WO2022165645A1 - 一种弧面电容指纹模组、电子设备及模组制作方法 - Google Patents

一种弧面电容指纹模组、电子设备及模组制作方法 Download PDF

Info

Publication number
WO2022165645A1
WO2022165645A1 PCT/CN2021/074923 CN2021074923W WO2022165645A1 WO 2022165645 A1 WO2022165645 A1 WO 2022165645A1 CN 2021074923 W CN2021074923 W CN 2021074923W WO 2022165645 A1 WO2022165645 A1 WO 2022165645A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover plate
capacitive fingerprint
curved
layer
fingerprint sensor
Prior art date
Application number
PCT/CN2021/074923
Other languages
English (en)
French (fr)
Inventor
刘相英
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2021/074923 priority Critical patent/WO2022165645A1/zh
Publication of WO2022165645A1 publication Critical patent/WO2022165645A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the present application relates to the field of biometric identification, and in particular, to a curved capacitive fingerprint module, an electronic device and a method for manufacturing the module.
  • fingerprint recognition sensors are widely used in mobile terminal equipment, smart home, automotive electronics and other fields. As it grows, users have higher and higher requirements for products. At present, the capacitive fingerprints on the market are all flat structures, which are insufficient to adapt to the curved parts of the mobile terminal equipment.
  • the embodiments of the present application provide a curved capacitive fingerprint module, an electronic device and a method for manufacturing the curved capacitive fingerprint module.
  • a first aspect of the embodiments of the present application provides a curved capacitive fingerprint module, including a cover plate, a capacitive fingerprint sensor, a first wafer-bonding film DAF adhesive layer, and a substrate;
  • the capacitive fingerprint sensor is arranged on the upper surface of the first DAF adhesive layer
  • the first DAF adhesive layer is arranged on the upper surface of the substrate
  • the capacitive fingerprint sensor is arranged inside the cavity formed by the cover plate and the substrate;
  • the cover plate is a ceramic cover plate or a sapphire cover plate or a glass cover plate;
  • the upper surface of the cover plate is an arc surface.
  • the distance between the upper surface of the cover plate and the upper surface of the capacitive fingerprint sensor is 200um to 400um.
  • the distance between the center of the upper surface of the capacitive fingerprint sensor and the upper surface of the cover plate is 200um to 400um; the edge of the upper surface of the capacitive fingerprint sensor and the upper surface of the cover plate The distance between surfaces is 200um to 400um.
  • the cover plate includes a stepped structure and a curved surface structure; the curved surface structure is connected with the stepped structure; the stepped structure is used to support the curved surface structure; the upper surface of the curved surface structure is a curved surface , the radius of the arc surface is greater than or equal to 0.8mm, and less than or equal to 8mm; the inner and outer surfaces of the stepped structure are parallel to the sides of the capacitive fingerprint sensor.
  • the cover plate is an integrally formed structure.
  • it further includes a solder layer and a flexible circuit board FPC;
  • the substrate is arranged on the upper surface of the solder layer
  • the solder layer is arranged on the upper surface of the FPC;
  • the cover plate is set above the FPC
  • the step structure of the cover plate is arranged on the upper surface of the FPC; the step structure of the cover plate is perpendicular to the FPC.
  • the thickness of the step structure of the cover plate is greater than or equal to 100um.
  • the thickness of the step structure of the cover plate is greater than or equal to 150um; the thickness of the step structure of the cover plate is less than or equal to 500um.
  • the cover plate is a glass cover plate, and the lower surface of the arc structure of the glass cover plate is an arc surface; the thicknesses of the step structure and the arc structure of the glass cover plate are greater than or equal to 0.15mm, and less than or equal to 0.2mm; the thickness of the step structure of the glass cover plate is equal to the thickness of the arc structure of the glass cover plate.
  • the first aspect in a possible implementation manner, it further includes an epoxy molding compound EMC layer, the upper surface of the EMC layer is an arc surface; the EMC layer covers the capacitive fingerprint sensor; the EMC layer is disposed on the glass cover plate and the substrate to form a inside the cavity; the dielectric constant of the EMC layer is greater than 7.
  • the water glue layer is arranged between the glass cover plate and the EMC layer so that the glass cover plate is fixed above the EMC layer;
  • the electric constant is greater than 6.
  • the distance from the upper surface of the capacitive fingerprint sensor to the upper surface of the EMC layer is 50um to 100um.
  • the cover plate is a ceramic cover plate or a sapphire cover plate, and the lower surface of the arc structure of the cover plate is a plane.
  • it further includes an epoxy molding compound EMC layer, the top surface of the EMC layer is flat; the EMC layer covers the capacitive fingerprint sensor; the EMC layer is disposed in the cavity formed by the cover plate and the substrate Inside the body; the dielectric constant of the EMC layer is greater than 7.
  • a second DAF adhesive layer is further included; the second DAF adhesive layer is disposed between the cover plate and the EMC layer to fix the cover plate above the EMC layer, and the second DAF adhesive layer is The adhesive layer is arranged on the surface of the EMC layer; the dielectric constant of the second DAF adhesive layer is greater than 6.
  • the thickness of the arc structure of the cover plate is greater than or equal to 200um; the thickness of the arc structure of the cover plate is less than or equal to 300um; the upper surface of the capacitive fingerprint sensor reaches the EMC layer. The distance from the upper surface is 50um to 150um.
  • the first aspect in a possible implementation, it further includes a third DAF adhesive layer, the third DAF adhesive layer is disposed between the capacitive fingerprint sensor and the cover plate to fix the cover plate, and the third DAF adhesive layer is disposed on the capacitor On the upper surface of the fingerprint sensor, the dielectric constant of the third DAF adhesive layer is greater than 6.
  • the first aspect in a possible implementation manner, it further includes protective glue, the protective glue is disposed on the upper surface of the substrate, the protective glue is connected to the first DAF glue layer and the capacitive fingerprint sensor, and the protective glue is used to fix the capacitive fingerprint sensor and the first DAF adhesive layer.
  • a gas layer is further included, and the gas layer is arranged around the capacitive fingerprint sensor.
  • the thickness of the arc structure of the cover plate is greater than or equal to 200um; the distance from the center of the upper surface of the capacitive fingerprint sensor to the upper surface of the arc structure is 250um to 400um.
  • an ink layer is further included, and the ink layer is disposed on the inner surface of the cover plate.
  • a second aspect of the embodiments of the present application provides an electronic device, comprising: a circuit board and the curved capacitive fingerprint module according to any one of the first aspect, wherein the curved capacitive fingerprint module is connected to the circuit board.
  • a third aspect of the embodiments of the present application provides a method for making a curved capacitive fingerprint module, which is applied to manufacturing the curved capacitive fingerprint module as in any one of the first aspects, including:
  • the glass is subjected to hot bending treatment and tempering treatment to form a glass cover plate, and the upper surface and the lower surface of the arc surface structure of the glass cover plate are arc surfaces;
  • the encapsulation sheet is processed by computer numerical control CNC to form an arc surface encapsulation sheet with the upper surface of the EMC layer of the epoxy plastic encapsulant.
  • the encapsulation sheet includes a substrate, a first DAF adhesive layer, a capacitive fingerprint sensor and an EMC layer, and the EMC layer wraps The capacitive fingerprint sensor is covered, and the first DAF adhesive layer is arranged between the substrate and the capacitive fingerprint sensor to fix the capacitive fingerprint sensor;
  • the curved surface encapsulation sheet is mounted on the flexible circuit board FPC through the surface assembly technology SMT process;
  • the glass cover plate is attached to the top of the curved surface encapsulation sheet through the water glue layer.
  • a fourth aspect of the embodiments of the present application provides a method for making a curved capacitive fingerprint module, which is applied to manufacturing the curved capacitive fingerprint module as in any one of the first aspects, including:
  • the ceramics are sintered and cold engraved to form a ceramic cover, the upper surface of the cambered structure of the ceramic cover is cambered, and the lower surface of the cambered structure of the ceramic cover is flat;
  • the flat packaging sheet is mounted on the FPC through the surface assembly technology SMT process.
  • the flat packaging sheet includes the substrate, the first DAF adhesive layer, the capacitive fingerprint sensor and the epoxy plastic sealing compound EMC layer.
  • the upper surface of the EMC layer is flat, and the EMC layer is coated Capacitive fingerprint sensor, the first DAF adhesive layer is arranged between the substrate and the capacitive fingerprint sensor to fix the capacitive fingerprint sensor;
  • the ceramic cover plate is attached to the top of the flat packaging sheet through the second DAF adhesive layer.
  • a fifth aspect of the embodiments of the present application provides a method for manufacturing a curved capacitive fingerprint module, which is applied to manufacturing the curved capacitive fingerprint module as in any one of the first aspects, including:
  • the ceramics are sintered and cold engraved to form a ceramic cover, the upper surface of the cambered structure of the ceramic cover is cambered, and the lower surface of the cambered structure of the ceramic cover is flat;
  • the packaging sheet is mounted on the FPC through the surface assembly technology SMT process, and the packaging sheet includes a substrate, a first DAF adhesive layer, and a capacitive fingerprint sensor, and the first DAF adhesive layer is arranged between the substrate and the capacitive fingerprint sensor to fix the capacitive fingerprint sensor;
  • a third DAF adhesive layer is arranged between the ceramic cover plate and the capacitive fingerprint sensor in the packaging sheet, so that the ceramic cover plate is fixed above the capacitive fingerprint sensor through the third DAF adhesive layer, and the third DAF adhesive layer is arranged on the surface of the capacitive fingerprint sensor. upper surface.
  • a sixth aspect of the embodiments of the present application provides a method for making a curved capacitive fingerprint module, which is applied to manufacturing the curved capacitive fingerprint module as in any one of the first aspects, including:
  • the sapphire is cold-engraved to form a sapphire cover, the upper surface of the cambered structure of the sapphire cover is cambered, and the lower surface of the cambered structure of the sapphire cover is flat;
  • the flat packaging sheet is mounted on the FPC through the surface assembly technology SMT process.
  • the flat packaging sheet includes the substrate, the first DAF adhesive layer, the capacitive fingerprint sensor and the epoxy plastic sealing compound EMC layer.
  • the upper surface of the EMC layer is flat, and the EMC layer is coated Capacitive fingerprint sensor, the first DAF adhesive layer is arranged between the substrate and the capacitive fingerprint sensor to fix the capacitive fingerprint sensor;
  • the sapphire cover plate is attached on the flat packaging sheet through the second DAF adhesive layer.
  • a seventh aspect of the embodiments of the present application provides a method for manufacturing a curved capacitive fingerprint module, which is applied to manufacturing the curved capacitive fingerprint module as in any one of the first aspects, including:
  • the sapphire is cold-engraved to form a sapphire cover, the upper surface of the cambered structure of the sapphire cover is cambered, and the lower surface of the cambered structure of the sapphire cover is flat;
  • the package sheet is mounted on the FPC through the surface assembly technology SMT process, and the package sheet includes a substrate, a first DAF adhesive layer, and a capacitive fingerprint sensor, and the first DAF adhesive layer is arranged between the substrate and the capacitive fingerprint sensor to fix the capacitive fingerprint sensor;
  • a third DAF adhesive layer is arranged between the sapphire cover plate and the capacitive fingerprint sensor in the packaging sheet, so that the sapphire cover plate is fixed above the capacitive fingerprint sensor through the third DAF adhesive layer, and the third DAF adhesive layer is arranged on the capacitive fingerprint sensor. upper surface.
  • the beneficial effects of the embodiments of the present application are as follows: the embodiments of the present application provide a curved capacitive fingerprint packaging module, an electronic device, and a method for manufacturing a curved capacitive fingerprint module. , sapphire cover plate, the upper surface of the cover plate is curved, which can adapt to the curved structure of electronic equipment, and better improve the user experience.
  • FIG. 1 is a cross-sectional view of a curved capacitive fingerprint module according to an embodiment of the present application
  • FIG. 2 is a cross-sectional view of another curved capacitive fingerprint module provided by an embodiment of the present application.
  • FIG. 3 is a cross-sectional view of yet another curved capacitive fingerprint module provided by an embodiment of the present application.
  • FIG. 4 is a cross-sectional view of yet another curved capacitive fingerprint module provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a method for manufacturing a curved capacitive fingerprint module according to an embodiment of the present application
  • FIG. 6 is a cross-sectional view of a glass cover plate according to an embodiment of the present application.
  • FIG. 7 is a cross-sectional view of a curved surface encapsulation sheet provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of another method for manufacturing a curved capacitive fingerprint module provided by an embodiment of the present application.
  • FIG. 9 is a cross-sectional view of a ceramic cover plate or a sapphire cover plate provided by an embodiment of the present application.
  • FIG. 10 is a cross-sectional view of a planar package sheet provided by an embodiment of the present application.
  • FIG. 11 is a flowchart of yet another method for manufacturing a curved capacitive fingerprint module provided by an embodiment of the application.
  • FIG. 12 is a cross-sectional view of a package sheet without an EMC layer provided by an embodiment of the present application.
  • FIG. 13 is a flowchart of yet another method for manufacturing a curved capacitive fingerprint module provided by an embodiment of the present application.
  • FIG. 14 is a flowchart of yet another method for manufacturing a curved capacitive fingerprint module provided by an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the capacitive fingerprint module has always adopted the traditional structure, which is basically a square or circular plane contact structure.
  • the user feels uncomfortable and unsightly in use, and in harsh environments such as windy sand and dust, the Dust will be easily adsorbed on the flat contact structure, resulting in misjudgment of fingerprint recognition when the capacitive fingerprint module is in use.
  • the effective solution is to use a curved capacitive fingerprint module scheme. This new structural design scheme improves the fingerprint identification module. After it is installed on the whole machine, the whole machine is more beautiful, and the user feels comfortable. Visually three-dimensional.
