WO2022163567A1 - 操舵システムおよびこれを備えた車両 - Google Patents

操舵システムおよびこれを備えた車両 Download PDF

Info

Publication number
WO2022163567A1
WO2022163567A1 PCT/JP2022/002366 JP2022002366W WO2022163567A1 WO 2022163567 A1 WO2022163567 A1 WO 2022163567A1 JP 2022002366 W JP2022002366 W JP 2022002366W WO 2022163567 A1 WO2022163567 A1 WO 2022163567A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
angle sensor
angle
motor
position sensor
Prior art date
Application number
PCT/JP2022/002366
Other languages
English (en)
French (fr)
Inventor
教雄 石原
貴志 伊東
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP22745788.4A priority Critical patent/EP4286248A1/en
Publication of WO2022163567A1 publication Critical patent/WO2022163567A1/ja
Priority to US18/223,143 priority patent/US20230356777A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0418Electric motor acting on road wheel carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/18Steering knuckles; King pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/023Determination of steering angle by measuring on the king pin

Definitions

  • the present invention relates to a steering system and a vehicle equipped with the same, and relates to a technology for improving fuel efficiency, stability of driving performance, and safety by controlling the steering angle of the left and right wheels appropriately according to the driving situation.
  • a steering wheel and a steering device are mechanically connected, and both ends of the steering device are connected to left and right wheels by tie rods. Therefore, the turning angle of the left and right wheels due to the movement of the steering wheel is determined by the initial settings.
  • the vehicle geometry includes (1) "parallel geometry” in which the left and right wheels have the same turning angle, and (2) “turning inner wheel angle larger than turning outer wheel angle” in order to keep the turning center in one place. Ackermann Geometry" is known.
  • the Ackermann geometry is designed so that the steering angle difference between the left and right wheels is adjusted so that each wheel turns around a common point in order to turn the vehicle smoothly at low speeds where the centrifugal force acting on the vehicle can be ignored. is set.
  • the parallel geometry is preferable to the Ackermann geometry.
  • a typical vehicle steering system is mechanically connected to the wheels, so it is generally possible to have only a single fixed steering geometry, which is intermediate between the Ackermann geometry and the parallel geometry. It is often set to a typical geometry.
  • the steering angle difference between the left and right wheels is insufficient in the low speed range, resulting in an excessive steering angle of the outer wheels, and an excessive steering angle of the inner wheels in the high speed range.
  • Unnecessary imbalance in the wheel lateral force distribution between the inner and outer wheels causes deterioration of fuel efficiency and premature wear of tires due to worsening of running resistance. There is the issue of damage.
  • Patent Document 3 a hub unit with a steering function that can perform auxiliary steering of individual wheels according to the driving situation, in addition to steering by steering wheel operation by the driver.
  • Patent Document 1 since two motors are used, an increase in the number of motors causes an increase in cost and an increase in the overall size.
  • Patent Document 2 since the hub bearing is cantilevered with respect to the steering shaft, the rigidity is lowered, and there is a possibility that the steering geometry may change due to the generation of excessive traveling G.
  • a speed reducer is provided on the steering shaft, the size including the motor becomes large. As the size of the motor and the like increases, it becomes difficult to arrange the whole on the inner peripheral portion of the wheel. Moreover, when a reduction gear with a large reduction ratio is provided, the responsiveness deteriorates.
  • An object of the present invention is to provide a steering system and a vehicle equipped with the steering system, which can have a compact structure as a whole while ensuring the safety of the system by making the output signal of the rotational angle of the motor redundant. be.
  • a steering system includes a hub unit body having a hub bearing for rotating and supporting a wheel, and a hub unit body provided in an underbody frame part of a suspension system to support the hub unit body so as to be swingable around a steering shaft extending in the vertical direction.
  • a steering function-equipped hub unit having a unit support member for driving the hub unit body, and a steering actuator for swinging the hub unit body around the turning axis; a control device that controls the steering actuator,
  • the steering actuator has a motor and a linear motion mechanism that converts the rotational output of the motor into a linear motion of an output rod.
  • a steering system driven in rotation about An angle sensor capable of detecting the rotation angle of the motor and outputting two or more angle sensor values is provided, and a position sensor capable of detecting the position of the linear motion mechanism, which is the amount of movement of the output rod, and outputting it as a position sensor value. is provided,
  • the control device compares each angle sensor value detected and output by the angle sensor with the position sensor value detected and output by the position sensor, so that any angle sensor value is abnormal. Determine whether or not
  • the rotation of the motor causes the output rod of the linear motion mechanism to move forward and backward, so that the hub unit body is rotatably driven about the turning shaft, thereby being steered.
  • a sensor capable of outputting two or more angle sensor values is used as the angle sensor for detecting the rotation angle of the motor.
  • the control device compares each angle sensor value detected and output by the angle sensor with the position sensor value detected and output by the position sensor to determine whether any of the angle sensor values is abnormal. judge.
  • the control device may continue to control the steering actuator when determining that one of the angle sensor values is abnormal and another of the angle sensor values is normal. Thus, even if one of the angle sensor values is abnormal, the control can be continued without stopping if the other angle sensor values are normal. Therefore, the safety of the steering system can be ensured.
  • the angle sensor and the position sensor may each be a magnetic sensor.
  • a light source or the like is not necessary, the structure is simple, and the durability is excellent in an environment where the vehicle is subject to vibration during running.
  • the control device receives a command signal from a host control unit and a position sensor value from the position sensor, and receives a steering control unit that outputs a current command signal for the motor.
  • An actuator drive control section may be provided for applying power to the motor to drive the steering actuator.
  • a vehicle according to the present invention is a vehicle equipped with the steering system having any one of the above-described configurations of the present invention, and one or both of front wheels and rear wheels are supported using the steering function-equipped hub unit. Therefore, the above-described effects of the steering system of the present invention can be obtained.
  • the front wheels are generally steered wheels, and if a hub unit with a steering function is applied to the steered wheels, it is effective in adjusting the toe angle while the vehicle is running.
  • the rear wheels are generally non-steered wheels, when applied to the non-steered wheels, the minimum turning radius can be reduced during low-speed running by slightly steering the non-steered wheels.
  • a steering system includes a hub unit body having a hub bearing for rotating and supporting a wheel, and a hub unit body provided in an underbody frame part of a suspension system to support the hub unit body so as to be swingable around a steering shaft extending in the vertical direction. and a hub unit with a steering function having a steering actuator for rockingly driving the hub unit main body about the steering axis; and a control device for controlling the steering actuator, wherein the steering The actuator has a motor and a linear motion mechanism that converts the rotational output of the motor into linear motion of the output rod.
  • a rotationally driven steering system wherein an angle sensor capable of detecting the rotation angle of the motor and outputting two or more angle sensor values is provided, and the position of the linear motion mechanism, which is the amount of movement of the output rod, is detected.
  • a position sensor capable of outputting a position sensor value is provided, and the control device compares each angle sensor value detected and output by the angle sensor with the position sensor value detected and output by the position sensor. By doing so, it is determined whether or not any angle sensor value is abnormal. Therefore, by making the output signal of the rotation angle of the motor redundant, the overall structure can be made compact while ensuring the safety of the system.
  • a vehicle according to the present invention is a vehicle including the steering system having any one of the above configurations according to the present invention, and the hub unit with steering function is used to support either or both of the front wheels and the rear wheels.
  • FIG. 1 is a longitudinal sectional view showing the structure of a hub unit with a steering function and its surroundings of a steering system according to a first embodiment of the present invention
  • FIG. 2 is a horizontal sectional view of the hub unit with steering function and a block diagram of a control system; It is a perspective view which shows the external appearance of the hub unit with a steering function.
