WO2022163646A1 - 窒化ホウ素焼結体シートの製造方法、及び焼結体シート - Google Patents

窒化ホウ素焼結体シートの製造方法、及び焼結体シート Download PDF

Info

Publication number
WO2022163646A1
WO2022163646A1 PCT/JP2022/002676 JP2022002676W WO2022163646A1 WO 2022163646 A1 WO2022163646 A1 WO 2022163646A1 JP 2022002676 W JP2022002676 W JP 2022002676W WO 2022163646 A1 WO2022163646 A1 WO 2022163646A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
sintered body
boron nitride
sintered
sintering aid
Prior art date
Application number
PCT/JP2022/002676
Other languages
English (en)
French (fr)
Inventor
敦也 鈴木
厚樹 五十嵐
賢久 上島
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022528626A priority Critical patent/JP7203284B2/ja
Publication of WO2022163646A1 publication Critical patent/WO2022163646A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes

Definitions

  • Components such as power devices, transistors, thyristors, and CPUs are required to efficiently dissipate the heat generated during use.
  • Boron nitride a type of ceramic, has excellent lubricity, thermal conductivity, and insulation. For this reason, the use of boron nitride and materials obtained by compounding it with other materials as insulating layers and thermal interface materials as described above has been studied.
  • Patent Document 1 a boron nitride molded body is compounded with a resin, and the degree of orientation and graphitization index of boron nitride are set in a predetermined range to achieve excellent thermal conductivity while reducing the anisotropy of thermal conductivity. A technique to do so has been proposed.
  • One aspect of the present disclosure is a step of firing a laminate of green sheets containing boron carbonitride and a sintering aid in a closed space formed by partitioning a portion of the firing furnace to obtain a fired body. and obtaining a sintered sheet from the sintered body by opening the closed section and subjecting the sintered body to heat treatment at 1800 to 2020°C.
  • the green sheet is fired in a closed space formed by partitioning a part of the firing furnace, so that the sintering aid is sufficiently present.
  • a sheet-like sintered body of boron can be formed, and in such a situation needles of hexagonal boron nitride are formed in the intergranular spaces formed by agglomerated particles composed of primary particles of hexagonal boron nitride. Crystals can be grown. The acicular crystals serve as heat transfer paths between the aggregated particles, and can improve the thermal conductivity of the sintered body sheet.
  • the sintering atmosphere is released and heat treatment is performed to volatilize and remove the glass phase and the like derived from the sintering aid formed between the sheet-shaped sintered bodies.
  • heat treatment is performed to volatilize and remove the glass phase and the like derived from the sintering aid formed between the sheet-shaped sintered bodies.
  • the content of the sintering aid may be 6.0% by mass or more based on the total amount of the green sheet.
  • the method for manufacturing the boron nitride sintered body sheet may further include a step of cooling the fired body to 25°C.
  • Boron nitride sintered bodies tend to shrink when heated and expand when cooled. For this reason, before the fired body is heat-treated, the sintered body is once cooled to expand the sintered body, and then heat-treated to shrink the sintered body again, thereby adding strain to the glass phase. By promoting the volatilization of the phase, the separation between the sintered body sheets can be facilitated, and the yield can be further improved.
  • the volume of the closed space is A [unit: L]
  • the total amount of the sintering aid put into the closed space [unit: kg] is B.
  • the B/A value may be 0.040 kg/L or more.
  • One aspect of the present disclosure provides a boron nitride sintered sheet having a maximum height roughness Rz of 12 to 18 ⁇ m on at least one main surface.
  • the sintered sheet has a surface such that the maximum height roughness Rz of at least one main surface is within a predetermined range, and thus has excellent thermal conductivity.
  • the aggregated particles are pushed up as they grow.
  • micrometer-scale unevenness may occur on the surface of the sintered body sheet.
  • the growth of the needle-like crystals progresses to such an extent that the maximum height roughness Rz on the main surface of the sintered sheet is within a predetermined range, so that the sintered sheet exhibits excellent thermal conductivity. obtain.
  • the sintered sheet may have a thickness of less than 2 mm.
  • FIG. 1 is an SEM photograph showing a part of a cross section of a hexagonal boron nitride sintered body.
  • each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition.
  • the “steps” used herein may be independent steps or consecutive steps.
  • One embodiment of the method for producing a hexagonal boron nitride sintered body includes a step of firing a raw material powder containing boron carbide in an atmosphere containing nitrogen to obtain boron carbonitride (nitriding step); a step of firing a laminate of green sheets containing a binding agent in a closed space formed by partitioning a part of a firing furnace to obtain a fired body (firing step); a step of obtaining a sintered body sheet from the sintered body (heat treatment step) by heat-treating at 1800 to 2020°C.
  • a raw material powder containing boron carbide (B 4 C) can be prepared, for example, by the following procedure. After mixing boric acid and acetylene black, the mixture is heated in an inert gas atmosphere at 1800 to 2400° C. for 1 to 10 hours to obtain lumps containing boron carbide. The mass can be prepared by grinding, washing, removing impurities, and drying.
  • nitriding step powder containing boron carbide is fired in an atmosphere containing nitrogen to obtain a fired product containing boron carbonitride (B 4 CN 4 ).
  • the firing temperature in the nitriding step may be 1800° C. or higher, or 1900° C. or higher. Also, the firing temperature may be 2400° C. or lower, or 2200° C. or lower. The firing temperature may be, for example, 1800-2400.degree.
  • the lower limit of the nitrogen partial pressure in the nitriding step may be 0.6 MPa or higher, or 0.7 MPa or higher.
  • the upper limit of the nitrogen partial pressure may be 1.0 MPa or less, or 0.9 MPa or less.
  • the nitrogen partial pressure may be, for example, 0.6-1.0 MPa. If the nitrogen partial pressure is too low, the nitriding of boron carbide tends to be difficult to proceed. On the other hand, if the pressure is too high, the manufacturing cost tends to rise.
  • the pressure in this specification is an absolute pressure.
  • the nitrogen gas concentration of the atmosphere containing nitrogen in the nitriding step may be 95.0% by volume or more, or 99.9% by volume or more.
  • the above nitrogen gas concentrations are volume-based concentrations at standard conditions.
  • the firing time in the nitriding step is not particularly limited as long as the boron carbide is sufficiently nitrided, and may be, for example, 6 to 30 hours or 8 to 20 hours.
  • Boron carbonitride prepared in the nitriding process can be obtained as a lump. Therefore, boron carbonitride may be pulverized and used as a powder. Crushing may be performed using a pulverizer. Pulverizers include roller mills, jet mills, hammer mills, pin mills, rotary mills, vibration mills, planetary mills, attritors, bead mills, ball mills, and the like. The pulverization conditions can be adjusted so that the obtained boron carbonitride has a desired average particle size, specific surface area, and the like. Crushing may be performed, for example, by performing treatment for about 20 hours using a ball mill.