  • FIG. 1 is a cross-sectional view of the curved fingerprint module.
  • the curved fingerprint module 100 includes a capacitive fingerprint sensor 101 and a substrate 102 .
  • the capacitive fingerprint sensor is represented by Die
  • Die101 is electrically connected to the substrate 102
  • the substrate 102 is located under the Die101.
  • the module 100 may further include a first DAF (Die Attach Film) adhesive layer 104, and the Die 101 can be directly pasted on the upper surface of the substrate 102 through the first DAF adhesive layer 104, and then passed through the WB (Wire Bonding, wire bond)
  • WB Wire Bonding, wire bond
  • the module 100 further includes a cover plate 106.
  • the upper surface of the cover plate 106 is an arc surface.
  • the cover plate 106 covers the Die 101.
  • the plate can be a ceramic cover plate or a sapphire cover plate or a glass cover plate, so that the outer surface of the capacitive fingerprint module is harder and scratch-resistant.
  • the capacitive fingerprint module since the capacitive fingerprint module needs to be in contact with the finger, the capacitive fingerprint module is easily damaged by friction with other objects, thus affecting the accuracy of fingerprint recognition.
  • the capacitive fingerprint module since the fingerprint recognition surface is a curved surface, it is more likely to damage the curved surface due to friction or falling, which affects the fingerprint recognition performance.
  • the cover plate of the curved capacitive fingerprint module in the embodiment of the present application is Ceramic cover plate, sapphire cover plate or glass cover plate, the outer surface of the capacitive fingerprint module provided in this embodiment is more hard and scratch-resistant, which can protect the curved fingerprint module from being easily damaged by the outside world.
  • the curved surface of the fingerprint identification module has a certain height difference, and the R angle of the upper surface 106a of the cover plate 106 can be set to 0.8mm to 8mm, that is, the cover plate.
  • the radius of the upper surface of the cover can be set to be 0.8mm to 8mm.
  • the radius of the upper surface of the arc structure 1061 of the cover plate can be set to be greater than or equal to 0.8mm and less than or equal to 8mm to meet user needs. .
  • the distance D1 from the center of the upper surface of Die to the surface 106a of the cover plate 106 is likely to be too large , and the distance from the edge of the upper surface of the Die to the surface 106a of the cover plate 106 is easily too small, and the distance from the edge of the upper surface of the Die to the surface 106a of the cover plate 106 is too small, which may reduce the reliability of the module. Assembly affects the imaging quality of fingerprints.
  • the distance between the upper surface of the cover plate and the upper surface of the capacitive fingerprint sensor to be any value from 200um to 400um, and the distance between the upper surface of the cover plate and the upper surface of the capacitive fingerprint sensor is greater than or equal to 200um and less than or equal to 200um. Or equal to 400um, which can ensure the reliability of the module while ensuring the quality of the fingerprint image.
  • the distance between the upper surface of the cover plate and the upper surface of the capacitive fingerprint sensor is 200um to 400um, which may include: the distance D1 between the center of the upper surface of Die101 and the upper surface 106a of the cover plate is 200um to 400um; Die101 The distance between the edge of the upper surface of the cover and the upper surface 106a of the cover plate is 200um to 400um. It can be understood that the distance D1 between the center of the upper surface of Die101 and the upper surface 106a of the cover plate is greater than or equal to 200um and less than or equal to 400um; the distance between the edge of the upper surface of Die101 and the upper surface 106a of the cover plate is greater than or equal to 400um or equal to 200um and less than or equal to 400um.
  • the cover plate 106 shown in FIG. 1 the cover plate 106 includes a stepped structure 1062 and a curved surface structure 1061 , and the curved surface structure 1061 is connected with the stepped structure 1062 .
  • the cover plate 106 can be an integrally formed structure.
  • the integrated structure of the cover plate has higher structural stability and better protection ability for Die.
  • the upper surface of the arc structure 1061 of the cover plate is an arc surface
  • the inner surface of the step structure of the cover plate is parallel to the outer surface
  • the step structure of the cover plate is arranged on the side of the Die
  • the step structure of the cover plate is Arranged around the Die, the inner surface and the outer surface of the step structure of the cover plate are respectively parallel to the side surfaces of the Die.
  • the module 100 may also include an FPC (Flexible Printed Circuit) 103 and a solder layer 107, and the substrate 102 is connected to the FPC 103 by soldering and then underfilling colloid, that is, a solder layer is provided between the FPC 103 and the substrate 102 107.
  • the solder layer 107 includes solder and colloid.
  • the Die is disposed above the substrate, the Die is attached to the substrate 102 through the first DAF adhesive layer 104, and the substrate 102 can be attached to the FPC 103 through a Surface Mounted Technology (SMT) process.
  • SMT Surface Mounted Technology
  • the substrate is arranged on the upper surface of the solder layer
  • the solder layer is arranged on the upper surface of the FPC
  • the cover plate is arranged above the FPC
  • the step structure of the cover plate can be arranged on the upper surface of the FPC
  • the step structure of the cover plate can be perpendicular to the FPC setup.
  • the stepped structure 1062 may be disposed on the upper surface of the edge of the FPC, and the stepped structure 1062 is used to support the curved surface structure 1061 , or it can be understood that the stepped structure 1062 is used to raise the curved surface structure 1061 .
  • the upper surface of the arc surface structure 1061 is an arc surface
  • the lower surface of the arc surface structure 1061 is also an arc surface.
  • the stepped structure 1062 shown in FIG. 1 is disposed around the capacitive fingerprint sensor 101 , that is, the stepped structure 1062 is disposed around the Die, and the curved surface structure 1061 is disposed above the capacitive fingerprint sensor 101 .
  • the stepped structure 1062 is disposed above the FPC 103 .
  • the stepped structure can be directly disposed on the upper surface of the FPC 103 ; as shown in FIG. 2 , the stepped structure 1062 can be disposed on the FPC 103 through the colloid 112 , that is, a glue 112 is formed between the step structure 1062 and the FPC 103 by dispensing glue, so that the glue 112 fixes the step structure 1062 above the FPC.
  • the thickness of the step structure of the cover plate is greater than or equal to 100um.
  • the cover plate In order to make the cover plate play a protective role for Die, the cover plate needs to have a certain thickness.
  • the step structure It is used to support the curved surface structure, and the stepped structure also needs a certain thickness.
  • the thickness of the stepped structure with the cover plate is greater than or equal to 100um, so that the stepped structure can well support the curved surface structure and protect the die.
  • the thickness of the step structure of the cover plate is greater than or equal to 150um.
  • the cover plate is structurally more stable and the stability of the module is more stable.
  • the thicker the thickness of the step structure of the cover plate the larger the module will be. Therefore, the thickness of the step structure of the cover plate is set to be less than or equal to 500um, so that the cover plate plays a protective role while the module is protected. smaller so that it fits into a smaller space.
  • the cover plate 106 when the cover plate 106 is a glass cover plate, the lower surface of the arc structure 1061 of the glass cover plate 106 is an arc surface, and the lower surface of the cover plate 106 forms a spherical inner surface. cavity.
  • the thickness of the arc structure 1061 can be equal everywhere, the thickness of the arc structure 1061 is equal to the thickness of the step structure 1062, and the thickness of the glass cover plate is greater than or equal to 0.15mm and less than or equal to 0.2mm.
  • the curved capacitive fingerprint mold further includes an EMC (Epoxy Molding Compound, epoxy resin molding compound or epoxy molding compound) layer 105, and the EMC layer 105 can be made of Molding (injection molding compound). Forming or plastic packaging) process, and then the EMC layer is subjected to CNC (Computer numerical control, computer numerical control) surface processing and polishing process to form a curved surface.
  • the top surface of the EMC layer 105 is an arc surface
  • the EMC layer 105 covers the Die 101
  • the cover plate 106 covers the EMC layer 105 . It can be understood that the EMC layer is disposed inside the cavity formed by the glass cover plate and the substrate.
  • the coating layer of the capacitive fingerprint module will be damaged during the use of the electronic device. It is easy to cause damage due to friction with other objects, thus affecting the accuracy of fingerprint recognition.
  • the upper surface of the cover plate of the curved capacitive fingerprint module is a curved surface and the cover plate is a glass cover plate.
  • the outer surface of the capacitive fingerprint module provided by the embodiment is more hard and scratch-resistant, which can protect the curved fingerprint module from being easily damaged by the outside world.
  • the module 100 further includes an ink layer 110 and a water glue layer 109, and the ink layer is arranged on the inner surface of the cover plate to form capacitive fingerprint modules of various colors. to match the color of the casing of the electronic device.
  • the water glue layer is arranged between the EMC layer 105 and the cover plate 106 to fix the cover plate 106 above the EMC layer 105.
  • the water glue layer can be set between the ink layer 110 and the EMC layer 105, the cover plate 106 coated with the ink layer 110 is fixed above the EMC layer 105.
  • a water glue layer is used. Compared with the use of DAF adhesive layer, the process is simpler and easier to achieve.
  • the module 100 further includes a reinforcing steel plate (reinforcing plate, steel reinforcement, and reinforcing steel sheet) 108, and hot-pressing glue can be used between the FPC 103 and the reinforcing plate 108 Press-bonding is performed, and the reinforcing steel sheet 108 is provided on the lower surface of the FPC 103 .
  • the reinforcing steel plate 108 is used to fix the connector and electronic devices such as resistors, capacitors, and MCUs.
  • the connectors are used to connect the capacitive fingerprint sensor with other circuits in the electronic device to realize the fingerprint recognition function. To cooperate with Die101 to realize fingerprint collection function.
  • the thickness D3 of the glass cover plate may be any value from 0.15 mm to 0.2 mm.
  • the thicknesses of the stepped structure and the curved surface structure of the glass cover plate are equal.
  • the thicknesses of the stepped structure and the curved surface structure of the glass cover plate are both D3, and the thicknesses of the stepped structure and the curved surface structure are equal everywhere.
  • the inner cavity of the hot-bended glass cover plate can also be sprayed and colored, that is, an ink layer needs to be arranged in the inner cavity of the hot-bended glass cover plate, and the smaller the thickness, the more difficult it is to color the inner cavity. Therefore, setting the thickness of the glass cover plate to 0.15mm to 0.2mm can not only ensure the performance of fingerprint recognition, but also have a high yield, and also facilitate the subsequent coating of ink in the inner cavity of the glass cover plate to form an ink layer.
  • the distance D2 from the upper surface of the capacitive fingerprint sensor 101 to the upper surface of the EMC layer 105 may be 50um to 100um, that is, the distance D2 from the upper surface of the Die 101 to the upper surface of the EMC layer 105
  • the distance D2 is greater than or equal to 50um and less than or equal to 100um. It can be understood that if D2 is set too small, the yield of the EMC layer formed by the molding process will be low. If D2 is set too large, the distance between the finger and the capacitive fingerprint sensor may be too large and the fingerprint recognition will be affected. Therefore, set D2 to 50um to 100um, which can improve the yield while ensuring the fingerprint recognition performance.
  • the distance from the upper surface of the EMC layer 105 to the upper surface of the cover plate 106 may be 150um to 200um.
  • the thickness of the ink layer 110 may be 20um, and the thickness of the hydrogel layer 109 may also be 20um.
  • the dielectric constant of the glass cover plate 106 can be set to be greater than 7, and the dielectric constant of the ink layer 110 can be set to be greater than 7 , the dielectric constant of the hydrogel layer 109 may be set to be greater than 6, and the dielectric constant of the EMC layer 105 may be set to be greater than 7.
  • the cover plate 306 is a ceramic cover plate or a sapphire cover plate, and the curved surface of the ceramic cover plate or the sapphire cover plate is The lower surface of the structure 3061 is a plane, and the upper surface of the arc structure 3061 is an arc.
  • the curved capacitive fingerprint module 300 further includes an EMC layer 305, the top surface of the EMC layer 305 is flat, the EMC layer 305 covers the Die 301, and the cover plate 306 covers the EMC layer 305 , it can be understood that the EMC layer 305 is disposed inside the cavity formed by the cover plate 306 and the substrate 302 .
  • the curved capacitive fingerprint module 300 further includes an ink layer 310, and the ink layer 310 is disposed on the lower surface of the cover plate 306 so that the capacitive fingerprint module exhibits various colors to It can be understood that the shells of various colors of electronic equipment are suitable for the ink layer 310 coated on the inner surface of the cover plate 306. As shown in FIG. 3, an ink layer is provided on the inner surface of the stepped structure and the curved surface structure of the cover plate. 310. In other implementations, an ink layer can also be provided only on the inner surface of the arc structure of the cover plate, which can further save processes and costs.
  • the curved capacitive fingerprint module 300 also includes a second DAF adhesive layer 309, the second DAF adhesive layer 309 is disposed between the EMC layer 305 and the cover plate 306, and the second DAF adhesive layer is used to fix the cover plate 306 on the EMC layer.
  • the second DAF adhesive layer 309 is disposed on the surface of the EMC layer 305 , and the second DAF adhesive layer 309 covers the EMC layer 305 .
  • the ceramic cover plate 306 or the sapphire cover plate 306 includes a stepped structure 3062 and a curved surface structure 3061, the stepped structure 3062 is connected with the curved surface structure 3061, the stepped structure 3062 is used to support the curved surface structure 3061, and the stepped structure 3062 is arranged on the Above the FPC 303, the upper surface 306a of the arc structure 3061 is an arc surface.
  • the reinforcing steel plate 308, the FPC303, the solder layer 307, the Die301, the substrate 302, the first DAF adhesive layer 304 and the reinforcing steel plate 108, the FPC103, the solder layer 107, the Die101, the substrate 102, the first A DAF adhesive layer 104 is the same or similar, and details are not repeated here.
  • the thickness of the step structure of the cover plate can be set to any value from 100um to 200um
  • the thickness D6 of the step structure 3062 of the ceramic cover plate or the sapphire cover plate can be set to Any value from 100um to 200um.