  • FIG. 5 is a sectional view taken along the line VI-VI of FIG. 4;
  • FIG. It is an enlarged cross-sectional view around an angle sensor in the hub unit with a steering function.
  • 9B is an end view along line IXB-IXB of FIG. 9A;
  • FIG. FIG. 4 is an explanatory diagram of a conceptual configuration of an angle sensor used in the hub unit with a steering function; 4 is a flow chart showing the control of the steering system step by step.
  • FIG. 4 is a schematic plan view of another example of a vehicle equipped with either steering system
  • FIG. 11 is a schematic plan view of another example of a vehicle equipped with either steering system
  • FIG. 1 A steering system according to an embodiment of the present invention will be described with reference to FIGS. 1 to 12.
  • FIG. This steering system includes a hub unit with a steering function, and a control device, which will be described later, that controls a steering actuator of the hub unit with a steering function.
  • This steering system is mounted on a vehicle.
  • the hub unit 1 with steering function includes a hub unit body 2 , a unit support member 3 , a rotation-allowing support member 4 and a steering actuator 5 .
  • a unit support member 3 is provided integrally with a knuckle 6, which is an underbody frame component.
  • a steering actuator 5 is provided on the inboard side of the unit support member 3
  • a hub unit main body 2 is provided on the outboard side of the unit support member 3 .
  • the hub unit main body 2 and the steering actuator 5 are connected by a joint portion 8. As shown in FIG. Normally, this joint portion 8 is attached with a boot (not shown) for waterproofing and dustproofing.
  • the hub unit main body 2 is supported by a unit support member 3 via rotation-permitting support parts 4, 4 at two upper and lower positions so as to be rotatable about a steering axis A extending in the vertical direction.
  • the steering axis A is different from the rotation axis O of the wheel 9, and is also different from the kingpin axis for main steering.
  • the kingpin angle is set at 10 to 20 degrees for the purpose of improving the straight running stability of the vehicle. It has a steering shaft of (axis).
  • the wheel 9 includes a wheel 9a and a tire 9b.
  • the steering function-equipped hub unit 1 is used to steer the steerable wheels, specifically, as shown in FIG. ⁇ 5 degrees) is provided integrally with the knuckle 6 of the suspension system 12 .
  • the hub unit 1 with a steering function for the steered wheels depending on the vehicle control requirements, not only the small angle but also relatively large angles such as 10° to 20° may be adopted separately for the left and right wheels. The same applies to a hub unit 1 with a steering function shown in FIG. 14, which will be described later.
  • the steering device 11 is attached to the vehicle body and is operated by a driver's operation of a steering wheel 11a or by commands from an automatic driving device or a driving support device (not shown). 14 is connected to a steering coupling portion 6d (described later) of the unit support member 3.
  • the steering device 11 is of a rack and pinion type or the like, but any type of steering device may be used.
  • the suspension system 12 employs, for example, a strut suspension mechanism that directly fixes the shock absorber to the knuckle 6, but a double wishbone suspension mechanism, a multi-link suspension mechanism, or other suspension mechanisms may also be applied. .
  • the hub unit main body 2 includes a hub bearing 15 for supporting the wheel 9, an outer ring 16 which is an annular portion with a steering shaft portion, and an arm portion 17 (see FIG. 1) which is a steering force receiving portion. 3).
  • the hub bearing 15 has an inner ring 18, an outer ring 19, and rolling elements 20 such as balls interposed between the inner and outer rings 18, 19. 1) It serves as a link between
  • the hub bearing 15 is an angular contact ball bearing in which the outer ring 19 is a fixed ring, the inner ring 18 is a rotating ring, and the rolling elements 20 are double rows.
  • the inner ring 18 has a hub ring portion 18a having a hub flange 18aa and forming an outboard side raceway surface, and an inner ring portion 18b forming an inboard side raceway surface.
  • the wheel 9a of the wheel 9 is bolted to the hub flange 18aa so as to overlap the brake rotor 21a.
  • the inner ring 18 rotates around the rotation axis O.
  • an outer ring (annular portion with a steering shaft portion) 16 includes an annular portion 16a fitted to the outer peripheral surface of an outer ring 19 and protruding vertically from the outer periphery of the annular portion 16a. It has trunnion shaft-shaped steered shaft portions 16b, 16b provided.
  • the steered shaft portions 16b which are upper and lower mounting shaft portions, are provided coaxially with the steered shaft center A.
  • the brake 21 has a brake rotor 21a and a brake caliper 21b.
  • the brake caliper 21b is attached to two upper and lower brake caliper attachment portions 22 (FIG. 4) formed integrally with the outer ring 19 so as to protrude in the form of arms.
  • each rotation-permitting support component 4 consists of a rolling bearing.
  • tapered roller bearings are used as rolling bearings.
  • the rolling bearing has an inner ring 4a fitted to the outer circumference of the steering shaft portion 16b, an outer ring 4b fitted to the unit support member 3, and a plurality of rolling elements 4c interposed between the inner and outer rings 4a and 4b. .
  • the unit support member 3 has a unit support member main body 3A and a unit support member combined body 3B.
  • a substantially ring-shaped unit support member assembly 3B is detachably fixed to the outboard side end of the unit support member main body 3A.
  • Partial concave spherical fitting hole forming portions 3Ba are formed in the upper and lower portions of the inboard-side side surface of the unit support member combined body 3B.
  • the upper and lower portions of the outboard side end of the unit support member main body 3A are respectively formed with a partially concave spherical fitting hole forming portion 3Aa.
  • a unit support member assembly 3B is fixed to the outboard side end of the unit support member main body 3A, and the fitting hole forming portions 3Aa and 3Ba are combined with each other in each of the upper and lower portions, thereby forming a fitting hole extending all around. It is formed.
  • the outer ring 4b is fitted into this fitting hole.
  • the unit support member 3 is represented by a dashed line.
  • each steering shaft portion 16b is formed as a hollow shaft and has a female thread portion extending radially in an inner peripheral hole.
  • a disk-shaped pressing member 24 is interposed on the end surface of the inner ring 4a, and a bolt 23 screwed into the female thread portion applies a pressing force to the end surface of the inner ring 4a, thereby preloading each rotation-allowing support member 4. giving. That is, the initial preload is set so that the preload is not lost even when an external force such as the weight of the vehicle acts on the hub unit. Thereby, the rigidity of each rotation-permitting support component 4 can be increased.
  • the rolling bearing of the rotation-permitting support component 4 may be an angular ball bearing or a four-point contact ball bearing instead of the tapered roller bearing. Also in that case, preload can be applied in the same manner as described above.
  • each rotation-permitting support part 4 is inside the wheel 9a of the wheel 9.
  • each rotation-permitting support component 4 is arranged in the wheel 9a near the middle in the width direction of the wheel 9a.
  • the arm portion 17 is a portion that acts as a point of action for applying an auxiliary steering force to the outer ring 19 of the hub bearing 15, and integrally protrudes from the outer ring 16 or part of the outer circumference of the outer ring 19. .
  • the arm portion 17 is rotatably connected to an output rod 25 a serving as a direct-acting output portion of the steering actuator 5 via a joint portion 8 .
  • the output rod 25a of the steering actuator 5 advances and retreats (straight motion), so that the hub unit main body 2 rotates about the steering axis A, that is, assists steering.
  • the steering actuator 5 includes a motor 26 as a rotational drive source for rotationally driving the hub unit body 2 around the steering axis A (FIG. 1), and a motor 26 that rotates. It comprises a speed reducer 27 that reduces speed, and a linear motion mechanism 25 that converts forward and reverse rotational output of the speed reducer 27 into reciprocating linear motion (straight motion) of an output rod 25a.
  • the motor 26 is, for example, a permanent magnet type synchronous motor, but may be a DC motor or an induction motor.
