CN116371207A - 一种表面偏析抗污染光催化膜及其制备方法 - Google Patents

一种表面偏析抗污染光催化膜及其制备方法 Download PDF

Info

Publication number
CN116371207A
CN116371207A CN202310400799.2A CN202310400799A CN116371207A CN 116371207 A CN116371207 A CN 116371207A CN 202310400799 A CN202310400799 A CN 202310400799A CN 116371207 A CN116371207 A CN 116371207A
Authority
CN
China
Prior art keywords
membrane
pollution
mxene
photocatalytic
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310400799.2A
Other languages
English (en)
Inventor
曾广勇
杨朝美
覃晓君
林清泉
王宏山
刘嘉欣
刘志鹏
金秋雨
程晓婕
蒲生彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN202310400799.2A priority Critical patent/CN116371207A/zh
Publication of CN116371207A publication Critical patent/CN116371207A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种表面偏析抗污染光催化膜及其制备方法,通过LiF+HCl混合溶液刻蚀MAX相,以得到片层结构清晰的二维MXene材料;采用热聚合法制备g‑C3N4光催化材料;分别以PVDF为原料、PVP为亲水剂、DMAc为溶剂,将不同浓度的带正电的偏析剂MXene@PEI和带负电的PAA‑g‑C3N4分别引入铸膜液和凝固浴中,通过非溶剂致相转化法(NIPS)法制备MXene@PEI/PAA‑g‑C3N4/PVDF光催化抗污染膜。本发明制得的光催化抗污染膜材料,具有“抵挡污染物+降解污染”的双重抗污染机制,为开发兼具高亲水性和光催化能力的具有双重抗污染机制的超滤膜提供了参考价值。从膜材料本身结构的改善角度出发,以提高膜的处理效率和抗污染性,最终达到绿色、环保,降低工业废水处理成本的现实目的。