  • the thickness of the arc structure of the ceramic cover plate or the sapphire cover plate is set as Greater than or equal to 200um to ensure the reliability of the module. Setting the thickness of the arc structure of the ceramic cover plate or the sapphire cover plate to be greater than or equal to 200um and less than or equal to 300um can ensure better protection of the capacitive fingerprint sensor while ensuring the quality of the fingerprint image.
  • the maximum thickness of the arc structure for example, D5 in FIG. 3 is greater than or equal to 200um and less than or equal to 300um, and the minimum thickness of the arc structure is also greater than or equal to 200um and less than or equal to 300um.
  • the distance D4 from the top surface of the Die301 to the top surface of the EMC layer 305 can be set to any value from 50um to 150um, that is, the distance D4 from the top surface of the Die301 to the top surface of the EMC layer 305 is greater than or equal to 50um , and less than or equal to 150um, which can further improve the reliability of the capacitive fingerprint module while ensuring the quality of the fingerprint image.
  • the dielectric constant of the ceramic cover plate 306 can be set to be greater than 28, the dielectric constant of the sapphire cover plate can be set to be greater than 12, and the dielectric constant of the ink layer 310
  • the constant may be set to be greater than 7
  • the dielectric constant of the second DAF glue layer 309 may be set to be greater than 6
  • the dielectric constant of the EMC layer 305 may be set to be greater than 7.
  • the capacitive fingerprint module 400 further includes a third DAF adhesive layer 409 , and the third DAF adhesive layer 409 is disposed on the Die 401 and the cover plate 406 to fix the cover plate 406 .
  • the third DAF adhesive layer 409 is disposed on the upper surface of the Die 401 .
  • the capacitive fingerprint module further includes a gas layer 405 , which can be understood as an air gap or other gas, and the gas layer 405 is disposed around the Die 401 .
  • the EMC layer is omitted, and the cover plate is fixed above the Die 401 through the third DAF adhesive layer 409 .
  • the Die 401 is disposed in the cavity formed by the cover plate 406 and the substrate 402 , and the capacitive fingerprint module provided in FIG. 4 saves the process and cost because the EMC layer is omitted.
  • the capacitive fingerprint module further includes a protective glue 411 , which is disposed on the upper surface of the substrate 402 , the protective glue is connected to the first DAF glue layer 404 and the Die 401 , and the protective glue 411 Used to fix Die401 and the first DAF adhesive layer 404.
  • the cover plate 406 includes a stepped structure 4062 and a curved surface structure 4061.
  • the curved surface of the cover plate 406 The thickness of the structure 4061 can be greater than 200um, the distance from the upper surface of the arc structure 4061 to the upper surface of the Die is set to be 250um to 400um, and the distance from the upper surface of the arc structure 4061 to the upper surface of the Die is greater than or equal to 250um, and the arc The distance from the upper surface of the surface structure 4061 to the upper surface of the Die is less than or equal to 400um.
  • the distance D7 from the center of the upper surface of the capacitive fingerprint sensor to the upper surface of the camber structure is 250um to 400um
  • the distance from the edge of the upper surface of the capacitive fingerprint sensor to the upper surface of the camber structure is 250um to 400um.
  • the distance D7 from the center of the upper surface of the capacitive fingerprint sensor to the upper surface of the arc structure is greater than or equal to 250um and less than or equal to 400um
  • the distance from the edge of the upper surface of the capacitive fingerprint sensor to the upper surface of the arc structure is greater than or equal to 250um and Less than or equal to 400um.
  • the dielectric constant of the ceramic cover plate 406 can be set to be greater than 28
  • the dielectric constant of the sapphire cover plate can be set to be greater than 12
  • the dielectric constant of the ink layer 410 The constant may be set to be greater than 7, and the dielectric constant of the third DAF adhesive layer 409 may be set to be greater than 6.
  • the present embodiment provides a method for manufacturing a curved capacitive fingerprint module, please refer to FIG. 5 , the method includes the following steps:
  • S501 heat bending and tempering the glass to form a glass cover plate, and the upper surface and the lower surface of the arc structure of the glass cover plate are arc surfaces;
  • the encapsulation sheet includes a substrate, a first DAF adhesive layer, a capacitive fingerprint sensor and an EMC layer, and the EMC layer coats the capacitive fingerprint sensor,
  • the first DAF adhesive layer is arranged between the substrate and the capacitive fingerprint sensor to fix the capacitive fingerprint sensor;
  • the glass cover plate is attached to the top of the curved surface encapsulation sheet through the water glue layer.
  • step S501 a cross-sectional view of the glass cover plate 606 formed by thermal bending and tempering of the glass is shown in FIG. 6 .
  • step structure 6062 and arc structure 6061 the inner surface of the glass cover can also be painted or sprayed to make the curved capacitive fingerprint module show different colors, so as to adapt to the shells of electronic devices of different colors. For example, it can be used on the inner surface of the glass cover. Coat the ink layer to make the curved capacitive fingerprint module show different colors.
  • the curved surface packaging sheet 700 includes a substrate 702 , a first DAF adhesive layer 704 , a capacitive fingerprint sensor 701 and an EMC layer 705 , and the EMC of the curved surface packaging sheet 700
  • the upper surface of the layer 705 is an arc surface 705a.
  • the substrate 702 , the first DAF adhesive layer 704 , the capacitive fingerprint sensor 701 and the EMC layer 705 in this embodiment are the same as or similar to the substrate 102 , the first DAF adhesive layer 104 , the capacitive fingerprint sensor 101 and the EMC layer 105 in the previous embodiment , and will not be repeated here.
  • the upper surface of the EMC layer can be processed into an arc surface through CNC surface processing and polishing according to different customers' requirements for curvature.
  • step S503 a solder layer is arranged between the FPC and the substrate to realize the connection between the substrate and the FPC, and then in step S504, the glass cover plate 606 shown in FIG. above to form a curved capacitive fingerprint module.
  • the present embodiment provides a method for manufacturing a curved capacitive fingerprint module, please refer to FIG. 8 , the method includes the following steps:
  • S801 sintering and cold engraving the ceramic to form a ceramic cover, the upper surface of the cambered structure of the ceramic cover is cambered, and the lower surface of the cambered structure of the ceramic cover is flat;
  • the flat packaging sheet includes the substrate, the first DAF adhesive layer, the capacitive fingerprint sensor and the epoxy plastic sealing compound EMC layer.
  • the top surface of the EMC layer is flat, and the EMC layer wraps the capacitor a fingerprint sensor, the first DAF adhesive layer is arranged between the substrate and the capacitive fingerprint sensor to fix the capacitive fingerprint sensor;
  • step S801 the upper surface of the cambered structure of the ceramic cover plate formed by sintering and cold engraving the ceramic is cambered, and the lower surface of the cambered structure of the ceramic cover plate is flat.
  • a cross-sectional view of the ceramic cover plate 906 is shown in FIG. 9 , please refer to FIG. 9 , the ceramic cover plate 906 includes a stepped structure 9062 and a curved surface structure 9061 .
  • the inner cavity of the ceramic cover plate can also be painted by spraying process or Physical Vapor Deposition (PVD) process to make the curved capacitive fingerprint module show different colors to adapt to different colors of electronic equipment.
  • PVD Physical Vapor Deposition
  • the shell for example, can be coated with an ink layer on the inner surface of the ceramic cover to make the curved capacitive fingerprint module show different colors, or the outer surface of the ceramic cover can be plated with anti-fingerprint paint (Anti-FingerPrint Coating, AF) to make the curved capacitive fingerprint module show different colors.
  • anti-fingerprint paint Anti-FingerPrint Coating, AF
  • the flat packaging sheet 1000 includes a substrate 1002 , a first DAF adhesive layer 1004 , a capacitive fingerprint sensor 1001 and an EMC layer 1005 , and the top surface of the EMC layer 1005 of the flat packaging sheet 1000 is flat.
  • the substrate 1002 , the first DAF adhesive layer 1004 , the capacitive fingerprint sensor 1001 and the EMC layer 1005 in this embodiment are the same as or similar to the substrate 302 , the first DAF adhesive layer 304 , the capacitive fingerprint sensor 301 and the EMC layer 305 in the previous embodiment , and will not be repeated here.
  • step S802 a solder layer is arranged between the FPC and the substrate to realize the connection between the substrate and the FPC, and then in step S803, the ceramic cover plate 906 shown in FIG. 9 is attached to the flat packaging sheet 1000 through the second DAF adhesive layer to form a curved capacitive fingerprint module.
  • this embodiment provides a method for manufacturing a curved capacitive fingerprint module, please refer to FIG. 11 , the method includes the following steps:
  • S1101 performing sintering treatment and cold engraving treatment on the ceramic to form a ceramic cover plate, the upper surface of the arc surface structure of the ceramic cover plate is an arc surface, and the lower surface of the arc surface structure of the ceramic cover plate is a plane;
  • the packaging sheet is mounted on the FPC through the SMT process, the packaging sheet includes a substrate, a first DAF adhesive layer, and a capacitive fingerprint sensor, and the first DAF adhesive layer is disposed between the substrate and the capacitive fingerprint sensor to fix the capacitive fingerprint sensor;
  • S1103 Disposing a third DAF adhesive layer between the ceramic cover plate and the capacitive fingerprint sensor in the packaging sheet, so that the ceramic cover plate is fixed above the capacitive fingerprint sensor through the third DAF adhesive layer, and the third DAF adhesive layer is disposed on the capacitive fingerprint sensor the top surface of the sensor.
  • step S1101 is the same as or similar to step S801 in the foregoing embodiment, and details are not repeated here.
  • the packaging sheet 1200 includes the substrate 1202 , the first DAF adhesive layer 1204 , the capacitive fingerprint sensor 1201 and the protective adhesive 1211 , and the packaging sheet 1200 does not include the EMC layer, that is, it can be understood that the surrounding of the Die1201 is gas Floor.
  • the substrate 1202 , the first DAF adhesive layer 1204 , the capacitive fingerprint sensor 1201 and the protective adhesive 1211 in this embodiment are the same as or similar to the substrate 402 , the first DAF adhesive layer 404 , the capacitive fingerprint sensor 401 and the protective adhesive 411 in the previous embodiment , will not be repeated here.
  • step S1102 a solder layer is arranged between the FPC and the substrate to realize the connection between the substrate and the FPC, and then in step S1103, the ceramic cover plate 906 shown in FIG. A curved capacitive fingerprint module is formed above, and the third DAF adhesive layer is arranged on the upper surface of the capacitive fingerprint sensor.
  • the present embodiment provides a method for manufacturing a curved capacitive fingerprint module, please refer to FIG. 13 , the method includes the following steps:
  • the flat packaging sheet includes the substrate, the first DAF adhesive layer, the capacitive fingerprint sensor and the epoxy plastic sealing compound EMC layer.
  • the upper surface of the EMC layer is flat, and the EMC layer wraps the capacitor a fingerprint sensor, the first DAF adhesive layer is arranged between the substrate and the capacitive fingerprint sensor to fix the capacitive fingerprint sensor;
  • S1303 The sapphire cover plate is attached on the flat packaging sheet through the second DAF adhesive layer.
  • step S1301 cold engraving is performed on the sapphire to form a sapphire cover plate whose upper surface of the cambered structure is a cambered surface and a lower surface of the cambered structure is a flat surface.
  • a cross-sectional view of the sapphire cover plate 906 is shown in FIG. 9 , please refer to FIG. 9 , the sapphire cover plate 906 includes a stepped structure 9062 and a curved surface structure 9061 .
  • the inner surface of the sapphire cover can be sprayed or PVD colored to make the curved capacitive fingerprint module show different colors, so as to adapt to the shells of electronic devices of different colors. For example, it can be used on the inner surface of the sapphire cover.
  • the ink layer is applied to make the curved capacitive fingerprint module show different colors, or AF film can be coated on the outer surface of the sapphire cover to make the curved capacitive fingerprint module show different colors.
  • cold engraving can be performed first to form grooves, then cold engraving can be performed to form a curved surface structure, and finally coloring can be performed.
  • cover plate with a specific thickness in the foregoing embodiments, compared with the process of sintering ceramics and then cold carving, the cold carving process of sapphire is easier to implement, with lower cost and higher yield.
  • Step S1302 is the same as or similar to step 802 in the foregoing embodiment, and details are not repeated here.
  • step S1303 the sapphire cover plate 906 shown in FIG. 9 is attached to the top of the flat packaging sheet 1000 through the second DAF adhesive layer to form a curved capacitive fingerprint module.
  • the present embodiment provides a method for manufacturing a curved capacitive fingerprint module, please refer to FIG. 14 , the method includes the following steps:
  • the packaging sheet is mounted on the FPC through the SMT process, the packaging sheet includes a substrate, a first DAF adhesive layer, and a capacitive fingerprint sensor, and the first DAF adhesive layer is arranged between the substrate and the capacitive fingerprint sensor to fix the capacitive fingerprint sensor;
  • a third DAF adhesive layer is arranged between the sapphire cover plate and the capacitive fingerprint sensor in the flat package sheet, so that the sapphire cover plate is fixed above the capacitive fingerprint sensor through the third DAF adhesive layer, and the third DAF adhesive layer is arranged on the capacitive fingerprint sensor The upper surface of the fingerprint sensor.
  • Step S1401 is the same as or similar to step S1301 in the foregoing embodiment, and is not repeated here.
  • Step S1402 is the same as or similar to step S1102 in the foregoing embodiment, and is not repeated here.
  • step S1403 the sapphire cover plate 906 shown in FIG. 9 is attached to the top of the packaging sheet 1200 through the second DAF adhesive layer to form a curved capacitive fingerprint module.
  • the electronic device 1500 includes a circuit board 1501 and a curved capacitive fingerprint module 1502 .
  • the circuit board may include a memory and a processor.
  • the curved capacitive fingerprint module 1502 is connected to the circuit motherboard 1501.
  • the connector of the capacitive fingerprint module is connected to the circuit motherboard to realize fingerprint identification and unlocking.
  • the electronic device may be a mobile phone, tablet, computer or other electronic device.
  • the capacitive fingerprint module can be attached to the side buttons of the mobile phone, and can be directly connected to the motherboard of the whole machine through the FPC and the connector.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is only determined according to A, and B may also be determined according to A and/or other information.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本申请涉及封装领域,尤其涉及一种弧面电容指纹模组、电子设备以及制作弧面电容指纹模组的方法。一种弧面电容指纹模组,包括盖板、电容指纹传感器、第一晶片粘结薄膜DAF胶层和基板;电容指纹传感器设置在第一DAF胶层的上表面;第一DAF胶层设置于基板的上表面;电容指纹传感器设置在盖板与基板形成的腔体内部;盖板为陶瓷盖板或者蓝宝石盖板或者玻璃盖板;盖板的上表面为弧面。通过设置陶瓷盖板、蓝宝石盖板或者玻璃盖板,盖板的上表面为弧面,能够适配电子设备的曲面结构,较好的提升了用户体验。