  • the speed reducer 27 can use a winding type transmission mechanism such as a belt transmission mechanism, a gear train, or the like, and the belt transmission mechanism is used in the example of FIG.
  • the speed reducer 27 has a drive pulley 27a, a driven pulley 27b, and a belt 27c.
  • a drive pulley 27a is coupled to a rotor shaft 26b of the motor 26, and a rotatable nut portion 35 of the linear motion mechanism 25 is provided with a driven pulley 27b.
  • the driven pulley 27b is arranged parallel to the rotor shaft 26b.
  • the driving force of the motor 26 is transmitted from the drive pulley 27a to the driven pulley 27b via the belt 27c.
  • the drive pulley 27a, the driven pulley 27b, and the belt 27c constitute a winding-type speed reducer 27. As shown in FIG.
  • the linear motion mechanism 25 can use a trapezoidal or triangular screw type feed screw mechanism.
  • a feed screw mechanism using a trapezoidal slide screw. 33 is used.
  • Grease is sealed inside the slide screw.
  • the linear motion mechanism 25 has a feed screw mechanism 33, a rotation support bearing 28, a detent part 43, and an actuator case 34 covering these components.
  • the feed screw mechanism 33 has a nut portion 35 , the output rod 25 a that is a screw shaft, and a sliding bearing 37 .
  • the output rod 25 a is prevented from rotating with respect to the unit support member 3 by a rotation preventing member 43 .
  • the nut portion 35 is provided with a driven pulley 27b at an axially intermediate portion of the outer peripheral portion, and is rotatably supported by the unit support member 3 by rotation support bearings 28, 28 on both sides in the axial direction.
  • a female screw portion 35a is provided on the inner periphery of the nut portion 35 .
  • a male threaded portion 25aa that meshes with the female threaded portion 35a of the nut portion 35 is provided on the outer periphery of the output rod 25a.
  • Slide bearings 37, 37 through which the output rod 25a slidably penetrates are provided at both ends of the nut portion 35 in the axial direction.
  • Each sliding bearing 37 guides the axial movement of the output rod 25a, and prevents the output rod 25a from being subjected to a radial force when an external force from the tire side is input to the output rod 25a. .
  • rotation support bearing 28 in this example, two tapered roller bearings are combined face-to-face via a driven pulley 27b.
  • These rotation support bearings 28, 28 may be arranged back to back or face to face, but front to face arrangement is preferable from the standpoint of ease of assembly and preload adjustment using shims or the like.
  • the rotation support bearing 28 may be an angular ball bearing. Also in this case, the arrangement of the rotation support bearings 28, 28 may be either back-to-back or face-to-face.
  • the anti-rotation component 43 is a shaft-like member provided at the inboard side end, which is the rear end of the output rod 25a.
  • the anti-rotation member 43 is fitted and fixed to the output rod 25a at the inboard side end of the output rod 25a so as to extend, for example, in the vertical direction and in the direction perpendicular to the axial direction of the output rod 25a.
  • Annular sliding bearings 49 a and 49 b are fitted to both ends in the axial direction of the outer periphery of the anti-rotation component 43 .
  • a flat surface (so-called D-cut surface) 50 parallel to one end face of the slide bearing 49b is formed in a portion of the inboard side end of the output rod 25a that faces the slide bearing 49b.
  • One end surface of the sliding bearing 49b is brought into contact with the flat surface 50 of the output rod 25a, and a bolt 51 that presses the other end surface of the sliding bearing 49b is screwed into the detent member 43.
  • the positions of the anti-rotation member 43, the bolt 51, and the slide bearings 49a and 49b are regulated to desired positions with respect to the actuator case .
  • the bolt 51 is provided with a position sensor measurement target Tg, which will be described later.
  • the anti-rotation component 43 slidably contacts the guide surfaces 52a, 52b of the actuator case 34, which is the fixed portion of the linear motion mechanism 25, via the sliding bearings 49a, 49b. Therefore, by sliding the detent part 43 along the guide groove 52 of the actuator case 34 via the sliding bearings 49a and 49b, the output rod 25a can be reciprocated in the axial direction.
  • the linear motion mechanism 25 is provided with a feed screw mechanism using the slide screw of the trapezoidal screw, so that the reverse input from the tire 9b can be prevented more effectively.
  • the steering actuator 5 including the motor 26, the speed reducer 27 and the linear motion mechanism 25 is assembled as a subassembly and detachably attached to the case 6b with bolts or the like.
  • the steering actuator 5 of this embodiment includes a motor 26, a speed reducer 27, and a linear motion mechanism 25, but the speed reducer may be omitted.
  • a mechanism is also possible in which the driving force of the motor 26 is directly transmitted to the linear motion mechanism 25 without going through the speed reducer.
  • the linear motion mechanism 25 may be a mechanism capable of converting rotary motion into linear motion, such as a ball screw or a rack-and-pinion mechanism.
  • the steering function-equipped hub unit 1 is provided with the following position sensor and angle sensor.
  • the actuator case 34 is provided with a position sensor 44 for detecting the position of the direct acting mechanism 25.
  • the position sensor 44 can detect (monitor) the amount of axial movement of the output rod 25a and output it as a position sensor value.
  • the position sensor 44 can use various sensors such as magnetic type, optical type, capacitance type, etc. In this embodiment, a magnetic sensor is used.
  • a position sensor 44 is fixed to a substrate 53 fixed in the actuator case 34, and the position sensor 44 faces a path along which a position sensor measurement target Tg, which will be described later, advances and retreats. Further, when the output rod 25a is at a predetermined axial position (advance/retreat position), the position sensor 44 and the position sensor measurement target Tg face each other across a predetermined gap Gp.
  • the defined axial position and the defined gap Gp are axial positions and gaps that are arbitrarily determined by design or the like, and are suitable axial positions based on, for example, either one or both of tests and simulations. , is determined by finding the gap.
  • the anti-rotation component 43 is provided with a permanent magnet that serves as the position sensor measurement target Tg.
  • the permanent magnet is provided on the head of a bolt 51 screwed to the axial end of the anti-rotation component 43 .
  • the bolt 51 is made of a non-magnetic material such as resin or stainless steel.
  • the permanent magnet is integrally formed inside the bolt 51 made of resin, for example.
  • the bolt 51 is made of a non-magnetic metal material such as stainless steel, for example, a concave portion (not shown) is formed in the head surface of the bolt 51, the permanent magnet is provided in this concave portion, and the adhesive or the like is used.
  • the permanent magnet is embedded in the head by covering the recess. Accordingly, the position sensor 44 reads the change in the magnetic field of the permanent magnet accompanying the forward/backward movement of the output rod 25a to detect the forward/backward position of the output rod 25a.
  • the permanent magnet may be fixed directly to the anti-rotation part 43 by omitting the bolt.
  • FIG. 9A is an enlarged cross-sectional view of the periphery of the angle sensor in this hub unit with steering function
  • FIG. 9B is an end view along line IXB-IXB of FIG. 9A.
  • the motor case 26a of the motor 26 is provided with an angle sensor 54 capable of detecting the rotation angle of the motor 26 and outputting two or more angle sensor values.
  • the angle sensor 54 a magnetic sensor that outputs two output signals (angle sensor values 1 and 2) is arranged in the sensor IC to ensure redundancy and enable a compact design.
  • the angle sensor 54 is fixed to the motor case 26a via the substrate 55.
  • a permanent magnet Ta serving as a measurement target for an angle sensor that rotates integrally with the rotor shaft 26b of the motor 26 is fixed to the inboard end of the rotor shaft 26b of the motor 26 .
  • the angle sensor 54 and the permanent magnet Ta face each other across a predetermined axial gap ⁇ .
  • An angle sensor 54 which is a magnetic sensor, detects the rotation angle of the motor 26 by reading changes in the magnetic field of the permanent magnet Ta accompanying the rotation of the rotor shaft 26b. 10
  • the angle sensor 54 includes a first output circuit 57 and a second output circuit 58 in one package 56, and outputs two or more angle sensor values. is possible.