Description

一种表面偏析抗污染光催化膜及其制备方法
技术领域
本发明涉及水处理用的分离膜制造技术领域,具体涉及一种表面偏析抗污染光催化膜及其制备方法。
背景技术
水资源的短缺和污染广泛影响着工业和社会的可持续发展,是21世纪人类面临的最重要的挑战之一。膜分离技术被认为是新一代的水净化和回收技术,具有常温下可操作、分离效率高、设备体积小、对环境友好等特点。在膜分离过程中,原料液中的悬浮物或可溶性物质易沉积在膜表面或孔隙内形成膜污染,从而降低膜的分离效率,限制膜技术的进一步发展和应用,制备高性能的抗污染膜成为膜分离领域的关键问题。表面偏析技术可实现超滤膜的原位三维改性,具有成膜与改性同时进行、操作简单、可实现自修复等特点,是一种很有潜力的抗污染膜制备方法。然而,单一的膜改性方法只能从一定程度增强膜的抗污能力,并不能将污染物去除彻底。将膜分离技术与光催化技术相结合制备光催化膜,可以通过光照直接去除膜表面沉积的污染物。
MXene是一种新型的二维(2D)过渡金属碳/氮化物,一般通式为Mn+1XnTx,其中M为早期过渡金属元素,X为碳或氮元素,T则为表面附着的活性基团。作为一种新型的2D材料,MXene具有表面官能团丰富、分布均匀、可按需设计调控,以及与其他片层材料相比具有更好的刚性等特点。近年来,研究者们热衷于将其用于高性能分离膜的开发。例如,王海辉教授课题组在聚醚砜(PES)载体上通过真空辅助过滤堆叠MXene纳米片制备了MXene膜。他们发现,厚度大于500nm的MXene膜可以通过尺寸筛分效应实现对四环素90%以上的高排斥。Han等人在聚酰亚胺(P84)聚合物基体中添加了不同含量的MXene作为添加剂,并通过相转化法合成了厚度为150~200μm的共混纳滤膜。该膜对龙胆紫染料截留率接近100%,通量高达268L m-2·h-1。此外,MXene纳米片的尖锐边缘破坏了细菌膜,导致细菌的完整性丧失。
Long课题组通过将带负电荷的二维的MXene(Ti3C2Tx)纳米片与零维的氧化铝(Al2O3)纳米颗粒简单自组装制备了高性能MXene膜,通过调节MXene和Al2O3的质量比,可以精确地调控MXene膜的内部纳米通道和表面性能。但该技术并没有探讨膜的抗污染性能以及循环利用能力,这与膜分离实际应用需求相悖。其次,该技术使用真空自组装的方式构筑复合膜,膜材料在长期的渗透和清洗过程中会有部分损失,造成分离效率低下,二维材料膜的通病是无法进行错流过滤操作,应用前景还有很长的空间。再次,采用HCl+LiF混合溶液刻蚀MAX相制备的MXene纳米片为多层结构,在膜表面难以有序堆叠,易导致膜的抗溶胀性能差、分离机制不明确等。最后,单纯的MXene/Al2O3复合膜性能还有待进一步提高,如该复合膜对盐离子的截留率较低,最高仅为25%左右,因此还需对MXene进行微观调控增强膜对不同种类污染物的分离性能。
Dang课题组采用水热法成功合成了一种新型氮掺杂碳点复合材料(NCD@BMCN),用于在可见光照射下降解环丙沙星(CIP)。零维的氮掺杂碳点材料(NCD)和一维的钼酸铋(Bi2MoO6)纳米棒很好地分散在2D的CN纳米片上构成Z型异质结,NCD可以作为电荷载体,有效地促进了电子-空穴对的迁移,使得BMCN的带隙从2.64eV降低到NCD@BMCN的2.07eV。NCD@BMCN在可见光照射5min后可将CIP降解完全,并在连续五次光降解循环后仍表现出良好的稳定性。但粉体光催化剂在使用过程中存在分离回收困难、容易造成二次污染等问题,严重限制了其在实际应用中的效果。并且该光催化剂主要针对于单一污染物CIP的去除,而实际的水体环境往往很复杂,利用光催化剂对复杂污水的处理还有待研究。在光催化降解污染物过程中,光催化剂粉末容易发生团聚现象,导致粉末的有效比表面积减小,从而处理效果减弱。
基于上述分析,一种具有“抵挡污染物+降解污染”的双重抗污染机制的新型光催化抗污染膜材料是目前行业内急需的。
发明内容
鉴于上述不足,本发明构筑了一种新型的光催化抗污染膜材料,具有“抵挡污染物+降解污染”的双重抗污染机制,为开发兼具高亲水性和光催化能力的具有双重抗污染机制的超滤膜提供了参考价值。从膜材料本身结构的改善角度出发,以提高膜的处理效率和抗污染性,最终达到绿色、环保,降低工业废水处理成本的现实目的。
本发明是通过如下技术手段实现的:
一种表面偏析抗污染光催化膜的制备方法,包括:
(1)MXene的制备:采用LiF+HCl混合溶液化学刻蚀MAX相制备二维MXene材料,具体包括:
①在室温下,将8g LiF溶解于50mL HCl(12mol/L)溶液中,并将5g Ti3AlC2粉末添加到上述溶液中,在25℃的温度下磁力搅拌24h;
②将上述溶液在反复离心(3500rpm),并1用去离子水(DI)洗涤多次以中和剩余的酸,直至溶液上清液pH为6,同时收集上清液以获得多层的MXene纳米片;
