整数;或者,
将所述第二频谱效率大于第一预设阈值的波束组确定为所述目标波束组。
可选的,所述确定单元11具体用于:
根据公式
Figure PCTCN2019093232-appb-000044
确定每个第一波束的所述等效信道响应;
其中,
Figure PCTCN2019093232-appb-000045
为接收的P个物理通道的信道响应,
Figure PCTCN2019093232-appb-000046
为多波束权值,
Figure PCTCN2019093232-appb-000047
表示第一波束m在通道p上的权值系数;
Figure PCTCN2019093232-appb-000048
为第一波束m在所用通道上的权值向量;
Figure PCTCN2019093232-appb-000049
表示通过加权处理后得到的各第一波束的等效信道响应。
可选的,所述计算单元12具体用于:
根据公式
Figure PCTCN2019093232-appb-000050
计算所述每个第一波束的功率电平;
其中,
Figure PCTCN2019093232-appb-000051
表示第一波束m等效信道系数的范数,且
Figure PCTCN2019093232-appb-000052
h为信道系数 序列;E表示上行接收通道增益;10*log 10()表示线性转对数操作;P m表示第一波束m的等效功率电平。
可选的,所述确定单元11还用于对邻小区内的至少一个终端发送的SRS进行测量,确定邻小区对应的每个第三波束的等效信道响应;
所述计算单元12还用于根据所述每个第三波束的等效信道响应,计算所述每个第三波束的功率电平;
所述确定单元11还用于确定功率电平最大的第三波束,并将包含有所述功率电平最大的第三波束的波束组确定为非目标波束组,或者将包含所述功率电平大于第二预设阈值的第四波束的波束组确定为非目标波束组。
图4为本申请实施例提供的一种波束的选择装置40的另一结构示意图,在图3所示实施例的基础上,所述装置还包括:分组单元13。
分组单元13用于根据多个所述第一波束的覆盖范围,对多个所述第一波束进行分组,获得多个波束组。
本申请实施例所示的波束的选择装置,可以执行上述任一项实施例所示的波束的选择方法的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
需要说明的是,应理解以上装置的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元通过软件通过处理元件调用的形式实现,部分单元通过硬件的形式实现。例如,发送单元可以为单独设立的处理元件,也可以集成在该网络设备的某一个芯片中实现,此外,也可以以程序的形式存储于网络设备的存储器中,由该网络设备的某一个处理元件调用并执行该发送单元的功能。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。此外,以上发送单元是一种控制发送的单元,可以通过该网络设备的发送装置,例如天线和射频装置发送信息。
以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图5为本申请实施例提供的一种网络设备的结构示意图。如图5所示,该网络设备包括:天线110、射频装置120、基带装置130。天线110与射频装置120连接。在上行方向上,射频装置120通过天线110接收终端设备发送的信息,将终端设备发送的信息发送给基带装置130进行处理。在下行方向上,基带装置130对终端设备的信 息进行处理,并发送给射频装置120,射频装置120对终端设备的信息进行处理后经过天线110发送给终端设备。
在一种实现中,以上各个单元通过处理元件调度程序的形式实现,例如基带装置130包括处理元件131和存储元件132,处理元件131调用存储元件132存储的程序,以执行以上方法实施例中的方法。此外,该基带装置130还可以包括接口133,用于与射频装置120交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
在另一种实现中,以上这些单元可以是被配置成实施以上方法的一个或多个处理元件,这些处理元件设置于基带装置130上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。这些集成电路可以集成在一起,构成芯片。
例如,以上各个模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置130包括SOC芯片,用于实现以上方法。该芯片内可以集成处理元件131和存储元件132,由处理元件131调用存储元件132的存储的程序的形式实现以上方法或以上各个单元的功能;或者,该芯片内可以集成至少一个集成电路,用于实现以上方法或以上各个单元的功能;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
不管采用何种方式,总之,以上网络设备包括至少一个处理元件,存储元件和通信接口,其中至少一个处理元件用于执行以上方法实施例所提供的方法。处理元件可以以第一种方式:即执行存储元件存储的程序的方式执行以上方法实施例中的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行以上方法实施例中的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上方法实施例提供的方法。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理器(central processing unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
本申请还提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现前述任一实施例提供的波束的选择方法。
本申请还提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。网络设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得网络设备实施前述各种实施方式提供的波束的选择方法。
本申请实施例还提供了一种波束的选择装置,包括至少一个存储元件和至少一个处理元件、所述至少一个存储元件用于存储程序,该程序被执行时,使得所述波束的选择装置执行上述任一实施例中的网络设备的操作。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(magnetic tape)、软盘(floppy disk)、光盘(optical disc)及其任意组合。