  • the lower limit of the average particle size of boron carbonitride may be, for example, 15 ⁇ m or more, 20 ⁇ m or more, or 25 ⁇ m or more.
  • the upper limit of the average grain size of boron carbonitride may be, for example, 50 ⁇ m or less, 40 ⁇ m or less, or 35 ⁇ m or less.
  • the average particle size of the boron carbonitride may be adjusted within the ranges described above, and may be, for example, 15-50 ⁇ m, 15-35 ⁇ m, or 20-35 ⁇ m.
  • the average particle size of boron carbonitride in the present specification is a value obtained by measuring the boron carbonitride powder without homogenizer treatment, and is the average particle size including aggregated particles.
  • the above average particle diameter shall be measured using a particle size distribution analyzer in accordance with ISO 13320:2009.
  • the average particle size obtained by the above measurement is the average particle size by volume statistical value, and the average particle size is the median value (d50).
  • water is used as a solvent for dispersing the aggregates, and hexametaphosphoric acid is used as a dispersant.
  • the lower limit of the specific surface area of boron carbonitride may be, for example, 10 m 2 /g or more, 12 m 2 /g or more, or 14 m 2 /g or more.
  • the upper limit of the specific surface area of boron carbonitride may be, for example, 30 m 2 /g or less, 25 m 2 /g or less, or 20 m 2 /g or less.
  • the specific surface area of boron carbonitride may be adjusted within the above range, and may be, for example, 10-30 m 2 /g, or 12-20 m 2 /g.
  • the specific surface area of the hexagonal boron nitride powder shall be measured using a measuring device in accordance with JIS Z 8803:2013.
  • the specific surface area is a value calculated by applying the BET single-point method using nitrogen gas.
  • Boron carbonitride may be prepared separately, or may be commercially available containing aggregated particles of boron nitride. In this case, the nitriding step may be omitted. Boron carbonitride may have, for example, an average particle size of 15 to 35 ⁇ m and a specific surface area of 10 to 30 m 2 /g.
  • the sheet (also referred to as a green sheet) containing the boron carbonitride and the sintering aid used in the firing step is a sheet formed by mixing the boron carbonitride and the sintering aid. good.
  • a binder may be added to facilitate the formation of the sheet.
  • the boron carbonitride and the sintering aid may be blended in advance, for example, using a mixer such as a Henschel mixer.
  • a sintering aid is a component that promotes the reaction that produces boron nitride from boron carbonitride and the densification of boron nitride.
  • the sintering aid may contain a boron compound having oxygen as a constituent element and a calcium compound.
  • Boron compounds include, for example, boric acid, boron oxide, borax, and diboron trioxide.
  • Examples of calcium compounds include calcium carbonate and calcium oxide.
  • the sintering aid may contain components other than the boron compound and calcium carbonate. Such ingredients include, for example, lithium carbonate and alkali metal carbonates such as sodium carbonate.
  • the content of the sintering aid may be 6.0% by mass or more based on the total amount of the sheet (the total amount of the green sheet). It may be 0% by mass or more, 12.5% by mass or more, or 15.0% by mass or more.
  • the upper limit of the content of the sintering aid may be, for example, 35.0% by mass or less, or 30.0% by mass or less based on the total amount of the sheet.
  • the content of the sintering aid may be adjusted within the above range, and may be, for example, 6.0 to 35.0% by mass based on the total amount of the sheet (the total amount of the green sheet).
  • the binder can be used to form a powder containing boron carbonitride and a sintering aid into a sheet.
  • the binder may be an organic polymer or the like that can be removed by heat treatment in a firing step or the like.
  • an acrylic resin or the like can be used as the binder.
  • the binder content is, for example, 0.1 to 8% by mass, 0.2 to 6% by mass, 0.3 to 4% by mass, or 0.4 to 2% by mass based on the total amount of the green sheet. you can
  • a closed space is formed by dividing a part of the firing furnace. Firing with The closed space may be any space that does not allow the sintering aid to easily move from the space where the sheet exists to the outside space when the sintering aid volatilizes due to heating. may
  • the closed space only needs to be able to isolate the external environment from the internal environment, and may be, for example, a container having a lid or a door. In this case, for example, the entire container may be placed in a firing furnace and heated.
  • the firing process may be performed by adjusting the amount of sintering aid in the closed space.
  • the volume of the closed space is A [unit: L]
  • the total amount of the sintering aid introduced into the closed space [unit: kg] is B/A
  • the amount of the sintering aid in the closed space may be adjusted so that the value of is 0.040 kg/L or more.
  • the sintering aid charged into the closed space is not limited to that mixed with the green sheet. In other words, if necessary, a sintering aid is separately injected into the closed space to increase the vapor pressure of the sintering aid generated in the space, thereby increasing the sintering aid when the green sheet is heated.
  • the above B/A can be adjusted, for example, by adding a sintering aid to the inside of the closed space. Although it depends on the size of , for example, it may be adjusted by stacking about 8 to 12 sheets.
  • the lower limit of the B/A value is, for example, 0.045 kg/L or more, 0.050 kg/L or more, 0.055 kg/L or more, 0.060 kg/L or more, or 0.065 kg/L or more. you can When the lower limit value of B/A is within the above range, the growth of needle-like crystals of hexagonal boron nitride can be promoted, and a sintered body having excellent thermal conductivity can be prepared.
  • the upper limit of the B/A value may be, for example, 0.20 kg/L or less, 0.15 kg/L or less, 0.10 kg/L or less, or 0.90 kg/L or less. By setting the upper limit of B/A within the above range, it is possible to suppress an increase in manufacturing cost.
  • the above B/A may be adjusted within the above range, and may be, for example, 0.045-0.25 kg/L.
  • the pressure in the firing step may be, for example, heating in an atmosphere of normal pressure (atmospheric pressure: 101 kPa), heating in an atmosphere of 50 kPa or less, or heating at a pressure exceeding atmospheric pressure. good too. When pressurized, it may be, for example, 0.5 MPa or less, 0.4 MPa or less, or 0.3 MPa or less.
  • the heat treatment step is a step of opening the closed space and heat-treating the object to be heat-treated at 1800-2020°C.
  • the amount of the glass phase derived from the sintering aid formed between the sintered sheets can be reduced, and the yield in the method for manufacturing the sintered sheets can be improved.
  • the firing process is performed by storing the green sheet in a container with a lid and heat-treating it in a firing furnace
  • the closed space can be opened by opening the lid of the container.
  • the vapor pressure of the sintering aid in the atmosphere surrounding the sintered body is relatively lowered, and the glass phase derived from the sintering aid, etc. is easily removed when heated. Become.
  • the lower limit of the heating temperature in the heat treatment step may be, for example, 1850°C or higher, or 1900°C or higher. By setting the lower limit of the heating temperature within the above range, the glass phase derived from the sintering aid can be more sufficiently reduced.