③将多层的MXene纳米片分散在100mL去离子水中,在氮气环境下持续超声剥离8h,然后将分散液离心(3500rpm)处理30min,收集所得上清液(单层的MXene纳米片)并冷冻干燥储存。
主要化学反应如下:
Ti3AlC2 +3LiF+3HCl = AlF3 + 3/2H2 + Ti3C2+3LiCl (1-1)
Ti3C2 + 2H2O = Ti3C2(OH)2 + H2 (1-2)
Ti3C2 + 2LiF+2HCl = Ti3C2F2 + H2 + 2LiCl (1-3)
通过反应(1-1)将MAX相的Al层剥离,并通过反应(1-2)和(1-3)使MXene的表面生成-OH、-F和=O等亲水基团,中和Ti金属表面多余的电子,得到稳定的纳米片结构。
(2)g-C3N4的制备:采用热聚合法制备光催化材料g-C3N4,具体包括:
①用分析天平准确称取15g三聚氰胺粉末;
②将粉末转移到半封闭氧化铝坩埚中,在500℃下加热4h;
③等坩埚自然冷却至室温后研磨所得样品,获得黄色粉末g-C3N4
(3)表面偏析光催化抗污染膜的构筑,具体包括:
①准确称取0.216g PEI溶液,倒入装有77g DAMc溶剂的试剂瓶中,在常温常压下超声搅拌10min;
②准确称取0.144g MXene粉末溶于上述溶液中,在25℃下超声搅拌直至溶液分散均匀;
③准确称取4g PVP溶于上述溶液中,持续超声搅拌1h以混合均匀;
④准确称取19g PVDF粉末溶于上述溶液中,在70℃下机械搅拌8h使其充分溶解,得到均质的铸膜液,随后将铸膜液自然冷却,在室温下脱泡24h;
⑤分别称取400mg、800mg和1200mg的PAA粉末溶于800mL去离子水中,超声搅拌2h以分散均匀,然后分别加入40mg g-C3N4继续超声搅拌至完全溶解,以得到不同浓度PAA-g-C3N4的凝固浴;
⑥取出完全脱泡的铸膜液,将其缓缓地倒在干净的平板玻璃上,将涂膜器厚度调整至200μm,刮出大小一致且厚度均匀的膜。将膜在空气中进行预蒸发30s后,将其水平浸于凝固浴中5min发生相分离,待其从玻璃板上完全脱落后,取出膜片并换置于另一盛有去离子水的容器中浸泡48h;
⑦最后再次取出膜片并用去离子水清洗以除去膜上残留的溶剂,干燥后即得一种表面偏析抗污染光催化膜。
本发明还公开了一种根据上述制备方法制得的表面偏析抗污染光催化膜。
本发明的有益效果在于:
本发明通过NIPS法构筑了一种新型的表面偏析抗污染膜,带来了较多优异效果,主要表现如下:
1.本发明实现了表面偏析防污和光催化降污双重抗污。膜污染是膜分离领域最棘手的问题,需要重复、复杂的膜清洗过程才能缓解,这不仅会形成二次污染,还会降低膜的分离效率。本发明通过静电强化表面偏析策略,利用MXene基材料优异的亲水性和荷电性,构筑兼具高亲水性和光催化能力的双重抗污染机制的超滤膜。
2.本发明实现了对小分子污染物的有效分离并赋予了膜光催化能力。纯PVDF膜(M0)对染料刚果红(CR)的分离效果不明显,截留率仅为17.2%,而在经改性后,表面偏析抗污染膜(M1~M3)对CR的截留率分别提升至97.0%、98.6%和93.2%(图2(b))。另外,将膜分离技术与光催化技术结合,不仅可以解决光催化材料难以回收、需要载体的难题,还能将复合膜直接用于光催化降解污染物。
总体来说,静电强化表面偏析防污协同光催化降污策略不仅提升了复合膜的抗污染性,使得复合膜的可重复使用性增强,并提高了膜对水中小分子污染物的有效分离。此外,光催化材料的引入还赋予了膜光催化性能,实现了膜对污染物的有效降解,展现出良好的应用前景。
附图说明
图1为MXene@PEI/PAA-g-C3N4/PVDF膜的制备路线图。
图2为不同膜的(a)纯水通量、(b)CR和BSA的截留率、(c)在四个循环下的BSA通量变化和FRR和(d)Rh B的去除率(可见光照射8h)。
具体实施方式
缩略语和关键术语定义
MAX相(Ti3AlC2),MXene(Ti3C2Tx),LiF(氟化锂),HCl(盐酸),DMAc(N,N-二甲基乙酰胺),PVP(聚乙烯吡咯烷酮),PAA(聚丙烯酸),PVDF(聚偏氟乙烯),g-C3N4(石墨相氮化碳),PEI(聚乙烯亚胺)
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
一种表面偏析抗污染光催化膜的制备方法,包括:
(1)MXene的制备:采用LiF+HCl混合溶液化学刻蚀MAX相制备二维MXene材料,具体包括:
①在室温下,将8g LiF溶解于50mL HCl(12mol/L)溶液中,并将5g Ti3AlC2粉末添加到上述溶液中,在25℃的温度下磁力搅拌24h。
②将上述溶液在反复离心(3500rpm),并1用去离子水(DI)洗涤多次以中和剩余的酸,直至溶液上清液pH为6,同时收集上清液以获得多层的MXene纳米片。
③将多层的MXene纳米片分散在100mL去离子水中,在氮气环境下持续超声剥离8h,然后将分散液离心(3500rpm)处理30min,收集所得上清液(单层的MXene纳米片)并冷冻干燥储存。