Description

一种弧面电容指纹模组、电子设备及模组制作方法 技术领域
本申请涉及生物识别领域,尤其涉及一种弧面电容指纹模组、电子设备及模组制作方法。
背景技术
目前,随着生物识别传感器的发展,尤其指纹识别传感器的迅猛发展,指纹识别传感器广泛应用于移动终端设备、智能家居、汽车电子等领域,市场对生物识别传感器的需求与日俱增,市场需求体量越来越大,用户对产品的要求越来越高。目前市场的电容式指纹都是平面结构,不足以适配移动终端设备的曲面部位。
发明内容
针对现有技术中电容指纹模组不适配电子设备的曲面部位的问题,本申请实施例提供了一种弧面电容指纹模组、电子设备以及制作弧面电容指纹模组的方法。
本申请的实施例的第一方面提供了一种弧面电容指纹模组,包括盖板、电容指纹传感器、第一晶片粘结薄膜DAF胶层和基板;
电容指纹传感器设置在第一DAF胶层的上表面;
第一DAF胶层设置于基板的上表面;
电容指纹传感器设置在盖板与基板形成的腔体内部;
盖板为陶瓷盖板或者蓝宝石盖板或者玻璃盖板;
盖板的上表面为弧面。
根据第一方面,在一种可能的实现方式中,盖板的上表面与电容指纹传感器的上表面之间的距离为200um至400um。
根据第一方面,在一种可能的实现方式中,电容指纹传感器的上表面的中心与盖板的上表面之间的距离为200um至400um;电容指纹传感器的上表面的边缘与盖板的上表面之间的距离为200um至400um。
根据第一方面,在一种可能的实现方式中,盖板包括台阶结构和弧面结构;弧面结构与台阶结构连接;台阶结构用于支撑弧面结构;弧面结构的上表面为弧 面,弧面的半径大于或者等于0.8mm,并且小于或者等于8mm;台阶结构的内表面和外表面平行于电容指纹传感器的侧面。
根据第一方面,在一种可能的实现方式中,盖板为一体成型结构。
根据第一方面,在一种可能的实现方式中,还包括焊锡层和柔性电路板FPC;
基板设置于焊锡层的上表面;
焊锡层设置在FPC的上表面;
盖板设置在FPC上方;
盖板的台阶结构设置于FPC的上表面;盖板的台阶结构垂直于FPC。
根据第一方面,在一种可能的实现方式中,盖板的台阶结构的厚度大于或者等于100um。
根据第一方面,在一种可能的实现方式中,盖板的台阶结构的厚度大于或者等于150um;盖板的台阶结构的厚度小于或者等于500um。
根据第一方面,在一种可能的实现方式中,盖板为玻璃盖板,玻璃盖板的弧面结构的下表面为弧面;玻璃盖板的台阶结构和弧面结构的厚度大于或者等于0.15mm,并且小于或者等于0.2mm;玻璃盖板的台阶结构的厚度等于玻璃盖板的弧面结构的厚度。
根据第一方面,在一种可能的实现方式中,还包括环氧塑封料EMC层,EMC层的上表面为弧面;EMC层包覆电容指纹传感器;EMC层设置在玻璃盖板与基板形成的腔体的内部;EMC层的介电常数大于7。
根据第一方面,在一种可能的实现方式中,还包括水胶层;水胶层设置于玻璃盖板与EMC层之间以使得玻璃盖板固定在EMC层的上方;水胶层的介电常数大于6。
根据第一方面,在一种可能的实现方式中,电容指纹传感器的上表面至EMC层的上表面的距离为50um至100um。
根据第一方面,在一种可能的实现方式中,盖板为陶瓷盖板或者蓝宝石盖板,盖板的弧面结构的下表面为平面。
根据第一方面,在一种可能的实现方式中,还包括环氧塑封料EMC层,EMC层的上表面为平面;EMC层包覆电容指纹传感器;EMC层设置在盖板与基板形成的腔体的内部;EMC层的介电常数大于7。
根据第一方面,在一种可能的实现方式中,还包括第二DAF胶层;第二DAF胶层设置于盖板与EMC层之间以将盖板固定在EMC层的上方,第二DAF胶层设 置于EMC层的表面;第二DAF胶层的介电常数大于6。
根据第一方面,在一种可能的实现方式中,盖板的弧面结构的厚度大于或者等于200um;盖板的弧面结构的厚度小于或者等于300um;电容指纹传感器的上表面至EMC层的上表面的距离为50um至150um。
根据第一方面,在一种可能的实现方式中,还包括第三DAF胶层,第三DAF胶层设置于电容指纹传感器与盖板之间以固定盖板,第三DAF胶层设置于电容指纹传感器的上表面,第三DAF胶层的介电常数大于6。
根据第一方面,在一种可能的实现方式中,还包括保护胶,保护胶设置于基板的上表面,保护胶与第一DAF胶层和电容指纹传感器连接,保护胶用于固定电容指纹传感器以及第一DAF胶层。
根据第一方面,在一种可能的实现方式中,还包括气体层,气体层设置于电容指纹传感器的四周。
根据第一方面,在一种可能的实现方式中,盖板的弧面结构的厚度大于或者等于200um;电容指纹传感器的上表面的中心至弧面结构的上表面的距离为250um至400um。
根据第一方面,在一种可能的实现方式中,还包括油墨层,油墨层设置于盖板的内表面。
本申请的实施例的第二方面提供了一种电子设备,包括:电路主板和如第一方面中任一项的弧面电容指纹模组,弧面电容指纹模组与电路主板连接。
本申请的实施例的第三方面提供了一种制作弧面电容指纹模组的方法,应用于制作如第一方面中任一项的弧面电容指纹模组,包括:
对玻璃进行热弯处理和钢化处理形成玻璃盖板,玻璃盖板的弧面结构的上表面和下表面均为弧面;
对封装片进行计算机数字控制CNC加工以形成环氧塑封料EMC层的上表面为弧面的弧面封装片,封装片包括基板、第一DAF胶层、电容指纹传感器以及EMC层,EMC层包覆电容指纹传感器,第一DAF胶层设置于基板与电容指纹传感器之间以固定电容指纹传感器;
通过表面组装技术SMT工艺将弧面封装片安装在柔性电路板FPC上;
通过水胶层将玻璃盖板贴合在弧面封装片的上方。
本申请的实施例的第四方面提供了一种制作弧面电容指纹模组的方法,应用于制作如第一方面中任一项的弧面电容指纹模组,包括:
对陶瓷进行烧结处理和冷雕处理以形成陶瓷盖板,陶瓷盖板的弧面结构的上表面为弧面,陶瓷盖板的弧面结构的下表面为平面;
通过表面组装技术SMT工艺将平面封装片安装在FPC上,平面封装片包括基板、第一DAF胶层、电容指纹传感器以及环氧塑封料EMC层,EMC层的上表面为平面,EMC层包覆电容指纹传感器,第一DAF胶层设置于基板与电容指纹传感器之间以固定电容指纹传感器;
通过第二DAF胶层将陶瓷盖板贴合在平面封装片的上方。
本申请的实施例的第五方面提供了一种制作弧面电容指纹模组的方法,应用于制作如第一方面中任一项的弧面电容指纹模组,包括:
对陶瓷进行烧结处理和冷雕处理以形成陶瓷盖板,陶瓷盖板的弧面结构的上表面为弧面,陶瓷盖板的弧面结构的下表面为平面;
通过表面组装技术SMT工艺将封装片安装在FPC上,封装片包括基板、第一DAF胶层、电容指纹传感器,第一DAF胶层设置于基板与电容指纹传感器之间以固定电容指纹传感器;
在陶瓷盖板与封装片中的电容指纹传感器之间设置第三DAF胶层以使得陶瓷盖板通过第三DAF胶层固定在电容指纹传感器的上方,第三DAF胶层设置于电容指纹传感器的上表面。
本申请的实施例的第六方面提供了一种制作弧面电容指纹模组的方法,应用于制作如第一方面中任一项的弧面电容指纹模组,包括:
对蓝宝石进行冷雕处理以形成蓝宝石盖板,蓝宝石盖板的弧面结构的上表面为弧面,蓝宝石盖板的弧面结构的下表面为平面;
通过表面组装技术SMT工艺将平面封装片安装在FPC上,平面封装片包括基板、第一DAF胶层、电容指纹传感器以及环氧塑封料EMC层,EMC层的上表面为平面,EMC层包覆电容指纹传感器,第一DAF胶层设置于基板与电容指纹传感器之间以固定电容指纹传感器;
通过第二DAF胶层将蓝宝石盖板贴合在平面封装片的上方。
本申请的实施例的第七方面提供了一种制作弧面电容指纹模组的方法,应用于制作如第一方面中任一项的弧面电容指纹模组,包括:
对蓝宝石进行冷雕处理以形成蓝宝石盖板,蓝宝石盖板的弧面结构的上表面为弧面,蓝宝石盖板的弧面结构的下表面为平面;
通过表面组装技术SMT工艺将封装片安装在FPC上,封装片包括基板、第一 DAF胶层、电容指纹传感器,第一DAF胶层设置于基板与电容指纹传感器之间以固定电容指纹传感器;
在蓝宝石盖板与封装片中的电容指纹传感器之间设置第三DAF胶层以使得蓝宝石盖板通过第三DAF胶层固定在电容指纹传感器的上方,第三DAF胶层设置于电容指纹传感器的上表面。
与现有技术相比,本申请实施例的有益效果在于:本申请实施例提供了一种弧面电容指纹封装模组、电子设备以及制作弧面电容指纹模组的方法,通过设置陶瓷盖板、蓝宝石盖板,盖板的上表面为弧面,能够适配电子设备的曲面结构,较好的提升了用户体验。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一弧面电容指纹模组的剖面图;
图2为本申请实施例提供的又一弧面电容指纹模组的剖面图;
图3为本申请实施例提供的再一弧面电容指纹模组的剖面图;
图4为本申请实施例提供的再一弧面电容指纹模组的剖面图;
图5为本申请实施例提供的一制作弧面电容指纹模组的方法的流程图;
图6为本申请实施例提供的一玻璃盖板的剖面图;
图7为本申请实施例提供的一弧面封装片的剖面图;
图8为本申请实施例提供的又一制作弧面电容指纹模组的方法的流程图;
图9为本申请实施例提供的一陶瓷盖板或者蓝宝石盖板的剖面图;
图10为本申请实施例提供的一平面封装片的剖面图;
图11为本申请实施例提供的再一制作弧面电容指纹模组的方法的流程图;
图12为本申请实施例提供的一无EMC层的封装片的剖面图;
图13为本申请实施例提供的再一制作弧面电容指纹模组的方法的流程图;
图14为本申请实施例提供的再一制作弧面电容指纹模组的方法的流程图;
图15为本申请实施例提供的一电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的部分实施例采用举例的方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在各例子中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
长期以来,电容式指纹模组一直采用传统的结构,基本为一个方形或者圆形的平面接触式结构,用户使用时手感不舒适、外形不美观,而且在多风沙、多粉尘等恶劣环境下,灰尘会很容易吸附在平面接触式结构上,导致电容指纹模组在使用时指纹识别出现误判等问题。行之有效的解决方案是采用一种弧面电容指纹模组方案,这种新的结构设计方案改进了指纹识别模块,其安装在整机上之后,整机更具美感,并且用户手感舒适,从视觉上具有立体感。
本申请实施例提供的弧面电容指纹模组如图1所示,图1为弧面指纹模组的剖面图,该弧面指纹模组100包括电容指纹传感器101和基板102,为了便于表述,电容指纹传感器用Die表示,Die101与基板102电连接,基板102位于Die101的下方。模组100还可以包括第一DAF(Die Attach Film,晶片粘结薄膜)胶层104,Die101可以通过第一DAF胶层104直接粘贴在基板102的上表面,然后通过WB(Wire Bonding,引线键合)的方式实现Die和基板102的电气连接。
