WO2022163820A1 - シールドガス噴出装置、及び加工装置 - Google Patents
シールドガス噴出装置、及び加工装置 Download PDFInfo
- Publication number
- WO2022163820A1 WO2022163820A1 PCT/JP2022/003360 JP2022003360W WO2022163820A1 WO 2022163820 A1 WO2022163820 A1 WO 2022163820A1 JP 2022003360 W JP2022003360 W JP 2022003360W WO 2022163820 A1 WO2022163820 A1 WO 2022163820A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shield gas
- gas ejection
- outer shield
- axis
- shielding gas
- Prior art date
Links
- 238000003754 machining Methods 0.000 title 1
- 238000012545 processing Methods 0.000 claims description 26
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 180
- 230000002093 peripheral effect Effects 0.000 description 10
- 238000005192 partition Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/32—Accessories
- B23K9/325—Devices for supplying or evacuating shielding gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/08—Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/1462—Nozzles; Features related to nozzles
- B23K26/1464—Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
- B23K26/1476—Features inside the nozzle for feeding the fluid stream through the nozzle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Definitions
- the present disclosure relates to a shield gas jetting device and a processing device.
- This application claims priority based on Japanese Patent Application No. 2021-013504 filed in Japan on January 29, 2021, the content of which is incorporated herein.
- Patent Literature 1 discloses a device for ejecting a shielding gas from the periphery of a laser irradiation portion.
- a configuration is also known in which a shielding gas is directly blown onto the surface of a base material from an annular nozzle opening to protect the base material.
- the shielding gas when the shielding gas is blown onto the surface of the base material as described above, the shielding gas forms a layer that spreads outward on the surface of the base material.
- a circulation vortex is generated by being dragged by the flow of the shielding gas.
- Such circulating eddies cause fluctuations in the flow of the shielding gas.
- the layer of shielding gas may be broken locally or intermittently, making it impossible to obtain a sufficient shielding effect.
- the present disclosure has been made to solve the above problems, and aims to provide a shield gas ejection device and a processing device capable of more stably shielding.
- the shield gas jetting device includes a nozzle body extending along an axis, and an inner shield gas jetting path formed at the tip of the nozzle body and having an annular opening about the axis.
- FIG. 1 is a vertical cross-sectional view of a shield gas ejection device according to a first embodiment of the present disclosure
- FIG. FIG. 4 is a vertical cross-sectional view of a shield gas ejection device according to a second embodiment of the present disclosure
- FIG. 5 is a diagram showing a modification of the nozzle body according to the second embodiment of the present disclosure, and is a cross-sectional view of the nozzle body viewed from the axial direction.
- FIG. 5 is an explanatory diagram showing the opening direction of the outer shield gas ejection passage according to the second embodiment of the present disclosure
- the processing device 200 includes a processing section 90 and a shield gas ejection device 100 .
- a device appropriately selected from multiple types of devices such as a laser irradiation device for performing layered manufacturing and a welding nozzle for performing overlay welding is applied.
- the shield gas injection device 100 is used to inject a shield gas against the object (workpiece 80) to be processed by the above-described processing unit 90 to prevent oxidation and surface deterioration of the object.
- the shield gas ejection device 100 includes a nozzle body 10 , an inner shield gas ejection passage 20 , an intermediate shield gas ejection passage 30 and an outer shield gas ejection passage 40 .
- the nozzle body 10 has a main portion 11 , a reduced diameter portion 12 , a chamber forming portion 13 and a partition plate 15 .
- the main portion 11 has a columnar shape extending along the axis O. As shown in FIG. The diameter dimension of the main portion 11 is constant over the entire area in the direction of the axis O. As shown in FIG.
- the reduced-diameter portion 12 is integrally provided below the main portion 11 (that is, on the side where the workpiece 80 is positioned).
- the reduced-diameter portion 12 has a tapered shape in which the diameter dimension gradually decreases from the top to the bottom.