主要化学反应如下:
Ti3AlC2 +3LiF+3HCl = AlF3 + 3/2H2 + Ti3C2+3LiCl (1-1)
Ti3C2 + 2H2O = Ti3C2(OH)2 + H2 (1-2)
Ti3C2 + 2LiF+2HCl = Ti3C2F2 + H2 + 2LiCl (1-3)
通过反应(1-1)将MAX相的Al层剥离,并通过反应(1-2)和(1-3)使MXene的表面生成-OH、-F和=O等亲水基团,中和Ti金属表面多余的电子,得到稳定的纳米片结构。
(2)g-C3N4的制备:采用热聚合法制备光催化材料g-C3N4,具体包括:
①用分析天平准确称取15g三聚氰胺粉末。
②将粉末转移到半封闭氧化铝坩埚中,在500℃下加热4h。
③等坩埚自然冷却至室温后研磨所得样品,获得黄色粉末g-C3N4
(3)表面偏析光催化抗污染膜的构筑
①准确称取0.216g PEI溶液,倒入装有77g DAMc溶剂的试剂瓶中,在常温常压下超声搅拌10min。
②准确称取0.144g MXene粉末溶于上述溶液中,在25℃下超声搅拌直至溶液分散均匀。
③准确称取4g PVP溶于上述溶液中,持续超声搅拌1h以混合均匀。
④准确称取19g PVDF粉末溶于上述溶液中,在70℃下机械搅拌8h使其充分溶解,得到均质的铸膜液,随后将铸膜液自然冷却,在室温下脱泡24h。
⑤分别称取400mg、800mg和1200mg的PAA粉末溶于800mL去离子水中,超声搅拌2h以分散均匀,然后分别加入40mg g-C3N4继续超声搅拌至完全溶解,以得到不同浓度PAA-g-C3N4的凝固浴。
⑥取出完全脱泡的铸膜液,将其缓缓地倒在干净的平板玻璃上,将涂膜器厚度调整至200μm,刮出大小一致且厚度均匀的膜。将膜在空气中进行预蒸发30s后,将其水平浸于凝固浴中5min发生相分离,待其从玻璃板上完全脱落后,取出膜片并换置于另一盛有去离子水的容器中浸泡48h。
⑦最后再次取出膜片并用去离子水清洗以除去膜上残留的溶剂,干燥后即得到MXene@PEI/PAA-g-C3N4/PVDF膜(M1~M3)。
⑧分别在常温常压下测试在每个不同浓度凝固浴下制备的表面偏析抗污染光催化膜的渗透通量以及对蛋白质分子(牛血清白蛋白(BSA))和染料分子(罗丹明B(Rh B)和刚果红(CR))的截留率和去除率,以作为膜的性能评价指标。同时,纯PVDF膜(M0)也通过相同的方法获得。
表1不同膜的铸膜液和凝固浴参数
Figure BDA0004179497370000061
结合表1与图2(a~c)的结果可知,纯PVDF膜(M0)的渗透通量为500.8L/(m2·h),对BSA的截留率为45.2%,在通过四个循环后,膜的通量恢复率(FRR)为79.3%。表面偏析抗污染膜(M1~M3)的渗透通量分别为81.2、146.5和187.3L/(m2·h),对BSA的截留率分别提升至96.8%、95.8%和94.7%,在通过四个循环后,膜的FRR分别提升至97.0%、93.5%和92.8%。纯PVDF膜(M0)对染料刚果红(CR)的分离效果不明显,截留率仅为17.2%,而在经改性后,表面偏析抗污染膜(M1~M3)对CR的截留率分别提升至97.0%、98.6%和93.2%(图2(b))。在可见光照射8h后,对Rh B的去除率分别为高达90.0%、92.4%和91.5%(图2(d))。
以上所述仅为本发明的一些优选实施方式,并非对本发明做任何形式上的限制,本领域的普通技术人员在本发明的启发下,在不脱离本发明创造构思的情况下,还可以做出许多均等变化和改进修饰,这些都属于本发明的保护范围之中。在本发明完整技术方案中,有如下途径仍然可以制备出表面偏析抗污染光催化膜,实现本发明的目的:
1.除了采用LiF+HCl混合试剂刻蚀MAX相以外,若其他人采用HF、NH4HF2、熔融氟盐以及NaOH和H2SO4等方法刻蚀制备出MXene,其他步骤与本发明技术方案一致,也会制备出表面偏析光催化抗污染膜,实现本发明的目的。
2.本发明采用的高分子材料为PVDF,若其他人采用醋酸纤维素(CA)、聚醚砜(PES)或聚砜(PSF)等有机聚合物作为铸膜材料,其他步骤如与本发明技术方案一致,也会制备出表面偏析光催化抗污染膜,实现本发明的目的。
3.本发明采用g-C3N4作为光催化剂添加到凝固浴中,若其他人采用其他光催化材料如铋系光催化剂(BiOCl、BiOBr)或金属氧化物(TiO2、ZnO)等添加到凝固浴中,其他步骤与本发明技术方案一致,也会制备出表面偏析光催化抗污染膜,实现本发明的目的。
4.本发明采用PEI对MXene进行改性,若其他人采用壳聚糖(CS)、3-氨丙基三乙氧基硅烷(APTES)或聚乙二醇(PEG)等其他改性剂对MXene进行正电改性,其他步骤与本发明技术方案一致,也会制备出表面偏析光催化抗污染膜,实现本发明的目的。

