WO2022163583A1 - 吸着材およびその製造方法、吸着シート、人工透析用分離膜ならびに人工透析機器 - Google Patents

吸着材およびその製造方法、吸着シート、人工透析用分離膜ならびに人工透析機器 Download PDF

Info

Publication number
WO2022163583A1
WO2022163583A1 PCT/JP2022/002442 JP2022002442W WO2022163583A1 WO 2022163583 A1 WO2022163583 A1 WO 2022163583A1 JP 2022002442 W JP2022002442 W JP 2022002442W WO 2022163583 A1 WO2022163583 A1 WO 2022163583A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
mxene
treatment
less
water
Prior art date
Application number
PCT/JP2022/002442
Other languages
English (en)
French (fr)
Inventor
祐樹 木村
一太朗 岡村
武志 部田
雅史 小柳
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202280010993.3A priority Critical patent/CN116887914A/zh
Priority to JP2022578369A priority patent/JP7416289B2/ja
Publication of WO2022163583A1 publication Critical patent/WO2022163583A1/ja
Priority to US18/348,151 priority patent/US20230347290A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/243Dialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28035Membrane, sheet, cloth, pad, lamellar or mat with more than one layer, e.g. laminates, separated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3221Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond the chemical bond being an ionic interaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/10Oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction

Definitions

  • the present disclosure relates to an adsorbent, a manufacturing method thereof, an adsorption sheet, a separation membrane for hemodialysis, and an hemodialysis device.
  • MXene has attracted attention as a new material.
  • MXene is a type of so-called two-dimensional material, which is a layered material having the form of one or more layers, as described below.
  • MXenes generally have the form of particles (also referred to as MXene particles, which may include powders, flakes, nanosheets, etc.) of such layered materials.
  • Non-Patent Document 1 shows that MXene is used for urea removal by dialysis, and that the MXene is obtained by etching with HF.
  • Non-Patent Document 2 describes that the amount of Li between MXene layers can be controlled by adding hydrochloric acid or the like to a suspension obtained by intercalation using Li to adjust the pH to about 2.9. It is shown.
  • Non-Patent Document 3 shows that delamination of multilayer MXene was performed by using TMAOH (tetramethylammonium hydroxide) as a dispersant instead of Li.
  • TMAOH tetramethylammonium hydroxide
  • Non-Patent Document 1 As described in Non-Patent Document 1, in recent years, the use of MXene for urea removal in artificial dialysis, for example, has been shown, but it is difficult to say that the urea adsorption performance of conventional technology is sufficient. MXene disclosed in Non-Patent Document 2 and Non-Patent Document 3 is not intended to remove urea in artificial dialysis. It is desirable to suppress substances as much as possible.
  • the layer has the following formula: M m X n (wherein M is at least one Group 3, 4, 5, 6, 7 metal; X is a carbon atom, a nitrogen atom, or a combination thereof; n is 1 or more and 4 or less, m is greater than n and less than or equal to 5) and a modification or termination T (T is at least one selected from the group consisting of a hydroxyl group, a fluorine atom, a chlorine atom, an oxygen atom and a hydrogen atom) present on the surface of the layer body represented by and The average thickness of the particles is 1 nm or more and 10 nm or less, An adsorbent having a Li content of 0.0001% by mass or more and 0.0020% by mass or less is provided.
  • M is at least one Group 3, 4, 5, 6, 7 metal; X is a carbon atom, a nitrogen atom, or a combination thereof; A is at least one Group 12, 13, 14, 15, 16 element; n is 1 or more and 4 or less, m is greater than n and less than or equal to 5) preparing a precursor represented by (b1) performing an etching treatment using an etchant to remove at least some A atoms from the precursor; (c1) washing the etched product obtained by the etching treatment with water; (d1) performing a Li intercalation treatment including a step of mixing the water-washed product obtained by the water washing with a Li-containing compound; (e) performing a delamination treatment, which includes the step of stirring the Li intercalated product obtained by the Li intercalation treatment; (f) performing an acid treatment, including a step of mixing the delamination-treated product obtained by the delamination treatment with an acid solution; and (
  • the adsorbent contains particles of a predetermined layered material (also referred to herein as “MXene”) and Li, and the average thickness of the particles is 1 nm or more and 10 nm or less.
  • Li content is 0.0001% by mass or more and 0.0020% by mass or less, thereby providing an adsorbent containing MXene and having excellent adsorption performance.
  • a) preparing a predetermined precursor (b1) performing an etching treatment using an etchant to remove at least some A atoms from the precursor, (c1 (d1) mixing the water-washed material obtained by the water washing with a Li-containing compound; (e) performing a delamination treatment, which includes the step of stirring the Li intercalated product obtained by the Li intercalation treatment; (f) delamination obtained by the delamination treatment (g) washing the acid-treated product obtained by the acid treatment with water to remove the particles and the amount of Li; and having the above shape, it is possible to produce an adsorbent having excellent adsorption performance for, for example, polar organic compounds.
  • FIG. 1 is a schematic cross-sectional view showing an MXene, a layered material that can be used in the adsorbents of the present disclosure, where (a) shows a single-layer MXene and (b) shows a multi-layer (illustratively two-layer) MXene.
  • FIG. 4 is a diagram illustrating the interlayer distance of one form of adsorbent according to the present disclosure
  • 1 is a diagram schematically illustrating a dialysis machine using an adsorbent according to the present disclosure
  • the adsorbent in this embodiment is comprising particles of a layered material comprising one or more layers; and Li;
  • the layer has the following formula: M m X n (wherein M is at least one Group 3, 4, 5, 6, 7 metal; X is a carbon atom, a nitrogen atom, or a combination thereof; n is 1 or more and 4 or less, m is greater than n and less than or equal to 5) and a modification or termination T (T is at least one selected from the group consisting of a hydroxyl group, a fluorine atom, a chlorine atom, an oxygen atom and a hydrogen atom) present on the surface of the layer body represented by and
  • T is at least one selected from the group consisting of a hydroxyl group, a fluorine atom, a chlorine atom, an oxygen atom and a hydrogen atom
  • the average thickness of the particles is 1 nm or more and 10 nm or less, Li content is 0.0001 mass % or more and 0.0020
  • the layered material may be understood as a layered compound, also denoted as "M m X n T s ", where s is any number, conventionally x or z may be used instead of s. Typically n can be 1, 2, 3 or 4, but is not so limited.
  • M is preferably at least one selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and Mn, and from Ti, V, Cr and Mo At least one selected from the group consisting of is more preferable.
  • M can be titanium or vanadium and X can be a carbon or nitrogen atom.
  • MAX phase is Ti 3 AlC 2 and MXene is Ti 3 C 2 T s (in other words, M is Ti, X is C, n is 2, m is 3 is).
  • MXene may contain a relatively small amount of residual A atoms, for example, 10% by mass or less relative to the original A atoms.
  • the residual amount of A atoms can be preferably 8% by mass or less, more preferably 6% by mass or less. However, even if the residual amount of A atoms exceeds 10% by mass, there may be no problem depending on the application and usage conditions of the adsorbent.
  • the adsorbent of this embodiment contains Li, its amount is suppressed.
  • the above Li can be derived from an intercalator used for Li intercalation.
  • Li can exist as Li ions intercalated between the layers of MXene and/or supported outside the layers.
  • the adsorbent of this embodiment contains Li, its content is suppressed to 0.0001% by mass or more and 0.0020% by mass or less. By suppressing the Li content to 0.0020% by mass or less, excellent biocompatibility can be realized even when the adsorbent of the present embodiment is used for artificial dialysis, for example.
  • the safety factor against the upper limit of the blood Li concentration which is evaluated in Examples described later, is as high as 27.2 times or more.
  • Li content is measured by ICP-AES using inductively coupled plasma atomic emission spectroscopy. Since the Li content of the adsorbent of the present embodiment is suppressed as described above, it can be used, for example, as an adsorbent for separation membranes in artificial dialysis.
  • the amount of urea or the like that can be adsorbed by MXene per unit volume is determined, and the adsorbent of this embodiment has an unnecessary intercalator (Li in this case) suppressed to a very small amount, so urea etc. can be adsorbed.
  • the adsorbent of the present embodiment contains Li, but the amount thereof is sufficiently suppressed as compared with the conventional MXene containing Li. Therefore, in order to distinguish from the conventional MXene, the MXene constituting the adsorbent of the present embodiment is sometimes referred to as "Li-suppressing MXene".
  • MXene particles corresponding to the skeleton of the Li-suppressed MXene constituting the adsorbent according to the present embodiment will be described below with reference to FIG. FIG. 1 does not show the inclusion of Li.
  • the adsorbent of this embodiment is an aggregate containing one layer of MXene 10a (single layer MXene) schematically illustrated in FIG. 1(a). More specifically, the MXene 10a includes a layer main body (M m X n layer) 1a represented by M m X n and a surface of the layer main body 1a (more specifically, at least two surfaces facing each other in each layer). MXene layer 7a with modifications or terminations T3a, 5a present on one side). Therefore, the MXene layer 7a is also expressed as "M m X n T s ", where s is any number.
  • the adsorbent of this embodiment can include multiple layers as well as one layer.
  • a multi-layer MXene includes a two-layer MXene 10b as schematically shown in FIG. 1(b), but is not limited to these examples.
  • 1b, 3b, 5b and 7b in FIG. 1(b) are the same as 1a, 3a, 5a and 7a in FIG. 1(a) described above.
  • Two adjacent MXene layers (eg 7a and 7b) of a multi-layer MXene are not necessarily completely separated and may be in partial contact.
  • the MXene 10a exists in one layer with the multilayer MXene 10b separated individually, and the multilayer MXene 10b that is not separated may remain and be a mixture of the single-layer MXene 10a and the multilayer MXene 10b. Even when the multi-layered MXene is included, the multi-layered MXene is preferably MXene with a small number of layers obtained through a delamination treatment.
  • the phrase “the number of layers is small” means, for example, that the number of layers of MXene is 10 or less.
  • this "multilayer MXene with a small number of layers" may be referred to as a "small layer MXene".
  • the thickness of the small layer MXene in the lamination direction is preferably 10 nm or less.
  • single-layer MXene and small-layer MXene may be collectively referred to as "single-layer/small-layer MXene”.
  • the adsorbent of the present embodiment preferably contains a large amount of single-layer/small-layer MXene.
  • the specific surface area of MXene can be made larger than that of multi-layer MXene.
  • the number of laminated layers of MXene is 10 layers or less and the thickness is preferably 10 nm or less. It is preferably 90% by volume or more, more preferably 95% by volume or more.
  • the volume of the monolayer MXene is larger than the volume of the few-layer MXene.
  • the mass of single-layer MXenes is larger than the mass of small-layer MXenes.
  • the specific surface area can be further increased, and the adsorption performance can be further enhanced.
  • the adsorbent of this embodiment is formed only of a single layer of MXene.
  • the average thickness of the particles is 1 nm or more and 10 nm or less.
  • the thickness is preferably 7 nm or less, more preferably 5 nm or less.
  • the lower limit of the particle thickness is 1 nm as described above.
  • the thickness of the particles corresponds to the thickness of the MXene layer 7a in FIG. 1 above in the case of a single-layer MXene, and is two layers as shown in FIG. corresponds to the sum of the thickness of the MXene layer 7a, the gap ⁇ d and the thickness of the MXene layer 7b.
  • the average value of the particle thickness is obtained as follows. That is, using an atomic force microscope (AFM), photographs were taken as in the examples described later, 50 MXene particles arbitrarily selected in the photograph were targeted, the thickness of each MXene particle was obtained, and the average value was calculated. Ask.
  • the average maximum dimension in a plane parallel to the layer of particles is preferably 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the average maximum dimension is preferably 0.1 ⁇ m or more, the surface area of the adsorbent is increased, and the performance of adsorbing substances to be adsorbed such as urea can be further improved.
  • the average value of the maximum dimensions is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 10 ⁇ m or less. is.
  • the average value of the maximum dimensions in the plane parallel to the layer of particles is obtained as follows. That is, using a scanning electron microscope (SEM), photographs were taken as in the examples described later, and 50 MXene particles arbitrarily selected in the photograph were targeted in the direction parallel to the sheet surface of each MXene particle ( plane), and find the average of 50 values.
  • SEM scanning electron microscope
  • the XRD profile obtained by X-ray diffraction measurement of the sheet-like adsorbent it can be judged by the position of the low-angle peak of 10° (deg) or less corresponding to the (002) plane of MXene.
  • a higher angle peak in the XRD profile indicates a narrower interlayer distance.
  • the peak position is more preferably 8.5° or more. Note that the upper limit of the peak position is about 9.0°.
  • the peak position refers to the peak top.
  • the X-ray diffraction measurement may be performed under the conditions shown in Examples described later.
  • the above "distance between layers constituting MXene” is - the distance between single-layer MXenes in a structure in which two single-layer MXenes are stacked; the distance between a single-layer MXene and a multi-layer MXene (preferably a small-layer MXene) in a structure in which a single-layer MXene and a multi-layer MXene (preferably a small-layer MXene) are stacked; the distance between the layers (or the gap dimension, indicated by ⁇ d in FIG.
  • FIG. 2 is a diagram showing a crystal structure of Ti 3 C 2 O 2 (O-term) in which M m X n is represented by Ti 3 C 2 as an example of MXene. is a titanium atom, 21 is an oxygen atom, and other elements are not shown.
  • M m X n is represented by Ti 3 C 2 as an example of MXene. is a titanium atom, 21 is an oxygen atom, and other elements are not shown.
  • the distance between layers in one multi-layer MXene refers to the distance indicated by the double arrow in FIG.
  • the interlayer distance can be, for example, ⁇ 0.8 nm and ⁇ 10 nm, in particular ⁇ 0.8 nm and ⁇ 5 nm.
  • Adsorbents of this embodiment may further include one or more of ceramic, metal, and resin materials.
  • the Li-suppressing MXene according to this embodiment is combined with one or more materials selected from ceramics, metals, and resin materials.
  • the ceramic examples include metal oxides such as silica, alumina, zirconia, titania, magnesia, cerium oxide, zinc oxide, barium titanate, hexaferrite, mullite, silicon nitride, titanium nitride, aluminum nitride, silicon carbide, titanium carbide, Non-oxide ceramics such as tungsten carbide, boron carbide, and titanium boride are included.
  • the metal include iron, titanium, magnesium, aluminum, and alloys based thereon.
  • the resin material a cellulose-based material and a synthetic polymer-based material can be used.
  • the polymer include hydrophilic polymers (including those that exhibit hydrophilicity by blending a hydrophilic auxiliary agent with a hydrophobic polymer, and those that have been subjected to a hydrophilic treatment on the surface of a hydrophobic polymer, etc.).
  • the polymer is one or more selected from the group consisting of polysulfone, cellulose acetate, regenerated cellulose, polyethersulfone, water-soluble polyurethane, polyvinyl alcohol, sodium alginate, acrylic acid-based water-soluble polymer, polyacrylamide, polyaniline sulfonic acid, and nylon. Those containing are mentioned.
  • hydrophilic polymer for example, a hydrophilic polymer having a polar group, wherein the polar group is a group forming a hydrogen bond with the modification or termination T of the layer of the Li-suppressing MXene is preferably used.
  • the polymer for example, one or more polymers selected from the group consisting of water-soluble polyurethane, polyvinyl alcohol, sodium alginate, acrylic acid-based water-soluble polymer, polyacrylamide, polyaniline sulfonic acid, and nylon are preferably used. Among these, one or more polymers selected from the group consisting of water-soluble polyurethane, polyvinyl alcohol, and sodium alginate are more preferred, and water-soluble polyurethane is even more preferred.