- a chamber forming portion 13 is provided on the outer peripheral side of the reduced diameter portion 12 .
- the chamber forming portion 13 has an annular shape projecting radially outward from the outer peripheral surface of the reduced diameter portion 12 .
- a space (chamber 14 ) is formed inside the chamber forming part 13 .
- This chamber 14 is a space for guiding an outer shield gas, which will be described later.
- a partition plate 15 is provided in the chamber 14 .
- the partition plate 15 protrudes upward from an upward facing surface of the inner surface of the chamber 14 and has an annular shape with the axis O as the center.
- a partition plate 15 divides the chamber 14 into an outer peripheral area and an inner peripheral area.
- a gap extending in the direction of the axis O is formed between the upper end surface of the partition plate 15 and the inner wall of the chamber 14 .
- the inner shield gas ejection path 20 extends in the direction of the axis O across the main portion 11 and the reduced diameter portion 12 described above.
- the inner shield gas ejection path 20 opens onto the lower end surface 11 b of the reduced diameter portion 12 .
- An opening shape of the inner shield gas ejection path 20 is circular as an example.
- the cross-sectional area of the inner shield gas ejection path 20 gradually decreases from the top to the bottom.
- Inner shield gas is supplied to the inner shield gas ejection passage 20 through an inner shield gas supply passage 20 a formed in the upper end surface of the main portion 11 .
- the above-described processed portion 90 protrudes inside the inner shield gas ejection passage 20 . In other words, various kinds of processing by the processing section 90 are performed through the inner shield gas ejection passages 20 .
- the intermediate shield gas ejection passage 30 extends over the main portion 11 and the reduced diameter portion 12 and surrounds the inner shield gas ejection passage 20 from the outer peripheral side.
- the intermediate shielding gas ejection passage 30 is formed over the entire circumferential area around the axis O.
- the outlet of the intermediate shield gas jetting path 30 is open on the lower end surface 11b. This opening has an annular shape centered on the axis O.
- the portion of the intermediate shield gas ejection passage 30 that penetrates the main portion 11 extends in the direction of the axis O, while the portion that penetrates the diameter-reduced portion 12 approaches the axis O from the top to the bottom. extends to
- the intermediate shielding gas ejection passage 30 is supplied with the intermediate shielding gas from an inlet opening on the upper end surface 11a.
- the outer shield gas ejection path 40 extends downward from the chamber 14 described above.
- the outer shield gas ejection passage 40 is provided on the outer peripheral side of the intermediate shield gas ejection passage 30 .
- the outer shield gas jetting path 40 is formed over the entire circumference with the axis O as the center.
- the outer shield gas ejection path 40 extends in a direction closer to the axis O from above to below.
- the outlet of the outer shield gas ejection path 40 is located above the lower end surface 11b.
- Outer shield gas guided from the chamber 14 flows through the outer shield gas ejection path 40 .
- This outer shield gas is supplied to the chamber 14 through an outer shield gas supply path 40 a formed in the side surface 13 a of the chamber forming portion 13 .
- the outer shield gas supply path 40a is provided only at one place in the circumferential direction. It is also possible to provide the outer shield gas supply passages 40a at a plurality of locations in the circumferential direction at intervals.
- the outer shield gas supplied from the outer shield gas supply path 40 a collides with the partition plate 15 and diffuses over the entire circumferential direction. This makes it possible to jet the outer shield gas with a uniform flow rate distribution in the circumferential direction.
- the flow rates and pressures are adjusted so that the flow velocity decreases in the order of the inner shield gas, the outer shield gas, and the intermediate shield gas.
- the inner shield gas, the outer shield gas, and the intermediate shield gas may be supplied from the same supply source and then the flow rates may be varied as described above using various valves or the like, or the flow rates may be varied from different supply sources. Different gases may be supplied respectively.
- the shield gas ejection apparatus 100 is driven to form a shield area on the surface of the workpiece 80 .