Claims (22)

  1. 一种波束的选择方法,其特征在于,包括:
    分别对至少一个终端发送的信道探测参考信号SRS进行测量,确定各所述终端的第一频谱效率;
    根据各所述终端的第一频谱效率,计算各波束组的第二频谱效率;其中,各所述波束组中均包括至少一个波束,每个波束覆盖至少一个终端;
    根据各波束组的第二频谱效率,确定目标波束组。
  2. 根据权利要求1所述的方法,其特征在于,所述分别对至少一个终端发送的信道探测参考信号SRS进行测量,确定各所述终端的第一频谱效率,包括:
    分别对本小区内的各终端发送的所述SRS进行测量,确定本小区对应的每个第一波束的等效信道响应;
    根据所述每个第一波束的等效信道响应,计算所述每个第一波束的功率电平;
    根据所述每个第一波束的功率电平,确定本小区内的各所述终端的第一频谱效率。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述每个第一波束的功率电平,确定本小区内的各所述终端的第一频谱效率,包括:
    分别确定本小区内的各所述终端的服务波束和干扰波束;
    根据所述服务波束和所述干扰波束,计算本小区内的各所述终端的信号与干扰加噪声比SINR;
    根据各所述SINR,确定本小区内的各所述终端的第一频谱效率。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据各所述终端的第一频谱效率,计算各波束组的第二频谱效率,包括:
    统计每个波束组内各第一波束所覆盖的终端的数量;
    根据公式
    Figure PCTCN2019093232-appb-100001
    或者公式
    Figure PCTCN2019093232-appb-100002
    计算各波束组的第二频谱效率KΕΛΛ,其中,se(k)为第k个终端的第一频谱效率,k为大于等于零且小于N i的整数,M为各波束组内的第一波束的数量,N i为各波束组内每个第一波束覆盖的终端数,i为大于等于零且小于M的正整数。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据各所述终端的第一频谱效率,计算各波束组的第二频谱效率,包括:
    统计每个波束组内各第一波束所覆盖的终端的数量;
    确定每个波束组内覆盖终端数量最多的第二波束,并获取所述第二波束所覆盖的终端数;
    根据公式
    Figure PCTCN2019093232-appb-100003
    计算各波束组的第二频谱效率KΕΛΛ,其中,se(k)为第k个终端的第一频谱效率,k为大于等于零且小于N i的整数,M为各波束组内的第 一波束的数量,N i为各波束组内每个第一波束覆盖的终端数,i为大于等于零且小于M的正整数,N x为所述第二波束所覆盖的终端数。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述根据各波束组的第二频谱效率,确定目标波束组,包括:
    确定各所述波束组所覆盖的终端的分布信息;
    选择所述分布信息处于预设范围内的至少一个第一波束组;
    将所述至少一个第一波束组内所述第二频谱效率最大的第二波束组确定为所述目标波束组。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述根据各波束组的第二频谱效率,确定目标波束组,包括:
    将各波束组的第二频谱效率按照从大到小的顺序进行排序,选择前p个波束组作为所述目标波束组;其中,p为正整数;或者,
    将所述第二频谱效率大于第一预设阈值的波束组确定为所述目标波束组。
  8. 根据权利要求2所述的方法,其特征在于,所述分别对本小区内的各终端发送的所述SRS进行测量,确定本小区对应的每个第一波束的等效信道响应,包括:
    根据公式
    Figure PCTCN2019093232-appb-100004
    确定每个第一波束的所述等效信道响应;
    其中,
    Figure PCTCN2019093232-appb-100005
    为接收的P个物理通道的信道响应,
    Figure PCTCN2019093232-appb-100006
    为多波束权值,
    Figure PCTCN2019093232-appb-100007
    表示第一波束m在通道p上的权值系数;
    Figure PCTCN2019093232-appb-100008