  • the upper limit of the heating temperature in the heat treatment step may be, for example, 2100° C. or lower, or 2050° C. or lower. By setting the upper limit of the heating temperature within the above range, excessive grain growth of hexagonal boron nitride in the vicinity of the main surface of the sintered body sheet can be suppressed, and the adhesion of the sintered body sheet can be adjusted. can be done.
  • the heating time in the heat treatment step may be 1 hour or longer, 1.5 hours or longer, or 2 hours or longer.
  • the heating time in the heat treatment step may be 10 hours or less, 8 hours or less, or 7 hours or less.
  • the method for manufacturing the above-described boron nitride sintered sheet may have other steps.
  • the above-described method for producing a boron nitride sintered body sheet may further include, for example, the step of cooling the fired body to 25°C.
  • the sintered sheets are loosely bonded after the heat treatment process, the sintered sheets are separated from each other to separate the individual sintered sheets. It may have a stripping step to obtain.
  • An embodiment of the sintered sheet is a boron nitride sintered sheet having a maximum height roughness Rz of 12 to 18 ⁇ m on at least one main surface. At least one of the pair of main surfaces of the sintered body sheet is preferably not a cut surface, and both sides are preferably not a cut surface. At least one of the pair of main surfaces of the sintered body sheet is preferably not a polished surface, and neither of the two surfaces is preferably a polished surface.
  • the sintered sheet can be produced, for example, by the method for producing a boron nitride sintered sheet described above.
  • the sintered sheet may contain a plurality of aggregated particles composed of agglomerated primary particles of boron nitride and a plurality of acicular crystals composed of boron nitride.
  • FIG. 1 is an SEM photograph showing an example of a sintered body sheet, showing a part of a cross section of a hexagonal boron nitride sintered body.
  • the sintered sheet is composed of a plurality of aggregated particles 12 and a plurality of acicular crystals 22 . It can be confirmed from FIG. 1 that needle-like crystals 22 of hexagonal boron nitride are formed in the gaps between the aggregated particles 12 .
  • the plurality of needle-like crystals 22 are in direct or indirect contact with the two or more aggregated particles 12 .
  • the thermal conductivity of the sintered body sheet can be improved.
  • the maximum height roughness Rz on the main surface of the boron nitride sintered body sheet may be, for example, 14 to 18 ⁇ m, or 15 to 18 ⁇ m. It is more preferable that both the maximum height roughnesses Rz on both main surfaces of the sintered body sheet are within the above range.
  • the thermal conductivity can be improved, and since it has an appropriate roughness, adhesion with the adherend can improve sexuality.
  • the arithmetic mean roughness Ra on the main surface of the boron nitride sintered body sheet may be, for example, 1.5 to 3.0 ⁇ m, or 1.0 to 2.8 ⁇ m. More preferably, the arithmetic mean roughness Ra on both main surfaces of the sintered body sheet is within the above range.
  • the arithmetic mean roughness of the principal surface of the boron nitride sintered body sheet is within the above range, the uniformity within the principal surface is more excellent, and the reliability after adhesion to the adherend can be improved.
  • the maximum height roughness Rz and arithmetic mean roughness Ra of the boron nitride sintered body sheet are determined according to JIS B 0601: 2013 "Product Geometric Characteristics Specifications (GPS) - Surface Texture: Contour Method - Terms, Definitions and Surface Texture Parameters are the parameters described in .
  • the thickness of the sintered sheet may be, for example, less than 2 mm or less than 1.6 mm. With a sintered sheet having such a thickness, for example, it becomes easier to fill the pores of the sintered sheet with a resin, and a composite sheet having an excellent resin filling rate can be more easily prepared. be able to. From the viewpoint of ease of manufacturing the sintered sheet, the thickness of the sintered sheet may be, for example, 0.1 mm or more, or 0.2 mm or more.
  • the above hexagonal boron nitride sintered body can exhibit excellent thermal conductivity.
  • the thermal conductivity of the hexagonal boron nitride sintered body can be, for example, 20 W/mK or higher, 25 W/mK or higher, 30 W/mK or higher, or 35 W/mK or higher.
  • the above-described boron nitride sintered sheet has excellent thermal conductivity, it can be suitably used as a heat dissipation member for various devices such as semiconductor devices.
  • the adherend include a metal sheet and the like.
  • the metal sheet may be a metal plate or a metal foil.
  • Examples of the material of the metal sheet include aluminum and copper.
  • a laminate was prepared by laminating eight green sheets as described above, filled in a crucible made of boron nitride, and covered with a lid to form a closed space. This was placed in a resistance heating furnace, and the inside of the resistance heating furnace was heated from room temperature to 2200° C. at a temperature rising rate of 2° C./min under the pressure condition of atmospheric pressure in a nitrogen gas atmosphere. A sintered body was obtained by heating at 2200° C. for 5 hours. At this time, when the volume of the closed space is A [unit: L] and the total amount of the sintering aid [unit: kg] put into the closed space is B, the value of B/A is 0. The amount of sintering aid in the closed space was adjusted to 0.044 kg/L.
  • Example 2 A boron nitride sintered body sheet was obtained in the same manner as in Example 1, except that the B/A value was changed to 0.066 kg/L.
  • Example 1 A boron nitride sintered body sheet was obtained in the same manner as in Example 1, except that the heat treatment step was not performed.
  • Example 2 A boron nitride sintered body sheet was obtained in the same manner as in Example 1, except that the heat treatment step was performed in a resistance heating furnace without providing a closed space in the firing step.
  • peelability Using the sintered bodies obtained from the laminates in producing the boron nitride sintered sheets prepared in Example 1 and Comparative Example 1, the peelability was evaluated according to the following criteria. Specifically, a scraper was placed between the laminates, and evaluation was made based on the ratio of the number of sintered bodies at which the sintered bodies could be isolated without damage. Here, the "number ratio" is the number of sheets peeled off without damage/total number of sheets. From the measurement results, the peelability was evaluated according to the following criteria. Table 1 shows the results. A: The ratio of the number of sheets that can be peeled without damage is 0.75 or more.
  • B The ratio of the number of sheets that can be peeled without damage is 0.50 or more and less than 0.75.
  • C The ratio of the number of sheets that can be peeled without damage is 0.20 or more and less than 0.50.
  • D The ratio of the number of sheets that can be peeled without damage is less than 0.20.
  • Thermal conductivity H: unit W / (m K)
  • thermal diffusivity T: unit m 2 / sec
  • density D: Unit kg/m 3
  • specific heat capacity C: unit J/(kg ⁇ K)
  • a xenon flash analyzer manufactured by NETZSCH, trade name: LFA447NanoFlash
  • Density D was measured by the Archimedes method.
  • the specific heat capacity C was measured using a differential scanning calorimeter (manufactured by Rigaku Corporation, device name: ThermoPlusEvo DSC8230).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