- the work 80 is processed in various ways by driving the processing unit 90 .
- the intermediate shield gas ejection passage 30 is provided between the inner shield gas ejection passage 20 and the outer shield gas ejection passage 40 .
- the intermediate shielding gas By ejecting the intermediate shielding gas, the entrained flow that causes the circulation vortex described above flows out to the surroundings along with the flow of the intermediate shielding gas. As a result, circulation vortices are less likely to be formed. This can reduce the possibility that the flow of the shielding gas will fluctuate. As a result, breakage of the shield by the shield gas can be avoided. Therefore, it is possible to perform the processing work more stably.
- the flow velocity of the intermediate shield gas is smaller than the flow velocity of the outer shield gas and the inner shield gas. Therefore, it is possible to reduce the possibility that the intermediate shield gas obstructs the original flow of the outer shield gas and the inner shield gas. As a result, it is possible to perform the processing work more stably.
- the intermediate shield gas ejection passage 30 and the outer shield gas ejection passage 40 are arranged in a direction approaching the axis O from above (upstream side) to below (downstream side). It is configured to eject gas.
- the intermediate shield gas and the outer shield gas can form a more strongly shielded space in the region on the workpiece 80 including the axis O. As shown in FIG.
- the first embodiment of the present disclosure has been described above. It should be noted that various changes and modifications can be made to the above configuration without departing from the gist of the present disclosure.
- the shield gas ejection device 100 when applying the shield gas ejection device 100 to the layered manufacturing apparatus enumerated as an example of the processing unit 90 in the first embodiment, between the inner shield gas ejection path 20 and the intermediate shield gas ejection path 30, It is possible to form a supply path for supplying powder as a material for layered manufacturing.
- a perforated plate can also be used as the partition plate 15 described above. Also in this case, the outer shield gas supplied from the outer shield gas supply path 40a can be diffused in the circumferential direction, and the outer shield gas can be ejected with a uniform flow rate distribution.
- a vane 18 is provided in the middle position of the outer shield gas ejection path 40 .
- the vanes 18 extend from one side to the other side in the circumferential direction from top to bottom.
- the vanes 18 are arranged in a plurality in the circumferential direction at intervals.
- the shielding performance can be improved with a simple structure only by providing the plurality of vanes 18 in the outer shield gas ejection path 40 . As a result, it is possible to suppress an increase in costs related to manufacturing and maintenance of the apparatus.
- the outer shield gas supply path 40a (supply path) may be configured to extend in a direction with a circumferential component with respect to the axis O.
- the outer shield gas can be jetted so as to swirl about the axis O.
- FIG. 3 shows a configuration in which the outer shield gas supply path 40a is provided only at one place in the circumferential direction.
- the outer shield gas jetting path 40 so as to extend from one side to the other side in the circumferential direction as it goes from the upstream side to the downstream side. More specifically, it is possible to employ a configuration in which a plurality of guide plates 19 are provided at intervals in the circumferential direction at the outlet of the outer shield gas ejection path 40 . These guide plates 19 extend from one side to the other in the circumferential direction from the upstream side to the downstream side. With this configuration as well, it is possible to jet the outer shield gas so as to swirl around the axis O. As shown in FIG.
- a shield gas ejection device 100 includes a nozzle body 10 extending along an axis O, and an inner shield gas ejection passage 20 formed inside the nozzle body 10 and opening on the axis O. an outer shield gas ejection passage 40 surrounding the inner shield gas ejection passage 20; and an intermediate shield gas ejection passage 30 provided between the inner shield gas ejection passage 20 and the outer shield gas ejection passage 40. , and the flow velocity of the intermediate shield gas ejected from the intermediate shield gas ejection passage 30 is the same as that of the inner shield gas ejected from the inner shield gas ejection passage 20 and the outer shield gas ejected from the outer shield gas ejection passage 40. lower than the current velocity.
- the intermediate shield gas ejection passage 30 is provided between the inner shield gas ejection passage 20 and the outer shield gas ejection passage 40 .
- the entrained flow that causes the circulation vortex described above rides on the flow of the intermediate shielding gas and diffuses to the surroundings. As a result, circulation vortices are less likely to be formed. This can reduce the possibility that the flow of the shielding gas will fluctuate.
- the intermediate shield gas ejection passage 30 and the outer shield gas ejection passage 40 are arranged in a direction approaching the axis O from the upstream side toward the downstream side. It is configured to eject the intermediate shield gas and the outer shield gas.
- the outer shield gas ejection path 40 ejects the outer shield gas so as to revolve about the axis O. As shown in FIG.
- the outer shield gas revolves around the axis O, the flow direction is limited when the outer shield gas collides with the object, and the flow field is stabilized. Therefore, fluctuations in the flow of the outer shield gas from the space on the inner peripheral side to the outside are reduced. As a result, the flow back from the outside to the space on the inner peripheral side is reduced, and the shielding performance can be further improved.
- the shield gas ejection device 100 further includes a plurality of vanes 18 arranged in the middle of the outer shield gas ejection passage 40 and arranged in the circumferential direction of the axis O, and the vanes 18 extends from one side to the other side in the circumferential direction from the upstream side to the downstream side, thereby ejecting the outer shield gas so as to swirl around the axis O. As shown in FIG.
- the shield gas ejection device 100 includes a chamber 14 provided in the nozzle body 10, into which the outer shield gas is introduced, and a supply flow for supplying the outer shield gas to the chamber 14.
- the supply flow path 40a extends in a direction with a circumferential component with respect to the axis O, thereby ejecting the outer shield gas so as to swirl around the axis O. As shown in FIG.
- the shielding performance can be improved with a simple structure only by extending the supply channel 40a in the direction accompanied by the circumferential component.
- the outer shielding gas ejection passage 40 extends from one circumferential side to the other side in the direction from the upstream side to the downstream side.
- the gas is jetted so as to swirl around the axis O. As shown in FIG.
- the shielding performance is improved with a simple structure only by making the extending direction of the outer shield gas ejection path 40 from one side to the other side in the circumferential direction from the upstream side to the downstream side.