Claims (10)

1.一种表面偏析抗污染光催化膜的制备方法,包括:
(1)MXene纳米片的制备:采用LiF+HCl混合溶液化学刻蚀MAX相制备MXene纳米片;
(2)g-C3N4的制备:采用热聚合法制备光催化材料g-C3N4
(3)表面偏析光催化抗污染光催化膜的构筑:
①取PEI溶液与DAMc溶剂混合,超声搅拌10min,再加入MXene粉末,在25℃下超声搅拌直至溶液分散均匀,得第一混合溶液;
②向第一混合溶液中加入PVP,超声搅拌1h,再加入PVDF粉末,机械搅拌后自然冷却,再在室温下脱泡,得到脱泡铸膜液;
③称取400mg、800mg和1200mg的PAA粉末溶于800mL去离子水中,超声搅拌2h,再加入40mg g-C3N4继续超声搅拌至完全溶解,得到不同浓度的PAA-g-C3N4凝固浴;
④将脱泡铸膜液倒在平板玻璃上,刮出厚度200μm的膜,将膜在空气中预蒸发后,再水平浸于PAA-g-C3N4凝固浴中,待其从玻璃板上完全脱落,取出膜片并置于去离子水中浸泡48h;
⑤最后再次取出膜片并用去离子水清洗,干燥后即得一种表面偏析抗污染光催化膜。
2.根据权利要求1所述的制备方法,其中:
步骤①所述PEI溶液、DAMc溶剂、MXene粉末的质量分别为0.216g、76.64g、0.144g。
3.根据权利要求1所述的制备方法,其中:
步骤②所述PVP质量为4g,PVDF粉末质量为19g。
4.根据权利要求1所述的制备方法,其中:
步骤②所述在机械搅拌温度为70℃,搅拌时间8h;
所述脱泡时间为24h。
5.根据权利要求1所述的制备方法,其中:
步骤④所述预蒸发时间为30s;
所述凝固浴中浸泡时间为5min;
所述去离子水中浸泡时间为48h。
6.根据权利要求1所述的制备方法,其中:
步骤(1)所述MXene的制备包括:
取8g LiF溶解于50mL HCl中,再加入5g Ti3AlC2粉末,在25℃下磁力搅拌24h,得第一溶液;
将第一溶液反复离心,并用去离子水洗涤,收集上清液,获得多层MXene纳米片;
将多层的MXene纳米片分散在去离子水中,在氮气环境下超声剥离,然后将分散液离心处理,得MXene纳米片。
7.根据权利要求6所述的制备方法,其中:
所述第一溶液经去离子水洗涤至上清液pH值=6。
8.根据权利要求6所述的制备方法,其中:
所述超声剥离时间为8h,分散液离心处理时间为30min。
9.根据权利要求1所述的制备方法,其中:
步骤(2)所述g-C3N4的制备包括:
称取15g三聚氰胺粉末,将粉末转移到半封闭氧化铝坩埚中,在500℃下加热4h,等坩埚自然冷却至室温后研磨样品,即得g-C3N4
10.一种根据权利要求1-9任一所述制备方法制得的表面偏析抗污染光催化膜。
CN202310400799.2A 2023-04-14 2023-04-14 一种表面偏析抗污染光催化膜及其制备方法 Pending CN116371207A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310400799.2A CN116371207A (zh) 2023-04-14 2023-04-14 一种表面偏析抗污染光催化膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310400799.2A CN116371207A (zh) 2023-04-14 2023-04-14 一种表面偏析抗污染光催化膜及其制备方法