  • an adsorbent made of a composite material for a living body
  • a high molecular weight polymer constituting a member of a device for hemodialysis and hemofiltration can be used.
  • Specific examples include polymethyl methacrylate, polyacrylonitrile, cellulose, cellulose acetate, polysulfone, polyvinyl alcohol, and vinyl alcohol copolymers such as copolymers of polyvinyl alcohol and ethylene.
  • polysulfone, polymethylmethacrylate, and cellulose acetate are preferred. More preferably, polysulfone and polymethylmethacrylate are used.
  • the ratio of the polymer contained in the composite material can be appropriately set according to the application.
  • the proportion of the polymer in the adsorbent (dry) is more than 0% by volume, and can be, for example, 80% by volume or less, further 50% by volume or less, and further 30% by volume or less. Furthermore, it can be 10% by volume or less, and even more 5% by volume or less.
  • the method of manufacturing the adsorbent made of the composite material is not particularly limited.
  • the adsorbent of the present embodiment contains a polymer and has a sheet-like shape, for example, Li-suppressing MXene and the polymer are mixed to form a coating film, as exemplified below.
  • a Li-suppressed MXene aqueous dispersion, a Li-suppressed MXene organic solvent dispersion, or a Li-suppressed MXene powder in which particles formed of Li-suppressed MXene are present in a solvent may be mixed with a polymer.
  • the solvent for the Li-suppressed MXene aqueous dispersion is typically water, and optionally, in addition to water, other liquid substances are added in relatively small amounts (e.g., 30% by weight or less, preferably 20% by weight or less on a total basis). ).
  • the Li-suppressed MXene particles and the polymer can be stirred using a dispersing device such as a homogenizer, a propeller stirrer, a thin-film orbital stirrer, a planetary mixer, a mechanical shaker, or a vortex mixer.
  • a dispersing device such as a homogenizer, a propeller stirrer, a thin-film orbital stirrer, a planetary mixer, a mechanical shaker, or a vortex mixer.
  • the slurry which is a mixture of the Li-suppressing MXene particles and the polymer, may be applied to a base material (for example, a substrate), but the application method is not limited.
  • a method of spray coating using a nozzle such as a one-fluid nozzle, a two-fluid nozzle, or an airbrush
  • a method of slit coating using a table coater, comma coater, or bar coater screen printing, metal mask printing, or the like
  • spin coating for example, immersion, and dripping.
  • Drying and curing may be performed at temperatures of 400° C. or less using, for example, a normal pressure oven or a vacuum oven.
  • the method for producing the same includes mixing, for example, particulate Li-suppressed MXene and, for example, particulate ceramic or metal, and obtaining a composition of Li-suppressed MXene can be maintained at a low temperature to form an adsorbent.
  • the shape of the adsorbent of this embodiment is not limited.
  • the shape of the adsorbent may be a thick one, a rectangular parallelepiped, a sphere, a polygonal body, or the like, in addition to a sheet-like shape such as a film.
  • a preferred embodiment of the adsorbent of this embodiment is an adsorption sheet.
  • the adsorption sheet is an adsorption sheet formed of the adsorbent of the present embodiment, that is, Li-suppressed MXene or a composite material containing the same, or the adsorbent of the present embodiment is one or more of ceramic, metal, and resin materials. may be formed on the surface of a substrate made of a material such as Ceramics, metals, and resin materials can use the materials mentioned in the above description of the composite material. Among them, an adsorption sheet in which the adsorbent of the present embodiment is formed on a substrate made of a resin material, preferably the polymer described above, is preferable.
  • the adsorbent may be formed on the entire surface of the substrate, for example, by coating or the like, or may be formed on at least a part of the substrate.
  • a method for forming the adsorbent on the substrate for example, generally used coating such as dipping, brush, roller, roll coater, air spray, airless spray, curtain flow coater, roller curtain coater, die coater, electrostatic coating, etc. method can be used.
  • the thickness of the adsorption sheet and the thickness of the substrate can be appropriately set according to the application.
  • a polar organic compound is a general term for organic compounds with polarity. It has polar groups such as OH group, NO2 group, NH group, NH2 group, and COOH group. A compound in which atoms and their polar groups can form hydrogen bonds.
  • polar solvents such as alcohols having a hydroxyl group, compounds having an amino group, ammonia, and the like are examples of adsorption targets.
  • the adsorbent of the present embodiment is used for adsorbing compounds having one or more of these hydroxyl groups and amino groups, and ammonia.
  • examples of compounds having a hydroxyl group include monohydric alcohols having 1 to 22 carbon atoms; polyhydric phenols; polyhydric phenols such as ethylene glycol, propylene glycol, and glycerin. alcohol; alkanolamines such as triethanolamine; sugars such as xylose and glucose;
  • examples of compounds having an amino group include monoamines such as methylamine and dimethylamine; diamines such as ethylenediamine; polyamines such as diethylenetriamine; aromatic amines such as aniline; amino acids such as valine and leucine; etc.
  • Compounds having a hydroxyl group and an amino group include ethanolamine and diethanolamine.
  • the adsorbent of the present embodiment is preferably used for adsorbing uremic toxins including urea, uric acid, creatinine, and the like.
  • the adsorbent of this embodiment can be optimally used especially for adsorbing urea.
  • the adsorbent of this embodiment can be used to adsorb and remove waste products such as urea in hemodialysis, hemofiltration, hemodiafiltration, peritoneal dialysis, and the like. Moreover, the adsorbent of the present embodiment can be used for artificial dialysis equipment for performing the above-described hemodialysis, hemofiltration, hemodiafiltration, peritoneal dialysis, and the like.
  • the above artificial dialysis machines are classified into, for example, hemodialysis machines and peritoneal dialysis machines, and hemodialysis machines are divided into one-pass type (single-pass type) and circulation type. Further, the circulating system includes those with REDY system (recirculating dialysate system) and other systems.
  • the artificial dialyzers are classified according to the method of removing urea without coming into contact with the blood by cross-flow of the blood from the patient and the dialysate, and the method of directly filtering the blood.
  • the peritoneal dialysis machine is mainly of the one-pass type.
  • the adsorbent of the present embodiment can be used for both hemodialysis and peritoneal dialysis, and is used as an adsorption membrane, a separation membrane, an adsorbent cartridge, etc. in artificial dialysis equipment such as hemodialysis equipment and peritoneal dialysis equipment. be able to.
  • the adsorbent of this embodiment is used for a separation membrane for artificial dialysis.
  • the adsorbent of the present embodiment may be used in an adsorbent cartridge.
  • FIG. 3 schematically shows a one-pass hemodialysis machine as an example of an artificial dialysis machine using the adsorbent according to the present invention.
  • untreated blood introduced from a blood inlet 41 is sent to a blood purification equipment 44 by a blood pump 43 .
  • the dialysate is sent from the unused dialysate tank 48 to the blood purification device 44 by the dialysate pump 50 .
  • the blood in the blood passage area 46 of the blood purification device is subjected to hemodialysis, hemodiafiltration or hemofiltration by the separation membrane 45 , and substances to be removed pass through the separation membrane 45 to the blood purification device 44 .
  • dialysate passage area 47 The purified blood is sent to blood outlet 42 .
  • the dialysate in the dialysate passage area 47 containing the substance to be removed is sent to the dialysate tank 49 after use.
  • an apparatus including a route for replenishing the blood with drugs, proteins, etc. as necessary during the feeding of the blood before and/or after the treatment may be provided.
  • Sensors may also be provided for measuring blood flow rate, dialysate flow rate and, optionally, protein concentration in the blood.
  • an on-off valve capable of opening and closing the flow path as necessary may be provided in the middle of the flow path of the blood and/or the dialysate.
  • the separation membrane for artificial dialysis using the adsorbent of this embodiment is suitable for the above hemodialysis and the like.
  • materials that constitute the separation membrane together with the adsorbent of the present embodiment include cellulose-based and synthetic polymer-based materials that are generally used in hemodialysis and the like. Specific examples include polymethyl methacrylate, polyacrylonitrile, cellulose, cellulose acetate, polysulfone, polyvinyl alcohol, and vinyl alcohol copolymers such as copolymers of polyvinyl alcohol and ethylene.
  • One or more selected from the group consisting of polysulfone, polymethyl methacrylate, and cellulose acetate is preferred, and one or more of polysulfone and polymethyl methacrylate is more preferred.
  • the form of the separation membrane for artificial dialysis is not particularly limited, and examples thereof include a porous type, a hollow fiber type, and a flat membrane laminated type.
  • One adsorbent manufacturing method (first manufacturing method) of the present embodiment includes: (a) the following formula: M m AX n (wherein M is at least one Group 3, 4, 5, 6, 7 metal; X is a carbon atom, a nitrogen atom, or a combination thereof; A is at least one Group 12, 13, 14, 15, 16 element; n is 1 or more and 4 or less, m is greater than n and less than or equal to 5) preparing a precursor represented by (b1) performing an etching treatment using an etchant to remove at least some A atoms from the precursor; (c1) washing the etched product obtained by the etching treatment with water; (d1) performing a Li intercalation treatment including a step of mixing the water-washed product obtained by the water washing with a Li-containing compound; (e) performing a delamination treatment, which includes the step of stirring the Li intercalated product obtained by the Li intercalation treatment; (f) performing an acid treatment, including a step of mixing the delamination-treated product obtained by
  • Another adsorbent manufacturing method (second manufacturing method) of the present embodiment includes: (a) the following formula: M m AX n (wherein M is at least one Group 3, 4, 5, 6, 7 metal; X is a carbon atom, a nitrogen atom, or a combination thereof; A is at least one Group 12, 13, 14, 15, 16 element; n is 1 or more and 4 or less, m is greater than n and less than or equal to 5) preparing a precursor represented by (b2) using an etchant containing a Li-containing compound, performing an etching treatment for removing at least a portion of A atoms from the precursor, and performing a Li intercalation treatment; (c2) washing with water the (etching + Li intercalation) treated product obtained by performing the etching treatment and the Li intercalation treatment; (e) performing delamination treatment, which includes a step of agitating the water-washed product obtained by the water washing; (f) performing an acid treatment, including a step of mixing the delamination-treated product obtained
  • a predetermined precursor that can be used in this embodiment is the MAX phase, which is a precursor of MXene, The formula below: M m AX n (wherein M is at least one Group 3, 4, 5, 6, 7 metal; X is a carbon atom, a nitrogen atom, or a combination thereof; A is at least one Group 12, 13, 14, 15, 16 element; n is 1 or more and 4 or less, m is greater than n and less than or equal to 5) is represented by
  • A is at least one Group 12, 13, 14, 15, 16 element, usually a Group A element, typically Groups IIIA and IVA, more particularly Al, Ga, In, It may contain at least one selected from the group consisting of Tl, Si, Ge, Sn, Pb, P, As, S and Cd, preferably Al.
  • a MAX phase is a crystal in which a layer composed of A atoms is located between two layers denoted by M m X n (each X may have a crystal lattice located in an octahedral array of M). have a structure.
  • the MAX phase can be produced by a known method. For example, TiC powder, Ti powder and Al powder are mixed in a ball mill, and the resulting mixed powder is fired in an Ar atmosphere to obtain a fired body (block-shaped MAX phase). After that, the obtained sintered body can be pulverized with an end mill to obtain a powdery MAX phase for the next step.
  • an etching process is performed using an etchant to remove at least a portion of the A atoms from the precursor.
  • Conditions for the etching treatment are not particularly limited, and known conditions can be adopted.
  • Etching can be performed using an etchant containing F- , for example, a method using hydrofluoric acid, a method using a mixed solution of hydrofluoric acid and hydrochloric acid, a method using a mixed solution of lithium fluoride and hydrochloric acid, etc. is mentioned.
  • the etchant may further contain phosphoric acid or the like. These methods include the use of a mixed solution of the acid or the like and, for example, pure water as a solvent.
  • An example of the etching product obtained by the etching treatment is slurry.
  • the etched product obtained by the etching treatment is washed with water.
  • the acid and the like used in the etching process can be sufficiently removed.
  • the amount of water to be mixed with the etched material and the cleaning method are not particularly limited.
  • water may be added, followed by stirring, centrifugation, and the like.
  • Stirring methods include handshake, automatic shaker, shear mixer, pot mill, and the like.
  • the degree of stirring such as stirring speed and stirring time may be adjusted according to the amount, concentration, etc., of the etching material to be processed.
  • the washing with water may be performed once or more. It is preferable to wash with water several times.
  • a Li intercalation treatment is performed, which includes a step of mixing the water-washed product obtained by the water washing with a Li-containing compound.
  • Li-containing compounds include metal compounds containing Li ions.
  • the metal compound containing Li ions an ionic compound in which Li ions and cations are combined can be used.
  • examples include halides including iodides, chlorides and fluorides, sulfide salts including phosphates and sulfates, nitrates, acetates and carboxylates of Li ions.
  • the content of the Li-containing compound in the compound for intercalation treatment is preferably 0.001% by mass or more.
  • the above content is more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more.
  • the content of the Li-containing compound is preferably 10% by mass or less, more preferably 1% by mass or less.
  • the specific method of the intercalation treatment is not particularly limited.
  • the water medium clay of MXene may be mixed with a Li-containing compound and stirred or allowed to stand still.
  • stirring at room temperature is mentioned.
  • the stirring method include a method using a stirrer such as a stirrer, a method using a stirring blade, a method using a mixer, and a method using a centrifugal device.
  • the stirring time depends on the production scale of the adsorbent. For example, it can be set between 12 and 24 hours.
  • step (b2) the etching treatment of the precursor and the Li intercalation treatment are performed together.
  • an etching solution containing a Li-containing compound is used to etch (remove and optionally layer-separate) at least a portion of A atoms (and optionally a portion of M atoms) from the precursor. , Li intercalation processing.
  • Li ions are inserted between the layers of the M m X n layer. , Li intercalation processing.
  • the ionic compound shown in step (d1) in the first production method can be used as the Li-containing compound.
  • the content of the Li-containing compound in the etching solution is preferably 0.001% by mass or more.
  • the above content is more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more.
  • the content of the Li-containing compound in the etching solution is preferably 10% by mass or less, more preferably 1% by mass or less.
  • the etching solution in the step (b2) should just contain a Li-containing compound, and other constituents of the etching solution are not particularly limited, and known conditions can be adopted.
  • a Li-containing compound such as a Li-containing compound, and other constituents of the etching solution are not particularly limited, and known conditions can be adopted.
  • it can be performed using an etching solution that further contains F- , such as a method using hydrofluoric acid, a method using a mixed solution of hydrofluoric acid and hydrochloric acid, lithium fluoride and A method using a mixed solution of hydrochloric acid and the like can be mentioned.