    为第一波束m在所用通道上的权值向量;
    Figure PCTCN2019093232-appb-100009
    表示通过加权处理后得到的各第一波束的等效信道响应。
  9. 根据权利要求2或8所述的方法,其特征在于,所述根据所述每个第一波束的等效信道响应,计算所述每个第一波束的功率电平,包括:
    根据公式
    Figure PCTCN2019093232-appb-100010
    计算所述每个第一波束的功率电平;
    其中,
    Figure PCTCN2019093232-appb-100011
    表示第一波束m等效信道系数的范数,且
    Figure PCTCN2019093232-appb-100012
    h为信道系数序列;E表示上行接收通道增益;10*log10()表示线性转对数操作;P m表示第一波束m的等效功率电平。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    对邻小区内的至少一个终端发送的SRS进行测量,确定邻小区对应的每个第三波束的等效信道响应;
    根据所述每个第三波束的等效信道响应,计算所述每个第三波束的功率电平;
    确定功率电平最大的第三波束,并将包含有所述功率电平最大的第三波束的波束组确定为非目标波束组,或者将包含有所述功率电平大于第二预设阈值的第四波束的波束组确定为非目标波束组。
  11. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    根据多个所述第一波束的覆盖范围,对多个所述第一波束进行分组,获得多个波束组。
  12. 一种波束的选择装置,其特征在于,包括:
    确定单元,用于分别对至少一个终端发送的信道探测参考信号SRS进行测量,确定各所述终端的第一频谱效率;
    计算单元,用于根据各所述终端的第一频谱效率,计算各波束组的第二频谱效率;其中,各所述波束组中均包括至少一个波束,每个波束覆盖至少一个终端;
    所述确定单元,还用于根据各波束组的第二频谱效率,确定目标波束组。
  13. 根据权利要求12所述的装置,其特征在于,所述确定单元,具体用于:
    分别对本小区内的各终端发送的所述SRS进行测量,确定本小区对应的每个第一波束的等效信道响应;
    根据所述每个第一波束的等效信道响应,计算所述每个第一波束的功率电平;
    根据所述每个第一波束的功率电平,确定本小区内的各所述终端的第一频谱效率。
  14. 根据权利要求13所述的装置,其特征在于,所述确定单元,具体用于:
    分别确定本小区内的各所述终端的服务波束和干扰波束;
    根据所述服务波束和所述干扰波束,计算本小区内的各所述终端的信号与干扰加噪声比SINR;
    根据各所述SINR,确定本小区内的各所述终端的第一频谱效率。
  15. 根据权利要求12-14任一项所述的装置,其特征在于,所述计算单元,具体用于:
    统计每个波束组内各第一波束所覆盖的终端的数量;
    根据公式
    Figure PCTCN2019093232-appb-100013
    或者公式
    Figure PCTCN2019093232-appb-100014
    计算各波束组的第二频谱效率KΕΛΛ,其中,se(k)为第k个终端的第一频谱效率,k为大于等于零且小于 N i的整数,M为各波束组内的第一波束的数量,N i为各波束组内每个第一波束覆盖的终端数;i为大于等于零且小于M-1的正整数。
  16. 根据权利要求12-14任一项所述的装置,其特征在于,所述计算单元,具体用于:
    统计每个波束组内各第一波束所覆盖的终端的数量;
    确定每个波束组内覆盖终端数量最多的第二波束,并获取所述第二波束所覆盖的终端数;
    根据公式
    Figure PCTCN2019093232-appb-100015
    计算各波束组的第二频谱效率KΕΛΛ,其中,se(k)为第k个终端的第一频谱效率,k为大于等于零且小于N i的整数,M为各波束组内的第一波束的数量,N i为各波束组内每个第一波束覆盖的终端数,i为大于等于零且小于M的正整数,N x为所述第二波束所覆盖的终端数。
  17. 根据权利要求12-16任一项所述的装置,其特征在于,所述确定单元,具体用于:
    确定各所述波束组所覆盖的终端的分布信息;
    选择所述分布信息处于预设范围内的至少一个第一波束组;
    将所述至少一个第一波束组内所述第二频谱效率最大的第二波束组确定为所述目标波束组。