该模组100还包括盖板106,盖板106的上表面为弧面,盖板106盖住Die101,如图1所示,Die设置在盖板106与基板102形成的腔体的内部,盖板可以为陶瓷盖板或者蓝宝石盖板或者玻璃盖板,以使电容指纹模组的外表面更坚硬耐刮。对于带有指纹识别功能的电子设备来说,由于电容指纹模组需要与手指接触,电容指纹模组容易与其他物体之间摩擦而造成损伤,因而导致指纹识别准确率受到影响,而对于弧面电容指纹模组来说,由于指纹识别面为弧面,因而更容易由于摩擦或者跌落导致该弧面受损而影响指纹识别性能,本申请实施例中的弧面电容指纹模组的盖板为陶瓷盖板或者蓝宝石盖板或者玻璃盖板,本实施例提供的电容指 纹模组的外表面更坚硬耐刮,可以保护弧面指纹模组不轻易受外界损伤。
可以理解的是,若是将指纹识别模块安装在手机的侧键,指纹识别模块的弧面有一定的高度差,盖板106的上表面106a的R角可以设置为0.8mm至8mm,即盖板的上表面的半径可以设置为0.8mm至8mm,结合图1来看,盖板的弧面结构1061的上表面的半径可以设置为大于或者等于0.8mm,并且小于或者等于8mm,以满足用户需求。
基于上述实施例公开的内容,本申请实施例中,对于盖板的上表面为弧面的弧面电容指纹模组,Die的上表面的中心到盖板106的表面106a的距离D1容易过大,而Die的上表面的边缘到盖板106的表面106a的距离容易过小,Die的上表面的边缘到盖板106的表面106a的距离过小可能会使得模组的可靠性降低,D1过大会影响指纹的成像质量。设置盖板的上表面到电容指纹传感器的上表面之间的距离为200um至400um中的任一值,盖板的上表面到电容指纹传感器的上表面之间的距离大于或者等于200um,并且小于或者等于400um,可以在保证指纹图形质量的同时,保证模组的可靠性。
具体的,盖板的上表面到电容指纹传感器的上表面之间的距离为200um至400um可以包括:Die101的上表面的中心与盖板的上表面106a之间的距离D1为200um至400um;Die101的上表面的边缘与盖板的上表面106a之间的距离为200um至400um。可以理解为Die101的上表面的中心与盖板的上表面106a之间的距离D1大于或者等于200um,并且小于或者等于400um;Die101的上表面的边缘与盖板的上表面106a之间的距离大于或者等于200um,并且小于或者等于400um。
基于上述实施例公开的内容,本申请实施例中,请参考图1所示的盖板106,盖板106包括台阶结构1062和弧面结构1061,弧面结构1061与台阶结构1062连接,本实施例中,盖板106可以为一体成型的结构,相比于弧面结构和台阶结构分别成型再连接形成盖板的方案,盖板一体成型的结构稳定性更高,对Die的保护能力也更高;本实施例中,盖板的弧面结构1061的上表面为弧面,盖板的台阶结构的内表面与外表面平行,盖板的台阶结构设置于Die的侧面,盖板的台阶结 构围绕Die设置,盖板的台阶结构的内表面和外表面分别平行于Die的侧面。
模组100还可以包括FPC(Flexible Printed Circuit,柔性电路板)103和焊锡层107,通过焊锡然后底部填充(under fill)胶体使得基板102与FPC103连接,即FPC103与基板102之间设置有焊锡层107,焊锡层107包括焊锡和胶体。Die设置在基板上方,Die通过第一DAF胶层104贴合在基板102上,基板102可以通过表面组装技术(Surface Mounted Technology,SMT)工艺贴在FPC103上方。本实施例中,基板设置于焊锡层的上表面,焊锡层设置于FPC的上表面,盖板设置在FPC的上方,盖板的台阶结构可以设置于FPC的上表面,盖板的台阶结构可以垂直于FPC设置。
本实施例中,台阶结构1062可以设置于FPC的边缘的上表面,台阶结构1062用于支撑弧面结构1061,或者,可以理解为台阶结构1062用于抬高弧面结构1061。对于玻璃盖板来说,弧面结构1061的上表面为弧面,弧面结构1061的下表面也为弧面。图1所示的台阶结构1062设置在电容指纹传感器101的四周,即台阶结构1062环绕Die而设置,弧面结构1061设置于电容指纹传感器101的上方。本实施例中,台阶结构1062设置于FPC103的上方,具体的,如图1所示,台阶结构可以直接设置于FPC103的上表面;如图2所示,台阶结构1062可以通过胶体112设置于FPC103的上方,即通过点胶在台阶结构1062与FPC103之间形成胶体112,以使得胶体112将台阶结构1062固定在FPC的上方。
基于上述实施例公开的内容,本申请实施例中,盖板的台阶结构的厚度大于或者等于100um,为了使得盖板起到对Die的保护作用,盖板需要具备一定的厚度,另外,台阶结构用于支撑弧面结构,台阶结构也需要一定的厚度,设置盖板的台阶结构的厚度大于等于100um可以使得台阶结构可以很好的支撑弧面结构,起到保护Die的作用。
基于上述实施例公开的内容,本申请实施例中,盖板的台阶结构的厚度大于或者等于150um,当设置台阶结构的厚度大于或者等于150um时,盖板结构上更稳固,模组的稳定性更强;另外,盖板的台阶结构的厚度越厚,会使得模组越大,因此,设置盖板的台阶结构的厚度小于或者等于500um,使得盖板在起到保护作 用的同时,模组较小,以使得其适配更小的空间。
基于上述实施例公开的内容,本申请实施例中,当盖板106为玻璃盖板时,玻璃盖板106的弧面结构1061的下表面为弧面,盖板106的下表面形成一个球形内腔。另外,弧面结构1061的厚度可以处处相等,弧面结构1061的厚度等于台阶结构1062的厚度,玻璃盖板的厚度大于或者等于0.15mm,并且小于或者等于0.2mm。
基于上述实施例公开的内容,本申请实施例中,该弧面电容指纹模还包括EMC(Epoxy Molding Compound,环氧树脂模塑料或环氧塑封料)层105,EMC层105可以采用Molding(注塑成型或塑封)工艺制作而成,然后对EMC层进行CNC(Computer numerical control,计算机数字控制)曲面加工和抛光工艺以形成弧面。EMC层105的上表面为弧面,EMC层105包覆Die101,盖板106盖住EMC层105,可以理解为,EMC层设置于玻璃盖板与基板形成的腔体的内部。对于采用涂覆(coating)工艺的弧面电容指纹模组来说,如果在EMC层的上表面通过涂覆工艺形成涂覆层,电子设备在使用的过程中,电容指纹模组的涂覆层容易与其他物体之间摩擦而造成损伤,因而导致指纹识别准确率受到影响,而本实施例中,弧面电容指纹模组的盖板的上表面为弧面并且盖板为玻璃盖板,本实施例提供的电容指纹模组的外表面更坚硬耐刮,可以保护弧面指纹模组不轻易受外界损伤。
基于上述实施例公开的内容,本申请实施例中,模组100还包括油墨层110和水胶层109,油墨层设置在盖板的内表面,以形成各种颜色的电容指纹模组,起到与电子设备的外壳颜色适配的作用。水胶层设置于EMC层105与盖板106之间以将盖板106固定在EMC层105的上方,具体的,由于在盖板的内腔表面还可以形成油墨层,则水胶层可以设置于油墨层110与EMC层105之间以使得涂覆油墨层110的盖板106固定在EMC层105的上方,本实施例中,由于玻璃盖板106的下表面为弧面,使用水胶层相比较于使用DAF胶层来说,工艺更简单更容易实现。
基于上述实施例公开的内容,本申请实施例中,模组100还包括补强钢板(补强板、钢补、补强钢片)108,FPC103和补强板108之间可以用热压胶进行压合,该补强钢片108设置在FPC103的下表面。补强钢板108用于固定连接器以及电阻、 电容、MCU等电子器件,该连接器用于电容指纹传感器与电子设备内的其他电路连接以实现指纹识别功能,该电容、电阻、MCU等电子器件用于配合Die101以实现指纹采集功能。
基于上述实施例公开的内容,本申请实施例中,玻璃盖板的厚度D3可以为0.15mm至0.2mm中的任一值。玻璃盖板的台阶结构和弧面结构的厚度相等,如图1所示,玻璃盖板的台阶结构和弧面结构的厚度都为D3,台阶结构和弧面结构的厚度处处相等。盖板应用于电容指纹模组中时,盖板的厚度越大,电容信号越不容易穿透以使得指纹识别受到影响,而若厚度越小,对于玻璃热弯工艺来说,良率较低,另外,还可以在热弯后的玻璃盖板的内腔做喷涂上色处理,即需要在热弯后的玻璃盖板的内腔设置油墨层,而厚度越小,内腔上色难度也越大,因此,设置玻璃盖板的厚度为0.15mm至0.2mm,既可以保证指纹识别的性能,良率也较高,也便于后续在玻璃盖板的内腔涂覆油墨以形成油墨层。
基于上述实施例公开的内容,本申请实施例中,电容指纹传感器101的上表面至EMC层105的上表面的距离D2可以为50um至100um,即Die101的上表面至EMC层105的上表面的距离D2大于或者等于50um,并且小于或者等于100um。可以理解的是,若D2设置得太小,则模压工艺形成的EMC层的良率偏低,若D2设置得太大,则可能导致手指到电容指纹传感器的距离过大而影响指纹识别,因此,设置D2为50um至100um,可以在保证指纹识别性能的同时提高良率。本实施例中,EMC层105的上表面至盖板106的上表面的距离可以为150um至200um。油墨层110的厚度可以为20um,水胶层109的厚度也可以为20um。
基于上述实施例公开的内容,本申请实施例中,为了保证获取到较好的指纹图像,玻璃盖板106的介电常数可以设置为大于7,油墨层110的介电常数可以设置为大于7,水胶层109的介电常数可以设置为大于6,EMC层105的介电常数可以设置为大于7。
基于上述实施例公开的内容,本申请实施例中,请参考图3所示的弧面电容指纹模组,盖板306为陶瓷盖板或者蓝宝石盖板,陶瓷盖板或者蓝宝石盖板的弧面结构3061的下表面为平面,弧面结构3061的上表面为弧面。
基于上述实施例公开的内容,本申请实施例中,弧面电容指纹模组300还包括EMC层305,EMC层305的上表面为平面,EMC层305包覆Die301,盖板306盖住EMC层305,可以理解的是,EMC层305设置于盖板306与基板302形成的腔体的内部。
基于上述实施例公开的内容,本申请实施例中,弧面电容指纹模组300还包括油墨层310,油墨层310设置于盖板306的下表面以使得电容指纹模组展现出各种颜色以适配电子设备各种颜色的外壳,可以理解为油墨层310涂覆在盖板306的内表面,如图3所示,在盖板的台阶结构和弧面结构的内表面均设置有油墨层310,在其他实施中,也可以仅在盖板的弧面结构的内表面设置油墨层,这样可以进一步节省工艺和成本。弧面电容指纹模组300还包括第二DAF胶层309,第二DAF胶层309设置于EMC层305与盖板306之间,第二DAF胶层用于将盖板306固定在EMC层的上方,第二DAF胶层309设置在EMC层305的表面,第二DAF胶层309包覆EMC层305。本实施例中,陶瓷盖板306或者蓝宝石盖板306包括台阶结构3062和弧面结构3061,台阶结构3062与弧面结构3061连接,台阶结构3062用于支撑弧面结构3061,台阶结构3062设置于FPC303的上方,弧面结构3061的上表面306a为弧面。本实施例中,补强钢板308、FPC303、焊锡层307、Die301、基板302、第一DAF胶层304与前述实施例中的补强钢板108、FPC103、焊锡层107、Die101、基板102、第一DAF胶层104相同或者近似,此处不再赘述。