- a processing apparatus 200 includes a shield gas jetting device 100 and a processing section 90 that processes a work via the inner shield gas jetting path 20 .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
- Nozzles (AREA)
Abstract
Description
本願は、2021年1月29日に日本に出願された特願2021-013504に基づき優先権を主張し、その内容をここに援用する。
(加工装置の構成)
以下、本開示の第一実施形態に係る加工装置200、及びシールドガス噴出装置100について、図1を参照して説明する。加工装置200は、加工部90と、シールドガス噴出装置100と、を備えている。
シールドガス噴出装置100は、上述の加工部90による加工対象物(ワーク80)に対してシールドガスを噴射して当該対象物に酸化や表面劣化が生じることを防ぐために用いられる。シールドガス噴出装置100は、ノズル本体10と、インナーシールドガス噴出路20と、中間シールドガス噴出路30と、アウターシールドガス噴出路40と、を備えている。
次に、上記の加工装置200、及びシールドガス噴出装置100の動作について説明する。加工装置200を動作させるに当たってはまずシールドガス噴出装置100を駆動してワーク80の表面にシールド領域を形成する。次いで、加工部90を駆動することでワーク80に各種の加工を施す。
例えば、上記第一実施形態で加工部90の一例として列挙した積層造形装置にシールドガス噴出装置100を適用する場合には、インナーシールドガス噴出路20と中間シールドガス噴出路30との間に、積層造形の材料となる粉末を供給する供給路を形成することが可能である。
続いて、本開示の第二実施形態について、図2を参照して説明する。なお、上記第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。同図に示すように、本実施形態では、アウターシールドガス噴出路40の中途位置にベーン18が設けられている。ベーン18は、上方から下方に向かうに従って周方向の一方側から他方側に向かうように延びている。また、ベーン18は、周方向に間隔をあけて複数配列されている。これらベーン18が設けられていることによって、アウターシールドガス噴出路40は、アウターシールドガスを軸線Oを中心として旋回するように噴出させることが可能とされている。
各実施形態に記載のシールドガス噴出装置100は、例えば以下のように把握される。
200 加工装置
10 ノズル本体
11 主部
11a 上端面
11b 下端面
12 縮径部
13 チャンバー形成部
13a 側面
14 チャンバー
15 仕切板
18 ベーン
19 案内板
20 インナーシールドガス噴出路
20a インナーシールドガス供給路
30 中間シールドガス噴出路
40 アウターシールドガス噴出路
40a アウターシールドガス供給路
80 ワーク
90 加工部
O 軸線
Claims (7)
- 軸線に沿って延びるノズル本体と、
該ノズル本体の内部に形成され、前記軸線上に開口するインナーシールドガス噴出路と、
該インナーシールドガス噴出路を周囲から囲うアウターシールドガス噴出路と、
前記インナーシールドガス噴出路と前記アウターシールドガス噴出路との間に設けられた中間シールドガス噴出路と、
を備え、
前記中間シールドガス噴出路から噴出する中間シールドガスの流速は、前記インナーシールドガス噴出路から噴出するインナーシールドガス、及び前記アウターシールドガス噴出路から噴出するアウターシールドガスの流速よりも低いシールドガス噴出装置。 - 前記中間シールドガス噴出路、及び前記アウターシールドガス噴出路は、上流側から下流側に向かうに従って前記軸線に近接する方向に前記中間シールドガス、及び前記アウターシールドガスを噴出するように構成されている請求項1に記載のシールドガス噴出装置。
- 前記アウターシールドガス噴出路は、前記アウターシールドガスを前記軸線を中心として旋回するように噴出させる請求項1又は2に記載のシールドガス噴出装置。
- 前記アウターシールドガス噴出路の中途に設けられ、前記軸線の周方向に配列された複数のベーンをさらに備え、該ベーンは上流側から下流側に向かうに従って周方向の一方側から他方側に向かって延びることで前記アウターシールドガスを前記軸線を中心として旋回するように噴出させる請求項3に記載のシールドガス噴出装置。
- 前記ノズル本体内に設けられ、前記アウターシールドガスが導入されるチャンバーと、
該チャンバーに前記アウターシールドガスを供給する供給流路と、
をさらに備え、
前記供給流路は、前記軸線に対する周方向成分を伴う方向に延びることで前記アウターシールドガスを前記軸線を中心として旋回するように噴出させる請求項3に記載のシールドガス噴出装置。 - 前記アウターシールドガス噴出路は、上流側から下流側に向かうに従って周方向一方側から他方側に向かうように延びることで前記アウターシールドガスを前記軸線を中心として旋回するように噴出させる請求項3に記載のシールドガス噴出装置。
- 請求項1から6のいずれか一項に記載のシールドガス噴出装置と、
前記インナーシールドガス噴出路を介してワークに加工を行う加工部と、
を備える加工装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022578518A JPWO2022163820A1 (ja) | 2021-01-29 | 2022-01-28 | |
US18/274,733 US20240091873A1 (en) | 2021-01-29 | 2022-01-28 | Shielding gas ejecting device, and machining device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021013504 | 2021-01-29 | ||
JP2021-013504 | 2021-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022163820A1 true WO2022163820A1 (ja) | 2022-08-04 |
Family