  18. 根据权利要求12-16任一项所述的装置,其特征在于,所述确定单元,具体用于:
    将各波束组的第二频谱效率按照从大到小的顺序进行排序,选择前p个波束组作为所述目标波束组;其中,p为正整数;或者,
    将所述第二频谱效率大于第一预设阈值的波束组确定为所述目标波束组。
  19. 根据权利要求13所述的装置,其特征在于,所述确定单元,具体用于:
    根据公式
    Figure PCTCN2019093232-appb-100016
    确定每个第一波束的所述等效信道响应;
    其中,
    Figure PCTCN2019093232-appb-100017
    为接收的P个物理通道的信道响应,
    Figure PCTCN2019093232-appb-100018
    为多波束权值,
    Figure PCTCN2019093232-appb-100019
    表示第一波束m在通道p上的权值系数;
    Figure PCTCN2019093232-appb-100020
    为第一波束m在所用通 道上的权值向量;
    Figure PCTCN2019093232-appb-100021
    表示通过加权处理后得到的各第一波束的等效信道响应。
  20. 根据权利要求13或19所述的装置,其特征在于,所述计算单元,具体用于:
    根据公式
    Figure PCTCN2019093232-appb-100022
    计算所述每个第一波束的功率电平;
    其中,
    Figure PCTCN2019093232-appb-100023
    表示第一波束m等效信道系数的范数,且
    Figure PCTCN2019093232-appb-100024
    h为信道系数序列;E表示上行接收通道增益;10*log10()表示线性转对数操作;P m表示第一波束m的等效功率电平。
  21. 根据权利要求12-20任一项所述的装置,其特征在于,
    所述确定单元,还用于对邻小区内的至少一个终端发送的SRS进行测量,确定邻小区对应的每个第三波束的等效信道响应;
    所述计算单元,还用于根据所述每个第三波束的等效信道响应,计算所述每个第三波束的功率电平;
    所述确定单元,还用于确定功率电平最大的第三波束,并将包含有所述功率电平最大的第三波束的波束组确定为非目标波束组,或者将包含所述功率电平大于第二预设阈值的第四波束的波束组确定为非目标波束组。
  22. 根据权利要求13所述的装置,其特征在于,所述装置还包括:
    分组单元,用于根据多个所述第一波束的覆盖范围,对多个所述第一波束进行分组,获得多个波束组。
PCT/CN2019/093232 2018-06-28 2019-06-27 波束的选择方法、装置和存储介质 WO2020001527A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3104373A CA3104373C (en) 2018-06-28 2019-06-27 Beam selection method and apparatus, and storage medium
EP19826354.3A EP3799326B1 (en) 2018-06-28 2019-06-27 Beam selection method, device, and storage medium
US17/131,307 US11606227B2 (en) 2018-06-28 2020-12-22 Beam selection method and apparatus, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810689743.2A CN110661559B (zh) 2018-06-28 2018-06-28 波束的选择方法、装置和存储介质
CN201810689743.2 2018-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/131,307 Continuation US11606227B2 (en) 2018-06-28 2020-12-22 Beam selection method and apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2020001527A1 true WO2020001527A1 (zh) 2020-01-02

Family

ID=68985953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093232 WO2020001527A1 (zh) 2018-06-28 2019-06-27 波束的选择方法、装置和存储介质

Country Status (5)

Country Link
US (1) US11606227B2 (zh)
EP (1) EP3799326B1 (zh)
CN (1) CN110661559B (zh)
CA (1) CA3104373C (zh)
WO (1) WO2020001527A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021164633A1 (zh) * 2020-02-17 2021-08-26 中兴通讯股份有限公司 权值的发送方法、装置、存储介质及电子装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11510077B2 (en) * 2018-01-12 2022-11-22 Lg Electronics Inc. Method and user equipment for performing measurement by using multiple reception beams
CN112351439B (zh) * 2020-10-28 2021-06-22 上海擎昆信息科技有限公司 一种ssb广播波束优化方法及系统
WO2023150929A1 (en) * 2022-02-09 2023-08-17 Apple Inc. Machine learning assisted beam selection
WO2024096715A1 (ko) * 2022-11-04 2024-05-10 엘지전자 주식회사 무선 통신 시스템에서 빔 지시를 위한 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103875271A (zh) * 2011-08-23 2014-06-18 三星电子株式会社 用于在波束形成的无线通信系统中调度波束扫描的使用的装置和方法
WO2017131811A1 (en) * 2016-01-28 2017-08-03 Intel IP Corporation Uplink beam refinement
CN107172625A (zh) * 2017-05-08 2017-09-15 西安电子科技大学 基于分组的毫米波通信多波束调度方法
CN107306162A (zh) * 2016-04-22 2017-10-31 香港城市大学 多小区及多用户毫米波蜂窝网络中的干扰管理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101426962B1 (ko) * 2008-03-20 2014-08-07 삼성전자주식회사 다중 안테나 다중 사용자 통신 시스템에서 빔 포밍 방법 및장치
KR101728544B1 (ko) * 2010-01-22 2017-04-19 삼성전자주식회사 다중 입력 다중 출력 통신 시스템에서의 스케줄링 방법 및 장치
KR101880971B1 (ko) * 2012-12-07 2018-07-23 삼성전자주식회사 빔형성 방법 및 장치
JP6306692B2 (ja) * 2013-09-27 2018-04-04 華為技術有限公司Huawei Technologies Co.,Ltd. 通信方法、基地局およびユーザ機器
CN105790913B (zh) * 2014-12-26 2019-01-22 上海无线通信研究中心 FDD模式massive-MIMO系统中上行导频的选择与分配方法
US9854535B2 (en) * 2015-07-28 2017-12-26 Cisco Technology, Inc. Determining fractional frequency reuse power levels for downlink transmissions
CN107635189B (zh) * 2017-09-15 2020-03-13 中国联合网络通信集团有限公司 一种波束选择方法及装置
CN108092701B (zh) * 2017-11-21 2020-12-01 东南大学 混合波束成形hbf系统波束选择方法、装置及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103875271A (zh) * 2011-08-23 2014-06-18 三星电子株式会社 用于在波束形成的无线通信系统中调度波束扫描的使用的装置和方法
WO2017131811A1 (en) * 2016-01-28 2017-08-03 Intel IP Corporation Uplink beam refinement
CN107306162A (zh) * 2016-04-22 2017-10-31 香港城市大学 多小区及多用户毫米波蜂窝网络中的干扰管理方法
CN107172625A (zh) * 2017-05-08 2017-09-15 西安电子科技大学 基于分组的毫米波通信多波束调度方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021164633A1 (zh) * 2020-02-17 2021-08-26 中兴通讯股份有限公司 权值的发送方法、装置、存储介质及电子装置

Also Published As

Publication number Publication date
CA3104373C (en) 2024-01-09
CA3104373A1 (en) 2020-01-02
EP3799326B1 (en) 2023-09-13
US11606227B2 (en) 2023-03-14
CN110661559A (zh) 2020-01-07
EP3799326A4 (en) 2021-08-04
EP3799326A1 (en) 2021-03-31
CN110661559B (zh) 2021-09-14
US20210111928A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2020001527A1 (zh) 波束的选择方法、装置和存储介质
US11438847B2 (en) Power control method and apparatus
EP3025435B1 (en) Downtilt selection in a full dimensional multiple-input multiple-output system
US9615265B2 (en) Network node and method for adjusting antenna parameters in a wireless communications system
US20220103248A1 (en) Systems and methods for uplink coverage adaptation
EP3103201A2 (en) Methods for signaling and using beam forming quality indicators
WO2019080119A1 (zh) 一种广播波束域调整方法及装置
WO2018098701A1 (zh) 一种波束合成方法及装置
US20210410142A1 (en) Communication Method and Device
WO2018095305A1 (zh) 一种波束训练方法及装置
WO2020140353A1 (en) System and Method for Beam Management with Emissions Limitations
US20230379035A1 (en) Multi-level beam scheduling in a wireless communications circuit, particularly for a wireless communications system (wcs)
WO2022078115A1 (zh) 功率确定方法、装置、终端及网络侧设备
CN106717072B (zh) 无线网络中小区选择的方法、基站和用户设备
WO2020159597A1 (en) Methods and apparatus for beam management for device communications
CN115399006A (zh) 多载波通信方法、终端设备和网络设备
CN110535579B (zh) 下行数据的传输方法、网络设备及终端
WO2020238922A1 (zh) 通信方法及装置
US11206566B2 (en) Method for downlink signal transmission, terminal device and network device
US11962376B2 (en) Multi-channel beamforming method and apparatus, and storage medium
Wang et al. Uplink coverage in heterogeneous mmWave cellular networks with user-centric small cell deployments
WO2019223665A1 (zh) 下行数据的传输方法、网络设备及终端
WO2020210957A1 (en) Cell selection in multiple frequencies communication network
CN113676424B (zh) 通信装置和信道估计方法
WO2023078429A1 (zh) Srs传输功率确定方法、设备、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3104373

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019826354

Country of ref document: EP

Effective date: 20201222