基于上述实施例公开的内容,本申请实施例中,盖板的台阶结构的厚度可以设置为100um至200um中的任一值,陶瓷盖板或者蓝宝石盖板的台阶结构3062的厚度D6可以设置为100um至200um中的任一值。陶瓷盖板或者蓝宝石盖板的弧面结构的厚度越大,电容指纹模组采集到的指纹图像的质量越差,因此可以设置陶瓷盖板或者蓝宝石盖板的弧面结构的厚度小于或者等于300um以确保采集到的指纹图像的质量;而陶瓷盖板或者蓝宝石盖板的厚度越薄,盖板起到的保护作用越弱,因此,设置陶瓷盖板或者蓝宝石盖板的弧面结构的厚度为大于或者等于200um,以确保模组的可靠性。设置陶瓷盖板或者蓝宝石盖板的弧面结构的厚度大 于或者等于200um、并且小于或者等于300um可以在确保指纹图像质量的同时确保对电容指纹传感器有较佳的保护作用。对于弧面结构的最大厚度处,例如,图3中的D5大于或者等于200um并且小于或者等于300um,对于弧面结构的最小厚度处也大于或者等于200um并且小于或者等于300um。本实施例中,Die301的上表面至EMC层305的上表面的距离D4可以设置为50um至150um中的任一值,即Die301的上表面至EMC层305的上表面的距离D4大于或者等于50um,并且小于或者等于150um,这样可以在保证指纹图像质量的同时使得电容指纹模组的可靠性进一步提升。另外,本实施例中,为了保证获取到较好的指纹图像,陶瓷盖板306的介电常数可以设置为大于28,蓝宝石盖板的介电常数可以设置为大于12,油墨层310的介电常数可以设置为大于7,第二DAF胶层309的介电常数可以设置为大于6,EMC层305的介电常数可以设置为大于7。
基于上述实施例公开的内容,本申请实施例提供的电容指纹模组如图4所示,电容指纹模组400还包括第三DAF胶层409,第三DAF胶层409设置于Die401与盖板406之间以固定盖板406。第三DAF胶层409设置于Die401的上表面。
基于上述实施例公开的内容,本实施例中,电容指纹模组还包括气体层405,该气体层405可以理解为空气间隙或者其他气体,气体层405设置于Die401的四周。本实施例中,相比较于图3的方案,省略了EMC层,盖板通过第三DAF胶层409固定在Die401的上方。本实施例中,可以理解为Die401设置于盖板406与基板402形成的空腔内,图4提供的电容指纹模组由于省略了EMC层,因而更加节省工艺和成本。
基于上述实施例公开的内容,本实施例中,电容指纹模组还包括保护胶411,保护胶411设置于基板402的上表面,保护胶与第一DAF胶层404和Die401连接,保护胶411用于固定Die401和第一DAF胶层404。
基于上述实施例公开的内容,本实施例中,盖板406包括台阶结构4062和弧面结构4061,为了确保获取到较好的指纹图像的同时保证模组的可靠性,盖板406的弧面结构4061的厚度可以大于200um,弧面结构4061的上表面到Die的上表面的距离设置为250um至400um,弧面结构4061的上表面到Die的上表面的距离 大于或者等于250um,并且,弧面结构4061的上表面到Die的上表面的距离小于或者等于400um。具体的,电容指纹传感器的上表面的中心至弧面结构的上表面的距离D7为250um至400um,电容指纹传感器的上表面的边缘至弧面结构的上表面的距离为250um至400um。电容指纹传感器的上表面的中心至弧面结构的上表面的距离D7大于或者等于250um并且小于或者等于400um,电容指纹传感器的上表面的边缘至弧面结构的上表面的距离大于或者等于250um并且小于或者等于400um。另外,本实施例中,为了保证获取到较好的指纹图像,陶瓷盖板406的介电常数可以设置为大于28,蓝宝石盖板的介电常数可以设置为大于12,油墨层410的介电常数可以设置为大于7,第三DAF胶层409的介电常数可以设置为大于6。
基于上述实施例公开的内容,本实施例提供一种制作弧面电容指纹模组的方法,请参考图5,该方法包括以下步骤:
S501:对玻璃进行热弯处理和钢化处理形成玻璃盖板,玻璃盖板的弧面结构的上表面和下表面均为弧面;
S502:对封装片进行CNC加工以形成EMC层的上表面为弧面的弧面封装片,封装片包括基板、第一DAF胶层、电容指纹传感器以及EMC层,EMC层包覆电容指纹传感器,第一DAF胶层设置于基板与电容指纹传感器之间以固定电容指纹传感器;
S503:通过SMT工艺将弧面封装片安装在FPC上;
S504:通过水胶层将玻璃盖板贴合在弧面封装片的上方。
对于步骤S501,对玻璃进行热弯处理和钢化处理形成的玻璃盖板606的剖面图如图6所示,玻璃盖板的弧面结构的上表面和下表面均为弧面,该盖板606包括台阶结构6062和弧面结构6061。另外,还可以在玻璃盖板的内表面贴膜或者喷涂上色以使得弧面电容指纹模组呈现不同的颜色,以适配不同颜色的电子设备的外壳,例如,可以在玻璃盖板的内表面涂覆油墨层以使得弧面电容指纹模组呈现不同的颜色。
在步骤S502中,请参考图7所述的弧面封装片700,弧面封装片700包括基 板702、第一DAF胶层704、电容指纹传感器701以及EMC层705,弧面封装片700的EMC层705的上表面为弧面705a。本实施例中的基板702、第一DAF胶层704、电容指纹传感器701以及EMC层705与前述实施例中的基板102、第一DAF胶层104、电容指纹传感器101以及EMC层105相同或者近似,此处不再赘述。本实施例中,根据不同客户对曲率的要求通过CNC曲面加工和抛光处理可以将EMC层的上表面加工成弧面。
在步骤S503中,在FPC与基板之间设置焊锡层以实现基板与FPC的连接,然后在步骤S504中通过水胶层将图6所示的玻璃盖板606贴合在弧面封装片700的上方以形成弧面电容指纹模组。
基于上述实施例公开的内容,本实施例提供一种制作弧面电容指纹模组的方法,请参考图8,该方法包括以下步骤:
S801:对陶瓷进行烧结处理和冷雕处理以形成陶瓷盖板,陶瓷盖板的弧面结构的上表面为弧面,陶瓷盖板的弧面结构的下表面为平面;
S802:通过SMT工艺将平面封装片安装在FPC上,平面封装片包括基板、第一DAF胶层、电容指纹传感器以及环氧塑封料EMC层,EMC层的上表面为平面,EMC层包覆电容指纹传感器,第一DAF胶层设置于基板与电容指纹传感器之间以固定电容指纹传感器;
S803:通过第二DAF胶层将陶瓷盖板贴合在平面封装片的上方。
在步骤S801中,对陶瓷进行烧结处理和冷雕处理形成的陶瓷盖板的弧面结构的上表面为弧面,并且陶瓷盖板的弧面结构的下表面为平面。陶瓷盖板906的剖面图如图9所示,请参考图9,该陶瓷盖板906包括台阶结构9062和弧面结构9061。另外,还可以在陶瓷盖板的内腔通过喷涂工艺或者物理气相沉积(Physical Vapor Deposition,PVD)工艺上色以使得弧面电容指纹模组呈现不同的颜色,以适配不同颜色的电子设备的外壳,例如,可以在陶瓷盖板的内表面涂覆油墨层以使得弧面电容指纹模组呈现不同的颜色,又或者可以在陶瓷盖板的外表面进行镀防指纹涂料(Anti-FingerPrint Coating,AF)以使得弧面电容指纹模组呈现不同的颜色。
在步骤S802中,请参考图10,平面封装片1000包括基板1002、第一DAF 胶层1004、电容指纹传感器1001以及EMC层1005,平面封装片1000的EMC层1005的上表面为平面。本实施例中的基板1002、第一DAF胶层1004、电容指纹传感器1001以及EMC层1005与前述实施例中的基板302、第一DAF胶层304、电容指纹传感器301以及EMC层305相同或者近似,此处不再赘述。
在步骤S802中,在FPC与基板之间设置焊锡层以实现基板与FPC的连接,然后在步骤S803中通过第二DAF胶层将图9所示的陶瓷盖板906贴合在平面封装片1000的上方以形成弧面电容指纹模组。
基于上述实施例公开的内容,本实施例提供一种制作弧面电容指纹模组的方法,请参考图11,该方法包括以下步骤:
S1101:对陶瓷进行烧结处理和冷雕处理以形成陶瓷盖板,陶瓷盖板的弧面结构的上表面为弧面,陶瓷盖板的弧面结构的下表面为平面;
S1102:通过SMT工艺将封装片安装在FPC上,封装片包括基板、第一DAF胶层、电容指纹传感器,第一DAF胶层设置于基板与电容指纹传感器之间以固定电容指纹传感器;
S1103:在陶瓷盖板与封装片中的电容指纹传感器之间设置第三DAF胶层以使得陶瓷盖板通过第三DAF胶层固定在电容指纹传感器的上方,第三DAF胶层设置于电容指纹传感器的上表面。
本实施例中,步骤S1101与前述实施例中的步骤S801相同或者近似,此处不再赘述。
在步骤S1102中,请参考图12,封装片1200包括基板1202、第一DAF胶层1204、电容指纹传感器1201以及保护胶1211,封装片1200不包括EMC层,即可以理解为Die1201的四周为气体层。本实施例中的基板1202、第一DAF胶层1204、电容指纹传感器1201以及保护胶1211与前述实施例中的基板402、第一DAF胶层404、电容指纹传感器401以及保护胶411相同或者近似,此处不再赘述。
在步骤S1102中,在FPC与基板之间设置焊锡层以实现基板与FPC的连接,然后在步骤S1103中通过第三DAF胶层将图9所示的陶瓷盖板906贴合在封装片1200的上方以形成弧面电容指纹模组,第三DAF胶层设置于电容指纹传感器的上 表面。
基于上述实施例公开的内容,本实施例提供一种制作弧面电容指纹模组的方法,请参考图13,该方法包括以下步骤:
S1301:对蓝宝石进行冷雕处理以形成蓝宝石盖板,蓝宝石盖板的弧面结构的上表面为弧面,蓝宝石盖板的弧面结构的下表面为平面;
S1302:通过SMT工艺将平面封装片安装在FPC上,平面封装片包括基板、第一DAF胶层、电容指纹传感器以及环氧塑封料EMC层,EMC层的上表面为平面,EMC层包覆电容指纹传感器,第一DAF胶层设置于基板与电容指纹传感器之间以固定电容指纹传感器;
S1303:通过第二DAF胶层将蓝宝石盖板贴合在平面封装片的上方。
在步骤S1301中,对蓝宝石进行冷雕处理形成弧面结构的上表面为弧面、弧面结构的下表面为平面的蓝宝石盖板。蓝宝石盖板906的剖面图如图9所示,请参考图9,该蓝宝石盖板906包括台阶结构9062和弧面结构9061。另外,还可以在蓝宝石盖板的内表面喷涂或者PVD上色以使得弧面电容指纹模组呈现不同的颜色,以适配不同颜色的电子设备的外壳,例如,可以在蓝宝石盖板的内表面涂覆油墨层以使得弧面电容指纹模组呈现不同的颜色,又或者可以在蓝宝石盖板的外表面镀AF膜以使得弧面电容指纹模组呈现不同的颜色。具体的,对蓝宝石平面配料,可以先进行冷雕处理以形成凹槽,然后再冷雕处理形成弧面结构,最后再进行上色处理。对于形成前述实施例中特定厚度的盖板,相比于陶瓷先进行烧结后进行冷雕的工艺,蓝宝石的冷雕工艺更容易实现,成本更低,良率更高。
步骤S1302与前述实施例中的步骤802相同或者近似,此处不再赘述。
在步骤S1303中,通过第二DAF胶层将图9所示的蓝宝石盖板906贴合在平面封装片1000的上方以形成弧面电容指纹模组。
基于上述实施例公开的内容,本实施例提供一种制作弧面电容指纹模组的方法,请参考图14,该方法包括以下步骤:
S1401:对蓝宝石进行冷雕处理以形成蓝宝石盖板,蓝宝石盖板的弧面结构的上表面为弧面,蓝宝石盖板的弧面结构的下表面为平面;
S1402:通过SMT工艺将封装片安装在FPC上,封装片包括基板、第一DAF胶层、电容指纹传感器,第一DAF胶层设置于基板与电容指纹传感器之间以固定电容指纹传感器;
S1403:在蓝宝石盖板与平面封装片中的电容指纹传感器之间设置第三DAF胶层以使得蓝宝石盖板通过第三DAF胶层固定在电容指纹传感器的上方,第三DAF胶层设置于电容指纹传感器的上表面。
步骤S1401与前述实施例中的步骤S1301相同或者近似,此处不再赘述。
步骤S1402与前述实施例中的步骤S1102相同或者近似,此处不再赘述。
在步骤S1403中,通过第二DAF胶层将图9所示的蓝宝石盖板906贴合在封装片1200的上方以形成弧面电容指纹模组。
本实施例还提供一种电子设备,如图15所示,该电子设备1500包括电路主板1501和弧面电容指纹模组1502,具体的,电路主板可以包括存储器和处理器,前述实施例中的弧面电容指纹模组1502与电路主板1501连接,具体的,电容指纹模组的连接器与电路主板连接,以实现指纹识别和解锁,该电子设备可以是手机或者平板、电脑等电子设备。电容指纹模组可以贴附在手机侧边按键中,通过FPC及连接器,可以直接连通到整机主板上。其具体实现上述参见上述实施例,此处不再赘述。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种弧面电容指纹模组,其特征在于,包括盖板、电容指纹传感器、第一晶片粘结薄膜DAF胶层和基板;
    所述电容指纹传感器设置在所述第一DAF胶层的上表面;
    所述第一DAF胶层设置于所述基板的上表面;
    所述电容指纹传感器设置在所述盖板与所述基板形成的腔体内部;
    所述盖板为陶瓷盖板或者蓝宝石盖板或者玻璃盖板;
    所述盖板的上表面为弧面。
  2. 根据权利要求1所述的弧面电容指纹模组,其特征在于,所述盖板的上表面与所述电容指纹传感器的上表面之间的距离为200um至400um。
  3. 根据权利要求2所述的弧面电容指纹模组,其特征在于,所述电容指纹传感器的上表面的中心与所述盖板的上表面之间的距离为200um至400um;所述电容指纹传感器的上表面的边缘与所述盖板的上表面之间的距离为200um至400um。
  4. 根据权利要求1至3中任一项所述的弧面电容指纹模组,其特征在于,所述盖板包括台阶结构和弧面结构;所述弧面结构与所述台阶结构连接;所述台阶结构用于支撑所述弧面结构;所述弧面结构的上表面为弧面,所述弧面的半径大于或者等于0.8mm,并且小于或者等于8mm;所述台阶结构的内表面和外表面平行于所述电容指纹传感器的侧面。
  5. 根据权利要求4所述的弧面电容指纹模组,其特征在于,所述盖板为一体成型结构。
  6. 根据权利要求4或5所述的弧面电容指纹模组,其特征在于,还包括焊锡层和柔性电路板FPC;所述基板设置于所述焊锡层的上表面;所述焊锡层设置在所述FPC的上表面;所述盖板设置在所述FPC上方;所述盖板的台阶结构设置于所述FPC的上表面;所述盖板的台阶结构垂直于所述FPC。
  7. 根据权利要求4至6中任一项所述的弧面电容指纹模组,其特征在于,所述盖板的台阶结构的厚度大于或者等于100um。
  8. 根据权利要求7所述的弧面电容指纹模组,其特征在于,所述盖板的台阶结构的厚度大于或者等于150um;所述盖板的台阶结构的厚度小于或者等于500um。
  9. 根据权利要求4至8中任一项所述的弧面电容指纹模组,其特征在于,所述盖板为所述玻璃盖板,所述玻璃盖板的弧面结构的下表面为弧面;所述玻璃盖 板的台阶结构和弧面结构的厚度大于或者等于0.15mm,并且小于或者等于0.2mm;所述玻璃盖板的台阶结构的厚度等于所述玻璃盖板的弧面结构的厚度。
  10. 根据权利要求9所述的弧面电容指纹模组,其特征在于,还包括环氧塑封料EMC层,所述EMC层的上表面为弧面;所述EMC层包覆所述电容指纹传感器;所述EMC层设置在所述玻璃盖板与所述基板形成的腔体的内部;所述EMC层的介电常数大于7。
  11. 根据权利要求10所述的弧面电容指纹模组,其特征在于,还包括水胶层;所述水胶层设置于所述玻璃盖板与所述EMC层之间以使得所述玻璃盖板固定在所述EMC层的上方;所述水胶层的介电常数大于6。
  12. 根据权利要求10或11所述的弧面电容指纹模组,其特征在于,所述电容指纹传感器的上表面至所述EMC层的上表面的距离为50um至100um。
  13. 根据权利要求4至8中任一项所述的弧面电容指纹模组,其特征在于,所述盖板为所述陶瓷盖板或者所述蓝宝石盖板,所述盖板的弧面结构的下表面为平面。
  14. 根据权利要求13所述的弧面电容指纹模组,其特征在于,还包括环氧塑封料EMC层,所述EMC层的上表面为平面;所述EMC层包覆所述电容指纹传感器;所述EMC层设置在所述盖板与所述基板形成的腔体的内部;所述EMC层的介电常数大于7。
  15. 根据权利要求14所述的弧面电容指纹模组,其特征在于,还包括第二DAF胶层;所述第二DAF胶层设置于所述盖板与所述EMC层之间以将所述盖板固定在所述EMC层的上方,所述第二DAF胶层设置于所述EMC层的表面;所述第二DAF胶层的介电常数大于6。
  16. 根据权利要求13至15中任一项所述的弧面电容指纹模组,其特征在于,所述盖板的弧面结构的厚度大于或者等于200um;所述盖板的弧面结构的厚度小于或者等于300um;所述电容指纹传感器的上表面至所述EMC层的上表面的距离为50um至150um。
  17. 根据权利要求13所述的弧面电容指纹模组,其特征在于,还包括第三DAF胶层,所述第三DAF胶层设置于所述电容指纹传感器与所述盖板之间以固定所述盖板,所述第三DAF胶层设置于所述电容指纹传感器的上表面,所述第三DAF胶层的介电常数大于6。
  18. 根据权利要求17所述的弧面电容指纹模组,其特征在于,还包括保护胶, 所述保护胶设置于所述基板的上表面,所述保护胶与所述第一DAF胶层和所述电容指纹传感器连接,所述保护胶用于固定所述电容指纹传感器以及所述第一DAF胶层。
  19. 根据权利要求17或18所述的弧面电容指纹模组,其特征在于,还包括气体层,所述气体层设置于所述电容指纹传感器的四周。
  20. 根据权利要求17至19中任一项所述的弧面电容指纹模组,其特征在于,所述盖板的弧面结构的厚度大于或者等于200um;所述电容指纹传感器的上表面的中心至所述弧面结构的上表面的距离为250um至400um。
  21. 根据权利要求1至20中任一项所述的弧面电容指纹模组,其特征在于,还包括油墨层,所述油墨层设置于所述盖板的内表面。
  22. 一种电子设备,其特征在于,包括:电路主板和如权利要求1至21中任一项所述的弧面电容指纹模组,所述弧面电容指纹模组与所述电路主板连接。
  23. 一种制作弧面电容指纹模组的方法,应用于制作如权利要求1至12中任一项所述的弧面电容指纹模组,其特征在于,包括:
    对玻璃进行热弯处理和钢化处理形成玻璃盖板,所述玻璃盖板的弧面结构的上表面和下表面均为弧面;
    对封装片进行计算机数字控制CNC加工以形成环氧塑封料EMC层的上表面为弧面的弧面封装片,所述封装片包括基板、第一DAF胶层、电容指纹传感器以及所述EMC层,所述EMC层包覆所述电容指纹传感器,所述第一DAF胶层设置于所述基板与所述电容指纹传感器之间以固定所述电容指纹传感器;
    通过表面组装技术SMT工艺将所述弧面封装片安装在柔性电路板FPC上;
    通过水胶层将所述玻璃盖板贴合在所述弧面封装片的上方。
  24. 一种制作弧面电容指纹模组的方法,应用于制作如权利要求1至8中任一项所述的弧面电容指纹模组,其特征在于,包括:
    对陶瓷进行烧结处理和冷雕处理以形成陶瓷盖板,所述陶瓷盖板的弧面结构的上表面为弧面,所述陶瓷盖板的弧面结构的下表面为平面;
    通过表面组装技术SMT工艺将平面封装片安装在FPC上,所述平面封装片包括基板、第一DAF胶层、电容指纹传感器以及环氧塑封料EMC层,所述EMC层的上表面为平面,所述EMC层包覆所述电容指纹传感器,所述第一DAF胶层设置于所述基板与所述电容指纹传感器之间以固定所述电容指纹传感器;
    通过第二DAF胶层将所述陶瓷盖板贴合在所述平面封装片的上方。
  25. 一种制作弧面电容指纹模组的方法,应用于制作如权利要求1至8中任一项所述的弧面电容指纹模组,其特征在于,包括:
    对陶瓷进行烧结处理和冷雕处理以形成陶瓷盖板,所述陶瓷盖板的弧面结构的上表面为弧面,所述陶瓷盖板的弧面结构的下表面为平面;
    通过表面组装技术SMT工艺将封装片安装在FPC上,所述封装片包括基板、第一DAF胶层、电容指纹传感器,所述第一DAF胶层设置于所述基板与所述电容指纹传感器之间以固定所述电容指纹传感器;
    在所述陶瓷盖板与所述封装片中的所述电容指纹传感器之间设置第三DAF胶层以使得所述陶瓷盖板通过所述第三DAF胶层固定在所述电容指纹传感器的上方,所述第三DAF胶层设置于所述电容指纹传感器的上表面。
  26. 一种制作弧面电容指纹模组的方法,应用于制作如权利要求1至8中任一项所述的弧面电容指纹模组,其特征在于,包括:
    对蓝宝石进行冷雕处理以形成蓝宝石盖板,所述蓝宝石盖板的弧面结构的上表面为弧面,所述蓝宝石盖板的弧面结构的下表面为平面;
    通过表面组装技术SMT工艺将平面封装片安装在FPC上,所述平面封装片包括基板、第一DAF胶层、电容指纹传感器以及环氧塑封料EMC层,所述EMC层的上表面为平面,所述EMC层包覆所述电容指纹传感器,所述第一DAF胶层设置于所述基板与所述电容指纹传感器之间以固定所述电容指纹传感器;
    通过第二DAF胶层将所述蓝宝石盖板贴合在所述平面封装片的上方。
  27. 一种制作弧面电容指纹模组的方法,应用于制作如权利要求1至8中任一项所述的弧面电容指纹模组,其特征在于,包括:
    对蓝宝石进行冷雕处理以形成蓝宝石盖板,所述蓝宝石盖板的弧面结构的上表面为弧面,所述蓝宝石盖板的弧面结构的下表面为平面;
    通过表面组装技术SMT工艺将封装片安装在FPC上,所述封装片包括基板、第一DAF胶层、电容指纹传感器,所述第一DAF胶层设置于所述基板与所述电容指纹传感器之间以固定所述电容指纹传感器;
    在所述蓝宝石盖板与所述封装片中的所述电容指纹传感器之间设置第三DAF胶层以使得所述蓝宝石盖板通过所述第三DAF胶层固定在所述电容指纹传感器的上方,所述第三DAF胶层设置于所述电容指纹传感器的上表面。
PCT/CN2021/074923 2021-02-02 2021-02-02 一种弧面电容指纹模组、电子设备及模组制作方法 WO2022165645A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074923 WO2022165645A1 (zh) 2021-02-02 2021-02-02 一种弧面电容指纹模组、电子设备及模组制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074923 WO2022165645A1 (zh) 2021-02-02 2021-02-02 一种弧面电容指纹模组、电子设备及模组制作方法