本開示の一側面は、炭窒化ホウ素と焼結助剤とを含むグリーンシートの積層体を、焼成炉内の一部を区画して形成される閉鎖空間内で焼成して焼成体を得る工程と、上記閉鎖区間を開放して1800~2020℃で加熱処理することによって、上記焼成体から焼結体シートを得る工程と、を有する、窒化ホウ素焼結体シートの製造方法を提供する。

Description

窒化ホウ素焼結体シートの製造方法、及び焼結体シート
 本開示は、窒化ホウ素焼結体シートの製造方法、及び焼結体シートに関する。
 パワーデバイス、トランジスタ、サイリスタ、及びCPU等の部品においては、使用時に発生する熱を効率的に放熱することが求められる。このような要請から、従来、電子部品を実装するプリント配線板の絶縁層の高熱伝導化を図ったり、電子部品又はプリント配線板を、電気絶縁性を有する熱インターフェース材(Thermal Interface Materials)を介してヒートシンクに取り付けたりすることが行われてきた。このような絶縁層及び熱インターフェース材として、セラミックが用いられている。
 セラミックの一種である窒化ホウ素は、潤滑性、熱伝導性及び絶縁性に優れている。このため、窒化ホウ素及びこれを他の材料と複合化した材料を上述のような絶縁層及び熱インターフェース材として用いることが検討されている。例えば、特許文献1では、窒化ホウ素成形体を樹脂と複合化するとともに、窒化ホウ素の配向度及び黒鉛化指数を所定の範囲にして、熱伝導率に優れつつ熱伝導率の異方性を低減する技術が提案されている。
特開2014-162697号公報
 近年、歩留まりを向上させる観点から、グリーンシートを薄く成形し、これを焼成することによって直接、セラミックス焼結体のシートを調製する方法が採用されている。しかし、通常、グリーンシートを複数枚積層した状態で焼成するため、得らえるセラミックス焼結体シート同士が接着し、これをはく離する過程で、セラミックス焼結体シートに割れ、欠け等が発生し、歩留まりの低下を招き得る。
 熱伝導率の向上の観点から、窒化ホウ素焼結体の調製に上述のような窒化ホウ素の一次粒子の凝集体を利用することが望ましいものの、凝集体を利用することによって期待し得るほどの熱伝導率を発揮し得ない場合がある。
 本開示は、従来よりも歩留まりよく、熱伝導性に優れる窒化ホウ素焼結体シートの製造方法を提供することを目的とする。本開示はまた、熱伝導性に優れる焼結体シートを提供することを目的とする。
 本発明者らは上述の課題にあたり、複数枚のグリーンシートの積層体を焼成した場合において、得られる焼結体シート同士が接着し、はく離し難くなる一因として、焼結体シート間に焼結助剤に由来するガラス相が形成されていることを確認した。また、焼結体シートの熱伝導率等の性能向上のために焼結助剤の配合を増加させること、及び焼結助剤が系外に逃れることを抑制するために閉鎖空間で焼成を行うこと等によって、上述の焼結体シート同士の接着が促進されるとの知見を得た。本開示は上記知見に基づいてなされたものである。
 本開示の一側面は、炭窒化ホウ素と焼結助剤とを含むグリーンシートの積層体を、焼成炉内の一部を区画して形成される閉鎖空間内で焼成して焼成体を得る工程と、上記閉鎖区間を開放して1800~2020℃で加熱処理することによって、上記焼成体から焼結体シートを得る工程と、を有する、窒化ホウ素焼結体シートの製造方法を提供する。
 上記窒化ホウ素焼結体シートの製造方法は、グリーンシートを焼成炉内の一部を区画して形成される閉鎖空間内で焼成することで焼結助剤が十分に存在する状況で六方晶窒化ホウ素のシート状の焼結体を形成することができ、このような状況では、六方晶窒化ホウ素の一次粒子で構成される塊状粒子によって粒子間に形成される空隙において、六方晶窒化ホウ素の針状結晶を成長させることができる。当該針状結晶は塊状粒子間の熱の伝達路となり、焼結体シートの熱伝導性を向上させることができる。その後、焼成雰囲気を開放して、加熱処理することによって、上記シート状の焼結体間に形成される焼結助剤に由来するガラス相等を揮発させ除去することができる。これによって焼結体同士をはく離する際の欠け等の発生を抑制することができ、従来の焼結体シートの製造方法よりも歩留まりよく焼結体シートを製造することができる。
 上記焼結助剤の含有量は、上記グリーンシートの全量を基準として6.0質量%以上であってよい。
 上記窒化ホウ素焼結体シートの製造方法は、上記焼成体を25℃まで冷却する工程を更に有してよい。窒化ホウ素焼結体は加熱によって収縮し、冷却によって膨張する傾向を有する。このため、焼成体を加熱処理する前に一旦冷却し焼結体を膨張させ、その後加熱処理し再び焼結体を収縮させることでガラス相へ歪みを加え、その後の開放下での焼成においてガラス相の揮発を促進して、焼結体シート間のはく離をより容易にすることができ、歩留まりを更に向上し得る。
 上記窒化ホウ素焼結体シートの製造方法は、上記閉鎖空間の体積をA[単位:L]とし、上記閉鎖空間内に投入される焼結助剤の全量[単位:kg]をBとしたときの、B/Aの値が0.040kg/L以上であってよい。
 本開示の一側面は、窒化ホウ素焼結体シートであって、少なくとも一方の主面の最大高さ粗さRzが12~18μmである、焼結体シートを提供する。
 上記焼結体シートは、少なくとも一方の主面の最大高さ粗さRzが所定の範囲内となるような表面を有することから、優れた熱伝導性を有する。本発明者らの検討によれば、六方晶窒化ホウ素の一次粒子で構成される塊状粒子の粒子間の空隙において六方晶窒化ホウ素の針状結晶が成長すると、その成長に伴って塊状粒子が押し上げられ、焼結体シートの表面にマイクロメータスケールの凹凸が生じ得る。そして、焼結体シートの主面における最高高さ粗さRzが所定の範囲内となる程度に針状結晶の成長が進んでいることで、焼結体シートが優れた熱伝導率を発揮し得る。
 上記焼結体シートは厚みが2mm未満であってよい。
 本開示によれば、従来よりも歩留まりよく、熱伝導性に優れる窒化ホウ素焼結体シートの製造方法を提供できる。本開示によればまた、熱伝導性に優れる焼結体シートを提供できる。
図1は、六方晶窒化ホウ素焼結体の断面の一部を示すSEM写真である。
 以下、場合によって図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。本明細書における「工程」とは、互いに独立した工程であってもよく、連続して行われる工程であってもよい。
<窒化ホウ素焼結体シートの製造方法>
 六方晶窒化ホウ素焼結体の製造方法の一実施形態は、炭化ホウ素を含む原料粉末を、窒素を含む雰囲気下で焼成して炭窒化ホウ素を得る工程(窒化工程)と、炭窒化ホウ素と焼結助剤とを含むグリーンシートの積層体を、焼成炉内の一部を区画して形成される閉鎖空間内で焼成して焼成体を得る工程(焼成工程)と、上記閉鎖空間を開放して1800~2020℃で加熱処理することによって、上記焼成体から焼結体シートを得る工程(熱処理工程)と、を有する。
 炭化ホウ素(BC)を含む粉原料末は、例えば、以下の手順で調製することができる。ホウ酸とアセチレンブラックとを混合した後、不活性ガス雰囲気中、1800~2400℃にて、1~10時間加熱し、炭化ホウ素を含む塊状物を得る。この塊状物を、粉砕し、洗浄、不純物除去、及び乾燥を行って調製することができる。
 窒化工程では、炭化ホウ素を含む粉末を、窒素を含む雰囲気下で焼成して炭窒化ホウ素(BCN)を含む焼成物を得る。窒化工程における焼成温度は、1800℃以上、又は1900℃以上であってよい。また、当該焼成温度は、2400℃以下、又は2200℃以下であってよい。当該焼成温度は、例えば、1800~2400℃であってよい。
 窒化工程における窒素分圧の下限値は、0.6MPa以上、又は0.7MPa以上であってよい。窒素分圧の上限値は、1.0MPa以下、又は0.9MPa以下であってよい。窒素分圧は、例えば、0.6~1.0MPaであってよい。窒素分圧が低過ぎると、炭化ホウ素の窒化が進行し難くなる傾向がある。一方、当該圧力が高過ぎると、製造コストが上昇する傾向にある。なお、本明細書における圧力は絶対圧である。
 窒化工程における窒素を含む雰囲気の窒素ガス濃度は95.0体積%以上、又は99.9体積%以上であってもよい。上述の窒素ガス濃度は、標準状態における体積に基づく濃度である。窒化工程における焼成時間は、炭化ホウ素の窒化が十分進む範囲であれば特に限定されず、例えば、6~30時間、又は8~20時間であってよい。
 窒化工程で調製される炭窒化ホウ素は塊状物として得られ得る。そこで、炭窒化ホウ素は解砕して粉末として使用してもよい。解砕は粉砕機を用いて行ってよい。粉砕機としては、ローラーミル、ジェットミル、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、アトライター、ビーズミル及びボールミル等が挙げられる。解砕の条件は、得られる炭窒化ホウ素について所望の平均粒子径及び比表面積等となるように調整することができる。解砕は、例えば、ボールミルを用いて、20時間程度の処理を行うことで実施してよい。
 炭窒化ホウ素の平均粒径の下限値は、例えば、15μm以上、20μm以上、又は25μm以上であってよい。炭窒化ホウ素の平均粒径の上限値は、例えば、50μm以下、40μm以下、又は35μm以下であってよい。炭窒化ホウ素の平均粒径は上述の範囲内で調整してよく、例えば、15~50μm、15~35μm、又は20~35μmであってよい。
 本明細書における炭窒化ホウ素の平均粒径は、炭窒化ホウ素粉末に対するホモジナイザー処理を行わずに測定して得られる値であり、凝集粒子を含む平均粒子径である。上記平均粒径は、ISO 13320:2009に準拠し、粒度分布測定機を用いて測定するものとする。上記測定で得られる平均粒径は、体積統計値による平均粒径であり、平均粒径はメジアン値(d50)である。粒度分布測定に際し、該凝集体を分散させる溶媒には水を、分散剤にはヘキサメタリン酸を用いる。このとき水の屈折率には1.33を、また、六方晶窒化ホウ素粉末の屈折率については1.80の数値を用いる。粒度分布測定機としては、例えば、日機装株式会社製の「MT3300EX」(製品名)等を用いることができる。
 炭窒化ホウ素の比表面積の下限値は、例えば、10m/g以上、12m/g以上、又は14m/g以上であってよい。炭窒化ホウ素の比表面積の上限値は、例えば、30m/g以下、25m/g以下、又は20m/g以下であってよい。炭窒化ホウ素の比表面積は上述の範囲内で調整してよく、例えば、10~30m/g、又は12~20m/gであってよい。
 本明細書において六方晶窒化ホウ素粉末の比表面積は、JIS Z 8803:2013に準拠し、測定装置を用い測定するものとする。当該比表面積は、窒素ガスを使用したBET一点法を適用して算出した値である。
 炭窒化ホウ素は、別途調製されたもの、又は市販された窒化ホウ素の塊状粒子を含むものを用いることもできる。この場合、窒化工程は省略してよい。炭窒化ホウ素としては、例えば、平均粒径が15~35μmであり、比表面積が、10~30m/gであってよい。
 焼成工程で使用する、上記炭窒化ホウ素と焼結助剤とを含むシート(グリーンシートともいう)は、炭窒化ホウ素、及び焼結助剤を混合して、シート状に成形したものであってよい。上記シートの構成を容易にするためにバインダーを更に配合してもよい。炭窒化ホウ素と焼結助剤とは予め配合してもよく、例えば、ヘンシェルミキサー等の混合機を用いて行ってよい。
 焼結助剤は、炭窒化ホウ素から窒化ホウ素を生成する反応と窒化ホウ素の緻密化を促進する成分である。焼結助剤は、構成元素として酸素を有するホウ素化合物と、カルシウム化合物とを含んでよい。ホウ素化合物としては、例えば、ホウ酸、酸化ホウ素、ホウ砂、及び三酸化二ホウ素等が挙げられる。カルシウム化合物としては、例えば、炭酸カルシウム、及び酸化カルシウム等が挙げられる。焼結助剤は、ホウ素化合物及び炭酸カルシウム以外の成分を含んでいてもよい。そのような成分としては、例えば、炭酸リチウム、及び炭酸ナトリウム等のアルカリ金属の炭酸塩が挙げられる。
 焼結助剤の含有量は、シートの全量(グリーンシートの全量)を基準として、6.0質量%以上であってよく、熱伝導のパスとなる針状結晶を増加させる観点から、10.0質量%以上、12.5質量%以上、又は15.0質量%以上であってよい。焼結助剤の含有量の上限値は、シートの全量を基準として、例えば、35.0質量%以下、又は30.0質量%以下であってよい。焼結助剤の含有量は上述の範囲内で調整してよく、シートの全量(グリーンシートの全量)を基準として、例えば、6.0~35.0質量%であってよい。
 バインダーは炭窒化ホウ素及び焼結助剤を含む粉体をシート状に成形するために使用することができる。バインダーは焼成工程等における加熱処理によって除去可能な有機高分子等であってよい。バインダーとしては、例えば、アクリル樹脂等を用いることができる。バインダーの含有量は、グリーンシートの全量を基準として、例えば、0.1~8質量%、0.2~6質量%、0.3~4質量%、又は0.4~2質量%であってよい。
 焼成工程においては焼結助剤が揮発して系外に放出され、シート内において焼結助剤が不足することを抑制するために焼成炉内の一部を区画して形成される閉鎖空間内で焼成を行う。閉鎖空間は、焼結助剤が加熱によって揮発した際に、シートが存在する空間から外部の空間への焼結助剤の移動が容易にはできない空間であればよく、完全な密閉状態でなくてもよい。閉鎖空間は、外部環境と内部環境とを遮断できればよく、例えば、蓋又は扉を有する容器等であってよい。この場合、例えば、容器ごと焼成炉内に静置して加熱してよい。
 焼成工程は、閉鎖空間内における焼結助剤の量を調整して行ってもよい。上記焼成工程は、例えば、上記閉鎖空間の体積をA[単位:L]とし、上記閉鎖空間内に投入される焼結助剤の全量[単位:kg]をBとしたときの、B/Aの値が0.040kg/L以上となるように閉鎖空間内の焼結助剤の量を調整して行ってよい。上記閉鎖空間内に投入される焼結助剤は、グリーンシートに配合されるものに限られない。つまり、必要に応じて、焼結助剤を上記閉鎖空間内に別途投入し空間内に発生する焼結助剤の蒸気圧を高めることで、グリーンシートを加熱していった際に焼結助剤がグリーンシートから放出されることを抑制し、シート内における焼結助剤量が不足することを防止できる。上記B/Aの調整は、例えば、焼結助剤を閉鎖空間内部に添加して調整することもできるが、歩留まり向上の観点から、グリーンシートの積層枚数で調整することが望ましく、上記閉鎖空間のサイズにもよるが、例えば、8~12枚程度を積層することで調整してもよい。
 上記B/Aの値の下限値は、例えば、0.045kg/L以上、0.050kg/L以上、0.055kg/L以上、0.060kg/L以上、又は0.065kg/L以上であってよい。上記B/Aの下限値が上記範囲内であることで、六方晶窒化ホウ素の針状結晶の成長を促進することができ、より熱伝導率に優れる焼結体を調製できる。上記B/Aの値の上限値は、例えば、0.20kg/L以下、0.15kg/L以下、0.10kg/L以下、又は0.90kg/L以下であってよい。上記B/Aの上限値が上記範囲内であることで、製造コストの上昇を抑制することができる。上記B/Aは上述の範囲内で調整してよく、例えば、0.045~0.25kg/Lであってよい。
 焼成工程における圧力は、例えば、常圧(大気圧:101kPa)の雰囲気下で加熱してもよく、50kPa以下の雰囲気下で加熱してもよく、加圧して大気圧を超える圧力で加熱してもよい。加圧する場合には、例えば、0.5MPa以下、0.4MPa以下、又は0.3MPa以下であってよい。
 焼成工程における加熱時間は、0.5時間以上、1時間以上、又は3時間以上であってもよい。当該加熱時間の下限値が上記範囲内であることで、六方晶窒化ホウ素の一次粒子の粒成長を進行させ、針状結晶の割合を高め、得られる六方晶窒化ホウ素焼結体の熱伝導率をより向上できる。焼成工程における加熱時間は、40時間以下、30時間以下、20時間以下、又は10時間以下であってよい。当該加熱時間の上限値を上記範囲内とすることで、製造コストの上昇を抑制することができる。焼成工程における加熱時間は上述の範囲内で調整してよく、例えば、0.5~40時間であってよい。
 熱処理工程は、上記閉鎖空間を開放して、加熱処理対象を1800~2020℃で加熱処理する工程である。当該工程によって、焼結体シート間に形成された焼結助剤に由来するガラス相の存在量を低減することができ、焼結体シートの製造方法における歩留まりを向上し得る。焼成工程を蓋付き容器内にグリーンシートを収容して、焼成炉内で加熱処理することで行った場合、上記容器の蓋を開けることによって上記閉鎖空間を開放した状態とすることができる。閉鎖空間が解放されることによって焼成体の周囲の雰囲気における焼結助剤の蒸気圧が相対的に低下し、焼結助剤等に由来するガラス相を加熱した際の除去が容易なものとなる。
 熱処理工程における加熱温度の下限値は、例えば、1850℃以上、又は1900℃以上であってよい。加熱温度の下限値を上記範囲内とすることで、焼結助剤に由来するガラス相をより十分に低減することができる。熱処理工程における加熱温度の上限値は、例えば、2100℃以下、又は2050℃以下であってよい。加熱温度の上限値を上記範囲内とすることで、焼結体シートの主面近傍における六方晶窒化ホウ素の過剰な粒成長を抑制することができ、焼結体シートの接着性を調整することができる。
 熱処理工程における加熱時間は、1時間以上、1.5時間以上、又は2時間以上であってよい。熱処理工程における加熱時間は、10時間以下、8時間以下、又は7時間以下であってよい。
 上述の窒化ホウ素焼結体シートの製造方法は、その他の工程を有してもよい。上述の窒化ホウ素焼結体シートの製造方法は、例えば、上記焼成体を25℃まで冷却する工程を更に有してもよい。上述の窒化ホウ素焼結体シートの製造方法はまた、熱処理工程の後、焼結体シート同士が緩く結合している場合には、焼結体シート同士をはく離して個々の焼結体シートを得るはく離工程を有してもよい。
 焼結体シートの一実施形態は、窒化ホウ素焼結体シートであって、少なくとも一方の主面の最大高さ粗さRzが12~18μmである、焼結体シートである。上記焼結体シートの有する一対の主面の少なくとも一方は切断面でなく、両面共に切断面でないことが好ましい。上記焼結体シートの有する一対の主面の少なくとも一方は研磨面でなく、両面共に研磨面でないことが好ましい。当該焼結体シートは、例えば、上述の窒化ホウ素焼結体シートの製造方法によって製造することができる。
 焼結体シートは、窒化ホウ素の一次粒子が凝集して構成される複数の塊状粒子と、窒化ホウ素で構成される複数の針状結晶と、を含み得る。図1は、焼結体シートの一例を示すSEM写真であり、六方晶窒化ホウ素焼結体の断面の一部を示している。焼結体シートは複数の塊状粒子12と、複数の針状結晶22とで構成される。図1から、六方晶窒化ホウ素の針状結晶22が塊状粒子12間の空隙に形成されていることが確認できる。当該焼結体において、複数の上記針状結晶22の少なくとも一部は、直接又は間接に2以上の塊状粒子12と接している。このような針状結晶が設けられることによって、塊状粒子よりも熱の伝達性に劣る空隙部分においても十分な熱伝達が可能となっており、焼結体シートとしての熱伝導性が向上し得る。
 窒化ホウ素焼結体シートの主面における最大高さ粗さRzは、例えば、14~18μm、又は15~18μmであってよい。焼結体シートの両主面における最大高さ粗さRzがともに上述の範囲であることがより好ましい。窒化ホウ素焼結体シートの主面における最大高さ粗さが上記範囲内であることで、熱伝導性を向上させることができ、且つ適度な粗さを有することから、被着体との接着性を向上させることができる。
 窒化ホウ素焼結体シートの主面における算術平均粗さRaは、例えば、1.5~3.0μm、又は1.0~2.8μmであってよい。焼結体シートの両主面における算術平均粗さRaがともに上述の範囲であることがより好ましい。窒化ホウ素焼結体シートの主面における算術平均粗さが上記範囲内であることで、主面内における均一性により優れ、被着体との接着後の信頼性を向上させることができる。
 窒化ホウ素焼結体シートの最大高さ粗さRz及び算術平均粗さRaは、JIS B 0601:2013「製品の幾何特性仕様(GPS)-表面性状:輪郭曲線方式-用語,定義及び表面性状パラメータ」に記載されるパラメータである。
 焼結体シートの厚みは、例えば、2mm未満、又は1.6mm未満であってよい。このような厚みを有する焼結体シートであることで、例えば、焼結体シートの有する気孔への樹脂の充填がより容易なものとなり、樹脂の充填率に優れる複合シートをより容易に調製することができる。焼結体シートの製造の容易性の観点から、焼結体シートの厚みは、例えば、0.1mm以上、又は0.2mm以上であってよい。
 上述の六方晶窒化ホウ素焼結体は優れた熱伝導率を発揮し得る。六方晶窒化ホウ素焼結体の熱伝導率は、例えば、20W/mK以上、25W/mK以上、30W/mK以上、又は35W/mK以上とすることができる。
 上述の窒化ホウ素焼結体シートは熱伝導性に優れることから、半導体装置等の各種デバイスの放熱部材として好適に使用することができる。被着体としては、例えば、金属シート等が挙げられる。金属シートは、金属板又は金属箔であってよい。金属シートの材質は、例えば、アルミニウム及び銅等が挙げられる。
 以上、幾つかの実施形態について説明したが、共通する構成については互いの説明を適用することができる。また本開示は、上記実施形態に何ら限定されるものではない。
 実施例及び比較例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。
(実施例1)
[窒化工程]
 新日本電工株式会社製のオルトホウ酸100質量部と、デンカ株式会社製のアセチレンブラック(商品名:HS100)35質量部とをヘンシェルミキサーを用いて混合した。得られた混合物を、黒鉛製のルツボ中に充填し、アーク炉にて、アルゴン雰囲気で、2200℃にて5時間加熱し、塊状の炭化ホウ素(BC)を得た。得られた塊状物を、ジョークラッシャーで解砕して粗粉を得た。この粗粉を、炭化珪素製のボール(φ10mm)を有するボールミルによってさらに粉砕して粉砕粉を得た。ボールミルによる粉砕は、回転数20rpmで60分間行った。その後、目開き45μmの振動篩を用いて粉砕粉を分級した。篩上の微粉を、クラッシール分級機で気流分級を行って、10μm以上の粒径を有する炭化ホウ素粉末を得た。得られた炭化ホウ素粉末の炭素量は19.9質量%であった。炭素量は、炭素/硫黄同時分析計にて測定した。
 調製した炭化ホウ素粉末を、抵抗加熱炉を用い、窒素ガス雰囲気下で、焼成温度2150℃、且つ圧力0.90MPaの条件で12時間加熱した。焼成の際、窒素ガス量を化学両論量よりも過剰に供給して、必要量に対して20当量分となるように窒素ガスを供給した。このようにして炭窒化ホウ素(BCN)を含む焼成物を得た。また、XRDで分析した結果、六方晶炭窒化ホウ素の生成を確認した。その後引き続き、アルミナ製のルツボに充填した後、マッフル炉を用い、大気雰囲気且つ焼成温度700℃の条件下で、5時間加熱した。その後、得られた炭窒化ホウ素の塊状物を、ボールミルを用いて20時間解砕処理を行うことで、平均粒径が30μmであり、比表面積が14m/gである炭窒化ホウ素粉末を得た。
[焼成工程]
 上述の炭窒化ホウ素粉末と、焼結助剤であるホウ酸とを配合し、ヘンシェルミキサーを用いて混合した。得られた混合物に更にアクリルバインダーを配合し、シート状に成形した。なお、アクリルバインダーは、グリーンシートの全量を基準として、0.5質量%となるように調整した。シート(グリーンシート)は合計で8枚調製し、グリーンシート1枚当たりの焼結助剤の含有量は16.0質量%であった。
 上述のグリーンシートを8枚積層した積層体を用意し、窒化ホウ素製の坩堝に充填し、蓋をすることで閉鎖空間を形成した。これを、抵抗加熱炉内に設置し、抵抗加熱炉内を大気圧の圧力条件で、窒素ガス雰囲気下、室温から昇温速度2℃/分で2200℃まで昇温した。2200℃で、5時間保持して加熱することによって、焼成体を得た。この際、上記閉鎖空間の体積をA[単位:L]とし、上記閉鎖空間内に投入される焼結助剤の全量[単位:kg]をBとしたときの、B/Aの値が0.044kg/Lとなるように閉鎖空間内の焼結助剤の量を調整した。
[熱処理工程、はく離工程]
 次に、抵抗加熱炉内の坩堝の蓋を外し、開空間を形成し、炉内温度を2020℃として5時間加熱処理を行った。その後、室温まで冷却し、積層体から焼結体シートを順次はく離することによって、窒化ホウ素焼結体シートを得た。
(実施例2)
 上記B/Aの値を0.066kg/Lとなるように変更したこと以外は、実施例1と同様にして、窒化ホウ素焼結体シートを得た。
(比較例1)
 熱処理工程を行わなかったこと以外は、実施例1と同様にして、窒化ホウ素焼結体シートを得た。
(比較例2)
 焼成工程において閉鎖空間を設けず、抵抗加熱炉内で熱処理工程を行なったこと以外は、実施例1と同様にして、窒化ホウ素焼結体シートを得た。
<窒化ホウ素焼結体シートの製造方法に関する評価:はく離性>
 実施例1及び比較例1で調製した窒化ホウ素焼結体シートを製造する際の積層体から得られる焼成体を用いて、はく離性を以下の基準で評価した。具体的には、積層体間にスクレーパーを入れ、破損なく焼結体の単離が実施できた枚数比にて評価した。なお、ここで「枚数比」とは、破損なく剥離できた枚数/全シート数である。測定結果から、以下の基準ではく離性を評価した。結果を表1に示す。
A:破損なく剥離できた枚数比が0.75以上である。
B:破損なく剥離できた枚数比が0.50以上0.75未満である。
C:破損なく剥離できた枚数比が0.20以上0.50未満である。
D:破損なく剥離できた枚数比が0.20未満である。
<窒化ホウ素焼結体シートの評価>
 実施例1及び比較例1で調製した窒化ホウ素焼結体シートについて、後述する方法に基づいて、最大高さ粗さRz、算術平均粗さRa、及び接着性の評価を行った。結果を表1に示す。
[最大高さ粗さRz、及び算術平均粗さRaの測定]
 実施例1及び比較例1で調製した窒化ホウ素焼結体シートについて、最大高さ粗さRz及び算術平均粗さRaの測定は、JIS B 0601:2013「製品の幾何特性使用(GPS)-表面性状:輪郭曲線方式-用語,定義及び表面性状パラメータ」の記載に準拠して測定した。
[熱伝導率の評価]
 得られた六方晶窒化ホウ素焼結体における熱伝導率を、熱伝導率(H:単位W/(m・K))を、熱拡散率(T:単位m/秒)、密度(D:単位kg/m)、及び比熱容量(C:単位J/(kg・K))を用いて、H=T×D×Cの計算式に基づき算出した。熱拡散率Tは、六方晶窒化ホウ素焼結体を、縦×横×厚み=10mm×10mm×0.3mmのサイズに加工した試料を用い、レーザーフラッシュ法によって測定した。測定装置はキセノンフラッシュアナライザ(NETZSCH社製、商品名:LFA447NanoFlash)を用いた。密度Dはアルキメデス法によって測定した。比熱容量Cは、示差走査熱量計(リガク社製、装置名:ThermoPlusEvo DSC8230)を用いて測定した。
Figure JPOXMLDOC01-appb-T000001
 表1中、「※」は閉鎖空間を設けずに行ったため焼成工程を実施したためB/Aの値を定められなかったことを意味する。
 本開示によれば、従来よりも歩留まりよく、熱伝導性に優れる窒化ホウ素焼結体シートの製造方法を提供できる。本開示によればまた、熱伝導性に優れる焼結体シートを提供できる。
 12…塊状粒子、22…針状結晶。

 

Claims (6)

  1.  炭窒化ホウ素と、焼結助剤とを含むグリーンシートの積層体を、焼成炉内の一部を区画して形成される閉鎖空間内で焼成して焼成体を得る工程と、
     前記閉鎖空間を開放して、1800~2020℃で加熱処理することによって、前記焼成体から焼結体シートを得る工程と、を有する、窒化ホウ素焼結体シートの製造方法。
  2.  前記焼結助剤の含有量は、前記グリーンシートの全量を基準として6.0質量%以上である、請求項1に記載の窒化ホウ素焼結体シートの製造方法。
  3.  前記焼成体を25℃まで冷却する工程を更に有する、請求項1又は2に記載の窒化ホウ素焼結体シートの製造方法。
  4.  前記閉鎖空間の体積をA[単位:L]とし、前記閉鎖空間内に投入される焼結助剤の全量[単位:kg]をBとしたときの、B/Aの値が0.040kg/L以上である、請求項1~3のいずれか一項に記載の窒化ホウ素焼結体シートの製造方法。
  5.  窒化ホウ素焼結体シートであって、
     少なくとも一方の主面の最大高さ粗さRzが12~18μmである、焼結体シート。
  6.  厚みが2mm未満である、請求項5に記載の焼結体シート。

     
PCT/JP2022/002676 2021-01-26 2022-01-25 窒化ホウ素焼結体シートの製造方法、及び焼結体シート WO2022163646A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022528626A JP7203284B2 (ja) 2021-01-26 2022-01-25 窒化ホウ素焼結体シートの製造方法、及び焼結体シート

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021010126 2021-01-26
JP2021-010126 2021-01-26

Publications (1)

Publication Number Publication Date
WO2022163646A1 true WO2022163646A1 (ja) 2022-08-04

Family

ID=82654653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002676 WO2022163646A1 (ja) 2021-01-26 2022-01-25 窒化ホウ素焼結体シートの製造方法、及び焼結体シート

Country Status (2)

Country Link
JP (1) JP7203284B2 (ja)
WO (1) WO2022163646A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310822A (ja) * 1993-04-20 1994-11-04 Denki Kagaku Kogyo Kk セラミックス基板及びその用途
JPH1025296A (ja) * 1996-07-09 1998-01-27 Otsuka Chem Co Ltd 繊維状化合物及びその製造方法
JP2011178598A (ja) * 2010-03-01 2011-09-15 Hitachi Metals Ltd 窒化珪素基板の製造方法および窒化珪素基板
JP2014162697A (ja) * 2013-02-27 2014-09-08 Denki Kagaku Kogyo Kk 窒化ホウ素成形体、その製造方法及び用途
JP2015212217A (ja) * 2014-04-18 2015-11-26 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189421A (ja) * 2010-03-12 2011-09-29 Sumitomo Electric Hardmetal Corp 立方晶窒化硼素焼結体工具
KR102438540B1 (ko) * 2017-03-29 2022-08-30 덴카 주식회사 전열 부재 및 이것을 포함하는 방열 구조체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310822A (ja) * 1993-04-20 1994-11-04 Denki Kagaku Kogyo Kk セラミックス基板及びその用途
JPH1025296A (ja) * 1996-07-09 1998-01-27 Otsuka Chem Co Ltd 繊維状化合物及びその製造方法
JP2011178598A (ja) * 2010-03-01 2011-09-15 Hitachi Metals Ltd 窒化珪素基板の製造方法および窒化珪素基板
JP2014162697A (ja) * 2013-02-27 2014-09-08 Denki Kagaku Kogyo Kk 窒化ホウ素成形体、その製造方法及び用途
JP2015212217A (ja) * 2014-04-18 2015-11-26 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法

Also Published As

Publication number Publication date
JPWO2022163646A1 (ja) 2022-08-04
JP7203284B2 (ja) 2023-01-12

Similar Documents

Publication Publication Date Title
JP7069314B2 (ja) 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材
JP6822362B2 (ja) 窒化珪素基板の製造方法、及び窒化珪素基板
TW201827383A (zh) 氮化硼塊狀粒子、其製造方法及使用其之熱傳導樹脂組成物
WO2011043082A1 (ja) 六方晶窒化ホウ素粉末およびその製造方法
KR101751531B1 (ko) 질화 규소 기판 제조방법
JP7062229B2 (ja) 板状の窒化ケイ素質焼結体およびその製造方法
TW201446642A (zh) 氮化鋁粉末
TW201605763A (zh) 氮化矽粉末、氮化矽燒結體及電路基板、以及氮化矽粉末之製造方法
JP7062230B2 (ja) 板状の窒化ケイ素質焼結体およびその製造方法
JP2015081205A (ja) 窒化ケイ素フィラー、樹脂複合物、絶縁基板、半導体封止材
US20050182172A1 (en) Particulate alumina, method for producing particulate alumina and composition containing particulate alumina
JP2002097005A5 (ja)
JP2013071864A (ja) 離型剤用窒化ケイ素粉末およびその製造方法
WO2021200969A1 (ja) 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
WO2021200724A1 (ja) 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
WO2022163646A1 (ja) 窒化ホウ素焼結体シートの製造方法、及び焼結体シート
JP2937850B2 (ja) 窒化アルミニウム焼結体の製造方法
JP4556162B2 (ja) 窒化珪素質焼結体及びその製造方法、並びにそれを用いた回路基板
US11014855B2 (en) Transparent AlN sintered body and method for producing the same
JP7140939B2 (ja) 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法
WO2022163650A1 (ja) 六方晶窒化ホウ素焼結体、及びその製造方法
TW202102433A (zh) 塊狀氮化硼粒子、熱傳導樹脂組成物、以及散熱構件
WO2021117829A1 (ja) 板状の窒化ケイ素質焼結体およびその製造方法
JPWO2020090832A1 (ja) 窒化ケイ素基板の製造方法および窒化ケイ素基板
WO2023162641A1 (ja) 粉末、粉末の製造方法、及び放熱シート

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022528626

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745866

Country of ref document: EP

Kind code of ref document: A1