ID=82654647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/003360 WO2022163820A1 (ja) | 2021-01-29 | 2022-01-28 | シールドガス噴出装置、及び加工装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240091873A1 (ja) |
JP (1) | JPWO2022163820A1 (ja) |
WO (1) | WO2022163820A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001025875A (ja) * | 1999-07-14 | 2001-01-30 | Sumitomo Metal Ind Ltd | 鋼管のプラズマアーク円周溶接方法 |
JP2003181676A (ja) * | 2001-12-17 | 2003-07-02 | Hokkaido Technology Licence Office Co Ltd | レーザ溶接用ガスシールドノズル |
JP2013075308A (ja) * | 2011-09-30 | 2013-04-25 | Hitachi Ltd | パウダ供給ノズルおよび肉盛溶接方法 |
JP2015066589A (ja) * | 2013-09-30 | 2015-04-13 | 三菱重工業株式会社 | 溶接装置、溶接方法、及びタービン翼 |
-
2022
- 2022-01-28 JP JP2022578518A patent/JPWO2022163820A1/ja active Pending
- 2022-01-28 US US18/274,733 patent/US20240091873A1/en active Pending
- 2022-01-28 WO PCT/JP2022/003360 patent/WO2022163820A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001025875A (ja) * | 1999-07-14 | 2001-01-30 | Sumitomo Metal Ind Ltd | 鋼管のプラズマアーク円周溶接方法 |
JP2003181676A (ja) * | 2001-12-17 | 2003-07-02 | Hokkaido Technology Licence Office Co Ltd | レーザ溶接用ガスシールドノズル |
JP2013075308A (ja) * | 2011-09-30 | 2013-04-25 | Hitachi Ltd | パウダ供給ノズルおよび肉盛溶接方法 |
JP2015066589A (ja) * | 2013-09-30 | 2015-04-13 | 三菱重工業株式会社 | 溶接装置、溶接方法、及びタービン翼 |
Also Published As
Publication number | Publication date |
---|---|
US20240091873A1 (en) | 2024-03-21 |
JPWO2022163820A1 (ja) | 2022-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2901818B1 (en) | Nozzles for gas cooling plasma arc torches and related systems | |
JP3658406B2 (ja) | レーザビームカッティング用のノズル装置 | |
KR101593862B1 (ko) | 가스 터빈의 차실의 변형을 방지하는 방법, 이것을 실행하는 퍼지 장치, 및 이 장치를 구비하고 있는 가스 터빈 | |
JP4763575B2 (ja) | 基板処理装置および基板処理方法 | |
JP2998517B2 (ja) | 加工ヘッド及びレーザ加工装置 | |
JP6167055B2 (ja) | レーザノズル、レーザ加工装置、及びレーザ加工方法 | |
KR20170012476A (ko) | 혼합기 및 정량 주입기 원뿔형부 어셈블리 | |
US20190388989A1 (en) | Electric discharge machining apparatus | |
JP2010096493A (ja) | 燃焼器内に希釈流を導入する方法及び装置 | |
WO2022163820A1 (ja) | シールドガス噴出装置、及び加工装置 | |
JP3092021B2 (ja) | レーザ加工装置の切断加工ヘッド | |
KR20080067803A (ko) | 유체 분사노즐 | |
JP2008130643A (ja) | ノズル、基板処理装置および基板処理方法 | |
US6709630B2 (en) | Metallurgical lance and apparatus | |
JP2010096494A (ja) | 燃料ノズルの希釈流導入の方法及び装置 | |
JP2009127451A (ja) | 流体混合装置及び脱硝装置 | |
JP4222876B2 (ja) | 基板処理装置 | |
JP2016007568A (ja) | 噴霧装置 | |
JP2010064194A (ja) | 穴内面照射用噴射ノズル | |
JP2010137341A (ja) | 噴射加工装置 | |
JP2009137000A (ja) | ワイヤカット放電加工機とその加工液ノズル装置 | |
JPH0331509Y2 (ja) | ||
JP7168792B2 (ja) | プラズマ発生装置 | |
JP7301656B2 (ja) | 燃料ノズルおよびガスタービンエンジン | |
JP2011106726A (ja) | 微粉炭バーナ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22746039 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022578518 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18274733 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22746039 Country of ref document: EP Kind code of ref document: A1 |