Publications (1)

Publication Number Publication Date
WO2022165645A1 true WO2022165645A1 (zh) 2022-08-11

Family

ID=82740686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074923 WO2022165645A1 (zh) 2021-02-02 2021-02-02 一种弧面电容指纹模组、电子设备及模组制作方法

Country Status (1)

Country Link
WO (1) WO2022165645A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103218080A (zh) * 2013-04-12 2013-07-24 上海鼎为软件技术有限公司 一种触控模组及其制造方法
CN205028312U (zh) * 2015-10-09 2016-02-10 南昌欧菲生物识别技术有限公司 一种指纹识别装置及电子设备
CN105740754A (zh) * 2014-12-12 2016-07-06 联想(北京)有限公司 一种指纹采集模组、制作方法及电子设备
CN107103273A (zh) * 2016-02-19 2017-08-29 致伸科技股份有限公司 指纹辨识模块及其制造方法
US20170372112A1 (en) * 2016-06-24 2017-12-28 Idex Asa Reinforcement panel for fingerprint sensor cover
CN108010447A (zh) * 2017-12-01 2018-05-08 珠海市魅族科技有限公司 曲面盖板及其制作方法、终端设备
CN108274379A (zh) * 2018-02-12 2018-07-13 维沃移动通信有限公司 一种玻璃盖板的加工方法、玻璃盖板和移动终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103218080A (zh) * 2013-04-12 2013-07-24 上海鼎为软件技术有限公司 一种触控模组及其制造方法
CN105740754A (zh) * 2014-12-12 2016-07-06 联想(北京)有限公司 一种指纹采集模组、制作方法及电子设备
CN205028312U (zh) * 2015-10-09 2016-02-10 南昌欧菲生物识别技术有限公司 一种指纹识别装置及电子设备
CN107103273A (zh) * 2016-02-19 2017-08-29 致伸科技股份有限公司 指纹辨识模块及其制造方法
US20170372112A1 (en) * 2016-06-24 2017-12-28 Idex Asa Reinforcement panel for fingerprint sensor cover
CN108010447A (zh) * 2017-12-01 2018-05-08 珠海市魅族科技有限公司 曲面盖板及其制作方法、终端设备
CN108274379A (zh) * 2018-02-12 2018-07-13 维沃移动通信有限公司 一种玻璃盖板的加工方法、玻璃盖板和移动终端

Similar Documents

Publication Publication Date Title
CN204808363U (zh) 指纹传感器模块、具有此的便携式电子设备
EP3457315B1 (en) Fingerprint module and mobile terminal having same
US10061962B2 (en) Fingerprint identification module and manufacturing method thereof
CN204791061U (zh) 一种终端
US20150187707A1 (en) Biometric Image Sensor Packaging and Mounting
CN106407954A (zh) 一种指纹识别模组、指纹识别装置及具有其的移动终端
WO2015085786A1 (zh) 指纹识别装置和移动终端
WO2018032871A1 (zh) 指纹模组及具有其的移动终端
CN113614672A (zh) 包括后板的电子装置及其制造方法
KR101675465B1 (ko) 필름 커버를 포함하는 생체인식센서 모듈 및 생체인식센서 모듈의 패키징 방법
US20140360663A1 (en) Method of manufacturing fingerprint recognition home key
CN105989364B (zh) 感测装置的制造方法
US20220270394A1 (en) Package structure of fingerprint recognition chip module and manufacturing method thereof
WO2022165645A1 (zh) 一种弧面电容指纹模组、电子设备及模组制作方法
US7676918B2 (en) Method for forming a molded circuit board
CN214704656U (zh) 一种弧面电容指纹模组以及电子设备
WO2022141367A1 (zh) 一种弧面电容指纹封装结构、模组、电子设备及封装方法
CN214672572U (zh) 一种弧面电容指纹封装结构、模组及电子设备
US20170243047A1 (en) Fingerprint identification module and manufacturing method thereof
CN109117695A (zh) 指纹模组及设有该指纹模组的电子设备
US20180239945A1 (en) Fingerprint identification module and manufacturing method thereof
CN217360834U (zh) 电容指纹模组及电子设备
KR20160049076A (ko) 센싱 영역을 asic과 별도로 형성한 지문인식센서모듈
CN108621479A (zh) 一种薄膜结构、薄膜结构的形成方法以及移动终端
KR20160071561A (ko) 발신전극 필름카바의 지문인식센서 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923674

Country of ref document: EP

Kind code of ref document: A1