Publications (1)

Publication Number Publication Date
CN116371207A true CN116371207A (zh) 2023-07-04

Family

ID=86978599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310400799.2A Pending CN116371207A (zh) 2023-04-14 2023-04-14 一种表面偏析抗污染光催化膜及其制备方法

Country Status (1)

Country Link
CN (1) CN116371207A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117504609A (zh) * 2024-01-05 2024-02-06 河北建设集团安装工程有限公司 一种led驱动的cds光催化膜的制备方法及应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117504609A (zh) * 2024-01-05 2024-02-06 河北建设集团安装工程有限公司 一种led驱动的cds光催化膜的制备方法及应用

Similar Documents

Publication Publication Date Title
Alkhouzaam et al. Novel polysulfone ultrafiltration membranes incorporating polydopamine functionalized graphene oxide with enhanced flux and fouling resistance
CN108435002B (zh) 一种功能化碳量子点改性的复合纳滤膜的制备方法
CN108159888A (zh) 一种具有光催化性能的超亲水超滤膜的制备方法
Vatanpour et al. A novel antifouling ultrafiltration membranes prepared from percarboxylic acid functionalized SiO2 bound Fe3O4 nanoparticle (SCMNP‐COOOH)/polyethersulfone nanocomposite for BSA separation and dye removal
Kotobuki et al. Ceramic-polymer composite membranes for water and wastewater treatment: Bridging the big gap between ceramics and polymers
CN116371207A (zh) 一种表面偏析抗污染光催化膜及其制备方法
CN109794175A (zh) 具有pH响应性的氧化石墨烯复合膜及其制备方法和用途
CN113368688B (zh) 一种氧化二硫化钼二维纳米复合膜的制备方法
Li et al. Desalination characteristics of cellulose acetate FO membrane incorporated with ZIF-8 nanoparticles
CN114272766B (zh) 一种二维MXene基油水分离膜及其制备方法
Tian et al. Polydopamine-assisted two-dimensional molybdenum disulfide (MoS2)-modified PES tight ultrafiltration mixed-matrix membranes: enhanced dye separation performance
Wang et al. Review of synthesis and separation application of metal-organic framework-based mixed-matrix membranes
Wang et al. Fabrication of an antifouling GO‐TiO2/PES ultrafiltration membrane
Geng et al. High-performance TiO2 nanotubes/poly (aryl ether sulfone) hybrid self-cleaning anti-fouling ultrafiltration membranes
Wu et al. Preparation of a CAB− GO/PES mixed matrix ultrafiltration membrane and its antifouling performance
Liu et al. Application of nanofiltration membrane based on metal-organic frameworks (MOFs) in the separation of magnesium and lithium from salt lakes
Dmitrenko et al. Nanofiltration Mixed Matrix Membranes from Cellulose Modified with Zn-Based Metal–Organic Frameworks for the Enhanced Water Treatment from Heavy Metal Ions
Khan et al. Preparation of an ultrafiltration (UF) membrane with narrow and uniform pore size distribution via etching of SiO2 nano-particles in a membrane matrix
Kachhadiya et al. Separation of n-butanol from aqueous mixtures using TiO2 and h-BN functionalized MIL-101 (Cr) incorporated PVDF mixed matrix membranes
Choi et al. Modified graphene oxide-incorporated thin-film composite hollow fiber membranes through interface polymerization on hydrophilic substrate for CO2 separation
Zhou et al. Construction of PES mixed matrix membranes incorporating ZnFe2O4@ MXene composites with high permeability and antifouling performance
Wang et al. Metal–polyphenol coordination at the aqueous contra-diffusion “interface”: a green way to high-performance iron (III)/tannic acid thin-film-composite nanofiltration membranes
Zhang et al. Demulsifier-inspired superhydrophilic/underwater superoleophobic membrane modified with polyoxypropylene polyoxyethylene block polymer for enhanced oil/water separation properties
CN117181004A (zh) 一种亲水性抗污染MXene/PVDF复合膜及其制备方法和应用
Boughdiri et al. A preliminary study on cellulose acetate composite membranes: Effect of nanoparticles types in their preparation and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination