WO2022163779A1 - 気泡率センサ、これを用いた流量計および極低温液体移送管 - Google Patents

気泡率センサ、これを用いた流量計および極低温液体移送管 Download PDF

Info

Publication number
WO2022163779A1
WO2022163779A1 PCT/JP2022/003170 JP2022003170W WO2022163779A1 WO 2022163779 A1 WO2022163779 A1 WO 2022163779A1 JP 2022003170 W JP2022003170 W JP 2022003170W WO 2022163779 A1 WO2022163779 A1 WO 2022163779A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
electrode
sensor according
porosity
insulating tube
Prior art date
Application number
PCT/JP2022/003170
Other languages
English (en)
French (fr)
Inventor
勝美 中村
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US18/274,968 priority Critical patent/US20240110820A1/en
Priority to KR1020237025713A priority patent/KR20230125049A/ko
Priority to CN202280012396.4A priority patent/CN116829931A/zh
Priority to EP22745998.9A priority patent/EP4286839A1/en
Priority to JP2022578491A priority patent/JPWO2022163779A1/ja
Publication of WO2022163779A1 publication Critical patent/WO2022163779A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/64Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by measuring electrical currents passing through the fluid flow; measuring electrical potential generated by the fluid flow, e.g. by electrochemical, contact or friction effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid

Definitions

  • the present disclosure relates to a void fraction sensor for measuring the void fraction of a cryogenic liquid such as liquid hydrogen, a flow meter using the void fraction sensor, and a cryogenic liquid transfer pipe.
  • liquid hydrogen has a high volumetric efficiency and can be stored for a long period of time, so various techniques for its utilization have been developed.
  • a method for accurately measuring the flow rate, which is necessary when handling a large amount of liquid hydrogen has not been established industrially. The main reason for this is that liquid hydrogen is highly vaporizable and is a fluid with a large change in gas/liquid ratio.
  • liquid hydrogen is a liquid with an extremely low temperature (boiling point of -253°C), has a very high thermal conductivity, and has a low latent heat. Therefore, the liquid hydrogen becomes a so-called two-phase flow in which gas and liquid are mixed in the transfer piping. Therefore, since the content ratio of bubbles varies greatly, the flow rate of liquid hydrogen flowing through a pipe cannot be accurately determined by simply measuring the flow velocity, as is the case with ordinary liquids.
  • Non-Patent Document 1 proposes a capacitance type void fraction sensor that measures capacitance using a pair of electrodes.
  • a porosity sensor of the present disclosure includes an insulating tube having a through hole for flowing a cryogenic liquid, and a pair of planar electrodes attached to the outer wall surface of the insulating tube.
  • the insulating tube has an electrode mounting portion in which the distance D1 between the inner wall surfaces of the electrodes in the direction perpendicular to the electrode surfaces is shorter than the distance D2 between the inner wall surfaces of the electrodes in the direction parallel to the electrode surfaces.
  • a flow meter of the present disclosure measures the flow rate of a cryogenic liquid flowing through a through-hole, and includes the above-described porosity sensor and a current meter that measures the flow velocity of the cryogenic liquid flowing through the through-hole. .
  • the present disclosure provides a cryogenic liquid transfer tube with the above flow meter.
  • FIG. 1 is a schematic perspective view of a porosity sensor according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a schematic perspective view showing a vertical fracture surface of the porosity sensor shown in FIG. 1
  • FIG. 2 is a schematic perspective view showing a horizontal fracture surface of the porosity sensor shown in FIG. 1
  • 2 is a vertical sectional view of the porosity sensor shown in FIG. 1
  • FIG. 2 is a horizontal sectional view of the porosity sensor shown in FIG. 1
  • FIG. FIG. 2 is a cross-sectional view taken along line IV-IV of the porosity sensor shown in FIG. 1
  • FIG. 2 is a cross-sectional view of the void content sensor shown in FIG. 1 taken along line V-V;
  • FIG. 2 is a sectional view taken along the line VI-VI of the porosity sensor shown in FIG. 1;
  • FIG. 4 is a schematic perspective view of the porosity sensor in a state in which bundles are attached to the outer peripheral surfaces of the inflow port and the outflow port of the insulating tube, respectively;
  • 2 is a schematic perspective view showing a state in which the porosity sensor shown in FIG. 1 is accommodated in a housing;
  • FIG. 11 is a schematic perspective view showing a vertical fracture surface of the porosity sensor and housing shown in FIG. 10;
  • FIG. 12 is a schematic perspective view showing a horizontal fracture surface of the porosity sensor and housing shown in FIG. 11;
  • FIG. FIG. 6 is a vertical sectional view showing a modification of the porosity sensor shown in FIGS.
  • FIG. 10 is a schematic perspective view of a porosity sensor according to another embodiment of the present disclosure
  • 15 is a schematic perspective view showing a vertical fracture surface of the porosity sensor shown in FIG. 14
  • FIG. 15 is a schematic perspective view showing a horizontal fracture surface of the porosity sensor shown in FIG. 14
  • FIG. 10 is a schematic perspective view of a porosity sensor according to another embodiment of the present disclosure
  • 15 is a schematic perspective view showing a vertical fracture surface of the porosity sensor shown in FIG. 14
  • FIG. 15 is a schematic perspective view showing a horizontal fracture surface of the porosity sensor shown in FIG. 14
  • FIG. 1 is a perspective view showing a porosity sensor 1 according to an embodiment of the present disclosure
  • FIGS. 2 and 3 are a schematic perspective view showing a vertical fracture surface and a schematic perspective view showing a horizontal fracture surface of the porosity sensor 1.
  • the porosity sensor 1 comprises an insulating tube 2 having a through hole 3 for flowing a cryogenic liquid, and a pair of planar electrodes 4 attached to the outer wall surface of the insulating tube 2 . , 4.
  • the insulating tube 2 is formed by stacking two half-shaped insulating tube members 21, 21 on each other.
  • the insulating tube 2 has a pair of recesses 6 , 6 that open in a direction perpendicular to the axis of the through hole 3 .
  • a pair of electrodes 4, 4 are mounted on the bottom surfaces of recesses 6, 6 provided in the insulating tube 2, respectively, and face each other (see FIG. 2).
  • a conductive pin 7 is individually connected to each electrode 4 .
  • An airtight terminal 8 is attached to the conducting pin 7 . The airtight terminal 8 will be described later.
  • the insulating tube 2 is formed with the recesses 6, 6 as described above, the distance between the electrodes 4, 4 attached to the bottom surfaces of these recesses 6, 6 is narrow. As a result, the capacitance accumulated between the electrodes 4, 4 is increased, and the measurement accuracy of the bubble ratio of the cryogenic liquid flowing through the through hole 3 can be improved.
  • the positions of the electrodes 4, 4 and the area of the electrode surface 41 can be set to obtain optimum measurement accuracy.
  • the electrode surfaces 41, 41 refer to the surfaces on which the electrodes 4, 4 are attached to the bottom surfaces of the recesses 6, 6. As shown in FIG.
  • the distance D1 between the inner wall surfaces 3a, 3a in the electrode mounting portion 5 means the shortest distance
  • the distance D2 between the inner wall surfaces 3b, 3b means the longest distance.
  • the distances D1 and D2 can be appropriately determined according to the supply amount of the cryogenic liquid, the measurement accuracy of the bubble ratio, etc., and are not particularly limited.
  • the length is 10% or more, preferably 20% or more, and 67% or less, preferably 50% or less. Therefore, at least the shape of the through hole 3 in the cross section perpendicular to the axial center of the through hole 3 in the electrode mounting portion 5 is preferably elliptical or rectangular.
  • the electrode mounting portion 5 refers to a portion to which the electrodes 4, 4 are mounted.
  • the insulating tube 2 is smooth in the vertical cross-section in the direction perpendicular to the electrode surfaces 41, 41 from the circular inlet 31 and outlet 32 of the cryogenic liquid to the end of the parallel region E2, respectively. , the distance between the inner wall surfaces 3a, 3a gradually decreases.
  • the insulating tube 2 has an inner wall surface 3b, an inner wall surface 3b, and an inner wall surface 3b toward an inlet 31 and an outlet 32 of the through hole 3 from a parallel region E2 in a horizontal cross section in a direction parallel to the electrode surfaces 41, 41, as shown in FIG. The distance between 3b increases smoothly.
  • the inner wall surfaces 3a, 3a of the through hole 3 are parallel to each other, and the distance D1 is the minimum. Moreover, the inner wall surfaces 3b, 3b of the through hole 3 are parallel to each other, and the distance D2 is the maximum.
  • the parallel region E2 includes the electrode mounting region E1 (that is, the electrode mounting portion 5), and the electrode mounting region E1 is preferably located substantially in the center of the parallel region E2.
  • the distance between the inner wall surfaces 3a, 3a smoothly increases from the parallel region E2 toward the inlet 31 and the outlet 32 of the through hole 3. Therefore, stress concentration is less likely to occur on the inner wall surfaces 3a and 3a than in the case where the distance between the inner wall surfaces 3a and 3a increases stepwise toward the inlet 31 and the outlet 32, and it can be used for a long period of time. be able to.
  • the distance between the inner wall surfaces 3b, 3b smoothly decreases from the parallel region E2 toward the inlet 31 and the outlet 32 of the through hole 3.
  • the length of the parallel region E2 is 105% or more, preferably 150% or more, and preferably 5000% or less of the length of the electrode region E1.
  • At least one of the inner wall surfaces 3a, 3a does not have the parallel region E2, and the distance D1 between them is continuous from the inlet 31 and the outlet 32 toward the electrode mounting portion 5. It may be curved so as to be substantially smaller.
  • the direction of curvature of the inner wall surfaces 3a, 3a is preferably concave when viewed from the axis of the through hole 3.
  • at least one of the inner wall surfaces 3b, 3b does not have a parallel region E2, and the distance D2 between them is from the inlet 31 and the outlet 32 toward the electrode mounting portion 5. You may curve so that it may become large continuously.
  • the direction of curvature of the inner wall surfaces 3 b , 3 b may be convex when viewed from the axis of the through hole 3 .
  • FIGS. 6 to 8 show how the shape of the through hole 3 changes sequentially from the inlet 31 of the through hole 3 toward the electrode mounting portion 5.
  • FIG. Each through hole 3 shown in FIGS. 6 to 8 has the same cross-sectional area perpendicular to the axis of the through hole 3 . Thereby, the supply amount of the cryogenic liquid can be maintained without dropping.
  • the insulating tube 2 in this embodiment is formed by stacking two half-shaped insulating tube members 21, 21 on each other. Then, as shown in FIG. 9, an annular binding member 9 is mounted on the outer peripheral surfaces of the inlet and outlet of the insulating tube 2 to integrally join the half-split insulating tube members 21 and 21 together.
  • the insulating tube members 21, 21 may be bound with the binding body 9 without using the joining material. Alternatively, instead of the binding body 9 or together with the binding body 9, the joining surfaces of the insulating tube members 21, 21 may be joined with a sealing material that is stable against the cryogenic liquid flowing through the insulating tube 2. .
  • FIG. 10 shows a state in which the bubble rate sensor 1 is accommodated in the housing 10.
  • the porosity sensor 1 is surrounded by a housing 10 .
  • FIG. 11 which is a schematic perspective view showing a vertical fracture surface of the housing 10, and FIG. and a lid portion 102 that seals the opening of the frame portion 101 .
  • the porosity sensor 1 in which the insulating tube members 21 and 21 shown in FIG. 9 are bound by the binding member 9 is accommodated in the frame portion 101, and then the frame portion 101 and the lid portion 102 are joined by welding or brazing.
  • a first connecting pipe 11 and a second connecting pipe 12 are connected to both end openings (inflow port 31 and outflow port 32) of the through hole 3 of the porosity sensor 1, respectively.
  • the first connection pipe 11 is inserted through the inlet 31 and joined to the lid portion 102 at its outer peripheral surface by welding or brazing.
  • the second connection pipe 12 is formed integrally with the frame portion 101 , it may be joined to the frame portion 101 like the lid portion 102 .
  • An insertion hole 13 is formed in the frame portion 101 of the housing 10 .
  • An airtight terminal 8 is attached to the insertion hole 13 , and a conductive pin 7 that is individually connected to the electrode 4 is fixed in the insertion hole 13 .
  • the housing 10 is provided with a vacuum exhaust valve 14 (e.g., a needle valve for evacuation) to form a vacuum space 15 (insulating layer) between the bubble ratio sensor 1 and the housing 10.
  • a vacuum exhaust valve 14 e.g., a needle valve for evacuation
  • the vacuum space 15 is positioned on the outer peripheral side of the bubble rate sensor 1 in this manner, heat insulating performance for the bubble rate sensor 1 is ensured.
  • the airtight terminal 8 suppresses leakage of the cryogenic liquid from the bubble ratio sensor 1 to the outside, the measurement accuracy of the bubble ratio is further improved.
  • a first connection pipe 11 having a supply hole on the inlet 31 side of the through hole 3 is connected to the insulating pipe 2, and the through hole 3 is cut perpendicular to the axis of the through hole 3.
  • the area is preferably 90% or more and 110% or less of the cross-sectional area of the supply hole perpendicular to the axis of the supply hole.
  • a second connecting pipe 12 having a discharge hole on the outflow port 32 side of the through hole 3 is connected to the insulating pipe 2, and the cross-sectional area of the through hole 3 perpendicular to the axis of the through hole 3 is the axis of the discharge hole. It is preferably 90% or more and 110% or less of the cross-sectional area of the discharge hole perpendicular to the core. This suppresses an increase in pressure loss. As a result, the generation of air bubbles can be suppressed, so that the measurement accuracy of the air bubble ratio of the cryogenic liquid can be improved.
  • a frame portion 101 and a lid portion 102 that constitute the housing 10 are made of metal or ceramics.
  • the first connecting pipe 11 and the second connecting pipe 12 are preferably metal pipes.
  • the frame body part 101 is preferably made of ceramics such as silicon nitride, sialon, etc., such as austenitic stainless steel (eg, SUS316L) having a nickel content of 10.4% by mass or more, for example. good.
  • the lid portion 102 is preferably made of, for example, a Fernico-based alloy, Fe--Ni alloy, Fe--Ni--Cr--Ti--Al alloy, Fe--Cr--Al alloy, Fe--Co--Cr alloy, or the like.
  • the inner diameter of the frame body part 101 is preferably 1 mm or more with respect to the outer diameter of the insulating tube 2, preferably 10 mm or more with respect to the outer diameter of the insulating tube 2, in order to obtain sufficient heat insulation performance. It should be 200 mm or less, preferably 100 mm or less relative to the outer diameter of the tube 2 .
  • the lid portion 102 is airtightly joined to the outer peripheral surface of the insulating tube 2 by brazing.
  • the electrodes 4, 4 can be made of, for example, copper foil, aluminum foil, or the like. In order to form the electrode 4 on the bottom surface of each concave portion 6, for example, a vacuum vapor deposition method, a metallizing method, or an active metal method can be used. Also, a metal plate to be the electrode 4 may be adhered to the bottom surface of the recess 6 .
  • the thickness of the electrodes 4, 4 should be 10 ⁇ m or more, preferably 20 ⁇ m or more, and 2 mm or less, preferably 1 mm or less.
  • the insulating tube 2 is made of ceramics mainly composed of, for example, zirconia, alumina, sapphire, aluminum nitride, silicon nitride, sialon, cordierite, mullite, yttria, silicon carbide, cermet, ⁇ -eucryptite, and the like.
  • the ceramics are ceramics containing alumina as a main component, the ceramics may contain silicon, calcium, magnesium, sodium or the like as oxides.
  • the main component in ceramics refers to a component that accounts for 60% by mass or more of the total 100% by mass of the components that make up the ceramics.
  • the main component is preferably a component that accounts for 95% by mass or more of the total 100% by mass of the components that constitute the ceramics.
  • Components constituting the ceramics may be determined using an X-ray diffractometer (XRD). After identifying the component, the content of each component is determined using an X-ray fluorescence spectrometer (XRF) or an ICP emission spectrometer, and the content of the elements that make up the component is determined, and converted to the identified component. good.
  • XRD X-ray diffractometer
  • the insulating tube 2 is preferably made of low thermal expansion ceramics.
  • the low thermal expansion ceramics are ceramics having a coefficient of linear expansion of 0 ⁇ 20 ppb/K or less at 22° C., where the temperature range for measuring the coefficient of linear expansion is 0° C. to 50° C. Since low thermal expansion ceramics have a low coefficient of linear expansion, they are less likely to break even if they are subjected to thermal shock by a cryogenic liquid containing a cryogenic liquid.
  • the coefficient of linear expansion of the low thermal expansion ceramics may be obtained by using, for example, an optical heterodyne one-path interferometer.
  • the low-thermal-expansion ceramic preferably contains cordierite as the main crystal phase, alumina, mullite and sapphirine as sub-crystal phases, and an amorphous phase containing Ca as the grain boundary phase.
  • the crystal phase ratio of the main crystal phase is 95% by mass or more and 97.5% by mass or less
  • the crystal phase ratio of the secondary crystal phase is 2.5% by mass or more and 5% by mass or less
  • the Ca content relative to the total amount is It is preferably not less than 0.4% by mass and not more than 0.6% by mass in terms of CaO, and further includes zirconia, and the content of zirconia in the total amount is preferably not less than 0.1% by mass and not more than 1.0% by mass.
  • the low-thermal-expansion ceramic does not easily expand and contract, so it can be used for a long period of time.
  • low thermal expansion ceramics for example, those described in Japanese Patent No. 5430389 can be employed.
  • the ceramics constituting the insulating tube 2 should preferably have a dielectric constant of 11 or less in the operating temperature range. Since the cryogenic liquid has a low relative dielectric constant, when the relative dielectric constant of the ceramics is small, the relative dielectric constant of the ceramic becomes close to that of the cryogenic liquid, and the high frequency characteristics are improved. In particular, when it is 11 or less, it is possible to further improve the measurement accuracy of the porosity of the cryogenic liquid.
  • the operating temperature range refers to the temperature range during transfer of the cryogenic liquid.
  • the insulating tube 2 may be made of ceramics containing silicon nitride or sialon as a main component. These ceramics have high mechanical strength and high thermal shock resistance, so that they are less likely to break even when subjected to thermal shock.
  • the ceramics contain calcium oxide, aluminum oxide and oxides of rare earth elements, and contain calcium oxide and aluminum oxide with respect to a total of 100% by mass of calcium oxide, aluminum oxide and oxides of rare earth elements. The amount is 0.3% by mass or more and 1.5% by mass or less, 14.2% by mass or more and 48.8% by mass or less, and the balance is the oxide of the rare earth element.
  • Such ceramics for example, those described in Japanese Patent No. 5430389 can be employed.
  • the arithmetic mean roughness Ra in the roughness curve of the inner wall surfaces 3a and 3b in the direction parallel to the axis of the through hole 3 is preferably 0.2 ⁇ m or less.
  • the arithmetic mean roughness Ra in the roughness curve of the inner wall surfaces 3a, 3b is 0.2 ⁇ m or less, the flow resistance of the cryogenic liquid caused by the inner wall surfaces 3a, 3b is suppressed, so that the flow velocity of the cryogenic liquid is reduced. Distribution stabilizes. That is, since variations in the flow velocity are suppressed, it is possible to improve the measurement accuracy of the bubble ratio of the cryogenic liquid.
  • Arithmetic mean roughness Ra conforms to JIS B 0601: 2001 and can be measured using a laser microscope (manufactured by Keyence Corporation, ultra-depth color 3D shape measuring microscope (VK-X1000 or its successor model)).
  • the illumination method is coaxial illumination
  • the measurement magnification is 240 times
  • the cutoff value ⁇ s is absent
  • the cutoff value ⁇ c is 0.08 mm
  • the end effect is corrected
  • the measurement range is 1425 ⁇ m ⁇ 1067 ⁇ m.
  • Line roughness may be measured by drawing four lines to be measured in the measurement range at approximately equal intervals. The length of one line to be measured is 1280 ⁇ m.
  • the relative density of ceramics is, for example, 92% or more and 99.9% or less.
  • the relative density is expressed as a percentage (proportion) of the apparent density of the ceramics determined according to JIS R 1634-1998 with respect to the theoretical density of the ceramics.
  • the insulating tube 2 is made of ceramics having a plurality of closed pores, and the value obtained by subtracting the average circle equivalent diameter of the closed pores from the average distance between the centers of gravity of adjacent closed pores interval) may be 8 ⁇ m or more and 18 ⁇ m. Closed pores are independent of each other. When the interval between closed pores is 8 ⁇ m or more, the closed pores exist in a relatively dispersed state, resulting in high mechanical strength. On the other hand, when the interval between closed pores is 18 ⁇ m or less, even if microcracks originating from the outline of closed pores are generated due to repeated thermal shocks, there is a high probability that the expansion of the microcracks will be blocked by the surrounding closed pores. Become. Therefore, the insulating tube 2 can be used for a long period of time when the distance between the closed pores is 8 ⁇ m or more and 18 ⁇ m or less.
  • the skewness of the equivalent circle diameter of closed pores may be greater than the skewness of the distance between the centers of gravity of closed pores.
  • the skewness Sk is an index (statistic) indicating how much the distribution is skewed from the normal distribution, that is, the symmetry of the distribution.
  • the skewness is greater than 0, the tail of the distribution is on the right side.
  • the distribution is symmetrical, and when the skewness is less than 0, the tail of the distribution tends to the left.
  • the skewness of the equivalent circle diameter of closed pores is greater than the skewness of the distance between the centroids of closed pores.
  • the mode is positioned to the left (zero side) of the mode of the distance between centroids. That is, there are many closed pores with a small equivalent circle diameter, and these closed pores are present more sparsely, so that a ceramic member having both mechanical strength and thermal shock resistance can be obtained.
  • the skewness of the equivalent circle diameter of the closed pores is 1 or more, and the skewness of the distance between the centroids of the closed pores is 0.7 or less.
  • the difference between the skewness of the equivalent circle diameter of the closed pores and the skewness of the distance between the centers of gravity of the closed pores is 0.3 or more.
  • diamond abrasive grains having an average particle diameter D50 of 3 ⁇ m are used to grind a copper disk. Polish with Thereafter, by polishing with a tin plate using diamond abrasive grains having an average particle diameter D50 of 0.5 ⁇ m, a polished surface having an arithmetic mean roughness (Ra) of 0.2 ⁇ m or less in the roughness curve is obtained.
  • the arithmetic mean roughness Ra of the polished surface is the same as the measurement method described above.
  • the polished surface was observed at a magnification of 200 times, and an average range was selected, for example, an area of 7.2 ⁇ 10 4 ⁇ m 2 (horizontal length of 310 ⁇ m, vertical length of 233 ⁇ m).
  • An observation image is obtained by photographing a certain range with a CCD camera. Using this observation image as an object, the distance between the centers of gravity of the closed pores was measured using the image analysis software "Azo-kun (ver 2.52)" (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.). Find the distance.
  • the image analysis software is described as "Azo-kun", it indicates the image analysis software manufactured by Asahi Kasei Engineering Corporation.
  • the setting conditions for this method are, for example, a threshold of 165, which is an index indicating the brightness of an image, a dark brightness, a small figure removal area of 1 ⁇ m 2 , and no noise removal filter.
  • the threshold may be adjusted according to the brightness of the observation image, and the brightness is darkened, the binarization method is manual, the small figure removal area is 1 ⁇ m 2 , and the noise removal filter is provided.
  • the threshold may be adjusted so that the marker appearing in the observed image matches the shape of the closed pore.
  • the equivalent circle diameter of closed pores can be obtained by obtaining the equivalent circle diameter of open pores using the above observed image as a target by a technique called particle analysis.
  • the setting conditions may be the same as the setting conditions used to obtain the distance between the centers of gravity of closed pores.
  • the circle-equivalent diameter of closed pores and the skewness of the center-to-center distance may be obtained using the function Skew provided in Excel (registered trademark, Microsoft Corporation).
  • An example of a method for manufacturing an insulating tube made of such ceramics will be described.
  • a case where the main component of the ceramics forming the edge pipe is alumina will be described.
  • Aluminum oxide powder (purity of 99.9% by mass or more), which is the main component, and powders of magnesium hydroxide, silicon oxide, and calcium carbonate are put into a pulverizing mill together with a solvent (ion-exchanged water) to obtain powders.
  • a solvent ion-exchanged water
  • an organic binder and a dispersant for dispersing the aluminum oxide powder are added and mixed to obtain a slurry.
  • the content of magnesium hydroxide powder is 0.3 to 0.42% by mass
  • the content of silicon oxide powder is 0.5 to 0.8% by mass
  • the content of calcium carbonate powder is The content is 0.06 to 0.1% by mass
  • the balance is aluminum oxide powder and unavoidable impurities.
  • Organic binders include acrylic emulsion, polyvinyl alcohol, polyethylene glycol, polyethylene oxide and the like.
  • a uniaxial press molding device or a cold isostatic press molding device is used to pressurize at a molding pressure of 78 MPa or more and 118 MPa or less to form a columnar molded body. obtain. If necessary, the compact is formed with recesses that will become recesses after firing by cutting. The molded body is fired at a firing temperature of 1580° C. or higher and 1780° C. or lower for a holding time of 2 hours or longer and 4 hours or shorter to obtain an insulating tube.
  • the molding should be fired at a firing temperature of 1600° C. or more and 1760° C. or less for a holding time of 2 hours or more and 4 hours or less.
  • the compact obtained by pressurizing at a molding pressure of 96 MPa or more and 118 MPa or less is heated to a sintering temperature. It may be fired at 1600° C. or higher and 1760° C. or lower for a holding time of 2 hours or longer and 4 hours or shorter.
  • the inner peripheral surface may be formed by grinding the surface of the insulating tube facing the through hole. Further, the surface of the recess in which the electrode is mounted may be ground to form the bottom surface.
  • FIG. 13 shows a modification of the embodiment shown in FIGS. 1-3.
  • the recess 6' has a first recess 61 that opens to the outside and a second recess 62 provided on the bottom surface of the first recess 61.
  • the second recess 62 has an opening area of
  • the electrode 4 ′ is attached to the bottom surface of the second recess 62 , which is smaller than the first recess 61 .
  • the positioning accuracy of the electrode 4' is further improved, so that the measurement accuracy of the bubble ratio of the cryogenic liquid can be improved.
  • Others are the same as those of the above-described embodiment, so detailed description thereof will be omitted.
  • FIG. 14 shows a porosity sensor 1' surrounded by a housing 10.
  • FIG. 15 and 16 are a schematic perspective view showing the vertical fracture surface and a schematic perspective view showing the horizontal fracture surface.
  • the porosity sensor 1' has a plurality of pairs of recesses 6a, 6b, and 6c that open in the direction perpendicular to the axis of the through hole 3' of the insulating tube 2. ing. Electrodes 4a, 4b and 4c are attached to the bottom surfaces of the recesses 6a, 6b and 6c, respectively. The recesses 6a, 6b, 6c are arranged along the axis of the through hole 3'.
  • the electrode mounting portion 5' refers to a portion on which the plurality of electrodes 4a, 4b, and 4c are mounted, for example, a portion on which concave portions 6a, 6b, and 6c are formed.
  • the distance D1 between the inner wall surfaces of the electrodes 4a, 4b, and 4c in the direction perpendicular to the electrode surfaces of the electrodes 4a, 4b, and 4c in the electrode mounting portion 5' It is formed to be shorter than the distance D2 between the wall surfaces. Since the porosity is measured with a plurality of electrodes 4a, 4b, and 4c in this manner, the measurement accuracy is further improved. Others are the same as the above-described embodiment.
  • This flow meter measures the flow rate of the cryogenic liquid flowing through the through-holes 3, 3', and comprises the above-described bubble ratio sensors 1, 1' and a flow meter (not shown).
  • the bubble rate sensors 1, 1' and the flow rate meter are attached to a cryogenic liquid transfer pipe (hereinafter sometimes abbreviated as a transfer pipe) (not shown).
  • the bubble rate is measured by the bubble rate sensors 1 and 1', and the density d (kg/m 3 ) of the cryogenic liquid is calculated from this.
  • Ask. This is because the density d of the cryogenic liquid corresponds to the dielectric constant and thus also to the capacitance measured by the porosity sensors 1, 1'.
  • v is the flow velocity (m/sec) of the cryogenic liquid obtained by the current meter, and a is the cross-sectional area (m 2 ) of the through hole 3 in the electrode mounting portion 5
  • the flow rate F (kg/sec) is obtained by the following equation. ) is required.
  • the flow meter further comprises an arithmetic device to which the porosity sensors 1, 1' and the flow meter are connected in order to perform the above arithmetic. This makes it possible to easily measure the flow rate of the cryogenic liquid, which facilitates management when transferring a large amount of the cryogenic liquid industrially.
  • Cryogenic liquids to be measured by the bubble rate sensors 1 and 1′ of the present disclosure include liquid hydrogen ( ⁇ 253° C.), liquid nitrogen ( ⁇ 196° C.), liquid helium ( ⁇ 269° C.), and liquefied natural gas. ( ⁇ 162° C.), liquid argon ( ⁇ 186° C.), etc. (the value in parentheses indicates the liquefying temperature). Therefore, a cryogenic liquid in the present disclosure refers to a liquid that is liquefied at a cryogenic temperature of -162°C or less.
  • the porosity sensor of the present disclosure is not limited to the above embodiments, and various modifications and improvements are possible within the scope of the present disclosure.
  • Reference Signs List 1 1' porosity sensor 2 insulating tube 21 insulating tube member 3, 3' through hole 3a, 3b inner wall surface 31 inlet 32 outlet 4, 4', 4a, 4b, 4c electrode 5, 5', 5a, 5b , 5c electrode mounting portion 6, 6', 6a, 6b, 6c recess 61 first recess 62 second recess 7 conductive pin 8 airtight terminal 9 bundle 10 housing 101 frame 102 lid 11 first connecting tube 12 second 2 Connection pipe 13 Insertion hole 14 Vacuum exhaust valve 15 Vacuum space D1 (shortest) distance D2 (longest) distance

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本開示の気泡率センサは、極低温液体を流すための貫通孔を有する絶縁管と、該絶縁管の外壁面に装着された一対の面状の電極と、を備える。絶縁管は、電極の電極面に垂直な方向における内壁面間の距離D1が、電極の電極面に平行な方向における内壁面間の距離D2よりも短い電極装着部を有する。

Description

気泡率センサ、これを用いた流量計および極低温液体移送管
 本開示は、液体水素等の極低温液体の気泡率を測定するための気泡率センサ (void fraction sensor)、これを用いた流量計および極低温液体移送管に関する。
 近時、温室効果ガスの排出削減に伴い、有力なエネルギー貯蔵媒体として水素の利用が注目されている。特に、液体水素は、体積効率が高く長期保存が可能であるため、その利用技術が種々開発されている。しかし、液体水素を大量に取り扱う場合に必要となる流量の正確な計測方法が工業的に確立されていなかった。その主な理由は、液体水素が非常に気化しやすく気体と液体の比率の変化が大きな流体であるためである。
 すなわち、液体水素は、極低温(沸点-253℃)の液体であり、熱伝導が非常に高く潜熱が小さいため、すぐに気泡(ボイド)が発生するという特徴がある。そのため、液体水素は、移送用の配管内では、気液混合した、いわゆる二相流となっている。
 従って、気泡の含有割合の変化が大きいため、配管内を流れる液体水素の流量を測定するには、通常の液体のように流速を測定するだけでは、正確な流量を知ることはできない。
 そこで、気液二相流の気相体積割合を示す気泡率を計測する気泡率計の開発が進められている。このような気泡率計として、非特許文献1では、一対の電極を用いて静電容量を測定する静電容量型ボイド率計(capacitance type void fraction sensor)が提案されている。
Norihide MAENO、他5名、「Void Fraction Measurement of Cryogenic Two Phase Flow Using a Capacitance Sensor」, Trans. JSASS Aerospace Tech. Japan, Vol. 12, No. ists29, pp. Pa_101-Pa_107, 2014
 本開示の気泡率センサは、極低温液体を流すための貫通孔を有する絶縁管と、該絶縁管の外壁面に装着された一対の面状の電極と、を備える。絶縁管は、電極の電極面に垂直な方向における内壁面間の距離D1が、電極の電極面に平行な方向における内壁面間の距離D2よりも短い電極装着部を有する。
 本開示の流量計は、貫通孔内を流れる極低温液体の流量を測定するものであって、上記の気泡率センサと、極低温液体が貫通孔内を流れる流速を測定する流速計とを備える。
 本開示は、上記流量計を備えた極低温液体移送管を提供するものである。
本開示の一実施形態に係る気泡率センサを示す概略斜視図である。 図1に示す気泡率センサの垂直破断面を示す概略斜視図である。 図1に示す気泡率センサの水平破断面を示す概略斜視図である。 図1に示す気泡率センサの垂直断面図である。 図1に示す気泡率センサの水平断面図である。 図1に示す気泡率センサのIV-IV線断面図である。 図1に示す気泡率センサのV-V線断面図である。 図1に示す気泡率センサのVI-VI線断面図である。 絶縁管の流入口部および流出口部の外周面上にそれぞれ結束体を取り付けた状態の気泡率センサの概略斜視図である。 図1に示す気泡率センサを筐体に収容した状態を示す概略斜視図である。 図10に示す気泡率センサおよび筐体の垂直破断面を示す概略斜視図である。 図11に示す気泡率センサおよび筐体の水平破断面を示す概略斜視図である。 図1~5に示す気泡率センサの変形例を示す垂直断面図である。 本開示の他の実施形態に係る気泡率センサを示す概略斜視図である。 図14に示す気泡率センサの垂直破断面を示す概略斜視図である。 図14に示す気泡率センサの水平破断面を示す概略斜視図である。
 以下、本開示の実施形態に係る気泡率センサを説明する。
 図1は本開示の一実施形態に係る気泡率センサ1を示す斜視図であり、図2および図3は気泡率センサ1の垂直破断面を示す概略斜視図および水平破断面を示す概略斜視図である。図2および図3に示すように、気泡率センサ1は、極低温液体を流すための貫通孔3を有する絶縁管2と、絶縁管2の外壁面に装着された一対の面状の電極4、4とを備える。
 絶縁管2は、図1に示すように、2つの半割形状の絶縁管部材21、21を互いに重ね合わせて形成される。絶縁管2は、貫通孔3の軸心に垂直な方向に開口する1対の凹部6、6を有している。一対の電極4、4は、それぞれ絶縁管2に設けた凹部6、6の底面に装着され、互いに対向している(図2参照)。
 各電極4には導通ピン7が個別に接続されている。導通ピン7には気密端子8が取付けられている。気密端子8については後述する。
 絶縁管2は、上記のように凹部6、6が形成されているので、これらの凹部6、6の底面に装着された電極4,4間の距離が狭くなっている。これにより、電極4,4間に蓄積される静電容量が大きくなり、貫通孔3内を流れる極低温液体の気泡率の測定精度を向上させることができる。電極4、4の位置および電極面41の面積は、最適な測定精度が得られるように設定することができる。
 ここで、電極面41、41とは、電極4、4が凹部6、6の底面に装着された面を言う。
 一方、極低温液体の供給量を低下させないようにするために、本実施形態では、図2および図3に示すように、絶縁管2の電極装着部5において、電極4,4の電極面41、41に垂直な方向における内壁面3a、3a間の距離D1が、電極面41、41に平行な方向における内壁面3b、3b間の距離D2よりも短くなるように構成されている。逆に言うと、平行な方向の距離D2を垂直な方向の距離D1よりも大きくしているので、たとえ電極4,4間の距離が狭く、そのため距離D1が小さくなっても、極低温液体の供給量を落とすことなく維持することができる。このことは、極低温液体の供給量を多くしても、気泡率の測定精度を低下させずに維持することができることをも意味している。
 電極装着部5における内壁面3a、3a間の距離D1は最短距離を、内壁面3b、3b間の距離D2は最長距離をそれぞれ意味している。ここで、距離D1、D2は、極低温液体の供給量や、気泡率の測定精度等に応じて適宜決定することができ、特に制限されるものではないが、通常、距離D1は距離D2に対して10%以上、好ましくは20%以上で、67%以下、好ましくは50%以下の長さであるのがよい。
 従って、少なくとも電極装着部5における貫通孔3の軸心に垂直な断面内の貫通孔3の形状は、楕円状または矩形状であるのがよい。このように上記断面内の貫通孔3の形状が単純形状となり、しかも、軸心に沿って稜線がない形状となるので、気泡の発生のばらつきが抑制され、気泡率の測定精度が向上する。
 なお、電極装着部5とは、電極4、4が装着される部位をいい、具体的には、電極4、4が装着される凹部6,6の底面を含め、これら底面に挟まれる部分をいう。
 絶縁管2は、図4に示すように、電極面41、41に垂直な方向における垂直断面において、極低温液体の円形状の流入口31および流出口32からそれぞれ平行領域E2の端部まで滑らかに内壁面3a、3a間の距離が漸次小さくなってゆく。一方、絶縁管2は、図5に示すように、電極面41、41に水平な方向における水平断面において、平行領域E2から貫通孔3の流入口31および流出口32に向かって内壁面3b、3b間の距離は滑らかに大きくなってゆく。平行領域E2では、貫通孔3の内壁面3a、3aは互いに平行であって、距離D1が最小となっている。また、貫通孔3の内壁面3b、3bは互いに平行であって、距離D2が最大となっている。このように内壁面3a、3a間の距離および内壁面3b、3b間の距離を変えることによって、貫通孔3の軸方向に垂直な断面における貫通孔3の断面積を一定に保つことができる。そして、この平行領域E2内に電極装着領域E1(すなわち電極装着部5)が含まれ、電極装着領域E1は、平行領域E2のほぼ中央部に位置しているのがよい。
 このように、電極面41、41に垂直な方向における垂直断面では、平行領域E2から貫通孔3の流入口31および流出口32に向かって内壁面3a、3a間の距離は滑らかに大きくなっているので、内壁面3a、3a間の距離が流入口31および流出口32に向かって段階的に大きくなる場合よりも内壁面3a、3a上に応力集中が発生しにくく、長期間に亘って用いることができる。同様に、電極面41、41に水平な方向における水平断面では、平行領域E2から貫通孔3の流入口31および流出口32に向かって内壁面3b、3b間の距離は滑らかに小さくなっているので、内壁面3b、3b間の距離が流入口31および流出口32に向かって段階的に大きくなる場合よりも内壁面3b、3b上に応力集中が発生しにくく、長期間に亘って用いることができる。また、平行領域E2を有し、この平行領域E2に電極装着領域E1を有することによって、電極面41、41間で生じる電気力線は流入口31から流出口32に向かって流れる極低温液体を垂直に貫通することとなり、測定精度が向上する。
 平行領域E2の長さは、電極領域E1の長さの105%以上、好ましくは150%以上であるのがよく、5000%以下であるのがよい。
 なお、内壁面3a、3aが平行領域E2を有さずに、内壁面3a、3aの少なくとも一方が、それらの間の距離D1が流入口31および流出口32から電極装着部5に向かって連続的に小さくなるように湾曲していてもよい。内壁面3a、3aの湾曲の方向は、貫通孔3の軸心から見て凹状であるとよい。
 同様に、内壁面3b、3bが平行領域E2を有さずに、内壁面3b、3bの少なくとも一方が、それらの間の距離D2が流入口31および流出口32から電極装着部5に向かって連続的に大きくなるように湾曲していてもよい。内壁面3b、3bの湾曲の方向は、貫通孔3の軸心から見て凸状に湾曲していてもよい。
 図6~図8は、貫通孔3の流入口31から電極装着部5に向かって貫通孔3の形状が順次変化していく様子を示している。図6~図8に示す各貫通孔3は、貫通孔3の軸心に垂直な断面の面積が同じである。これにより、極低温液体の供給量を落とすことなく維持することができる。
 本実施形態における絶縁管2は、前記したように、2つの半割形状の絶縁管部材21,21を互いに重ね合わせて形成される。そして、図9に示すように、絶縁管2の流入口部および流出口部の外周面上に環状の結束体9を環装して半割形状の絶縁管部材21,21を一体に接合する。
 なお、絶縁管部材21、21は接合材を用いず結束体9で結束してもよい。あるいは、結束体9に代えて、または結束体9と共に、絶縁管部材21,21の接合面同士を、絶縁管2内を流れる極低温液体に対して安定な封止材で接合してもよい。
 図10は、気泡率センサ1を筐体10内に収容した状態を示している。気泡率センサ1は、筐体10で囲繞されている。
 筐体10の垂直破断面を示す概略斜視図である図11および水平破断面を示す概略斜視図である図12に示すように、筐体10は、気泡率センサ1を収容する枠体部101と、枠体部101の開口を封止する蓋部102とを備える。
 図9に示す絶縁管部材21、21が結束体9で結束された気泡率センサ1は、枠体部101内に収容後、枠体部101と蓋部102とが溶接またはろう接によって接合される。気泡率センサ1の貫通孔3の両端開口(流入口31および流出口32)には、第1接続管11、第2接続管12がそれぞれ接続される。
 第1接続管11は、流入口31内に挿通され、外周面が蓋部102と溶接またはろう接によって接合されている。第2接続管12は、枠体部101と一体に形成されているが、蓋部102と同様に枠体部101と接合するものであってもよい。
 筐体10の枠体部101には挿通孔13が形成されている。挿通孔13には気密端子8が装着されており、電極4に個別に接続する導通ピン7を挿通孔13内で固定している。
 また、筐体10には、真空排気弁14(真空排気用のニードル弁等)が設けられており、気泡率センサ1と筐体10との間に真空空間15(断熱層)を形成している。このように、気泡率センサ1の外周側に真空空間15が位置しているので、気泡率センサ1に対する断熱性能が確保される。その結果、外気温度の影響による気泡の発生が抑制されるため、気泡率の測定精度が向上する。また、気密端子8によって、気泡率センサ1から外部への極低温液体のリークが抑制されるため、気泡率の測定精度がさらに向上する。
 図11、図12に示すように、貫通孔3の流入口31側に供給孔を有する第1接続管11が絶縁管2に接続され、貫通孔3の軸心に垂直な貫通孔3の断面積は、供給孔の軸心に垂直な供給孔の断面積の90%以上110%以下であるのが好ましい。一般に、極低温液体が高速で流れると、供給孔と貫通孔3との接続部付近で圧力損失が高くなりやすいが、上記のように構成すると、圧力損失の上昇が抑制される。その結果、気泡の発生を抑制することができるので、極低温液体の気泡率の測定精度を向上させることができる。
 同様に、貫通孔3の流出口32側に排出孔を有する第2接続管12が絶縁管2に接続され、貫通孔3の軸心に垂直な貫通孔3の断面積は、排出孔の軸心に垂直な排出孔の断面積の90%以上110%以下であるのが好ましい。これにより、圧力損失の上昇が抑制される。その結果、気泡の発生を抑制することができるので、極低温液体の気泡率の測定精度を向上させることができる。
 筐体10を構成する枠体部101および蓋部102は金属またはセラミックスから形成される。第1接続管11および第2接続管12は金属管であるのがよい。具体的には、枠体部101は、例えばニッケルの含有量が10.4質量%以上であるオーステナイト系ステンレス鋼(例えば、SUS316L)等、窒化珪素、サイアロン等のセラミックス等から形成されるのがよい。
 蓋部102は、例えば、フェルニコ系合金、Fe-Ni合金、Fe-Ni-Cr-Ti-Al合金、Fe-Cr-Al合金、Fe-Co-Cr合金等から形成されるのがよい。
 枠体部101の内径は、十分な断熱性能を得るうえで、絶縁管2の外径に対して1mm以上、好ましくは、絶縁管2の外径に対して10mm以上であるのがよく、絶縁管2の外径に対して200mm以下、好ましくは100mm以下であるのがよい。蓋部102は絶縁管2の外周面にろう付けによって気密に接合される。
 電極4、4は、例えば銅箔、アルミニウム箔等で形成することができる。各凹部6の底面に電極4を形成するには、例えば真空蒸着法、メタライズ法、活性金属法で行うことができる。また、凹部6の底面に、電極4となる金属板を接着してもよい。電極4、4の厚さは、いずれも10μm以上、好ましくは20μm以上で、2mm以下、好ましくは1mm以下であるのがよい。
 絶縁管2は、例えばジルコニア、アルミナ、サファイア、窒化アルミニウム、窒化珪素、サイアロン、コージライト、ムライト、イットリア、炭化珪素、サーメット、β-ユークリプタイト等を主成分とするセラミックスから形成される。セラミックスがアルミナを主成分とするセラミックスからなる場合、セラミックスは、珪素、カルシウム、マグネシウム、ナトリウム等を酸化物として含んでいてもよい。
 セラミックスにおける主成分とは、セラミックスを構成する成分の合計100質量%のうち、60質量%以上を占める成分をいう。特に、主成分は、セラミックスを構成する成分の合計100質量%のうち、95質量%以上を占める成分であるとよい。セラミックスを構成する成分は、X線回折装置(XRD)を用いて求めればよい。各成分の含有量は、成分を同定した後、蛍光X線分析装置(XRF)またはICP発光分光分析装置を用いて、成分を構成する元素の含有量を求め、同定された成分に換算すればよい。
 絶縁管2は、低熱膨張セラミックスからなるのがよい。低熱膨張セラミックスとしては、線膨張率を測定する温度範囲を0℃~50℃として、22℃における線膨張率が0±20ppb/K以下のセラミックスをいう。低熱膨張セラミックスは、線膨張率が低いので、極低温液体を含む極低温液体によって熱衝撃を受けても破損のおそれが低減する。低熱膨張セラミックスの線膨張率は、例えば、光ヘテロダイン法1光路干渉計を用いて求めればよい。
 具体的には、低熱膨張セラミックスは、主結晶相がコージェライトであり、副結晶相としてアルミナ、ムライトおよびサフィリンを含み、粒界相にCaを含む非晶質相が存在しているのがよい。主結晶相の結晶相比率は95質量%以上97.5質量%以下であり、副結晶相の結晶相比率が2.5質量%以上5質量%以下であり、全量中に対するCaの含有量がCaO換算で0.4質量%以上0.6質量%以下であり、さらにジルコニアを含み、全量中に対するジルコニアの含有量が0.1質量%以上1.0質量%以下であるのが好ましい。これにより、極低温液体の温度が大きく変動しても、低熱膨張セラミックスは伸縮しにくいので、長期間に亘って用いることができる。このような低熱膨張セラミックスとしは、例えば、特許第5430389号公報に記載のものが採用可能である。
 絶縁管2を構成するセラミックスは、使用温度域での比誘電率が11以下であるのがよい。極低温液体は比誘電率が小さいため、セラミックスの比誘電率は小さいと、極低温液体の比誘電率に近くなり、高周波特性がよくなるので、気泡率の測定精度がさらに向上する。特に、11以下であると、極低温液体の気泡率の測定精度をさらに向上させることができる。上記使用温度域とは、極低温液体の移送時の温度域をいう。
 また、絶縁管2は、窒化珪素またはサイアロンを主成分とするセラミックスからなるものであってもよい。これらのセラミックスは、機械的強度および耐熱衝撃性がいずれも高いので、熱衝撃を受けても破損のおそれが低減する。
 具体的には、上記セラミックスは、酸化カルシウム,酸化アルミニウムおよび希土類元素の酸化物を含み、酸化カルシウム,酸化アルミニウムおよび希土類元素の酸化物の合計100質量%に対して、酸化カルシウムおよび酸化アルミニウムの含有量がそれぞれ0.3質量%以上1.5質量%以下,14.2質量%以上48.8質量%以下であり、残部が前記希土類元素の酸化物である。前記窒化珪素は、組成式がSi6-ZAl8-Z(z=0.1~1)で表されるβ-サイアロンであり、平均結晶粒径が20μm以下(但し、0μmを除く。)である。このようなセラミックスとしては、例えば、特許第5430389号公報に記載のものが採用可能である。
 少なくとも電極装着部5における、貫通孔3の軸心に平行な方向の内壁面3a、3bの粗さ曲線における算術平均粗さRaは0.2μm以下であるのがよい。内壁面3a、3bの粗さ曲線における算術平均粗さRaが0.2μm以下であると、内壁面3a、3bによって生じる極低温液体の流動抵抗の上昇が抑制されるので、極低温液体の流速分布が安定する。すなわち、流速のばらつきが抑制されるので、極低温液体の気泡率の測定精度を向上させることができる。
 算術平均粗さRaは、JIS B 0601:2001に準拠し、レーザー顕微鏡((株)キーエンス製、超深度カラー3D形状測定顕微鏡(VK-X1000またはその後継機種))を用いて測定することができる。測定条件としては、照明方式を同軸照明、測定倍率を240倍、カットオフ値λsを無し、カットオフ値λcを0.08mm、終端効果の補正を有り、測定範囲を1425μm×1067μmとして、設定すればよい。測定範囲に、測定対象とする線を略等間隔に4本引いて、線粗さ計測を行えばよい。計測の対象とする線1本当たりの長さは、1280μmである。
 セラミックスの相対密度は、例えば、92%以上99.9%以下である。相対密度は、セラミックスの理論密度に対する、JIS R 1634-1998に準拠して求められたセラミックスの見掛密度の百分率(割合)として表される。
 絶縁管2は、複数の閉気孔を有するセラミックスからなり、隣り合う閉気孔の重心間距離の平均値から閉気孔の円相当径の平均値を差し引いた値(以下、この値を閉気孔間の間隔という。)が8μm以上18μmであってもよい。閉気孔は互いに独立している。
 閉気孔間の間隔が8μm以上の場合、閉気孔が比較的分散された状態で存在するため、機械的強度が高くなる。一方、閉気孔間の間隔が18μm以下の場合、冷熱衝撃が繰り返し与えられ、閉気孔の輪郭を起点とするマイクロクラックが発生したとしても、周囲の閉気孔により、その伸展が遮られる確率が高くなる。このことから、閉気孔間の間隔が8μm以上18μm以下であると、絶縁管2を長期間に亘って用いることができる。
 閉気孔の円相当径の歪度は、閉気孔の重心間距離の歪度よりも大きくてもよい。ここで、歪度Skとは、分布が正規分布からどれだけ歪んでいるか、即ち、分布の左右対称性を示す指標(統計量)であり、歪度が0より大きい場合、分布の裾は右側に向かい、歪度0の場合合、分布は左右対称となり、歪度が0より小さい場合、分布の裾は左側に向かう。
 閉気孔の円相当径および閉気孔の重心間距離のそれぞれのヒストグラムを重ね合わせると、閉気孔の円相当径の歪度は、閉気孔の重心間距離の歪度より大きい場合、円相当径の最頻値は、重心間距離の最頻値よりも左側(ゼロ側)に位置する。即ち、円相当径の小さい閉気孔が多く、しかも、これらの閉気孔がより疎らに存在することになり、機械的強度と耐冷熱衝撃性とを兼ね備えたセラミック部材とすることができる。
 例えば、閉気孔の円相当径の歪度は1以上であり、閉気孔の重心間距離の歪度は0.7以下である。閉気孔の円相当径の歪度と、閉気孔の重心間距離の歪度との差は、0.3以上である。
 閉気孔の重心間距離および円相当径を求めるには、まず、セラミックスを形成する絶縁管2の一方の端面から軸方向に向かって、平均粒径D50が3μmのダイヤモンド砥粒を用いて銅盤にて研磨する。その後、平均粒径D50が0.5μmのダイヤモンド砥粒を用いて錫盤にて研磨することにより、粗さ曲線における算術平均粗さ(Ra)が0.2μm以下である研磨面を得る。
 研磨面の算術平均粗さRaは、上述した測定方法と同じである。 研磨面を200倍の倍率で観察し、平均的な範囲を選択して、例えば、面積が7.2×10μm(横方向の長さが310μm、縦方向の長さが233μm)となる範囲をCCDカメラで撮影して、観察像を得る。
 この観察像を対象として、画像解析ソフト「A像くん(ver2.52)」(登録商標、旭化成エンジニアリング(株)製)を用いて分散度計測の重心間距離法という手法で閉気孔の重心間距離を求めればよい。以下、画像解析ソフト「A像くん」と記載した場合、旭化成エンジニアリング(株)製の画像解析ソフトを示す。 
 この手法の設定条件としては、例えば、画像の明暗を示す指標であるしきい値を165、明度を暗、小図形除去面積を1μm、雑音除去フィルタを無とすればよい。なお、観察像の明るさに応じて、しきい値は調整すればよく、明度を暗、2値化の方法を手動とし、小図形除去面積を1μmおよび雑音除去フィルタを有とした上で、観察像に現れるマーカーが閉気孔の形状と一致するように、しきい値を調整すればよい。閉気孔の円相当径は、上記観察像を対象として、粒子解析という手法で開気孔の円相当径を求めればよい。設定条件は、閉気孔の重心間距離を求めるのに用いた設定条件と同じにすればよい。
 閉気孔の円相当径および重心間距離の歪度は、それぞれExcel(登録商標、Microsoft Corporation)に備えられている関数Skewを用いて求めればよい。
 このようなセラミックスからなる絶縁管の製造方法の一例について説明する。縁管を構成するセラミックスの主成分がアルミナである場合について説明する。
 主成分である酸化アルミニウム粉末(純度が99.9質量%以上)と、水酸化マグネシウム、酸化珪素および炭酸カルシウムの各粉末とを粉砕用ミルに溶媒(イオン交換水)とともに投入して、粉末の平均粒径(D50)が1.5μm以下になるまで粉砕した後、有機結合剤と、酸化アルミニウム粉末を分散させる分散剤とを添加、混合してスラリーを得る。
 ここで、上記粉末の合計100質量%における水酸化マグネシウム粉末の含有量は0.3~0.42質量%、酸化珪素粉末の含有量は0.5~0.8質量%、炭酸カルシウム粉末の含有量は0.06~0.1質量%であり、残部が酸化アルミニウム粉末および不可避不純物である。 
有機結合剤は、アクリルエマルジョン、ポリビニールアルコール、ポリエチレングリコール、ポリエチレンオキサイド等である。
 次に、スラリーを噴霧造粒して顆粒を得た後、1軸プレス成形装置あるいは冷間静水圧プレス成形装置を用いて、成形圧を78MPa以上118MPa以下として加圧することにより柱状の成形体を得る。
 成形体には、必要に応じて切削加工により、焼成後に凹部となる凹みが形成される。
 焼成温度を1580℃以上1780℃以下、保持時間を2時間以上4時間以下として成形体を焼成して絶縁管を得る。
 閉気孔の間隔が8μm以上18μmである絶縁管を得るには、焼成温度を1600℃以上1760℃以下、保持時間を2時間以上4時間以下として成形体を焼成すればよい。閉気孔の円相当径の歪度が閉気孔の重心間距離の歪度よりも大きい絶縁管を得るには、成形圧を96MPa以上118MPa以下として加圧して得られた成形体を、焼成温度を1600℃以上1760℃以下、保持時間を2時間以上4時間以下として焼成すればよい。絶縁管の貫通孔に対向する面を研削して内周面としてもよい。また、電極が装着される凹部の面を研削して底面としたりしてもよい。
 図13は、図1~図3に示す実施形態の変形例を示している。図13に示すように、凹部6´は、外部に開口する第1凹部61と、該第1凹部61の底面に設けられた第2凹部62とを有し、第2凹部62は開口面積が第1凹部61よりも小さく、電極4´は第2凹部62の底面に装着されている。これにより、電極4´の位置決め精度がさらに向上するため、極低温液体の気泡率の測定精度を向上させることができる。その他は、前述の実施形態と同様であるので、詳細な説明は省略する。 
 次に、本開示の他の実施形態を図14~図16に基づいて説明する。なお、図1~図13に示す部材と同じ部材には、同一符号を付して説明を省略する。
 図14は、筐体10で囲繞した気泡率センサ1´を示している。図15および図16はその垂直破断面を示す概略斜視図および水平破断面を示す概略斜視図である。
 この実施形態に係る気泡率センサ1´は、図15に示すように、絶縁管2の貫通孔3´の軸心に垂直な方向に開口する1対の凹部6a、6b、6cを複数有している。各凹部6a、6b、6cの底面には、それぞれ電極4a、4b、4cが装着されている。凹部6a、6b、6cは、貫通孔3´の軸心に沿って配列されている。
 この実施形態において、電極装着部5´とは、上記複数の電極4a、4b、4cが装着された部位をいい、例えば凹部6a、6b、6cが形成された部位をいう。
 この実施形態においても、電極装着部5´において、電極4a、4b、4cの電極面に垂直な方向における内壁面間の距離D1が、電極4a、4b、4cの電極面に平行な方向における内壁面間の距離D2よりも短くなるように形成されている。
 このように複数の電極4a、4b、4cで気泡率を測定するので、測定精度がより向上する。その他は前述の実施形態と同様である。
 次に、本開示の実施形態に係る流量計について説明する。この流量計は、貫通孔3、3´内を流れる極低温液体の流量を測定するものであり、前記した気泡率センサ1、1´と、図示しない流速計とを備える。気泡率センサ1、1´および流速計は、図示しない極低温液体移送管(以下、移送管と略称する場合がある。)に取り付けられている。
 移送管内を流れる極低温液体は、気液混合した二相流となっているので、気泡率センサ1、1´で気泡率を測定し、これから極低温液体の密度d(kg/m)を求める。極低温液体の密度dは、比誘電率に対応し、よって気泡率センサ1、1´で測定される静電容量にも対応しているからである。
 そして、流速計で求めた極低温液体の流速(m/秒)をv、電極装着部5における貫通孔3の断面積(m)をaとしたとき、次式によって流量F(kg/秒)が求められる。
  F=d×v×a
 流量計は、上記演算を行うために、気泡率センサ1、1´および流速計が接続された演算装置をさらに備えている。これにより、極低温液体の流量測定を簡単に行うことができるので、工業的に極低温液体を大量移送する場合に管理が容易になる。
 本開示の気泡率センサ1、1´の測定対象である極低温液体としては、液体水素(-253℃)の他、液体窒素(-196℃)、液体ヘリウム(-269 ℃)、液化天然ガス(-162℃)、液体アルゴン(-186℃)等が挙げられる(括弧内は液化温度を示す)。よって、本開示における極低温液体とは、-162℃以下の極低温で液化するものをいう。 
 以上、本開示の実施形態について説明したが、本開示の気泡率センサは、上記実施形態に限定されるものではなく、本開示の範囲内で種々の変更や改良が可能である。
 1、1´ 気泡率センサ
 2  絶縁管
  21  絶縁管部材
 3、3´ 貫通孔
  3a、3b 内壁面
  31  流入口
  32  流出口
 4、4´、4a、4b、4c 電極
 5、5´、5a、5b、5c 電極装着部
 6、6´、6a、6b、6c 凹部
  61  第1凹部
  62  第2凹部
 7  導通ピン
 8  気密端子
 9  結束体
10  筐体
  101 枠体部
  102 蓋部
11  第1接続管
12  第2接続管
13  挿通孔
14  真空排気弁
15  真空空間
D1  (最短)距離
D2  (最長)距離
 
 

Claims (16)

  1.  極低温液体を流すための貫通孔を有する絶縁管と、該絶縁管の外壁面に装着された一対の面状の電極と、を備え、
     前記絶縁管は、前記電極の電極面に垂直な方向における内壁面間の距離D1が、前記電極の前記電極面に平行な方向における内壁面間の距離D2よりも短い電極装着部を有する、気泡率センサ。
  2.  少なくとも前記電極装着部において、前記距離D1を特定する、対向する前記内壁面が互いに平行であるか、または前記内壁面のうち、少なくとも一方の内壁面が前記貫通孔の軸心から見て凹状に湾曲している、請求項1に記載の気泡率センサ。
  3.  少なくとも前記電極装着部において、前記距離D2を特定する、対向する前記内壁面が互いに平行であるか、または前記内壁面のうち、少なくとも一方の内壁面が前記貫通孔の軸心から見て凸状に湾曲している、請求項1または2に記載の気泡率センサ。
  4.  前記貫通孔の流入口側に供給孔を有する第1接続管が前記絶縁管に接続され、前記貫通孔の軸心に垂直な貫通孔の断面積は、前記供給孔の軸心に垂直な供給孔の断面積の90%以上110%以下である、請求項1~3のいずれかに記載の気泡率センサ。
  5.  前記貫通孔の流出口側に排出孔を有する第2接続管が前記絶縁管に接続され、前記貫通孔の軸心に垂直な貫通孔の断面積は、前記排出孔の軸心に垂直な排出孔の断面積の90%以上110%以下である、請求項1~4のいずれかに記載の気泡率センサ。
  6.  少なくとも前記電極装着部における、前記貫通孔の軸心に平行な方向の前記内壁面の粗さ曲線における算術平均粗さRaは0.2μm以下である、請求項1~5のいずれかに気泡率センサ。
  7.  少なくとも前記電極装着部における、前記貫通孔の軸心に垂直な貫通孔の断面形状は、楕円状または矩形状である、請求項1~6のいずれかに記載の気泡率センサ。
  8.  前記絶縁管は、少なくとも前記電極装着部において、前記電極の前記電極面に垂直な方向に開口する1対の凹部を有してなり、前記電極が装着された外壁面は、前記凹部の底面である、請求項1~7のいずれかに記載の気泡率センサ。
  9.  前記凹部は、外部に開口する第1凹部と、該第1凹部の底面に設けられ、開口面積が前記第1凹部よりも小さい第2凹部とを有し、前記電極が装着された外壁面は、前記第2凹部の底面に装着されてなる、請求項8に記載の気泡率センサ。
  10.  前記絶縁管は、低熱膨張セラミックスからなる、請求項1~9のいずれかに記載の気泡率センサ。
  11.  前記絶縁管は、窒化珪素またはサイアロンを主成分とするセラミックスからなる、請求項1~9のいずれかに記載の気泡率センサ。
  12.  前記絶縁管は、使用温度域での比誘電率が11以下であるセラミックスからなる、請求項1~11のいずれかに記載の気泡率センサ。
  13.  前記絶縁管は、複数の閉気孔を有するセラミックスからなり、隣り合う前記閉気孔の重心間距離の平均値から前記閉気孔の円相当径の平均値を差し引いた値が8μm以上18μmである、請求項1~12のいずれかに記載の気泡率センサ。
  14.  前記閉気孔の円相当径の歪度は、前記閉気孔の重心間距離の歪度よりも大きい、請求項13に記載の気泡率センサ。
  15.  前記貫通孔内を流れる極低温液体の流量を測定する流量計であって、請求項1~14のいずれかに記載の気泡率センサと、前記極低温液体が前記貫通孔内を流れる流速を測定する流速計とを備えた流量計。
  16.  請求項15に記載の流量計を備えた極低温液体移送管。
     
     
PCT/JP2022/003170 2021-01-29 2022-01-27 気泡率センサ、これを用いた流量計および極低温液体移送管 WO2022163779A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/274,968 US20240110820A1 (en) 2021-01-29 2022-01-27 Void fraction sensor, flowmeter using the same, and cryogenic liquid transfer pipe
KR1020237025713A KR20230125049A (ko) 2021-01-29 2022-01-27 기포율 센서, 이것을 사용한 유량계 및 극저온 액체이송관
CN202280012396.4A CN116829931A (zh) 2021-01-29 2022-01-27 气泡率传感器、使用该气泡率传感器的流量计及极低温液体移送管
EP22745998.9A EP4286839A1 (en) 2021-01-29 2022-01-27 Void fraction sensor, flowmeter employing same, and cryogenic liquid transfer tube
JP2022578491A JPWO2022163779A1 (ja) 2021-01-29 2022-01-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-013401 2021-01-29
JP2021013401 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163779A1 true WO2022163779A1 (ja) 2022-08-04

Family

ID=82653464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003170 WO2022163779A1 (ja) 2021-01-29 2022-01-27 気泡率センサ、これを用いた流量計および極低温液体移送管

Country Status (6)

Country Link
US (1) US20240110820A1 (ja)
EP (1) EP4286839A1 (ja)
JP (1) JPWO2022163779A1 (ja)
KR (1) KR20230125049A (ja)
CN (1) CN116829931A (ja)
WO (1) WO2022163779A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100793A1 (ja) * 2021-11-30 2023-06-08 京セラ株式会社 気泡率計
WO2024106473A1 (ja) * 2022-11-16 2024-05-23 京セラ株式会社 気泡率センサ、これを用いた流量計および極低温液体移送管

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472556U (ja) * 1977-11-01 1979-05-23
US5017879A (en) * 1987-09-17 1991-05-21 Schlumberger Technology Corporation Capacitive void fraction measurement apparatus
US5291791A (en) * 1991-05-08 1994-03-08 Schlumberger Technology Corporation Capacitance flow meter
JP2005055276A (ja) * 2003-08-04 2005-03-03 Yokogawa Electric Corp 電磁流量計
JP2010107487A (ja) * 2008-11-01 2010-05-13 Tokyo Institute Of Technology 混相流測定装置および混相流測定方法
JP5430389B2 (ja) 2009-12-24 2014-02-26 京セラ株式会社 非接触型シールリングおよびこれを用いた軸封装置
JP2014232007A (ja) * 2013-05-28 2014-12-11 独立行政法人 宇宙航空研究開発機構 気液二相の流量計測方法及び二相流量計測装置
WO2019044906A1 (ja) * 2017-08-29 2019-03-07 京セラ株式会社 セラミック接合体およびその製造方法
JP2020173089A (ja) * 2019-04-05 2020-10-22 京セラ株式会社 セラミックトレイ、これを用いる熱処理方法および熱処理装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472556U (ja) * 1977-11-01 1979-05-23
US5017879A (en) * 1987-09-17 1991-05-21 Schlumberger Technology Corporation Capacitive void fraction measurement apparatus
US5291791A (en) * 1991-05-08 1994-03-08 Schlumberger Technology Corporation Capacitance flow meter
JP2005055276A (ja) * 2003-08-04 2005-03-03 Yokogawa Electric Corp 電磁流量計
JP2010107487A (ja) * 2008-11-01 2010-05-13 Tokyo Institute Of Technology 混相流測定装置および混相流測定方法
JP5430389B2 (ja) 2009-12-24 2014-02-26 京セラ株式会社 非接触型シールリングおよびこれを用いた軸封装置
JP2014232007A (ja) * 2013-05-28 2014-12-11 独立行政法人 宇宙航空研究開発機構 気液二相の流量計測方法及び二相流量計測装置
WO2019044906A1 (ja) * 2017-08-29 2019-03-07 京セラ株式会社 セラミック接合体およびその製造方法
JP2020173089A (ja) * 2019-04-05 2020-10-22 京セラ株式会社 セラミックトレイ、これを用いる熱処理方法および熱処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NORIHIDE MAENO ET AL.: "Void Fraction Measurement of Cryogenic Two Phase Flow Using a Capacitance Sensor", TRANS. JSASS AEROSPACE TECH, vol. 12, no. 29, 2014, pages 101 - 107

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100793A1 (ja) * 2021-11-30 2023-06-08 京セラ株式会社 気泡率計
WO2024106473A1 (ja) * 2022-11-16 2024-05-23 京セラ株式会社 気泡率センサ、これを用いた流量計および極低温液体移送管

Also Published As

Publication number Publication date
CN116829931A (zh) 2023-09-29
US20240110820A1 (en) 2024-04-04
KR20230125049A (ko) 2023-08-28
JPWO2022163779A1 (ja) 2022-08-04
EP4286839A1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
WO2022163779A1 (ja) 気泡率センサ、これを用いた流量計および極低温液体移送管
WO2022124377A1 (ja) 気泡率センサ、これを用いた流量計および極低温液体移送管
US10315961B2 (en) Porous material and heat insulating film
JP6018196B2 (ja) 流路部材およびこれを用いた熱交換器ならびに半導体製造装置
US11486648B2 (en) Heat exchanger
WO2022124376A1 (ja) 気泡率センサ、これを用いた流量計および極低温液体移送管
JP6162558B2 (ja) 流路部材およびこれを用いた熱交換器ならびに半導体製造装置
CN109923092A (zh) 稀土氟氧化物烧结体以及其制造方法
US20240027386A1 (en) Void fraction sensor, flowmeter using the same, and cryogenic liquid transfer pipe
JP2021159996A (ja) 光透過窓接合体
WO2023234302A1 (ja) 気泡率センサ、これを用いた流量計および液体移送管
WO2012102378A1 (ja) 炭化珪素質接合体およびこれからなる伝熱管ならびにこの伝熱管を備える熱交換器
US20170219302A1 (en) Heat exchanger
WO2024106473A1 (ja) 気泡率センサ、これを用いた流量計および極低温液体移送管
JP7037662B2 (ja) 気密端子
WO2022107613A1 (ja) 筒状体、配線部材および流路部材
JP6352773B2 (ja) 熱交換用部材および熱交換器
JP6154248B2 (ja) 流路部材およびこれを用いた熱交換器ならびに半導体製造装置
JP2023012878A (ja) 嵌合体および接続機構
JP6419030B2 (ja) 流路部材およびこれを用いた熱交換器ならびに半導体製造装置
JP2014125412A (ja) セラミック部材および熱伝導部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578491

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237025713

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18274968

Country of ref document: US

Ref document number: 202280012396.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022745998

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022745998

Country of ref document: EP

Effective date: 20230829