  • the etchant may further contain phosphoric acid or the like. These methods include the use of a mixed solution of the acid or the like and, for example, pure water as a solvent.
  • An example of the etching product obtained by the etching treatment is slurry.
  • ⁇ Process (c2) The (etching+Li intercalation) treated product obtained by the etching treatment and the Li intercalation treatment is washed with water. By washing with water, the acid and the like used in the above (etching + Li intercalation) treatment can be sufficiently removed. (Etching + Li intercalation)
  • the amount of water to be mixed with the processed material and the washing method are not particularly limited. For example, water may be added, followed by stirring, centrifugation, and the like. Stirring methods include handshake, automatic shaker, shear mixer, pot mill, and the like. The degree of stirring such as stirring speed and stirring time may be adjusted according to the amount, concentration, etc. of the material to be treated.
  • the washing with water may be performed once or more.
  • the manufacturing method in which the step (b1) etching process and the step (d1) Li intercalation process are separated as in the first manufacturing method It is preferable because MXene is more easily formed into a monolayer.
  • ⁇ Process (e) Stirring the Li intercalated product obtained by the Li intercalation treatment of step (d1) in the first production method or the water-washed product obtained by water washing of step (c2) in the second production method.
  • a delamination process is performed, including steps.
  • MXene can be made into a single layer or a small number of layers.
  • Conditions for the delamination treatment are not particularly limited, and a known method can be used.
  • the stirring method includes handshake, stirring using an automatic shaker, and the like. The degree of stirring such as stirring speed and stirring time may be adjusted according to the amount, concentration, etc. of the material to be treated.
  • the step of removing the unexfoliated substances includes a step of centrifuging, discarding the supernatant, and washing the remaining precipitate with water. For example, (i) pure water is added to the remaining precipitate after discarding the supernatant, and the mixture is stirred, (ii) centrifuged, and (iii) the supernatant is recovered.
  • the operations (i) to (iii) are repeated once or more, preferably twice or more, and 10 times or less to obtain a single-layer/small-layer MXene-containing supernatant before acid treatment as a delamination-treated product.
  • the supernatant may be centrifuged, the supernatant after centrifugation may be discarded, and single-layer/small-layer MXene-containing clay before acid treatment may be obtained as a delamination product.
  • ultrasonic treatment is not performed as delamination.
  • particle destruction is unlikely to occur, and an adsorbent containing single-layer/small-layer MXene with a large two-dimensional plane, that is, a plane parallel to the layer of particles can be obtained.
  • ⁇ Process (f) An acid treatment (" (also called acid cleaning).
  • This acid treatment can reduce the amount of Li in the adsorbent.
  • the adsorption of urea is synonymous with intercalating urea, and the amount of MXene that can be intercalated per unit volume is fixed.
  • the excess intercalator (in this case, Li) remaining after the Li intercalation is removed, thereby increasing the amount of urea adsorbed in the artificial dialysis.
  • the acid used for the acid treatment is not limited, and inorganic acids such as mineral acids and/or organic acids can be used, for example.
  • Said acid is preferably an inorganic acid only or a mixed acid of an inorganic acid and an organic acid.
  • Said acid is more preferably only an inorganic acid.
  • the inorganic acid for example, one or more of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, perchloric acid, hydroiodic acid, hydrobromic acid, hydrofluoric acid and the like can be used.
  • it is one or more of hydrochloric acid and sulfuric acid.
  • organic acid examples include acetic acid, citric acid, oxalic acid, benzoic acid, sorbic acid and the like.
  • concentration of the acid solution to be mixed with the delamination material may be adjusted according to the amount and concentration of the delamination material to be treated.
  • the delamination-treated product and the acid solution may be mixed and stirred.
  • Stirring methods include handshake, automatic shaker, shear mixer, pot mill, and the like.
  • the degree of stirring such as stirring speed and stirring time may be adjusted according to the amount, concentration, etc. of the delamination material to be treated.
  • the acid solution When the acid solution is mixed and stirred, it does not matter whether it is heated or not.
  • the acid solution may be mixed and stirred without heating, or the mixture may be stirred while being heated so that the liquid temperature is 80° C. or lower.
  • centrifugation may be performed to remove the supernatant to obtain an acid-treated product as a slurry.
  • the operation of mixing with the acid solution and stirring may be performed once or more. From the viewpoint of reducing the Li content in the MXene particles, the operation of mixing with a fresh acid solution (acid solution that has not been used for acid treatment) and stirring is performed twice or more, for example, within the range of 10 times or less. preferably.
  • Steps (i) to (iii) of centrifuging and (iii) discarding the supernatant after centrifugation may be carried out two or more times, for example, 10 or less times.
  • the pH of the acid-treated product obtained by the acid treatment is preferably 2.5 or less.
  • the pH is more preferably 2.0 or less, still more preferably 1.5 or less, and even more preferably 1.2 or less.
  • the lower limit of pH is not particularly limited, it is about 1.0.
  • the acid treatment is performed as described above to actively remove Li, so the Li content in the MXene particles can be further reduced.
  • ⁇ Process (g) The acid-treated product obtained by acid treatment is washed with water to obtain an adsorbent. This water washing can raise the pH lowered by the acid treatment. After washing the acid-treated product with water, the pH is preferably 4 or more, for example 7 or less. According to the present embodiment, after the acid treatment in step (f), this washing with water raises the pH to, for example, 4 or higher, thereby reconstructing OH groups on the MXene surface that easily adsorb urea, for example. As a result, it is thought that the activity of the adsorption performance increases and the amount of urea adsorbed increases.
  • the amount of water to be mixed with the acid-treated product and the washing method are not particularly limited.
  • water may be added, followed by stirring, centrifugation, and the like.
  • Stirring methods include handshake, automatic shaker, shear mixer, pot mill, and the like.
  • the degree of stirring such as stirring speed and stirring time may be adjusted according to the amount, concentration, etc. of the acid-treated material to be treated.
  • the washing with water may be performed once or more. It is preferable to wash with water several times.
  • adsorbent the manufacturing method thereof, the adsorption sheet, the separation membrane for hemodialysis, and the hemodialysis device according to the embodiment of the present invention have been described in detail above, various modifications are possible.
  • the adsorbent of the present disclosure may be manufactured by a method different from the manufacturing method in the above-described embodiment, and the method for manufacturing the adsorbent of the present disclosure provides the adsorbent in the above-described embodiment. Note that it is not limited to only
  • Precursor (MAX) preparation TiC powder, Ti powder and Al powder (all manufactured by Kojundo Chemical Laboratory Co., Ltd.) were placed in a ball mill containing zirconia balls at a molar ratio of 2:1:1. mixed for 24 hours. The obtained mixed powder was fired at 1350° C. for 2 hours in an Ar atmosphere. The resulting sintered body (block-shaped MAX) was pulverized with an end mill to a maximum dimension of 40 ⁇ m or less. This gave Ti 3 AlC 2 particles as a precursor (powdered MAX).
  • Li intercalation Using Li as an intercalator, the Ti 3 C 2 T s -water medium clay prepared by the above method was stirred at 20° C. or higher and 25° C. or lower for 10 hours to intercalate Li. performed a session.
  • Detailed conditions for Li intercalation are as follows. (Li intercalation conditions) Ti 3 C 2 T s -water-borne clay (MXene after water wash): 0.75 g solids ⁇ LiCl: 0.75 g ⁇ Intercalation container: 100 mL eyeboy ⁇ Temperature: 20°C or higher and 25°C or lower (room temperature) ⁇ Time: 10 hours ⁇ Stirrer rotation speed: 800 rpm
  • Comparative Example 1 In Comparative Example 1, (1) the precursor (MAX) was prepared in the same manner as in Examples 1 to 4, and then the following steps (2) and (3) were performed with reference to the method described in Non-Patent Document 1. was performed in order to obtain an MXene-containing sample.
  • Precursor (MAX) preparation Same as in Examples 1 to 4 (2) Precursor etching Using the Ti 3 AlC 2 particles (powder) prepared in the above step (1), etching under the following etching conditions. was performed to obtain a solid-liquid mixture (slurry) containing a solid component derived from the Ti 3 AlC 2 powder.
  • Etching liquid composition 50% HF 5 mL, 45 mL H2O
  • Precursor input amount 5.0 g ⁇ Etching container: 100 mL eyeboy ⁇ Etching temperature: 35 ° C.
  • Comparative Example 2 In Comparative Example 2, (1) the precursor (MAX) was prepared in the same manner as in Examples 1 to 4, and then the following steps (2) to (5) were performed with reference to the method described in Non-Patent Document 2. was performed in order to obtain an MXene-containing sample.
  • Precursor (MAX) preparation same as in Examples 1 to 4
  • Precursor etching and Li intercalation Using Ti AlC 2 particles (powder) prepared in step (1) above, Etching was performed under the following etching conditions and Li intercalation was performed to obtain a solid-liquid mixture (slurry) containing a solid component derived from the Ti 3 AlC 2 powder.
  • ⁇ Precursor Ti 3 AlC 2 (through a 45 ⁇ m sieve)
  • Etching liquid composition LiF 2.4 g HCl (9M) 30 mL
  • Precursor input amount 1.5 g
  • Etching container 100 mL eyeboy ⁇ Etching temperature: 25 ° C.
  • Comparative Example 3 In Comparative Example 3, (1) the precursor (MAX) was prepared in the same manner as in Examples 1 to 4 above, and then the following (2) to (5) were performed with reference to the method described in Non-Patent Document 3. The steps were performed in sequence to obtain MXene-containing samples.
  • Precursor (MAX) preparation Same as in Examples 1 to 4 (2) Precursor etching Using the Ti 3 AlC 2 particles (powder) prepared in the above step (1), etching under the following etching conditions. was performed to obtain a solid-liquid mixture (slurry) containing a solid component derived from the Ti 3 AlC 2 powder.
  • Etching conditions ⁇ Precursor: Ti 3 AlC 2 (through a 45 ⁇ m sieve) ⁇ Etching liquid composition: 49% HF 6 mL 54 mL H2O ⁇
  • Comparative Example 4 In Comparative Example 4, (1) the precursor (MAX) was prepared in the same manner as in Examples 1 to 4, and then the following steps (2) and (3) were performed in order to obtain an MXene-containing sample.
  • Precursor (MAX) preparation Same as in Examples 1 to 4 (2)
  • Precursor etching Using the Ti 3 AlC 2 particles (powder) prepared in the above step (1), etching under the following etching conditions. was performed to obtain a solid-liquid mixture (slurry) containing a solid component derived from the Ti 3 AlC 2 powder.
  • ⁇ Precursor Ti 3 AlC 2 (through a 45 ⁇ m sieve) ⁇ Etching liquid composition: 49% HF 6 mL HCl (9M) 45 mL 9 mL H2O ⁇ Precursor input amount: 3.0 g ⁇ Etching container: 100 mL eyeboy ⁇ Etching temperature: 35 ° C. ⁇ Etching time: 24h ⁇ Stirrer rotation speed: 400 rpm (3) Washing with Water after Etching The slurry was divided into two parts, each inserted into two 50 mL centrifuge tubes, centrifuged at 3500 G using a centrifuge, and the supernatant liquid was discarded.
  • Comparative Example 5 In Comparative Example 5, (1) the precursor (MAX) was prepared in the same manner as in Examples 1 to 4, and then the following steps (2) to (5) were performed in order to obtain an MXene-containing sample. .
  • Precursor (MAX) preparation Same as in Examples 1 to 4 (2) Precursor etching Using the Ti 3 AlC 2 particles (powder) prepared in the above step (1), etching under the following etching conditions. was performed to obtain a solid-liquid mixture (slurry) containing a solid component derived from the Ti 3 AlC 2 powder.
  • ⁇ Precursor Ti 3 AlC 2 (through a 45 ⁇ m sieve) ⁇ Etching liquid composition: 49% HF 6 mL HCl (9M) 45 mL 9 mL H2O ⁇ Precursor input amount: 3.0 g ⁇ Etching container: 100 mL eyeboy ⁇ Etching temperature: 35 ° C. ⁇ Etching time: 24h ⁇ Stirrer rotation speed: 400 rpm (3) Washing with Water after Etching The slurry was divided into two parts, each inserted into two 50 mL centrifuge tubes, centrifuged at 3500 G using a centrifuge, and the supernatant liquid was discarded.
  • Li intercalation Using Li as an intercalator, the Ti 3 C 2 T s -water medium clay prepared by the above method was stirred at 20° C. or higher and 25° C. or lower for 10 hours to intercalate Li. performed a session.
  • Detailed conditions for Li intercalation are as follows. (Li intercalation conditions) Ti 3 C 2 T s -water-borne clay (MXene after water wash): 0.75 g solids ⁇ LiCl: 0.75 g ⁇ Intercalation container: 100 mL eyeboy ⁇ Temperature: 20°C or higher and 25°C or lower (room temperature) ⁇ Time: 10 hours ⁇ Stirrer rotation speed: 800 rpm
  • urea solution containing no MXene-containing sample and a urea solution containing no MXene-containing sample diluted twice were prepared. Then, the absorbance of each solution was measured to create a calibration curve. Next, the absorbance was measured using the samples prepared in procedure (5), and the respective absorbances were compared with the calibration curve to determine the concentration of urea remaining in the solution without being adsorbed. Then, from this urea concentration, the urea adsorption amount (urea adsorption amount (mg) per 1 g of the MXene-containing sample) was calculated. Table 1 shows the results.
  • a urea adsorption amount of 30 mg/g or more was judged to be ⁇ (good), 10 mg/g or more and less than 30 mg/g was judged to be ⁇ (conventional level), and less than 10 mg/g was judged to be x (poor).
  • a safety factor of 5.0 (fold) or more is ⁇ (good), 3.0 (fold) or more and less than 5.0 (fold) is ⁇ (conventional level), 3.0 (fold) Less than was judged to be x (defective).
  • the overall evaluation was ⁇ (good), and when they were not, the overall evaluation was x (poor). Table 1 shows the results.
  • the XRD measurement was performed under the following conditions to obtain a two-dimensional X-ray diffraction image of the MXene film. The results are shown in FIG.
  • Example 1 has the smallest interlayer distance, and Comparative Examples 3 and 5 have larger interlayer distances than Example 1.
  • Comparative Example 3 does not contain Li, but contains TMA (organic dispersant) derived from TMAOH, which is considered to increase the interlayer distance.
  • Comparative Example 5 the amount of Li was not suppressed, and Li was present between the layers of MXene, so it is considered that the interlayer distance increased.
  • Li intercalation is performed and then delamination is performed to promote monolayer formation.
  • Layer MXene As a result, compared to Comparative Examples 1 and 4 using multi-layered MXene, for example, in artificial dialysis, an adsorbent of MXene having a sufficiently large surface area can sufficiently adsorb and remove urea.
  • the intercalator remaining after Li intercalation (Li in this case) can be sufficiently removed, and the urea adsorption amount in the artificial dialysis can be increased. It is thought that in addition, by undergoing this acid treatment, etc., Li, which is harmful to the human body, especially to patients with kidney disease, is sufficiently suppressed as compared with Non-Patent Document 2 (Comparative Example 2) and Comparative Example 5, and the Li content is reduced to 0.0020. By setting the amount to mass % or less, the safety factor against the upper limit of blood Li concentration was 27.2 times or more.
  • Non-Patent Document 3 Comparative Example 3
  • the adsorbent since it does not contain TMAOH, which is harmful to the human body and inhibits urea adsorption, as shown in Non-Patent Document 3 (Comparative Example 3), for example, the adsorbent has high urea adsorption performance and excellent biocompatibility. can provide
  • the OH group that easily adsorbs urea is reconstructed on the surface of MXene, the activity of adsorption performance increases, and the amount of urea adsorbed increased.
  • the adsorbent of the present disclosure can be used for any appropriate application, and can be preferably used, for example, as a separation membrane in hemodialysis equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • External Artificial Organs (AREA)

Abstract

MXeneを含み、例えば極性有機化合物との吸着性能に優れた吸着材を提供する。前記吸着材は、1つまたは複数の層を含む層状材料の粒子と、Liとを含み、前記層が、以下の式:MmXn(式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、Xは、炭素原子、窒素原子またはそれらの組み合わせであり、nは、1以上4以下であり、mは、nより大きく、5以下である)で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、塩素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含み、前記粒子の厚さの平均値が、1nm以上10nm以下であり、Li含有量が、0.0001質量%以上0.0020質量%以下である。

Description

吸着材およびその製造方法、吸着シート、人工透析用分離膜ならびに人工透析機器
 本開示は、吸着材およびその製造方法、吸着シート、人工透析用分離膜ならびに人工透析機器に関する。
 近年、新規材料としてMXeneが注目されている。MXeneは、いわゆる2次元材料の1種であり、後述するように、1つまたは複数の層の形態を有する層状材料である。一般的に、MXeneは、かかる層状材料の粒子(MXene粒子ともいう。粉末、フレーク、ナノシート等を含み得る)の形態を有する。
 現在、電子デバイス、医療機器等の各種用途へのMXeneの応用に向けて様々な研究がなされている。例えば非特許文献1には、透析での尿素除去にMXeneを用いることが示され、該MXeneはHFでエッチングして得られたことが示されている。非特許文献2には、Liを用いたインターカレーションにより得られた懸濁液に、塩酸等を添加してpHを約2.9に調整することで、MXene層間のLi量をコントロールできることが示されている。非特許文献3には、Liに代えて、分散剤としてTMAOH(水酸化テトラメチルアンモニウム)を用いることによって、多層MXeneの層間剥離を行ったことが示されている。
Fayan Meng et al., MXene Sorbents for Removal of Urea from Dialysate: A Step toward the Wearable Artificial Kidney ACS Nano 2018, 12, 10518-10528 Hongwu chen et al., Pristine Titanium Carbide MXene Films with Environmentally Stable Conductivity and Superior Mechanical Strength (Adv. Funct. Mater. 2020, 30, 1906996) Mohamed Alhabeb et al., Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) Chem. Mater. 2017, 29, 7633-7644
 非特許文献1に記載の通り、近年では、例えば人工透析での尿素除去にMXeneを用いることが示されているが、従来の技術では尿素の吸着性能が十分とは言い難い。非特許文献2と非特許文献3に開示のMXeneは、人工透析での尿素除去等を目的とするものでなく、透析での尿素除去に用いるにあたり、Li、TMAOH等の腎臓疾患患者に有害な物質を極力抑制することが望まれる。
 本開示の1つの要旨によれば、
 1つまたは複数の層を含む層状材料の粒子と、Liとを含み、
 前記層が、以下の式:
  M
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  nは、1以上4以下であり、
  mは、nより大きく、5以下である)
で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、塩素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含み、
 前記粒子の厚さの平均値が、1nm以上10nm以下であり、
 Li含有量が、0.0001質量%以上0.0020質量%以下である、吸着材が提供される。
 本開示のもう1つの要旨によれば、
 (a)以下の式:
  MAX
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  Aは、少なくとも1種の第12、13、14、15、16族元素であり、
  nは、1以上4以下であり、
  mは、nより大きく、5以下である)
で表される前駆体を準備すること、
 (b1)エッチング液を用いて、前記前駆体から少なくとも一部のA原子を除去する、エッチング処理を行うこと、
 (c1)前記エッチング処理により得られたエッチング処理物を、水洗浄すること、
 (d1)前記水洗浄により得られた水洗浄処理物と、Li含有化合物とを混合する工程を含む、Liインターカレーション処理を行うこと、
 (e)前記Liインターカレーション処理して得られたLiインターカレーション処理物を撹拌する工程を含む、デラミネーション処理を行うこと、
 (f)デラミネーション処理して得られたデラミネーション処理物と、酸溶液を混合する工程を含む、酸処理を行うこと、および
 (g)酸処理して得られた酸処理物を、水で洗浄して吸着材を得ること
を含み、吸着材中のLi含有量が、0.0001質量%以上0.0020質量%以下である、吸着材の製造方法が提供される。
 本開示によれば、吸着材が、所定の層状材料(本明細書において「MXene」とも言う)の粒子と、Liとを含み、前記粒子の厚さの平均値が、1nm以上10nm以下であり、Li含有量が、0.0001質量%以上0.0020質量%以下であり、これにより、MXeneを含み、吸着性能に優れた吸着材が提供される。
 また本開示によれば、(a)所定の前駆体を準備すること、(b1)エッチング液を用いて、前記前駆体から少なくとも一部のA原子を除去する、エッチング処理を行うこと、(c1)前記エッチング処理により得られたエッチング処理物を、水洗浄すること、(d1)前記水洗浄により得られた水洗浄処理物と、Li含有化合物とを混合する工程を含む、Liインターカレーション処理を行うこと、(e)Liインターカレーション処理して得られたLiインターカレーション処理物を撹拌する工程を含む、デラミネーション処理を行うこと、(f)デラミネーション処理して得られたデラミネーション処理物と、酸溶液を混合する工程を含む、酸処理を行うこと、および(g)酸処理して得られた酸処理物を、水で洗浄することにより、上記粒子と上記量のLiとを含み、上記形状を有して、例えば極性有機化合物の吸着性能に優れた吸着材を製造することができる。
本開示の吸着材に利用可能な層状材料であるMXeneを示す概略模式断面図であって、(a)は単層MXeneを示し、(b)は多層(例示的に二層)MXeneを示す。 本開示に係る吸着材の1つの形態の層間距離を説明する図である。 本開示に係る吸着材を用いた人工透析機器を模式的に例示した図である。 実施例でのX線回折測定結果を示す図である。
 (実施形態1:吸着材)
 以下、本発明の1つの実施形態における吸着材について詳述するが、本開示はかかる実施形態に限定されるものではない。
 本実施形態における吸着材は、
 1つまたは複数の層を含む層状材料の粒子と、Liとを含み、
 前記層が、以下の式:
  M
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  nは、1以上4以下であり、
  mは、nより大きく、5以下である)
で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、塩素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含み、
 前記粒子の厚さの平均値が、1nm以上10nm以下であり、
 Li含有量が、0.0001質量%以上0.0020質量%以下である。
 上記層状材料は、層状化合物として理解され得、「M」とも表され、sは任意の数であり、従来、sに代えてxまたはzが使用されることもある。代表的には、nは、1、2、3または4であり得るが、これに限定されない。
 MXeneの上記式中、Mは、Ti、Zr、Hf、V、Nb、Ta、Cr、MoおよびMnからなる群より選択される少なくとも1つであることが好ましく、Ti、V、CrおよびMoからなる群より選択される少なくとも1つであることがより好ましい。
 MXeneは、上記の式:Mが、以下のように表現されるものが知られている。
 ScC、TiC、TiN、ZrC、ZrN、HfC、HfN、VC、VN、NbC、TaC、CrC、CrN、MoC、Mo1.3C、Cr1.3C、(Ti,V)C、(Ti,Nb)C、WC、W1.3C、MoN、Nb1.3C、Mo1.30.6C(上記式中、「1.3」および「0.6」は、それぞれ約1.3(=4/3)および約0.6(=2/3)を意味する。)、
 Ti、Ti、Ti(CN)、Zr、(Ti,V)、(TiNb)C、(TiTa)C、(TiMn)C、Hf、(HfV)C、(HfMn)C、(VTi)C、(CrTi)C、(CrV)C、(CrNb)C、(CrTa)C、(MoSc)C、(MoTi)C、(MoZr)C、(MoHf)C、(MoV)C、(MoNb)C、(MoTa)C、(WTi)C、(WZr)C、(WHf)C
 Ti、V、Nb、Ta、(Ti,Nb)、(Nb,Zr)、(TiNb)C、(TiTa)C、(VTi)C、(VNb)C、(VTa)C、(NbTa)C、(CrTi)C、(Cr)C、(CrNb)C、(CrTa)C、(MoTi)C、(MoZr)C、(MoHf)C、(Mo)C、(MoNb)C、(MoTa)C、(WTi)C、(WZr)C、(WHf)C、(Mo2.71.3)C(上記式中、「2.7」および「1.3」は、それぞれ約2.7(=8/3)および約1.3(=4/3)を意味する。)
 代表的には、上記の式において、Mがチタンまたはバナジウムであり、Xが炭素原子または窒素原子であり得る。例えば、MAX相は、TiAlCであり、MXeneは、Tiである(換言すれば、MがTiであり、XがCであり、nが2であり、mが3である)。
 なお、本開示において、MXeneは、残留するA原子を比較的少量、例えば元のA原子に対して10質量%以下で含んでいてもよい。A原子の残留量は、好ましくは8質量%以下、より好ましくは6質量%以下であり得る。しかしながら、A原子の残留量は、10質量%を超えていたとしても、吸着材の用途や使用条件によっては問題がない場合もあり得る。
 本実施形態の吸着材は、Liを含むがその量は抑制されている。上記Liは、Liのインターカレーションに用いるインターカレーターに由来しうる。本実施形態の吸着材において、Liは、Liイオンとして、MXeneの層間にインターカレートされている、および/または、層外に担持されている等により存在しうる。本実施形態の吸着材は、Liを含むがその含有量は、0.0001質量%以上0.0020質量%以下に抑えられている。Li含有量が0.0020質量%以下に抑制されていることによって、本実施形態の吸着材を例えば人工透析に用いる場合等であっても、優れた生体適合性を実現できる。具体的には、後述する実施例で評価する、血中Li濃度の上限値に対する安全率が27.2倍以上と高い。Li含有量は、誘導結合プラズマ発光分光分析法を用いたICP-AESにより測定される。本実施形態の吸着材は、Li含有量が上記の通り抑制されているため、例えば人工透析における分離膜用の吸着材等として用いることができる。また、単位体積当たりのMXeneに尿素等が吸着可能な量は決まっており、本実施形態の吸着材は不要なインターカレーター(この場合Li)がごく少量に抑制されているため、尿素等を多く吸着させることができる。
 本実施形態の吸着材は、上述の通り、Liを含むがその量は、従来のLiを含むMXeneよりも十分に抑制されている。よって、従来のMXeneと区別するため、本実施形態の吸着材を構成するMXeneを「Li抑制MXene」ということがある。
 以下では、本実施形態に係る吸着材を構成するLi抑制MXeneの、骨格に該当するMXene粒子について図1を用いて説明する。図1には、Liを含有することは図示していない。
 本実施形態の吸着材は、図1(a)に模式的に例示する1つの層のMXene10a(単層MXene)を含む集合物である。MXene10aは、より詳細には、Mで表される層本体(M層)1aと、層本体1aの表面(より詳細には、各層にて互いに対向する2つの表面の少なくとも一方)に存在する修飾または終端T3a、5aとを有するMXene層7aである。よって、MXene層7aは、「M」とも表され、sは任意の数である。
 本実施形態の吸着材は、1つの層と共に複数の層を含みうる。複数の層のMXene(多層MXene)として、図1(b)に模式的に示す通り、2つの層のMXene10bが挙げられるが、これらの例に限定されない。図1(b)中の、1b、3b、5b、7bは、前述の図1(a)の1a、3a、5a、7aと同じである。多層MXeneの、隣接する2つのMXene層(例えば7aと7b)は、必ずしも完全に離間していなくてもよく、部分的に接触していてもよい。前記MXene10aは、上記多層MXene10bが個々に分離されて1つの層で存在するものであり、分離されていない多層MXene10bが、残存し、上記単層MXene10aと多層MXene10bの混合物である場合がある。上記多層MXeneを含む場合であっても、多層MXeneは、層間剥離処理を経て得られた、層数の少ないMXeneであることが好ましい。前記「層数が少ない」とは、例えばMXeneの積層数が10層以下であることをいう。以下、この「層数の少ない多層MXene」を「少層MXene」ということがある。少層MXeneの積層方向の厚みは、10nm以下であることが好ましい。また、単層MXeneと少層MXeneを併せて「単層・少層MXene」ということがある。
 本実施形態の吸着材は、単層・少層MXeneを多く含むことが好ましい。単層・少層MXeneを多く含むことによって、MXeneの比表面積を多層MXeneよりも大きくすることができ、その結果、吸着対象物質を多く吸着させることができ、吸着性能をより高めることができる。例えば本実施形態の吸着材は、MXeneの積層数が10層以下かつ厚みが好ましくは10nm以下である、単層・少層MXeneが、全MXeneに占める割合で、80体積%以上であることが好ましく、90体積%以上であることがより好ましく、更に好ましくは95体積%以上である。また、単層MXeneの体積が、少層MXeneの体積よりも多いことがより好ましい。これらのMXeneの真密度は、存在形態により大きく変動はしないため、単層MXeneの質量が、少層MXeneの質量よりも多いことがより好ましいともいえる。これらの関係にある場合、比表面積を更に増大させることができ、吸着性能を更に高めることができる。最も好ましくは、本実施形態の吸着材が単層MXeneのみで形成されていることである。
 (粒子の厚さの平均値)
 粒子の厚さの平均値は、1nm以上10nm以下である。前記厚みは、好ましくは7nm以下であり、より好ましくは5nm以下である。一方、単層MXeneの厚みを考慮すると、粒子の厚みの下限は上記の通り1nmとなる。上記粒子の厚さは、単層MXeneの場合、上記図1のMXene層7aの厚さに相当し、多層MXene(好ましくは少層MXene)として、例えば図1(b)の通り2層である場合、MXene層7aの厚さ、空隙ΔdおよびMXene層7bの厚さの合計に相当する。
 粒子の厚さの平均値は次のようにして求める。すなわち、原子間力顕微鏡(AFM)を用い、後述の実施例の通り写真を撮影し、写真において任意に選択される50個のMXene粒子を対象として、各MXene粒子の厚みを求め、平均値を求める。
 (粒子の層に平行な平面内における最大寸法の平均値)
 粒子の層に平行な平面内における最大寸法の平均値は、0.1μm以上20μm以下であることが好ましい。上記最大寸法の平均値が好ましくは0.1μm以上であることにより、吸着材の表面積がより大きくなり、例えば尿素等の吸着対象物質を吸着する性能をより向上させることができる。一方、例えば人工透析に使用する透析液等の溶液中における分散性を確保する観点から、上記最大寸法の平均値は、20μm以下であることが好ましく、より好ましくは15μm以下、更に好ましくは10μm以下である。
 粒子の層に平行な平面内における最大寸法の平均値は次のようにして求める。すなわち、走査型電子顕微鏡(SEM)を用い、後述の実施例の通り写真を撮影し、写真において任意に選択される50個のMXene粒子を対象として、各MXene粒子のシート面に平行な方向(平面)の最大寸法を求め、50個の平均値を求める。
 (シート状の吸着材における層間距離)
 本実施形態の吸着材は、MXeneを構成する層と層の間にLiイオンがほとんど存在していないため、MXeneを構成する層と層の間の距離がLiイオンを多く有するMXeneよりも短い。このことは、本実施形態の吸着材をシート状の吸着材とし、シート状の吸着材をX線回折測定して得られるXRDプロファイルから判断できる。例えば、シート状の吸着材をX線回折測定して得られるXRDプロファイルにおいて、MXeneの(002)面に相当する10°(deg)以下の低角のピークの位置で判断できる。XRDプロファイルにおけるピークが高角であるほど、層間距離が狭まっていることを示す。本実施形態における吸着材は、シート状の吸着材をX線回折測定して得られる(002)面のピークが2θ=8.0°以上であることが好ましい。前記ピーク位置はより好ましくは8.5°以上である。なお、ピーク位置の上限は9.0°程度である。前記ピーク位置は、ピークトップをいう。前記X線回折測定は、後述する実施例に示す条件で測定すればよい。
 上記「MXeneを構成する層と層の間の距離」とは、
・2つの単層MXeneが重なり合った構造における、単層MXene間の距離、
・単層MXeneと多層MXene(好ましくは少層MXene)が重なり合った構造における、単層MXeneと多層MXene(好ましくは少層MXene)の間の距離、
・1つの多層MXene(好ましくは1つの少層MXene)における層間の距離(または空隙寸法、図1(b)中にΔdにて示す)、
・2つの多層MXene(好ましくは少層MXene)が重なり合った構造における、多層MXene間の距離、
のいずれの態様も含まれる。
 上記態様のうち、1つの多層MXene(好ましくは少層MXene)における層間の距離について、図2を用いて説明する。図2は、MXeneの一例として、MがTiで表されるTi(O-term)の場合の結晶構造を示した図であり、図2中、20はチタン原子、21は酸素原子であり、その他の元素については図示していない。この図2において、1つの多層MXene(好ましくは1つの少層MXene)における層間の距離とは、図2における両矢印で示される距離をいう。
 本実施形態を限定するものではないが、例えば含まれうる多層MXene(好ましくは少層MXene)の、個々の積層体について、層間距離(または空隙寸法、図1(b)中にΔdにて示す)は、例えば0.8nm以上、10nm以下、特に0.8nm以上、5nm以下でありうる。
 (複合材料で形成された吸着材)
 本実施形態の吸着材として、セラミック、金属、および樹脂材料のうちの1以上の材料を更に含むことが挙げられる。本実施形態の吸着材を、後に例示する通り、人工透析での尿素吸着に用いる場合、本実施形態に係るLi抑制MXeneと、セラミック、金属、および樹脂材料のうちの1以上の材料との複合材料(コンポジット)とすることで、吸着性能、例えば尿素の吸着性能を安定して発揮する吸着材を実現することができる。
 上記セラミックとして、シリカ、アルミナ、ジルコニア、チタニア、マグネシア、酸化セリウム、酸化亜鉛、チタン酸バリウム系、ヘキサフェライト、ムライトなどの金属酸化物、窒化ケイ素、窒化チタン、窒化アルミニウム、炭化ケイ素、炭化チタン、炭化タングステン、炭化ホウ素、ホウ化チタンなどの非酸化物セラミックスが挙げられる。上記金属として、鉄、チタン、マグネシウム、アルミニウムと、これらを基とする合金が挙げられる。
 また上記樹脂材料(ポリマー)として、セルロース系と合成高分子系が挙げられる。上記ポリマーとして、例えば、親水性ポリマー(疎水性ポリマーに親水性助剤が配合されて親水性を呈するものと、疎水性ポリマー等の表面を親水化処理したものを含む)が挙げられ、親水性ポリマーとして、ポリスルホン、セルロースアセテート、再生セルロース、ポリエーテルスルホン、水溶性ポリウレタン、ポリビニルアルコール、アルギン酸ナトリウム、アクリル酸系水溶性ポリマー、ポリアクリルアミド、ポリアニリンスルホン酸、およびナイロンからなる群より選択される1以上を含むものが挙げられる。
 前記親水性ポリマーとして、例えば、極性基を有する親水性ポリマーであって、前記極性基が、前記Li抑制MXeneの層の修飾または終端Tと水素結合を形成する基であるものが好ましく用いられる。該ポリマーとして例えば、水溶性ポリウレタン、ポリビニルアルコール、アルギン酸ナトリウム、アクリル酸系水溶性ポリマー、ポリアクリルアミド、ポリアニリンスルホン酸、およびナイロンよりなる群から選択される1種類以上のポリマーが好ましく用いられる。これらの中でも、水溶性ポリウレタン、ポリビニルアルコール、およびアルギン酸ナトリウムよりなる群から選択される1種類以上のポリマーがより好ましく、更に好ましくは水溶性ポリウレタンである。
 また複合材料で形成された吸着材を例えば生体用として用いる場合、例えば、血液透析用、および血液濾過用の装置の部材を構成する高分子重合体が挙げられる。具体的には、ポリメチルメタクリレート、ポリアクリロニトリル、セルロース、酢酸セルロース、ポリスルホン、ポリビニルアルコール、あるいはポリビニルアルコールとエチレンの共重合体のようなビニルアルコール共重合体などが挙げられる。好ましくはポリスルホン、ポリメチルメタクリレート、および酢酸セルロースのうちの1以上である。より好ましくは、ポリスルホン、ポリメチルメタクリレートが用いられる。
 複合材料に含まれる前記ポリマーの割合は、用途に応じて適宜設定することができる。例えば前記ポリマーの割合は、吸着材(乾燥時)に占める割合で、0体積%超であって、例えば80体積%以下とすることができ、更には50体積%以下、更には30体積%以下、更には10体積%以下、より更には5体積%以下とすることができる。
 前記複合材料で形成された吸着材を製造する方法は特に限定されない。本実施形態の吸着材がポリマーを含み、シート状の形態を有する吸着材である場合、例えば次に例示する通り、Li抑制MXeneとポリマーを混合し、塗膜を形成することが挙げられる。
 まず、Li抑制MXeneで形成された粒子を溶媒中に存在させたLi抑制MXene水分散体、Li抑制MXene有機溶媒分散体、またはLi抑制MXene粉末と、ポリマーとを混合すればよい。上記Li抑制MXene水分散体の溶媒は、代表的には水であり、場合により、水に加えて他の液状物質を比較的少量(全体基準で例えば30質量%以下、好ましくは20質量%以下)で含んでいてもよい。
 上記Li抑制MXene粒子とポリマーの撹拌は、ホモジナイザー、プロペラ撹拌機、薄膜旋回型撹拌機、プラネタリーミキサー、機械式振とう機、ボルテックスミキサーなどの分散装置を用いて行うことができる。
 上記Li抑制MXene粒子とポリマーの混合物であるスラリーを、基材(例えば基板)に塗布すればよいが、塗布方法は限定されない。例えば、1流体ノズル、2流体ノズル、エアブラシ等のノズルを用いて、スプレー塗布を行う方法、テーブルコーター、コンマコーター、バーコーターを用いたスリットコート、スクリーン印刷、メタルマスク印刷等の方法、スピンコート、浸漬、滴下による塗布方法が挙げられる。
 上記塗布および乾燥は、所望の厚みの膜が得られるまで、必要に応じて複数回繰り返し行ってもよい。乾燥および硬化は、例えば、常圧オーブンあるいは真空オーブンを用いて400度以下の温度で行ってもよい。
 本実施形態の吸着材が、セラミックまたは金属を含む複合材料である場合、その製造方法として、例えば粒子状のLi抑制MXeneと、例えば粒子状のセラミックまたは金属とを混合し、Li抑制MXeneの組成が維持可能な低温で加熱して吸着材を形成する方法が挙げられる。
 (吸着材の形状)
 本実施形態の吸着材の形状は限定されない。該吸着材の形状は、フィルム等のシート状の形態を有する場合以外に、厚みを有するもの、直方体、球体、多角形体等であってもよい。
 (吸着シート)
 本実施形態の吸着材の好ましい実施形態として吸着シートが挙げられる。吸着シートは、本実施形態の吸着材、すなわちLi抑制MXene、またはこれを含む複合材料で形成された吸着シートの他、本実施形態の吸着材がセラミック、金属、および樹脂材料のうちの1以上の材料で形成された基板表面に形成されたものであってもよい。セラミック、金属、および樹脂材料は、前述の複合材料の説明で挙げた材料を使用することができる。その中でも、樹脂材料、好ましくは前述のポリマーで形成された基板に本実施形態の吸着材が形成された吸着シートが好ましい。基板における本実施形態の吸着材の態様は、吸着材が、基板一面に、例えば塗布等により形成されたものであってもよいし、基板の少なくとも一部に形成されたものであってもよい。上記基板への吸着材の形成方法として、例えば、浸漬、刷毛、ローラー、ロールコーター、エアースプレー、エアレススプレー、カーテンフローコーター、ローラーカーテンコーター、ダイコーター、静電塗装等の一般に用いられている塗装方法を用いることができる。上記吸着シートの厚さと上記基板の厚さは、用途に応じて適宜設定することができる。
 (吸着材の用途)
 本実施形態の吸着材の用途の一つとして、極性有機化合物の吸着に用いることが挙げられる。極性有機化合物とは、極性を有する有機化合物の総称であり、OH基、NO基、NH基、NH基、COOH基などの極性基を有し、水と混合すると水分子の中の水素原子とこれらの極性基が水素結合を形成しうる化合物をいう。前記極性有機化合物の中でも、水酸基を有するアルコール等の極性溶媒、アミノ基を有する化合物、アンモニア等が吸着対象として挙げられる。本実施形態の吸着材は、これら水酸基とアミノ基のうちの1以上を有する化合物、およびアンモニアを吸着するために用いられることが挙げられる。前記水酸基とアミノ基のうちの1以上を有する化合物のうち、水酸基を有する化合物としては、たとえば、炭素数1~22の1価アルコール;多価フェノール;エチレングリコール、プロピレングリコール、グリセリン等の多価アルコール;トリエタノールアミン等のアルカノールアミン;キシロース、グルコース等の糖等が挙げられる。またアミノ基を有する化合物としては、メチルアミン、ジメチルアミン等のモノアミン;エチレンジアミン等のジアミン;ジエチレントリアミン等のポリアミン;アニリン等の芳香族アミン;バリン、ロイシン等のアミノ酸、尿素、尿酸、尿酸塩、クレアチニン等が挙げられる。水酸基とアミノ基とを有する化合物としては、エタノールアミン、ジエタノールアミンが挙げられる。
 本実施形態の吸着材は、例えば、尿素、尿酸、クレアチニン等を含む尿毒素を吸着するために用いられることが好ましい。本実施形態の吸着材は、特に尿素を吸着するために最適に用いられうる。
 本実施形態の吸着材は、血液透析、血液ろ過、血液透析ろ過、腹膜透析等において、尿素等の老廃物の吸着除去に用いることができる。また、本実施形態の吸着材は、上記血液透析、血液ろ過、血液透析ろ過、腹膜透析等を行うための人工透析機器に用いることができる。
 上記人工透析機器は、例えば血液透析機器、腹膜透析機器に分類され、血液透析機器はワンパス式(シングルパス式)と循環式とに分けられる。さらに、循環式には、REDYシステム(再循環透析液システム)とそれ以外のシステムによるものが挙げられる。上記人工透析機器は、患者からの血液と透析液のクロスフローにより血液と接することなく尿素を除去する方法、直接血液をろ過する方法によっても分けられる。また腹膜透析機器はワンパス式が主流である。本実施形態の吸着材は、これら血液透析、腹膜透析のいずれにも使用することができ、血液透析機器、腹膜透析機器等の人工透析機器における、吸着膜、分離膜、吸着材カートリッジ等として用いることができる。好ましくは、本実施形態の吸着材を人工透析用分離膜に用いることである。また、例えばREDYシステム(再循環透析液システム)に用いる場合、吸着材カートリッジに、本実施形態の吸着材が用いられることが挙げられる。
 図3に、本実施発明に係る吸着材を用いた人工透析機器の一例として、ワンパス式の血液透析機器を模式的に示す。図3の血液透析機器40において、血液導入口41から導入された処理前の血液は、血液用ポンプ43により血液浄化機器44まで送液される。一方、未使用透析液タンク48から、透析液が透析液用ポンプ50により血液浄化機器44まで送液される。血液浄化機器44において、血液浄化機器の血液通過域46の血液は、分離膜45により血液透析、血液濾過透析または血液濾過が施され、除去したい物質が分離膜45を通過して血液浄化機器44の透析液通過域47に移動する。浄化後の血液は、血液導出口42へ送られる。一方、除去したい物質を含んだ透析液通過域47の透析液は、使用後透析液タンク49に送液される。図3には図示していないが、処理前および/または処理後の血液の送液途中において、必要に応じて薬剤、たんぱく質等を、血液に補充する経路を含む装置が備わっていてもよい。また、血液流量、透析液流量、必要に応じて血液中のたんぱく質濃度を測定するためのセンサが設けられていてもよい。また、血液および/または透析液の流路の途中に、必要に応じて流路を開閉可能な開閉弁が設けられていてもよい。
 本実施形態の吸着材を用いた人工透析用分離膜は、上記血液透析等に適している。本実施形態の吸着材とともに該分離膜を構成する材料として、一般に、血液透析等に供されるセルロース系、合成高分子系の材料が挙げられる。具体的には、ポリメチルメタクリレート、ポリアクリロニトリル、セルロース、酢酸セルロース、ポリスルホン、ポリビニルアルコール、あるいはポリビニルアルコールとエチレンの共重合体のようなビニルアルコール共重合体などが挙げられる。好ましくはポリスルホン、ポリメチルメタクリレート、および酢酸セルロースからなる群より選択される1以上であり、より好ましくは、ポリスルホンとポリメチルメタクリレートのうちの1以上が用いられる。前記人工透析用分離膜の形態は、特に限定されず、例えば多孔質型、中空繊維型、平膜積層型が挙げられる。
 (実施形態2:吸着材の製造方法)
 以下、本発明の実施形態における吸着材の製造方法について詳述するが、本開示はかかる実施形態に限定されるものではない。
 本実施形態の1つの吸着材の製造方法(第1製造方法)は、
 (a)以下の式:
  MAX
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  Aは、少なくとも1種の第12、13、14、15、16族元素であり、
  nは、1以上4以下であり、
  mは、nより大きく、5以下である)
で表される前駆体を準備すること、
 (b1)エッチング液を用いて、前記前駆体から少なくとも一部のA原子を除去する、エッチング処理を行うこと、
 (c1)前記エッチング処理により得られたエッチング処理物を、水洗浄すること、
 (d1)前記水洗浄により得られた水洗浄処理物と、Li含有化合物とを混合する工程を含む、Liインターカレーション処理を行うこと、
 (e)前記Liインターカレーション処理して得られたLiインターカレーション処理物を撹拌する工程を含む、デラミネーション処理を行うこと、
 (f)デラミネーション処理して得られたデラミネーション処理物と、酸溶液を混合する工程を含む、酸処理を行うこと、および
 (g)酸処理して得られた酸処理物を、水で洗浄して吸着材を得ること
を含む。この製造方法により、吸着材中のLi含有量が、0.0001質量%以上0.0020質量%以下である、吸着材を製造できる。
 本実施形態のもう1つの吸着材の製造方法(第2製造方法)は、
 (a)以下の式:
  MAX
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  Aは、少なくとも1種の第12、13、14、15、16族元素であり、
  nは、1以上4以下であり、
  mは、nより大きく、5以下である)
で表される前駆体を準備すること、
 (b2)Li含有化合物を含むエッチング液を用いて、前記前駆体から少なくとも一部のA原子を除去するエッチング処理を行うとともに、Liインターカレーション処理を行うこと、
 (c2)前記エッチング処理およびLiインターカレーション処理を行って得られた、(エッチング+Liインターカレーション)処理物を、水洗浄すること、
 (e)前記水洗浄により得られた水洗浄処理物を撹拌する工程を含む、デラミネーション処理を行うこと、
 (f)デラミネーション処理して得られたデラミネーション処理物と、酸溶液を混合する工程を含む、酸処理を行うこと、および
 (g)酸処理して得られた酸処理物を、水で洗浄して吸着材を得ること
を含む。この製造方法により、吸着材中のLi含有量が、0.0001質量%以上0.0020質量%以下である、吸着材を製造できる。
 単層・少層化のためには、一定以上のLiを用いたインターカレーションが必要であるが、本実施形態に係る製造方法では、LiインターカレーションによりMXeneの単層・少層化を行った後、上記Liインターカレーションで用いたLiを除去するため、Li含有量の極端に少ない単層・少層MXeneを作製できる。以下、第1製造方法と第2製造方法の各工程について詳述する。これら2つの製造方法で共通する工程(a)と工程(e)~(g)はまとめて説明する。
・工程(a)
 まず、所定の前駆体を準備する。本実施形態において使用可能な所定の前駆体は、MXeneの前駆体であるMAX相であり、
以下の式:
  MAX
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  Aは、少なくとも1種の第12、13、14、15、16族元素であり、
  nは、1以上4以下であり、
  mは、nより大きく、5以下である)
で表される。
 上記M、X、nおよびmは、MXeneで説明した通りである。Aは、少なくとも1種の第12、13、14、15、16族元素であり、通常はA族元素、代表的にはIIIA族およびIVA族であり、より詳細にはAl、Ga、In、Tl、Si、Ge、Sn、Pb、P、As、SおよびCdからなる群より選択される少なくとも1種を含み得、好ましくはAlである。
 MAX相は、Mで表される2つの層(各XがMの八面体アレイ内に位置する結晶格子を有し得る)の間に、A原子により構成される層が位置した結晶構造を有する。MAX相は、代表的にm=n+1の場合、n+1層のM原子の層の各間にX原子の層が1層ずつ配置され(これらを合わせて「M層」とも称する)、n+1番目のM原子の層の次の層としてA原子の層(「A原子層」)が配置された繰り返し単位を有するが、これに限定されない。
 上記MAX相は、既知の方法で製造することができる。例えばTiC粉末、Ti粉末およびAl粉末を、ボールミルで混合し、得られた混合粉末をAr雰囲気下で焼成し、焼成体(ブロック状のMAX相)を得る。その後、得られた焼成体をエンドミルで粉砕して次工程用の粉末状MAX相を得ることができる。
・工程(b1)
 第1製造方法では、エッチング液を用いて、前記前駆体から少なくとも一部のA原子を除去する、エッチング処理を行う。エッチング処理の条件は、特に限定されず、既知の条件を採用することができる。エッチングは、Fを含むエッチング液を用いて実施され得、例えば、フッ酸を用いた方法、フッ酸および塩酸の混合液を用いた方法、フッ化リチウムおよび塩酸の混合液を用いた方法などが挙げられる。エッチング液には更にリン酸等が含まれていてもよい。これらの方法では、上記酸等と溶媒として例えば純水との混合液を用いることが挙げられる。上記エッチング処理により得られたエッチング処理物として例えばスラリーが挙げられる。
・工程(c1)
 前記エッチング処理により得られたエッチング処理物を、水洗浄する。水洗浄を行うことによって、上記エッチング処理で用いた酸等を十分に除去できる。エッチング処理物と混合させる水の量や洗浄方法は特に限定されない。例えば水を加えて撹拌、遠心分離等を行うことが挙げられる。撹拌方法として、ハンドシェイク、オートマチックシェイカー、シェアミキサー、ポットミルなどを用いた撹拌が挙げられる。撹拌速度、撹拌時間等の撹拌の程度は、処理対象となるエッチング処理物の量や濃度等に応じて調整すればよい。前記水での洗浄は1回以上行えばよい。好ましくは水での洗浄を複数回行うことである。例えば具体的に、(i)(エッチング処理物または下記(iii)で得られた残りの沈殿物に)水を加えて撹拌、(ii)撹拌物を遠心分離する、(iii)遠心分離後に上澄み液を廃棄する、の工程(i)~(iii)を2回以上、例えば15回以下の範囲内で行うことが挙げられる。
・工程(d1)
 前記水洗浄により得られた水洗浄処理物と、Li含有化合物とを混合する工程を含む、Liインターカレーション処理を行う。
 Li含有化合物として、Liイオンを含む金属化合物が挙げられる。Liイオンを含む金属化合物として、Liイオンと陽イオンが結合したイオン性化合物を用いることができる。例えばLiイオンの、ヨウ化物、塩化物およびフッ化物等を含むハロゲン化物、リン酸塩、硫酸塩を含む硫化物塩、硝酸塩、酢酸塩、カルボン酸塩が挙げられる。
 インターカレーション処理用配合物に占める、Li含有化合物の含有率は、0.001質量%以上とすることが好ましい。上記含有率は、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上である。一方、溶液中の分散性の観点からは、Li含有化合物の含有率を、10質量%以下とすることが好ましく、より好ましくは1質量%以下である。
 インターカレーション処理の具体的な方法は特に限定されず、例えば、上記MXeneの水分媒体クレイに対して、Li含有化合物を混合し、撹拌を行ってもよいし、静置してもよい。例えば室温で撹拌することが挙げられる。上記撹拌の方法は、例えば、スターラー等の撹拌子を用いる方法、撹拌翼を用いる方法、ミキサーを用いる方法、及び遠心装置を用いる方法等が挙げられ、撹拌時間は、吸着材の製造規模に応じて設定することができ、例えば12~24時間の間で設定することが挙げられる。
 第2製造方法では、工程(b2)で、前駆体のエッチング処理とLiインターカレーション処理をあわせて行う。
・工程(b2)
 第2製造方法では、Li含有化合物を含むエッチング液を用いて、前記前駆体から、少なくとも一部のA原子(および場合によりM原子の一部)をエッチング(除去および場合により層分離)するとともに、Liインターカレーション処理を行う。
 本実施形態では、MAX相からの少なくとも一部のA原子(および場合によりM原子の一部)のエッチング(除去および場合により層分離)時に、M層の層間にLiイオンを挿入する、Liインターカレーション処理を行う。
 Li含有化合物として、第1製造方法における工程(d1)で示したイオン性化合物を用いることができる。エッチング液中のLi含有化合物の含有率は、0.001質量%以上とすることが好ましい。上記含有率は、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上である。一方、溶液中の分散性の観点からは、エッチング液中のLi含有化合物の含有率を、10質量%以下とすることが好ましく、より好ましくは1質量%以下である。
 工程(b2)におけるエッチング液は、Li含有化合物を含んでいればよく、エッチング液のその他の構成は特に限定されず、既知の条件を採用することができる。例えば上記工程(b1)で述べた通り、Fを更に含むエッチング液を用いて実施され得、例えば、フッ酸を用いた方法、フッ酸および塩酸の混合液を用いた方法、フッ化リチウムおよび塩酸の混合液を用いた方法などが挙げられる。エッチング液には更にリン酸等が含まれていてもよい。これらの方法では、上記酸等と溶媒として例えば純水との混合液を用いることが挙げられる。上記エッチング処理により得られたエッチング処理物として例えばスラリーが挙げられる。
・工程(c2)
 前記エッチング処理およびLiインターカレーション処理して得られた、(エッチング+Liインターカレーション)処理物を、水洗浄する。水洗浄を行うことによって、上記(エッチング+Liインターカレーション)処理で用いた酸等を十分に除去できる。(エッチング+Liインターカレーション)処理物と混合させる水の量や洗浄方法は特に限定されない。例えば水を加えて撹拌、遠心分離等を行うことが挙げられる。撹拌方法として、ハンドシェイク、オートマチックシェイカー、シェアミキサー、ポットミルなどを用いた撹拌が挙げられる。撹拌速度、撹拌時間等の撹拌の程度は、処理対象となる処理物の量や濃度等に応じて調整すればよい。前記水での洗浄は1回以上行えばよい。好ましくは水での洗浄を複数回行うことである。例えば具体的に、(i)((エッチング+Liインターカレーション)処理物または下記(iii)で得られた残りの沈殿物に)水を加えて撹拌、(ii)撹拌物を遠心分離する、(iii)遠心分離後に上澄み液を廃棄する、の工程(i)~(iii)を2回以上、例えば15回以下の範囲内で行うことが挙げられる。
 第1製造方法と第2製造方法のうち、第1製造方法の通り、工程(b1)エッチング処理の工程と、工程(d1)Liインターカレーション処理の工程とを分けた製造方法によれば、MXeneをより単層化しやすいため好ましい。
・工程(e)
 第1製造方法における工程(d1)のLiインターカレーション処理により得られたLiインターカレーション処理物、または第2製造方法における工程(c2)の水洗浄により得られた水洗浄処理物を撹拌する工程を含む、デラミネーション処理を行う。このデラミネーション処理により、MXeneの単層・少層化を図ることができる。デラミネーション処理の条件は特に限定されず、既知の方法で行うことができる。例えば撹拌方法として、ハンドシェイク、オートマチックシェイカーなどを用いた撹拌が挙げられる。撹拌速度、撹拌時間等の撹拌の程度は、処理対象となる処理物の量や濃度等に応じて調整すればよい。例えば、上記インターカレーション後のスラリーを、遠心分離して上澄み液を廃棄した後に、残りの沈殿物に純水を添加し、次いで例えばハンドシェイクまたはオートマチックシェイカーによる撹拌を行って層分離を行うことが挙げられる。未剥離物を除去する工程として、遠心分離して上澄みを廃棄後、残りの沈殿物を水で洗浄する工程が挙げられる。例えば、(i)上澄み廃棄後の残りの沈殿物に、純水を追加して撹拌、(ii)遠心分離し、(iii)上澄み液を回収する。この(i)~(iii)の操作を、1回以上、好ましくは2回以上、10回以下繰り返して、デラミネーション処理物として、酸処理前の単層・少層MXene含有上澄み液を得ることが挙げられる。または、この上澄み液を遠心分離して、遠心分離後の上澄み液を廃棄し、デラミネーション処理物として、酸処理前の単層・少層MXene含有クレイを得てもよい。
 本実施形態の製造方法では、デラミネーションとして超音波処理を行わない。前述の通り、超音波処理を行わないため粒子破壊が生じ難く、粒子の層に平行な平面、すなわち2次元面の大きい単層・少層MXeneを含む吸着材を得ることができる。
・工程(f)
 前記デラミネーション処理して得られた、デラミネーション処理物(単層・少層MXene含有上澄み液または単層・少層MXene含有クレイ)と、酸溶液とを混合する工程を含む、酸処理(「酸洗浄」ともいう)を行う。この酸処理により、吸着材中のLi量を低減できる。例えば人工透析で尿素をMXeneで吸着する場合、尿素の吸着は尿素をインターカレートすることと同義であり、単位体積当たりのMXeneにインターカレート可能な量は決まっている。この酸処理で、上記Liインターカレーション後に残存する余計なインターカレーター(この場合Li)を除去することによって、上記人工透析における尿素吸着量の増大を図ることができる。
 上記酸処理に用いる酸は限定されず、例えば鉱酸等の無機酸、および/または有機酸を用いることができる。前記酸は好ましくは、無機酸のみ、または無機酸と有機酸の混合酸である。前記酸は、より好ましくは無機酸のみである。上記無機酸として例えば、塩酸、硫酸、硝酸、リン酸、過塩素酸、ヨウ化水素酸、臭化水素酸、フッ酸等のうちの1以上を用いることができる。好ましくは、塩酸と硫酸のうちの1以上である。上記有機酸として例えば、酢酸、クエン酸、シュウ酸、安息香酸、ソルビン酸などが挙げられる。デラミネーション処理物と混合させる酸溶液の濃度は、処理対象となるデラミネーション処理物の量や濃度等に応じて調整すればよい。
 上記デラミネーション処理物と酸溶液を混合する。上記デラミネーション処理物と酸溶液を混合して撹拌してもよい。撹拌方法として、ハンドシェイク、オートマチックシェイカー、シェアミキサー、ポットミルなどを用いた撹拌が挙げられる。撹拌速度、撹拌時間等の撹拌の程度は、処理対象となるデラミネーション処理物の量や濃度等に応じて調整すればよい。
 上記酸溶液を混合して撹拌時、加熱の有無は問わない。酸溶液を混合し、加熱を行わずに撹拌してもよいし、液温が80℃以下となる範囲で加熱しながら撹拌してもよい。
 上記混合後、または上記混合して撹拌後、例えば遠心分離を行い、上澄みを除去し、スラリーとして酸処理物を得ることができる。上記酸溶液と混合させて撹拌する操作は1回以上行えばよい。MXene粒子中のLi含有量をより少なくする観点からは、フレッシュな酸溶液(酸処理に使用していない酸溶液)と混合させて撹拌する操作を2回以上、例えば10回以下の範囲内で行うことが好ましい。上記操作を複数回行う態様として、(i)(デラミネーション処理物または下記(iii)で得られた残りの沈殿物と)フレッシュな酸溶液とを混合して撹拌する、(ii)撹拌物を遠心分離する、(iii)遠心分離後に上澄み液を廃棄する、の工程(i)~(iii)を2回以上、例えば10回以下の範囲内で行うことが挙げられる。
 上記酸処理して得られた酸処理物のpHは、2.5以下であることが好ましい。該pHは、より好ましくは2.0以下、更に好ましくは1.5以下、より更に好ましくは1.2以下である。なお、pHの下限は特に限定されないが、おおよそ1.0程度となる。酸処理物のpHがこのように十分低くなると、MXene粒子の分散性が低下し、その後の工程でMXene粒子が取り扱い難くなるが、本実施形態によれば、非特許文献1と異なり、次工程で水洗浄を行うことにより該問題が解消される。
 本開示では、上記非特許文献1と異なり、上記の通り酸処理を行って積極的にLiを除去しているため、MXene粒子中のLi含有量をより少なくすることができる。
・工程(g)
 酸処理して得られた酸処理物を、水で洗浄して吸着材を得る。この水洗浄により、前記酸処理で低下したpHを上げることができる。酸処理物を水で洗浄後は、pHが4以上で、例えば7以下であることが好ましい。本実施形態によれば、前記工程(f)の酸処理の後、この水洗浄により、例えばpHが4以上に高まることで、MXene表面において、例えば尿素等を吸着しやすいOH基が再構築されて、吸着性能の活性が高まり、尿素の吸着量が増大すると考えられる。酸処理物と混合させる水の量や洗浄方法は特に限定されない。例えば水を加えて撹拌、遠心分離等を行うことが挙げられる。撹拌方法として、ハンドシェイク、オートマチックシェイカー、シェアミキサー、ポットミルなどを用いた撹拌が挙げられる。撹拌速度、撹拌時間等の撹拌の程度は、処理対象となる酸処理物の量や濃度等に応じて調整すればよい。前記水での洗浄は1回以上行えばよい。好ましくは水での洗浄を複数回行うことである。例えば具体的に、(i)(酸処理物または下記(iii)で得られた残りの沈殿物に)水を加えて撹拌、(ii)撹拌物を遠心分離する、(iii)遠心分離後に上澄み液を廃棄する、の工程(i)~(iii)を2回以上、例えば10回以下の範囲内で行うことが挙げられる。
 以上、本発明の実施形態における吸着材およびその製造方法、吸着シート、人工透析用分離膜ならびに人工透析機器について詳述したが、種々の改変が可能である。なお、本開示の吸着材は、上述の実施形態における製造方法とは異なる方法によって製造されてもよく、また、本開示の吸着材の製造方法は、上述の実施形態における吸着材を提供するもののみに限定されないことに留意されたい。
 〔MXene含有試料の作製〕
 [実施例1~4]
 実施例1~4では、以下に詳述する、(1)前駆体(MAX)の準備、(2)前駆体のエッチング、(3)エッチング後の水洗浄、(4)Liのインターカレーション、(5)デラミネーション、(6)酸処理、(7)水洗浄、を順に実施し、MXene含有試料として単層・少層MXene含有クレイを得た。
 (1)前駆体(MAX)の準備
 TiC粉末、Ti粉末およびAl粉末(いずれも株式会社高純度化学研究所製)を2:1:1のモル比で、ジルコニアボールを入れたボールミルに投入して24時間混合した。得られた混合粉末をAr雰囲気下にて1350℃で2時間焼成した。これにより得られた焼成体(ブロック状MAX)をエンドミルで最大寸法40μm以下まで粉砕した。これにより、前駆体(粉末状MAX)としてTiAlC粒子を得た。
 (2)前駆体のエッチング
 上記方法で調製したTiAlC粒子(粉末)を用い、下記エッチング条件でエッチングを行って、TiAlC粉末に由来する固体成分を含む固液混合物(スラリー)を得た。
 (エッチング条件)
 ・前駆体:TiAlC(目開き45μmふるい通し)
 ・エッチング液組成:49%HF 6mL
           HO 18mL
           HCl(12M) 36mL
 ・前駆体投入量:3.0g
 ・エッチング容器:100mLアイボーイ
 ・エッチング温度:35℃
 ・エッチング時間:24h
 ・スターラー回転数:400rpm
 (3)エッチング後の水洗浄
 上記スラリーを2分割して、50mL遠沈管2本にそれぞれ挿入し、遠心分離機を用いて3500Gの条件で遠心分離を行った後、上澄み液を廃棄した。次いで、(i)各遠沈管中の残りの沈殿物に純水40mLを追加し、(ii)再度3500Gで遠心分離を行って、(iii)上澄み液を分離除去した。この(i)~(iii)の操作を11回繰り返した。最終遠心分離後に、上澄み液を廃棄し、Ti-水分媒体クレイを得た。
 (4)Liのインターカレーション
 上記方法で調製したTi-水分媒体クレイに対し、Liをインターカレーターとして用い、20℃以上25℃以下で10時間撹拌して、Liのインターカレーションを行った。Liのインターカレーションの詳細な条件は以下の通りである。
 (Liのインターカレーションの条件)
 ・Ti-水分媒体クレイ(水洗浄後MXene):固形分0.75g
 ・LiCl:0.75g
 ・インターカレーション容器:100mLアイボーイ
 ・温度:20℃以上25℃以下(室温)
 ・時間:10h
 ・スターラー回転数:800rpm
 (5)デラミネーション
 Liのインターカレーションを行って得られたスラリーを、50mL遠沈管に投入し、遠心分離機を用いて3500Gの条件で遠心分離を行った後、上澄み液を廃棄した。次いで、(i)遠沈管中の残りの沈殿物に純水40mLを追加してからシェーカーで15分間撹拌後に、(ii)3500Gで遠心分離し、(iii)上澄み液を単層・少層MXene含有液として回収した。この(i)~(iii)の操作を、合計4回繰り返して、単層・少層MXene含有上澄み液を得た。さらに、この上澄み液を、遠心分離機を用いて4300Gで2時間の条件で遠心分離を行った後、上澄み液を廃棄し、単層・少層MXene含有クレイを得た。
 (6)酸処理
 上記の単層・少層MXene含有クレイに、(i)1.8Mの塩酸を35mL追加してからシェーカーで5分間撹拌後に、(ii)3500Gで遠心分離を行い、(iii)上澄み液を廃棄した。この(i)~(iii)の操作を合計5回繰り返した。
 (7)水洗浄
 上記酸処理後の単層・少層MXene含有クレイに、(i)水を35mL追加してからシェーカーで5分間撹拌後に、(ii)3500Gで遠心分離を行い、(iii)上澄み液を廃棄した。この(i)~(iii)の操作を合計5回繰り返して、MXene含有試料として単層・少層MXene含有クレイを得た。上記上澄み液は最終的にpHが4以上になっていることを確認した。
 [比較例1]
 比較例1では、(1)前駆体(MAX)の準備を実施例1~4と同様に行った後、非特許文献1に記載の方法を参考に、下記(2)および(3)の工程を順に実施してMXene含有試料を得た。
 (1)前駆体(MAX)の準備:実施例1~4と同じ
 (2)前駆体のエッチング
 上記(1)の工程で調製したTiAlC粒子(粉末)を用い、下記エッチング条件でエッチングを行って、TiAlC粉末に由来する固体成分を含む固液混合物(スラリー)を得た。
 ・前駆体:TiAlC(目開き37μmふるい通し)
 ・エッチング液組成:50%HF 5mL、
           HO 45mL
 ・前駆体投入量:5.0g
 ・エッチング容器:100mLアイボーイ
 ・エッチング温度:35℃
 ・エッチング時間:24h
 ・スターラー回転数:400rpm
 (3)エッチング後の洗浄
 上記スラリーを2分割して、50mL遠沈管2本にそれぞれ挿入し、遠心分離機を用いて3500Gの条件で遠心分離を行った後、上澄み液を廃棄した。(i)各遠沈管中の残りの沈殿物に、純水40mLを追加し、(ii)再度3500Gで遠心分離を行って(iii)上澄み液を分離除去した。この(i)~(iii)の操作を合計10回繰り返した。最終遠心分離後に、10回目の上澄み液のpHが5超であることを確認し、上澄み液を廃棄した。そして、残りの沈殿物であるTi-多層MXeneクレイを、MXene含有試料として得た。
 [比較例2]
 比較例2では、(1)前駆体(MAX)の準備を実施例1~4と同様に行った後、非特許文献2に記載の方法を参考に、下記(2)~(5)の工程を順に実施して、MXene含有試料を得た。
 (1)前駆体(MAX)の準備:実施例1~4と同じ
 (2)前駆体のエッチングおよびLiインターカレーション
 上記(1)の工程で調製したTiAlC粒子(粉末)を用い、下記エッチング条件でエッチングを行うとともにLiインターカレーションを行って、TiAlC粉末に由来する固体成分を含む固液混合物(スラリー)を得た。
 ・前駆体:TiAlC(目開き45μmふるい通し)
 ・エッチング液組成:LiF 2.4g
           HCl(9M) 30mL
 ・前駆体投入量:1.5g
 ・エッチング容器:100mLアイボーイ
 ・エッチング温度:25℃
 ・エッチング時間:36h
 ・スターラー回転数:400rpm
 (3)エッチング後の水洗浄
 上記スラリーを50mL遠沈管に挿入し、遠心分離機を用いて3500Gの条件で遠心分離を行った後、上澄み液を廃棄した。(i)遠沈管中の残りの沈殿物に純水40mLを追加し、(ii)再度3500Gで遠心分離を行って(iii)上澄み液を分離除去した。この(i)~(iii)の操作を合計10回繰り返し、10回目の上澄み液のpHが5超であることを確認し、上澄み液を廃棄し、Ti-水分媒体クレイを得た。
 (4)デラミネーション
 Ti-水分媒体クレイに200mLの純水を添加し、超音波バス(超音波洗浄器(ASUシリーズ)、品番1-2160-03)にて、10℃以下で15分間の超音波処理を行った。その後、遠心分離機を用いて2000Gで20分間の条件で遠心分離後、上澄み液を回収し、単層・少層MXeneのスラリーを回収した。
 (5)pH調整
 上記単層・少層MXeneのスラリー59.0mLに対して、6.0M塩酸を1mL滴下した。その後、上記(4)デラミネーションと同様に超音波バスにて、10℃以下で10分間の超音波処理を行って、MXene含有試料として単層・少層MXene含有スラリーを得た。
 [比較例3]
 比較例3では、(1)前駆体(MAX)の準備を上記実施例1~4と同様に行った後、非特許文献3に記載の方法を参考に、下記(2)~(5)の工程を順に実施して、MXene含有試料を得た。
 (1)前駆体(MAX)の準備:実施例1~4と同じ
 (2)前駆体のエッチング
 上記(1)の工程で調製したTiAlC粒子(粉末)を用い、下記エッチング条件でエッチングを行って、TiAlC粉末に由来する固体成分を含む固液混合物(スラリー)を得た。
 (エッチング条件)
 ・前駆体:TiAlC(目開き45μmふるい通し)
 ・エッチング液組成:49%HF 6mL
           HO 54mL
 ・前駆体投入量:3.0g
 ・エッチング容器:100mLアイボーイ
 ・エッチング温度:20℃以上25℃以下(室温)
 ・エッチング時間:24h
 ・スターラー回転数:400rpm
 (3)エッチング後の水洗浄
 上記スラリーを2分割して、50mL遠沈管2本にそれぞれ挿入し、遠心分離機を用いて3500Gの条件で遠心分離を行った後、上澄み液を廃棄した。(i)各遠沈管中の残りの沈殿物に純水40mLを追加し、(ii)再度3500Gで遠心分離を行って(iii)上澄み液を分離除去した。この(i)~(iii)の操作を合計11回繰り返した。最終遠心分離後に、上澄み液を廃棄し、残りの沈殿物としてTi-水分媒体クレイを得た。
 (4)TMAOHのインターカレーション
 上記方法で調製したTi-水分媒体クレイに対し、下記条件の通り、インターカレーターとしてTMAOHを用い、20℃以上25℃以下で12時間撹拌して、TMAOHのインターカレーションを行った。
 (TMAOHのインターカレーションの条件)
 ・Ti-水分媒体クレイ(水洗浄後MXene):固形分1.0g
 ・TMAOH・5HO:1.98g
 ・純水:100mL
 ・インターカレーション容器:250mLアイボーイ
 ・温度:20℃以上25℃以下(室温)
 ・時間:12h
 ・スターラー回転数:800rpm
 (5)デラミネーション
 TMAOHのインターカレーションを行って得られたスラリーを2分割して、50mL遠沈管2本にそれぞれ挿入し、遠心分離機を用いて3500Gの条件で遠心分離を行って上澄み液を回収した。(i)各遠沈管中の残りの沈殿物に純水40mLを追加し、(ii)再度3500Gで遠心分離を行って(iii)上澄み液を回収した。この(i)~(iii)の操作を合計2回繰り返して、MXene含有試料として、単層・少層MXeneのスラリーを得た。
 [比較例4]
 比較例4では、(1)前駆体(MAX)の準備を実施例1~4と同様に行った後、下記(2)および(3)の工程を順に実施してMXene含有試料を得た。
 (1)前駆体(MAX)の準備:実施例1~4と同じ
 (2)前駆体のエッチング
 上記(1)の工程で調製したTiAlC粒子(粉末)を用い、下記エッチング条件でエッチングを行って、TiAlC粉末に由来する固体成分を含む固液混合物(スラリー)を得た。
 ・前駆体:TiAlC(目開き45μmふるい通し)
 ・エッチング液組成:49%HF 6mL
           HCl(9M) 45mL
           HO 9mL
 ・前駆体投入量:3.0g
 ・エッチング容器:100mLアイボーイ
 ・エッチング温度:35℃
 ・エッチング時間:24h
 ・スターラー回転数:400rpm
 (3)エッチング後の水洗浄
 上記スラリーを2分割して、50mL遠沈管2本にそれぞれ挿入し、遠心分離機を用いて3500Gの条件で遠心分離を行った後、上澄み液を廃棄した。(i)各遠沈管中の残りの沈殿物に、純水40mLを追加し、(ii)再度3500Gで遠心分離を行って(iii)上澄み液を分離除去した。この(i)~(iii)の操作を合計10回繰り返した。最終遠心分離後に、10回目の上澄み液のpHが5超であることを確認し、上澄み液を廃棄した。そして、残りの沈殿物であるTi-多層MXeneのクレイを、MXene含有試料として得た。
 [比較例5]
 比較例5では、(1)前駆体(MAX)の準備を実施例1~4と同様に行った後、下記(2)~(5)の工程を順に実施して、MXene含有試料を得た。
 (1)前駆体(MAX)の準備:実施例1~4と同じ
 (2)前駆体のエッチング
 上記(1)の工程で調製したTiAlC粒子(粉末)を用い、下記エッチング条件でエッチングを行って、TiAlC粉末に由来する固体成分を含む固液混合物(スラリー)を得た。
 ・前駆体:TiAlC(目開き45μmふるい通し)
 ・エッチング液組成:49%HF 6mL
           HCl(9M) 45mL
           HO 9mL
 ・前駆体投入量:3.0g
 ・エッチング容器:100mLアイボーイ
 ・エッチング温度:35℃
 ・エッチング時間:24h
 ・スターラー回転数:400rpm
 (3)エッチング後の水洗浄
 上記スラリーを2分割して、50mL遠沈管2本にそれぞれ挿入し、遠心分離機を用いて3500Gの条件で遠心分離を行った後、上澄み液を廃棄した。(i)各遠沈管中の残りの沈殿物に、純水40mLを追加し、(ii)再度3500Gで遠心分離を行って(iii)上澄み液を分離除去した。この(i)~(iii)の操作を合計10回繰り返した。最終遠心分離後に、10回目の上澄み液のpHが5超であることを確認し、上澄み液を廃棄して、残りの沈殿物であるTi-水分媒体クレイを得た。
 (4)Liのインターカレーション
 上記方法で調製したTi-水分媒体クレイに対し、Liをインターカレーターとして用い、20℃以上25℃以下で10時間撹拌して、Liのインターカレーションを行った。Liのインターカレーションの詳細な条件は以下の通りである。
 (Liのインターカレーションの条件)
 ・Ti-水分媒体クレイ(水洗浄後MXene):固形分0.75g
 ・LiCl:0.75g
 ・インターカレーション容器:100mLアイボーイ
 ・温度:20℃以上25℃以下(室温)
 ・時間:10h
 ・スターラー回転数:800rpm
 (5)デラミネーション
 Liのインターカレーションを行って得られたスラリーを、50mL遠沈管に投入し、遠心分離機を用いて3500Gの条件で遠心分離を行った後、上澄み液を廃棄した。次いで、(i)遠沈管中の残りの沈殿物に純水40mLを追加してからシェーカーで15分間撹拌後に、(ii)3500Gで遠心分離し、(iii)上澄み液をMXene含有液として回収した。この(i)~(iii)の操作を、合計4回繰り返して、MXene含有上澄み液を得た。さらに、この上澄み液を、遠心分離機を用いて4300Gで2時間の条件で遠心分離を行った後、上澄み液を廃棄し、MXene含有試料として、単層・少層MXeneのクレイを得た。
 〔MXene含有試料の評価〕
 [MXene中のLi含有量の測定]
 MXeneをアルカリ溶融法により溶液化し、誘導結合プラズマ発光分光分析法を用いたICP-AES(サーモフィッシャーサイエンティフィック社製のiCAP7400を使用)で、MXene含有試料中のLi含有量(インターカレーター残存量)を測定した。なお、表1において、Li含有化合物を用いて試料を作成していない比較例のLi量「-」は、0.0001質量%よりも低いと考えられる。
 [粒子の厚さの平均値の測定]
 原子間力顕微鏡(AFM)を用い、1視野サイズが50μm×50μmの1つまたは複数の写真を撮影し、写真において、任意に選択される50個のMXene粒子を対象として、各MXene粒子の厚みを求め、50個の平均値を求めた。
 その結果、実施例1~4ではそれぞれ、2.8nm、3.2nm、5.2nm、2.5nmであった。
 [粒子の平面の最大長さの平均値の測定]
 走査型電子顕微鏡(SEM)を用い、倍率5000倍で、1つまたは複数の写真を撮影し、写真において、任意に選択される50個のMXene粒子を対象として、各MXene粒子のシート面に平行な方向(平面)の最大寸法を求め、50個の平均値を求めた。
 その結果、実施例1~4ではそれぞれ、10.4μm、7.1μm、13.5μm、6.3μmであった。
 [吸着性能の評価]
 上記実施例1~4と比較例1~5のMXene含有試料を用いて、吸着対象物質(尿素)の吸着量を以下の通り測定し、MXene含有試料の尿素に対する吸着性能を評価した。
 (1)尿素溶液の調製
 尿素0.5gを秤量して、100mLの純水に加え、これを100倍希釈して濃度が5mg/dLの尿素溶液を調製した。
 (2)アッセイキット溶液の調製
 フナコシ株式会社製のバイオアッセイキット(製品名:DIUR-100)を用い、該キットのA液とB液を等分体積量で混合して、アッセイキット溶液を調製した。
 (3)吸着対象物質を含む溶液(尿素溶液)の準備
 500mLビーカーに上記手順(1)で調製した尿素溶液を250mL投入し、ホットスターラーにて、回転数400rpm,液温37℃で加温撹拌を行って、吸着対象物質である尿素を含む溶液を用意した。この尿素溶液を各例用に9つ用意した。
 (4)尿素吸着、試料サンプリング
 上記実施例1~4および比較例1~5のMXene含有試料として、固体(粉状)MXene0.1g、またはMXeneクレイであってMXene固形分が0.1gとなる量をそれぞれ、手順(3)で用意した尿素溶液中に投入し30分間ホットスターラーで撹拌した。その後、静置させてから溶液をそれぞれ10mLピペットで採取し、遠心分離機で20000rpm、10分の条件で遠心分離を行い、浮遊しているMXene含有試料を沈降分離させ、上澄み液を250μLサンプリングした。
 (5)アッセイキット溶液の滴下
 上記上澄み液に、手順(2)で調製したアッセイキット溶液を1250μL投入し、50分静置して吸光度測定用のサンプルを得た。
 (6)吸光度測定
 まず検量線作成のため、MXene含有試料を投入していない尿素溶液と、このMXene含有試料を投入していない尿素溶液を2倍希釈した溶液を用意した。そして、各溶液の吸光度を測定し、検量線を作成した。次に、手順(5)で作製したサンプルを用いて吸光度を測定し、それぞれの吸光度を検量線と照らし合わせて、溶液中に吸着されずに残った尿素の濃度を求めた。そして、この尿素の濃度から、尿素吸着量(MXene含有試料1gあたりの尿素吸着量(mg)を算出した。その結果を、表1に示す。
 [安全率の算出]
 1回の人工透析で除去する尿素量は平均で約6gであるため、尿素6gの除去に必要な吸着材(MXene含有試料、表1では「吸着材必要量」と示す)の量を、サンプルの尿素吸着量の値を用いて算出した。また、吸着材必要量に含まれるLi量(g)を算出し、このMXene中のLiが全て血液(成人男性(体重60kg)の平均血液量を5Lとする)中に溶出すると想定して、血液中Li濃度(mmol/L)を算出した。一方、血液中Li量許容上限は1.5mmol/Lといわれている。よって、血液中Li量許容上限を、上記算出した血液中Li濃度で除して安全率を算出した。
 吸着性能について、尿素吸着量が30mg/g以上を〇(良好)、10mg/g以上、30mg/g未満を△(従来レベル)、10mg/g未満を×(不良)と判断した。生体親和性について、安全率が、5.0(倍)以上を〇(良好)、3.0(倍)以上、5.0(倍)未満を△(従来レベル)、3.0(倍)未満を×(不良)と判断した。そして、吸着性能と生体親和性のいずれもが〇の場合を総合評価〇(良好)とし、そうでない場合を総合評価×(不良)と判断した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 [層間距離の評価]
 実施例1、比較例3および比較例5のMXene含有試料を用い、MXene含有試料におけるMXeneの層間距離を、XRD測定を行って求めた。XRD測定を行うにあたり、各例のろ過フィルム(MXeneフィルム)を用意した。ろ過フィルム(MXeneフィルム)は、各例で得られたMXene含有クレイまたはMXene含有スラリーを用い、吸引ろ過することで得た。ろ過後は80℃で24時間の真空乾燥を行ってMXeneフィルムを作製した。吸引ろ過のフィルターには、メンブレンフィルター(メルク株式会社製、デュラポア、孔径0.45μm)を用いた。
 XRD測定は下記条件で行って、MXeneフィルムの2次元X線回折像を得た。その結果を図4に示す。
 (XRD測定条件)
・使用装置:株式会社リガク製 MiniFlex600
・条件
 光源:Cu管球
 特性X線:CuKα=1.54Å
 測定範囲:3度-20度
 ステップ:50step/度
 サンプル:ろ過フィルム
 図4において、ピークが低角側、すなわち図4のx軸の左側にあるほど、層間距離が広がっていることを示している。図4から、実施例1の層間距離が最も小さく、比較例3と比較例5は、層間距離が実施例1よりも大きいことがわかる。比較例3は、Liを含有していないものの、TMAOHに由来するTMA(有機分散剤)を含有しているために層間距離が大きくなったと考えられる。また、比較例5はLi量が抑制されておらず、MXeneの層間にLiが存在するため、層間距離が大きくなったと考えられる。
 以上の測定結果から、本実施形態によればLiインターカレーションを行い、その後デラミネーションを行って、単層化を促進させたため、吸着材を構成するMXeneは表面積の十分に大きい単層・少層MXeneであると考えられる。その結果、多層MXeneを用いた比較例1および比較例4と比較して、例えば人工透析において、MXeneの表面積が十分に大きい吸着材で、尿素を十分に吸着除去することができる。
 更に吸着材の製造工程で、Liインターカレーション後に酸処理を行うことによって、Liインターカレーション後に残存するインターカレーター(この場合Li)を十分に除去でき、上記人工透析における尿素吸着量を増大できたと考えられる。また、この酸処理等を経ることで、人体、特に腎臓疾患患者にとって有害なLiが、非特許文献2(比較例2)および比較例5よりも十分に抑制され、Li含有量を0.0020質量%以下とすることで、血中Li濃度の上限値に対する安全率が27.2倍以上となった。また非特許文献3(比較例3)に示されたような、人体に有害でかつ尿素吸着を阻害するTMAOHも含んでいないため、例えば尿素の吸着性能が高く、生体適合性に優れた吸着材を提供できる。
 更には、吸着材の製造工程で、酸処理とその後の水洗浄を経ることで、MXene表面において、尿素を吸着しやすいOH基が再構築されて、吸着性能の活性が高まり、尿素の吸着量が増大したと考えられる。
 本出願は、日本国特許出願である特願2021-013645号を基礎出願とする優先権主張を伴う。特願2021-013645号は参照することにより本明細書に取り込まれる。
 本開示の吸着材は、任意の適切な用途に利用され得、例えば人工透析機器における分離膜等として好ましく使用され得る。
  1a、1b 層本体(M層)
  3a、5a、3b、5b 修飾または終端T
  7a、7b MXene層
  10a、10b MXene粒子(層状材料の粒子)
  20 チタン原子
  21 酸素原子
  40 血液透析機器
  41 血液導入口
  42 血液導出口
  43 血液用ポンプ
  44 血液浄化機器
  45 分離膜
  46 血液浄化機器の血液通過域
  47 血液浄化機器の透析液通過域
  48 未使用透析液タンク
  49 使用後透析液タンク
  50 透析液用ポンプ

Claims (14)

  1.  1つまたは複数の層を含む層状材料の粒子と、Liとを含み、
     前記層が、以下の式:
      M
     (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
      Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
      nは、1以上4以下であり、
      mは、nより大きく、5以下である)
    で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、塩素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含み、
     前記粒子の厚さの平均値が、1nm以上10nm以下であり、
     Li含有量が、0.0001質量%以上0.0020質量%以下である、吸着材。
  2.  シート状の吸着材をX線回折測定して得られるプロファイルにおいて、(002)面のピークが、2θ=8°以上に存在する、請求項1に記載の吸着材。
  3.  前記粒子の層に平行な平面内における最大寸法の平均値が、0.1μm以上20μm以下である、請求項1または2に記載の吸着材。
  4.  セラミック、金属、および樹脂材料のうちの1以上の材料を更に含む、請求項1~3のいずれかに記載の吸着材。
  5.  シート状の形態を有する、請求項1~4のいずれかに記載の吸着材。
  6.  極性有機化合物を吸着するために用いられる、請求項1~5のいずれかに記載の吸着材。
  7.  水酸基とアミノ基のうちの1以上を有する化合物、およびアンモニアを吸着するために用いられる、請求項1~6のいずれかに記載の吸着材。
  8.  尿毒素を吸着するために用いられる、請求項1~7のいずれかに記載の吸着材。
  9.  尿素を吸着するために用いられる、請求項1~8のいずれかに記載の吸着材。
  10.  請求項1~9のいずれかに記載の吸着材を用いた吸着シート。
  11.  請求項1~9のいずれかに記載の吸着材を用いた人工透析用分離膜。
  12.  請求項1~9のいずれかに記載の吸着材を用いた人工透析機器。
  13.  (a)以下の式:
      MAX
     (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
      Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
      Aは、少なくとも1種の第12、13、14、15、16族元素であり、
      nは、1以上4以下であり、
      mは、nより大きく、5以下である)
    で表される前駆体を準備すること、
     (b1)エッチング液を用いて、前記前駆体から少なくとも一部のA原子を除去する、エッチング処理を行うこと、
     (c1)前記エッチング処理により得られたエッチング処理物を、水洗浄すること、
     (d1)前記水洗浄により得られた水洗浄処理物と、Li含有化合物とを混合する工程を含む、Liインターカレーション処理を行うこと、
     (e)前記Liインターカレーション処理して得られたLiインターカレーション処理物を撹拌する工程を含む、デラミネーション処理を行うこと、
     (f)デラミネーション処理して得られたデラミネーション処理物と、酸溶液を混合する工程を含む、酸処理を行うこと、および
     (g)酸処理して得られた酸処理物を、水で洗浄して吸着材を得ること
    を含み、吸着材中のLi含有量が、0.0001質量%以上0.0020質量%以下である、吸着材の製造方法。
  14.  (a)以下の式:
      MAX
     (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
      Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
      Aは、少なくとも1種の第12、13、14、15、16族元素であり、
      nは、1以上4以下であり、
      mは、nより大きく、5以下である)
    で表される前駆体を準備すること、
     (b2)Li含有化合物を含むエッチング液を用いて、前記前駆体から少なくとも一部のA原子を除去するエッチング処理を行うとともに、Liインターカレーション処理を行うこと、
     (c2)前記エッチング処理およびLiインターカレーション処理を行って得られた、(エッチング+Liインターカレーション)処理物を、水洗浄すること、
     (e)前記水洗浄により得られた水洗浄処理物を撹拌する工程を含む、デラミネーション処理を行うこと、
     (f)デラミネーション処理して得られたデラミネーション処理物と、酸溶液を混合する工程を含む、酸処理を行うこと、および
     (g)酸処理して得られた酸処理物を、水で洗浄して吸着材を得ること
    を含み、吸着材中のLi含有量が、0.0001質量%以上0.0020質量%以下である、吸着材の製造方法。
PCT/JP2022/002442 2021-01-29 2022-01-24 吸着材およびその製造方法、吸着シート、人工透析用分離膜ならびに人工透析機器 WO2022163583A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280010993.3A CN116887914A (zh) 2021-01-29 2022-01-24 吸附材料及其制造方法、吸附片、人工透析用分离膜和人工透析设备
JP2022578369A JP7416289B2 (ja) 2021-01-29 2022-01-24 吸着材およびその製造方法、吸着シート、人工透析用分離膜ならびに人工透析機器
US18/348,151 US20230347290A1 (en) 2021-01-29 2023-07-06 Adsorbent, method for manufacturing the same, adsorption sheet, artificial dialysis membrane, and artificial dialyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-013645 2021-01-29
JP2021013645 2021-01-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/348,151 Continuation US20230347290A1 (en) 2021-01-29 2023-07-06 Adsorbent, method for manufacturing the same, adsorption sheet, artificial dialysis membrane, and artificial dialyzer

Publications (1)

Publication Number Publication Date
WO2022163583A1 true WO2022163583A1 (ja) 2022-08-04

Family

ID=82653552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002442 WO2022163583A1 (ja) 2021-01-29 2022-01-24 吸着材およびその製造方法、吸着シート、人工透析用分離膜ならびに人工透析機器

Country Status (4)

Country Link
US (1) US20230347290A1 (ja)
JP (1) JP7416289B2 (ja)
CN (1) CN116887914A (ja)
WO (1) WO2022163583A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115722193A (zh) * 2022-12-01 2023-03-03 吉林大学 一种水中低浓度氨氮改性吸附材料的制备方法及其应用
CN116351402A (zh) * 2023-04-10 2023-06-30 四川大学 一种可回收的MXene/聚醚砜复合微球制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017076739A (ja) * 2015-10-16 2017-04-20 国立大学法人 東京大学 層状化合物を含む電気化学キャパシタ用電極材料の製造方法
CN108245682A (zh) * 2018-02-11 2018-07-06 中国人民解放军第二军医大学 酸度、光热响应型介孔MXene纳米片药物载体及制法
CN108793167A (zh) * 2018-07-19 2018-11-13 陕西科技大学 一种利用三元MAX材料制备层状MXenes材料的方法
CN111151304A (zh) * 2020-02-26 2020-05-15 吴晓峰 三维MXene/MOF水凝胶的制备及其在水处理方面的应用
CN111785534A (zh) * 2020-06-08 2020-10-16 华中科技大学 一种离子液体共价键合固载MXene的方法及其产物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116391240A (zh) * 2020-10-15 2023-07-04 株式会社村田制作所 导电性二维粒子及其制造方法、导电性膜、导电性复合材料和导电性糊剂
WO2022153889A1 (ja) * 2021-01-13 2022-07-21 株式会社村田製作所 吸着材およびその製造方法、吸着シート、分離膜ならびに人工透析機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017076739A (ja) * 2015-10-16 2017-04-20 国立大学法人 東京大学 層状化合物を含む電気化学キャパシタ用電極材料の製造方法
CN108245682A (zh) * 2018-02-11 2018-07-06 中国人民解放军第二军医大学 酸度、光热响应型介孔MXene纳米片药物载体及制法
CN108793167A (zh) * 2018-07-19 2018-11-13 陕西科技大学 一种利用三元MAX材料制备层状MXenes材料的方法
CN111151304A (zh) * 2020-02-26 2020-05-15 吴晓峰 三维MXene/MOF水凝胶的制备及其在水处理方面的应用
CN111785534A (zh) * 2020-06-08 2020-10-16 华中科技大学 一种离子液体共价键合固载MXene的方法及其产物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115722193A (zh) * 2022-12-01 2023-03-03 吉林大学 一种水中低浓度氨氮改性吸附材料的制备方法及其应用
CN115722193B (zh) * 2022-12-01 2024-04-12 吉林大学 一种水中低浓度氨氮改性吸附材料的制备方法及其应用
CN116351402A (zh) * 2023-04-10 2023-06-30 四川大学 一种可回收的MXene/聚醚砜复合微球制备方法及其应用
CN116351402B (zh) * 2023-04-10 2024-10-18 四川大学 一种可回收的MXene/聚醚砜复合微球制备方法及其应用

Also Published As

Publication number Publication date
US20230347290A1 (en) 2023-11-02
JP7416289B2 (ja) 2024-01-17
JPWO2022163583A1 (ja) 2022-08-04
CN116887914A (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
WO2022163583A1 (ja) 吸着材およびその製造方法、吸着シート、人工透析用分離膜ならびに人工透析機器
Pandey et al. A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2TX (MXene)/cellulose acetate
Yang et al. Effects of GO and MOF@ GO on the permeation and antifouling properties of cellulose acetate ultrafiltration membrane
He et al. Ceramic-based membranes for water and wastewater treatment
Ishak et al. Recent progress in the hydrophilic modification of alumina membranes for protein separation and purification
JP7513110B2 (ja) 導電性2次元粒子およびその製造方法、導電性膜、導電性複合材料、ならびに導電性ペースト
Ayyaru et al. Fabrication and separation performance of polyethersulfone/sulfonated TiO2 (PES–STiO2) ultrafiltration membranes for fouling mitigation
KR101936924B1 (ko) 분리막, 및 상기 분리막을 포함하는 수처리 장치
US20230356178A1 (en) Adsorbent, method for manufacturing same, adsorption sheet, separation film, and artificial dialysis equipment
Lim et al. Recent progress and new perspective of MXene-based membranes for water purification: A review
US20150151984A1 (en) Separation membrane, method of manufacturing the same, and water treatment device including the separation membrane
CN111068527A (zh) 用于去除重金属污染物的聚酰胺复合纳滤膜的制备方法
Zhang et al. Enhanced performance of porous forward osmosis (FO) membrane in the treatment of oily wastewater containing HPAM by the incorporation of palygorskite
CN113522038B (zh) 一种用于去除水中污染物的复合膜制备方法及应用
Zhou et al. Construction of PES mixed matrix membranes incorporating ZnFe2O4@ MXene composites with high permeability and antifouling performance
JP6963311B2 (ja) ナノシート積層型分離膜及びその製造方法
WO2023127376A1 (ja) セラミックス材料、セラミックス材料の製造方法、2次元粒子の製造方法および物品の製造方法
WO2023204279A1 (ja) 吸着材、吸着シート、分離膜、人工透析機器および製造方法
CN116710160A (zh) 吸附材料及其制造方法、吸附片、分离膜和人工透析设备
CN116371207A (zh) 一种表面偏析抗污染光催化膜及其制备方法
JP4189960B2 (ja) 親水化多孔質膜およびその製造方法
JP2002058972A (ja) 多孔質有機高分子膜とゼオライトの複合膜とその製造方法
US20240279069A1 (en) Two-dimensional particle, conductive film, conductive paste, and method for producing two-dimensional particle
WO2024150559A1 (ja) フィルタ、二酸化炭素濃度調整装置および二酸化炭素濃度調整方法
Rasheed et al. Cutting-Edge Developments in MXene-Derived Functional Hybrid Nanostructures: A Promising Frontier for Next-Generation Water Purification Membranes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578369

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280010993.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745804

Country of ref document: EP

Kind code of ref document: A1