  • the package 56 has individual output terminals 59 and 60 for outputting the outputs of the output circuits 57 and 58 to the outside.
  • the angle sensor 54 is not limited to the axial gap type magnetic sensor described above, and a so-called radial gap type magnetic sensor can also be applied.
  • the case 6b is integrally formed with the unit support member main body 3A as part of the unit support member 3.
  • the case 6b is formed in a cylindrical shape with a bottom, and is provided with a motor accommodating portion that supports the motor 26 and a linear motion mechanism accommodating portion that supports the linear motion mechanism 25 .
  • a fitting hole for supporting the motor 26 at a predetermined position inside the case is formed in the motor accommodating portion.
  • a fitting hole for supporting the linear motion mechanism 25 at a predetermined position in the case, a through hole for allowing the forward/backward movement of the output rod 25a, and the like are formed in the linear motion mechanism accommodating portion.
  • the unit support member main body 3A includes the case 6b, a shock absorber mounting portion 6c that serves as a shock absorber mounting portion, and a steering device connecting portion 6d that serves as a connecting portion for the steering device 11 (FIG. 2). have.
  • the shock absorber attachment portion 6c and the steering device coupling portion 6d are also formed integrally with the unit support member main body 3A.
  • a shock absorber attachment portion 6c is formed so as to protrude from the upper portion of the outer surface portion of the unit support member main body 3A.
  • a steering device coupling portion 6d is formed so as to protrude from the side portion of the outer surface portion of the unit support member main body 3A.
  • the control device 29 has a steering control section 30 and an actuator drive control section 31 .
  • the steering control section 30 outputs a current command signal according to the auxiliary steering angle command signal (command signal) given from the host control section 32 .
  • the steering control unit 30 performs feedback control using the position sensor output, which is forward/backward position information of the output rod 25a, from the position sensor 44, so that the angle of the wheel 9 can be managed appropriately and accurately.
  • the host control unit 32 is a control means above the steering control unit 30, and as this host control unit 32, for example, an electric control unit (vehicle control unit, abbreviated as VCU) that controls the vehicle in general is applied.
  • the actuator drive control section 31 drives and controls the steering actuator 5 by outputting a current corresponding to the current command signal input from the steering control section 30 .
  • the actuator drive control section 31 controls power supplied to the coils of the motor 26 .
  • the actuator drive control unit 31 for example, constitutes a half-bridge circuit using switch elements (not shown), and performs PWM control for determining the voltage applied to the motor according to the ON-OFF duty ratio of the switch elements.
  • the angle of the wheels 9 can be slightly changed in addition to the steering by the steering wheel operation of the driver. Even during straight running, the amount of toe angle can be adjusted according to each situation.
  • the steering system may operate the steering actuators 5, 5 in response to commands from an automatic driving device or a driving support device (not shown) instead of the steering wheel operation by the driver
  • FIG. 11 is a flow chart showing step by step the control of this steering system. Description will be made with reference to FIG. 2 as appropriate.
  • a steering control unit 30 of the control device 29 constantly determines whether to continue or stop the control of the steering system while the vehicle is running.
  • the steering control unit 30 can determine whether or not the vehicle is running from the output of a sensor such as the vehicle speed sensor 61 or the wheel speed sensor. After starting this process, the steering control unit 30 checks whether or not the angle sensor values 1 and 2 are operating normally within a predetermined angle detection range C (step S1). :
  • step S1: No if the values of angle sensor value 1 and angle sensor value 2 are outside the predetermined angle detection range (step S1: No), an abnormality in either angle sensor value 1 or angle sensor value 2 can be considered.
  • the control unit 30 stops controlling the steering system (step S9), and outputs that the angle sensor values 1 and 2 are abnormal (step S8). If it is determined in step S1 that the angle sensor 54 is operating normally (step S1: Yes), the steering control unit 30 controls each angle sensor value detected and output by the angle sensor 54 and the position sensor 44 By comparing the position sensor values detected and output in step S2 and S3, it is determined whether or not any of the angle sensor values is abnormal.
  • step S2 the steering control unit 30 compares the position sensor value P and the value A of the angle sensor value 1 to perform a mutual check. If the deviation of each value is small (step S2: Yes), the steering control unit 30 determines that the position sensor 44 and the angle sensor 54 are operating normally, and continues control. The deviation is determined by, for example, one or both of tests and simulations. The same applies to deviations in steps S3 and S6, which will be described later. If the deviation between the values is large (step S2: No), it is considered that an abnormality has occurred in one of the sensors. 30 compares the position sensor value P and the value B of the angle sensor value 2 (step S3).
  • step S3 if the deviation between the position sensor value P and the value B of the angle sensor value 2 is small (step S3: Yes), the steering control unit 30 outputs an abnormality in the angle sensor value 1 (step S4), and the control is Continue (step S5). That is, when the steering control unit 30 determines that the angle sensor value 1 is abnormal and the angle sensor value 2 is normal, it continues to control the steering actuator 5 . If the deviation between the position sensor value P and the value B of the angle sensor value 2 is large (step S3: No), the steering control unit 30 further compares the value A of the angle sensor value 1 and the value B of the angle sensor value 2 ( step S6).
  • step S6 When the deviation between the value A of the angle sensor value 1 and the value B of the angle sensor value 2 is small (step S6: Yes), the steering control unit 30 determines that the position sensor value P is abnormal. output (step S7) and stop the control (step S9).
  • step S6: No When the deviation between the value A of the angle sensor value 1 and the value B of the angle sensor value 2 is large (step S6: No), the steering control unit 30 outputs that the angle sensor values 1 and 2 are abnormal (step S8). , the control is stopped (step S9).
  • the hub unit body 2 including the hub bearings 15 that support the wheels 9 can be freely rotated around the steering axis A by driving the steering actuator 5 .
  • This rotation is added to the steering by the steering wheel operation of the driver, that is, to the rotation of the knuckle 6 about the kingpin axis by the steering device 11, and is performed as an auxiliary steering, and independent steering of one wheel can be performed.
  • the toe angle between the left and right wheels 9, 9 can be arbitrarily changed by making the angles of the auxiliary steering of the left and right wheels 9, 9 different.
  • the hub unit 1 with steering function may be used for both steered wheels such as the front wheels and non-steered wheels such as the rear wheels.
  • the left and right wheels are independent or interlocked with the left and right wheels. It is a mechanism that makes a minute change in the angle of As for the angle of the auxiliary steering, a slight angle is sufficient to improve the motion performance of the vehicle and to improve the stability and safety of the vehicle.
  • the angle of the auxiliary steering is controlled by the steering actuator 5 .
  • the steering angle difference between the left and right wheels can be changed according to the running speed.
  • the steering geometry while driving, such as parallel geometry for high-speed cornering and Ackermann geometry for low-speed cornering. Since the wheel angle can be arbitrarily changed during running in this manner, the motion performance of the vehicle can be improved, and the vehicle can run stably and safely.
  • By appropriately changing the steering angle of the left and right steered wheels during cornering it is possible to reduce the turning radius of the vehicle and improve the tight turning performance. Furthermore, even when driving in a straight line, by adjusting the amount of toe angle according to each situation, it is possible to make adjustments such as lowering running resistance at low speeds without deteriorating fuel efficiency and ensuring running stability at high speeds.
  • the hub unit 1 with steering function When the hub unit 1 with steering function is applied to the rear wheels 9R, which are the non-steered wheels, when the steering angle is set to the same phase as the front wheels 9F during turning, the yaw generated during steering is suppressed and the stability of the vehicle is enhanced. be able to. Driving stability can be ensured by adjusting the left and right toe angles independently even when driving in a straight line.
  • a sensor capable of outputting two or more angle sensor values is used as the angle sensor 54 for detecting the rotation angle of the motor 26 .
  • the control device 29 compares each angle sensor value detected and output by the angle sensor 54 with the position sensor value detected and output by the position sensor 44, thereby determining whether any of the angle sensor values is abnormal. Determine whether or not As a result, redundancy and safety of the system can be ensured, and the overall structure can be made more compact than the conventional structure in which two motor angle sensors are installed.
  • the control device 29 continues to control the steering actuator 5 when determining that one of the angle sensor values is abnormal and another of the other angle sensor values is normal. Thus, even if one of the angle sensor values is abnormal, the control can be continued without stopping if the other angle sensor values are normal. Therefore, the safety of the steering system can be ensured.
  • Each of the angle sensor 54 and the position sensor 44 is a magnetic sensor. For this reason, a light source or the like is unnecessary, the configuration is simple, and the durability is excellent in an environment where the vehicle is subjected to vibrations during running.
  • the hub unit 1 with steering function may be used for non-steering wheels.
  • a vehicle with front-wheel steering it may be set in an underbody frame component 6R, which serves as a wheel bearing installation portion of a suspension device 12R that supports the rear wheels 9R, and used for rear-wheel steering.
  • a relatively large steering angle such as 10° to 20°, for example, may be adopted for each of the left and right wheels in addition to the small steering angle described above.
  • the hub unit 1 with steering function may be used for left and right front wheels 9F, 9F which are steered wheels and left and right rear wheels 9R, 9R which are non-steered wheels.
  • SYMBOLS 1 Hub unit with a steering function 2... Hub unit main body 3... Unit support member 5... Actuator for steering 6... Knuckle (undercarriage frame part) DESCRIPTION OF SYMBOLS 9... Wheel 9F... Front wheel 9R... Rear wheel 15... Hub bearing 25... Linear motion mechanism 25a... Output rod 26... Motor 29... Control device 30... Steering control part 31... Actuator drive control part 32... Upper control part 44... Position sensor 54...Angle sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

操舵システムは、操舵機能付ハブユニット(1)と、制御装置(29)とを備える。操舵用アクチュエータ(5)は、モータ(26)と、モータ(26)の回転出力を直進運動に変換する直動機構(25)とを有する。モータ(26)の回転角度を検出し二以上の角度センサ値を出力可能な角度センサ(54)が設けられ、出力ロッド(25a)の移動量である直動機構(25)の位置を検出し位置センサ値として出力可能な位置センサ(44)が設けられる。制御装置(29)は、角度センサ(54)で検出され出力された各角度センサ値と、位置センサ(44)で検出され出力された位置センサ値とをそれぞれ比較することで、いずれかの角度センサ値が異常であるか否かを判定する。

Description

操舵システムおよびこれを備えた車両 関連出願
 本出願は、2021年1月27日出願の特願2021-010857の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本発明は、操舵システムおよびこれを備えた車両に関し、走行状況に合わせ左右の車輪を適切な操舵角に制御することで、燃費の改善および走行性の安定と安全性の向上を図る技術に関する。
 一般的な自動車等の車両は、ハンドルとステアリング装置が機械的に接続され、また、ステアリング装置の両端はタイロッドによってそれぞれの左右輪につながっている。そのため、ハンドルの動きによる左右輪の切れ角度は初期の設定によって決まる。
 車両のジオメトリには、(1) 左右輪の切れ角度が同じである「パラレルジオメトリ」、(2) 旋回中心を1か所にするために旋回内輪車輪角度を旋回外輪車輪角度よりも大きく切る「アッカーマンジオメトリ」が知られている。
 アッカーマンジオメトリは、車両に作用する遠心力を無視できるような低速域での旋回において、車両をスムーズに旋回させるために、各輪が共通の一点を中心として旋回するように左右輪の舵角差を設定している。しかし、遠心力を無視できない高速域の旋回においては、車輪は遠心力とつり合う方向にコーナリングフォースを発生させることが望ましいため、アッカーマンジオメトリよりもパラレルジオメトリとすることが好ましい。
 前述したように一般的な車両の操舵装置は機械的に車輪と接続されているため、一般的には固定された単一のステアリングジオメトリしか取ることができず、アッカーマンジオメトリとパラレルジオメトリとの中間的なジオメトリに設定されることが多い。しかし、この場合、低速域では左右輪の舵角差が不足して外輪の舵角が過大となり、高速域では内輪の舵角が過大となる。このように内外輪の車輪横力配分に不要な偏りがあると、走行抵抗の悪化による燃費悪化及びタイヤの早期摩耗の原因となり、また内外輪を効率的に利用できないので、コーナリングのスムーズさが損なわれるといった課題がある。
 そこで、本件出願人は、運転者のハンドル操作による操舵に付加して、走行状況に応じた車輪個別の補助的な操舵が行える操舵機能付ハブユニット(特許文献3)を提案している。
独国特許出願公開第102012206337号明細書 特開2014-061744号公報 特開2019-006226号公報
 特許文献1では、モータを2個使っているため、モータ個数の増大によるコスト増が生じ全体のサイズが大きくなる。
 特許文献2は、転舵軸に対しハブベアリングを片持ち支持しているため、剛性が低下し、過大な走行Gの発生によってステアリングジオメトリが変化してしまう可能性がある。
 また、転舵軸上に減速機を設けた場合、モータを含めてサイズが大きくなる。モータ等のサイズが大きくなると車輪の内周部に全体を配置することが困難となる。また、減速比の大きい減速機を設けた場合、応答性が悪化する。
 上記のように従来の補助的な操舵機能を備えた機構は、車両において車輪のトー角またはキャンバー角を任意に変更することを目的としているため、モータおよび減速機構が複数必要になり複雑な構成となっている。また、剛性を確保することが困難となり、剛性を確保するためには大型化する必要があり重くなる。
 また、キングピン軸と、補助的な操舵機能を備えた機構の転舵軸が一致する場合は、構成要素部品がハブユニットの後方(車体側)に配置されるために全体のサイズが大きくなり重くなる。
 走行中の車両において、車輪の角度を自由に変更するためには、複雑な構成が必要であり、構成部品が多くなり、装置全体が巨大化する恐れがあるが、これまで特許文献3で開示の操舵機能付ハブユニットにより小型化を実現してきた。
 操舵機能付ハブユニットは、操舵角を細密に制御するために、モータの回転角と直動機構(台形ねじ)の位置を適切に管理する必要があり、レゾルバ、磁気センサなどのモータ角度センサ、および磁気センサなどの位置センサによりリアルタイムな監視が必要である。また制御中に、前記モータ角度センサと前記位置センサの値を相互にチェックすることで、操舵機能付ハブユニットのアクチュエータが正しく動作しているかを互いに確認でき、前記モータ角度センサと前記位置センサのいずれか一方に異常が生じた場合には制御を停止する必要がある。
 しかし、制御中に前記モータ角度センサに異常が生じた場合には、モータ角度センサの値と位置センサの値が整合できなくなり、即座に制御が停止してしまい問題がある。モータ角度センサを2個設置することで前記問題を回避する方法があるが、操舵機能付ハブユニットが大きくなり、この操舵機能付ハブユニットがサスペンション等の他部品に干渉する可能性がある。
 本発明の目的は、モータの回転角度の出力信号を冗長化することでシステムの安全を確保しつつ、全体をコンパクトな構造とすることができる操舵システムおよびこれを備えた車両を提供することである。
 本発明の操舵システムは、車輪を回転支持するハブベアリングを有するハブユニット本体、懸架装置の足回りフレーム部品に設けられ前記ハブユニット本体を上下方向に延びる転舵軸心回りに揺動自在に支持するユニット支持部材、および前記ハブユニット本体を前記転舵軸心回りに揺動駆動させる操舵用アクチュエータを有する操舵機能付ハブユニットと、
 前記操舵用アクチュエータを制御する制御装置と、を備え、
 前記操舵用アクチュエータは、モータと、このモータの回転出力を出力ロッドの直進運動に変換する直動機構とを有し、前記出力ロッドが進退することで、前記ハブユニット本体が前記転舵軸心回りに回転駆動される操舵システムであって、
 前記モータの回転角度を検出し二以上の角度センサ値を出力可能な角度センサが設けられ、前記出力ロッドの移動量である前記直動機構の位置を検出し位置センサ値として出力可能な位置センサが設けられ、
 前記制御装置は、前記角度センサで検出され出力された各角度センサ値と、前記位置センサで検出され出力された位置センサ値とをそれぞれ比較することで、いずれかの角度センサ値が異常であるか否かを判定する。
 この構成によると、モータの回転により直動機構の出力ロッドが進退することで、ハブユニット本体が転舵軸心回りに回転駆動されることにより操舵される。このとき車両の挙動を制御するためには、正確に車輪の舵角を制御する必要があると共に、異常時には車輪
の角度を初期状態に戻して、安全に制御を停止させる必要がある。
 本発明では、モータの回転角度を検出する角度センサに二以上の角度センサ値を出力可能なセンサを用いる。制御装置は、角度センサで検出され出力された各角度センサ値と、位置センサで検出され出力された位置センサ値とをそれぞれ比較することで、いずれかの角度センサ値が異常であるか否かを判定する。これにより、冗長性を確保し、システムの安全を確保しつつ、モータ角度センサを2個設置する従来構造等よりも、全体をコンパクトな構造とすることができる。
 前記制御装置は、いずれかの角度センサ値が異常であり、他のいずれかの角度センサ値が正常であると判定したとき、前記操舵用アクチュエータを継続して制御してもよい。このようにいずれかの角度センサ値が異常であっても、他のいずれかの角度センサ値が正常である場合には、制御を停止することなく継続することができる。したがって操舵システムの安全を確保することができる。
 前記角度センサおよび前記位置センサがそれぞれ磁気センサであってもよい。この場合、光源等が不要で構成が簡素となり、また走行に伴い振動を受ける環境下での耐久性に優れる。
 前記制御装置は、上位制御部の指令信号および前記位置センサからの位置センサ値を受け、前記モータに対する電流指令信号を出力する操舵制御部、および前記電流指令信号に応じた電流を出力して前記モータに印加し前記操舵用アクチュエータを駆動するアクチュエータ駆動制御部を有してもよい。この構成によると、操舵機能付ハブユニットの操舵用アクチュエータを簡単な構成で制御することができる。
 本発明の車両は、本発明の上記いずれかの構成の操舵システムを備えた車両であり、前記操舵機能付ハブユニットを用いて前輪および後輪のいずれか一方または両方が支持されている。
 そのため、本発明の操舵システムにつき前述した各効果が得られる。前輪は一般的に操舵輪とされるが、操舵輪に操舵機能付ハブユニットを適用した場合は、走行中におけるトー角調整に効果的である。また、後輪は一般的に非操舵輪とされるが、非操舵輪に適用した場合は、非操舵輪の若干の操舵によって低速走行時における最小回転半径の低減を図ることができる。
 本発明の操舵システムは、車輪を回転支持するハブベアリングを有するハブユニット本体、懸架装置の足回りフレーム部品に設けられ前記ハブユニット本体を上下方向に延びる転舵軸心回りに揺動自在に支持するユニット支持部材、および前記ハブユニット本体を前記転舵軸心回りに揺動駆動させる操舵用アクチュエータを有する操舵機能付ハブユニットと、前記操舵用アクチュエータを制御する制御装置と、を備え、前記操舵用アクチュエータは、モータと、このモータの回転出力を出力ロッドの直進運動に変換する直動機構とを有し、前記出力ロッドが進退することで、前記ハブユニット本体が前記転舵軸心回りに回転駆動される操舵システムであって、前記モータの回転角度を検出し二以上の角度センサ値を出力可能な角度センサが設けられ、前記出力ロッドの移動量である前記直動機構の位置を検出し位置センサ値として出力可能な位置センサが設けられ、前記制御装置は、前記角度センサで検出され出力された各角度センサ値と、前記位置センサで検出され出力された位置センサ値とをそれぞれ比較することで、いずれかの角度センサ値が異常であるか否かを判定する。このため、モータの回転角度の出力信号を冗長化することでシステムの安全を確保しつつ、全体をコンパクトな構造とすることができる。
 本発明の車両は、この発明の上記いずれかの構成の操舵システムを備えた車両であり、前記操舵機能付ハブユニットを用いて前輪および後輪のいずれか一方または両方が支持されたため、モータの回転角度の出力信号を冗長化することでシステムの安全を確保しつつ、全体をコンパクトな構造とすることができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
本発明の第1の実施形態に係る操舵システムの操舵機能付ハブユニットおよびその周辺の構成を示す縦断面図である。 同操舵機能付ハブユニットの水平断面図および制御系のブロック図である。 同操舵機能付ハブユニットの外観を示す斜視図である。 同操舵機能付ハブユニットの側面図である。 同操舵機能付ハブユニットの平面図である。 図4のVI-VI線断面図である。 同操舵機能付ハブユニットの直動機構の側面図である。 図2の一部を拡大して示す部分拡大図である。 同操舵機能付ハブユニットにおける角度センサ周辺の拡大断面図である。 図9AのIXB-IXB線端面図である。 同操舵機能付ハブユニットに用いた角度センサの概念構成の説明図である。 同操舵システムの制御を段階的に示すフローチャートである。 同操舵システムを備えた車両の一例の模式平面図である。 いずれかの操舵システムを備えた車両の他の例の模式平面図である。 いずれかの操舵システムを備えた車両のその他の例の模式平面図である。
 [第1の実施形態]
 本発明の実施形態に係る操舵システムを図1ないし図12と共に説明する。
 この操舵システムは、操舵機能付ハブユニットと、この操舵機能付ハブユニットの操舵用アクチュエータを制御する後述する制御装置とを備える。この操舵システムは車両に搭載される。
 <操舵機能付ハブユニットの概略構造>
 図1に示すように、この操舵機能付ハブユニット1は、ハブユニット本体2と、ユニット支持部材3と、回転許容支持部品4と、操舵用アクチュエータ5とを備える。足回りフレーム部品であるナックル6に一体にユニット支持部材3が設けられている。このユニット支持部材3のインボード側に、操舵用アクチュエータ5が設けられ、ユニット支持部材3のアウトボード側に、ハブユニット本体2が設けられる。操舵機能付ハブユニット1を車両に搭載した状態で、車両の車幅方向外側をアウトボード側といい、車両の車幅方向中央側をインボード側という。なお、操舵機能付ハブユニット1を単に、ハブユニット1と言う場合がある。
 図2および図3に示すように、ハブユニット本体2と操舵用アクチュエータ5とはジョイント部8により連結されている。通常、このジョイント部8は、防水、防塵のために図示外のブーツが取り付けられている。
 図1に示すように、ハブユニット本体2は、上下方向に延びる転舵軸心A回りに回転自在なように、上下二箇所で回転許容支持部品4,4を介してユニット支持部材3に支持されている。転舵軸心Aは、車輪9の回転軸心Oとは異なる軸心であり、主な操舵を行うキングピン軸とも異なっている。通常の車両は、車両走行の直進安定性の向上を目的としてキングピン角度が10~20度で設定されているが、この実施形態の操舵機能付ハブユニット1は、前記キングピン角度とは別の角度(軸)の転舵軸を有する。車輪9は、ホイール9aとタイヤ9bとを備える。
 <操舵機能付ハブユニット1の設置箇所>
 この操舵機能付ハブユニット1は、この実施形態では操舵輪、具体的には図12に示すように、車両10の前輪9Fのステアリング装置11による操舵に付加して左右輪個別に微小な角度(約±5deg)を操舵させる機構として、懸架装置12のナックル6に一体に設けられる。但し、操舵輪の操舵機能付ハブユニット1において、車両制御の要求によっては、前記微小な角度に限らず例えば10°~20°等の比較的大きな角度を左右輪個別に採ることもある。後述する図14に示す操舵機能付ハブユニット1についても同様である。
 図2および図12に示すように、ステアリング装置11は、車体に取り付けられ、運転者のハンドル11aの操作、または図示外の自動運転装置、運転支援装置の指令等によって動作し、その進退するタイロッド14が、ユニット支持部材3のステアリング結合部6d(後述する)に連結されている。ステアリング装置11は、ラック・ピニオン式等とされるが、どのタイプのステアリング装置でも構わない。懸架装置12は、例えば、ショックアブソーバをナックル6に直接固定するストラット式サスペンション機構を適用しているが、ダブルウィッシュボーン式サスペンション機構、マルチリンク式サスペンション機構、その他のサスペンション機構を適用してもよい。
 <ハブユニット本体2について>
 図1に示すように、ハブユニット本体2は、車輪9の支持用のハブベアリング15と、転舵軸部付き円環部であるアウターリング16と、操舵力受け部であるアーム部17(図3)とを備える。
 図6に示すように、ハブベアリング15は、内輪18と、外輪19と、これら内外輪18,19間に介在したボール等の転動体20とを有し、車体側の部材と車輪9(図1)とを繋ぐ役目をしている。
 このハブベアリング15は、図示の例では、外輪19が固定輪、内輪18が回転輪となり、転動体20が複列とされたアンギュラ玉軸受とされている。内輪18は、ハブフランジ18aaを有しアウトボード側の軌道面を構成するハブ輪部18aと、インボード側の軌道面を構成する内輪部18bとを有する。図1に示すように、ハブフランジ18aaに、車輪9のホイール9aがブレーキロータ21aと重なり状態でボルト固定されている。内輪18は、回転軸心O回りに回転する。
 図6に示すように、アウターリング(転舵軸部付き円環部)16は、外輪19の外周面に嵌合された円環部16aと、この円環部16aの外周から上下に突出して設けられたトラニオン軸状の転舵軸部16b,16bとを有する。上下の取付軸部である各転舵軸部16bは、転舵軸心Aに同軸に設けられる。
 図2に示すように、ブレーキ21は、ブレーキロータ21aと、ブレーキキャリパ21bとを有する。ブレーキキャリパ21bは、外輪19に一体にアーム状に突出して形成された上下二箇所のブレーキキャリパ取付部22(図4)に取付けられる。
 <回転許容支持部品およびユニット支持部材について>
 図6に示すように、各回転許容支持部品4は転がり軸受から成る。この例では、転がり軸受として、円すいころ軸受が適用されている。転がり軸受は、転舵軸部16bの外周に嵌合された内輪4aと、ユニット支持部材3に嵌合された外輪4bと、内外輪4a,4b間に介在する複数の転動体4cとを有する。
 ユニット支持部材3は、ユニット支持部材本体3Aと、ユニット支持部材結合体3Bとを有する。ユニット支持部材本体3Aのアウトボード側端に、略リング形状のユニット支持部材結合体3Bが着脱自在に固定されている。ユニット支持部材結合体3Bのインボード側側面のうち上下の部分には、部分的な凹球面状の嵌合孔形成部3Baがそれぞれ形成されている。
 図5および図6に示すように、ユニット支持部材本体3Aのアウトボード側端のうち上下の部分には、部分的な凹球面状の嵌合孔形成部3Aaがそれぞれ形成されている。ユニット支持部材本体3Aのアウトボード側端にユニット支持部材結合体3Bが固定され、各上下の部分につき、嵌合孔形成部3Aa,3Baが互いに組み合わされることにより、全周に連なる嵌合孔が形成される。この嵌合孔に外輪4bが嵌合されている。なお図3において、ユニット支持部材3を一点鎖線で表す。
 図6に示すように、各転舵軸部16bは、中空軸とされて内周孔内に雌ねじ部が径方向に延びるように形成され、この雌ねじ部に螺合するボルト23が設けられている。内輪4aの端面に円板状の押圧部材24を介在させ、前記雌ねじ部に螺合するボルト23により、内輪4aの端面に押圧力を付与することで、各回転許容支持部品4にそれぞれ予圧を与えている。すなわち、車両の重量などの外力がハブユニットに作用した場合でも予圧が抜けないように初期予圧が設定されている。これにより各回転許容支持部品4の剛性を高め得る。なお、回転許容支持部品4の転がり軸受は、円すいころ軸受に代えてアンギュラ玉軸受または四点接触玉軸受を用いてもよい。その場合も、上記と同様に予圧を与えることができる。
 図1に示すように、上下の転舵軸部16b,16bは、それぞれ回転許容支持部品4,4を介してユニット支持部材3に支持され、各回転許容支持部品4が車輪9のホイール9a内に位置する。この例では、各回転許容支持部品4が、ホイール9a内でこのホイール9aの幅方向中間付近に配置される。
 図2に示すように、アーム部17は、ハブベアリング15の外輪19に補助的な操舵力を与える作用点となる部位であり、アウターリング16または外輪19の外周の一部に一体に突出する。アーム部17は、ジョイント部8を介して、操舵用アクチュエータ5の直動出力部となる出力ロッド25aに回転自在に連結されている。これにより、操舵用アクチュエータ5の出力ロッド25aが進退(直進運動)することで、ハブユニット本体2が転舵軸心A回りに回転、つまり補助操舵させられる。
 <操舵用アクチュエータ5>
 図2および図3に示すように、操舵用アクチュエータ5は、ハブユニット本体2を転舵軸心A(図1)回りに回転駆動させる回転駆動源としてのモータ26と、このモータ26の回転を減速する減速機27と、この減速機27の正逆の回転出力を出力ロッド25aの往復直線動作(直進運動)に変換する直動機構25とを備える。モータ26は、例えば永久磁石型同期モータとされるが、直流モータであっても、誘導モータであってもよい。
 <減速機27>
 減速機27は、ベルト伝達機構等の巻き掛け式伝達機構またはギヤ列等を用いることができ、図2の例ではベルト伝達機構が用いられている。減速機27は、ドライブプーリ27a,ドリブンプーリ27bと、ベルト27cとを有する。モータ26のロータ軸26bにドライブプーリ27aが結合され、直動機構25の回転自在なナット部35に、ドリブンプーリ27bが設けられている。このドリブンプーリ27bは、前記ロータ軸26bに平行に配置されている。モータ26の駆動力は、ドライブプーリ27aからベルト27cを介してドリブンプーリ27bに伝達される。前記各ドライブプーリ27a,ドリブンプーリ27bとベルト27cとで、巻き掛け式の減速機27が構成される。
 <直動機構25について>
 図2および図8に示すように、直動機構25は、台形ねじまたは三角ねじ等の滑りねじ式の送りねじ機構を用いることができ、この例では台形ねじの滑りねじを用いた送りねじ機構33が用いられている。前記滑りねじの内部には、グリースが封入されている。この直動機構25は、送りねじ機構33、回転支持軸受28と、回り止め部品43、およびこれらの構成部品を覆うアクチュエータケース34を有する。
 送りねじ機構33は、ナット部35と、ねじ軸である前記出力ロッド25aと、すべり軸受37とを有する。出力ロッド25aは、回り止め部品43によってユニット支持部材3に対して回り止めされている。ナット部35は、この外周部の軸方向中間部にドリブンプーリ27bが設けられて軸方向両側の回転支持軸受28,28によりユニット支持部材3に回転自在に支持されている。このナット部35の内周に雌ねじ部35aが設けられている。出力ロッド25aの外周には、ナット部35の前記雌ねじ部35aに噛み合う雄ねじ部25aaが設けられている。
 ナット部35の軸方向両端には、出力ロッド25aが摺動可能に貫通するすべり軸受37,37が設けられている。各すべり軸受37は、出力ロッド25aの軸方向の移動をガイドすると共に、タイヤ側からの外力が出力ロッド25aに入力された場合、出力ロッド25aにラジアル方向の力が負荷されることを防止する。
 回転支持軸受28として、この例では、二個の円すいころ軸受が、ドリブンプーリ27bを介して、正面合わせで組み合わされている。これらの回転支持軸受28,28の配置は、背面合わせ、正面合わせのどちらでもよいが、組付け性やシム等による予圧調整の容易さより、正面合わせの配置が好ましい。なお、回転支持軸受28をアンギュラ玉軸受としてもよい。この場合にも、回転支持軸受28,28の配置は、背面合わせ、正面合わせのどちらでもよい。
 図7および図8に示すように、回り止め部品43は、出力ロッド25aの後端部であるインボード側端部に設けられた軸状部材である。この回り止め部品43は、出力ロッド25aのインボード側端部において、例えば、上下方向および出力ロッド25aの軸方向にそれぞれ直交する方向に延びるように、出力ロッド25aに貫通状に嵌合固定されている。回り止め部品43の外周における軸方向両端部には、環状のすべり軸受49a,49bが嵌合されている。
 出力ロッド25aのインボード側端部のうち、一方のすべり軸受49bに対向する部分には、前記すべり軸受49bの一端面に平行な平坦面(いわゆるDカット面)50が形成されている。この出力ロッド25aの平坦面50に前記すべり軸受49bの一端面が当接されると共に、前記すべり軸受49bの他端面を押えるボルト51が回り止め部品43に螺合されている。これにより、アクチュエータケース34に対して、回り止め部品43、ボルト51およびすべり軸受49a,49bの位置(図2における上下方向の位置)が所望の位置に規制される。なお前記ボルト51には、後述する位置センサ用測定ターゲットTgが設けられている。
 アクチュエータケース34内には、各すべり軸受49a,49bの外周面をそれぞれ案内する案内面52a,52bを含む略直方体状の案内溝52が形成されている。換言すれば、回り止め部品43は、すべり軸受49a,49bを介して、直動機構25の固定部分であるアクチュエータケース34の案内面52a,52bに摺動自在に接触する。よって回り止め部品43を、すべり軸受49a,49bを介してアクチュエータケース34の案
内溝52に沿って摺動させることで、出力ロッド25aを軸方向に往復運動させ得る。
 図2に示すように、直動機構25は、前記台形ねじの滑りねじを用いた送りねじ機構を備えるため、タイヤ9bからの逆入力の防止効果を高め得る。モータ26、減速機27および直動機構25を備えた操舵用アクチュエータ5は、サブアセンブリとして組み立てられてケース6bにボルト等により着脱自在に取り付けられる。本実施形態の操舵用アクチュエータ5は、モータ26、減速機27および直動機構25を備えているが、減速機が省略される場合もある。つまりモータ26の駆動力を、減速機を介さず直接に直動機構25へ伝達する機構も可能である。また、直動機構25には、本実施形態に示す台形ねじの他、ボールねじまたはラックアンドピニオン機構等、回転運動を直動運動に変換可能な機構が使用できる。
 車輪9の角度をより正確に制御するためには、モータ26の回転角度と直動機構25の位置を把握することが求められる。そこでこの操舵機能付ハブユニット1には、以下の位置センサ、角度センサが設けられている。
 <位置センサ>
 図7および図8に示すように、前記アクチュエータケース34には、直動機構25の位置を検出する位置センサ44が設けられている。位置センサ44は、出力ロッド25aの軸方向の移動量を検出(監視)し位置センサ値として出力可能である。位置センサ44は、磁気式、光学式、静電容量式等の各種のセンサを用いることができるが、この実施形態では、磁気センサが用いられている。
 アクチュエータケース34内に固定された基板53に、位置センサ44が固定され、位置センサ44は、後述する位置センサ用測定ターゲットTgが進退する経路に対向する。また出力ロッド25aが定められた軸方向位置(進退位置)のとき、前記位置センサ44と位置センサ用測定ターゲットTgとが定められたギャップGpを隔てて互いに対向する。前記定められた軸方向位置、前記定められたギャップGpは、それぞれ設計等によって任意に定める軸方向位置、ギャップであって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な軸方向位置、ギャップを求めて定められる。
 図8に示すように、回り止め部品43には、位置センサ用測定ターゲットTgとなる永久磁石が設けられている。具体的には、回り止め部品43に軸方向端部に螺合されたボルト51の頭部に前記永久磁石が設けられている。またボルト51は、例えば、樹脂、ステンレス鋼等の非磁性材料から成る。
 樹脂製のボルト51の場合、前記永久磁石は例えば前記樹脂製のボルト51内に一体成形される。ボルト51がステンレス鋼等の非磁性金属材料から成る場合、例えば、ボルト51の頭部表面に図示外の凹み部が形成され、この凹み部に前記永久磁石が設けられ、且つ接着剤等で前記凹み部を覆うことにより、前記頭部に前記永久磁石が埋め込まれる。したがって、位置センサ44は、出力ロッド25aの進退に伴う前記永久磁石の磁場の変化を読み取り、出力ロッド25aの進退位置を検出する。なお前記ボルトを省略して回り止め部品43に直接永久磁石を固定してもよい。
 <角度センサ>
 図9Aはこの操舵機能付ハブユニットにおける角度センサ周辺の拡大断面図であり、図9Bは図9AのIXB-IXB線端面図である。モータ26のモータケース26aには、前記モータ26の回転角度を検出し二以上の角度センサ値を出力可能な角度センサ54が設けられている。この例では角度センサ54として、センサICに二つの出力信号(角度センサ値1,2)を出力する磁気センサを配置することで、冗長性を確保し、コンパクトな設計を可能としている。
 角度センサ54は、基板55を介してモータケース26aに固定されている。モータ26のロータ軸26bのインボード側端部には、このロータ軸26bと一体で回転する角度センサ用測定ターゲットとなる永久磁石Taが固定されている。角度センサ54と永久磁石Taとは所定のアキシアルギャップδを隔てて互いに対向する。磁気センサである角度センサ54は、前記ロータ軸26bの回転に伴う前記永久磁石Taの磁場の変化を読み取り、モータ26の回転角度を検出する。また角度センサ54は、図10に概念的に示すように、一つのパッケージ56の中に第1の出力回路57と第2の出力回路58とを備え、角度センサ値を二つ以上出力することが可能である。前記パッケージ56は、各出力回路57,58の出力を外部に出力する出力端子59,60を個別に有している。なお角度センサ54は、前述のアキシアルギャップ型の磁気センサに限定されるものではなく、いわゆるラジアルギャップ型の磁気センサを適用することも可能である。
 <その他の機構的構成>
 図2に示すように、ケース6bは、ユニット支持部材3の一部として、ユニット支持部材本体3Aに一体に形成されている。ケース6bは、有底筒状に形成され、モータ26を支持するモータ収容部と、直動機構25を支持する直動機構収容部が設けられている。前記モータ収容部には、モータ26をケース内所定位置に支持する嵌合孔が形成されている。前記直動機構収容部には、直動機構25をケース内所定位置に支持する嵌合孔、および出力ロッド25aの進退を許す貫通孔等が形成されている。
 図3に示すように、ユニット支持部材本体3Aは、前記ケース6b、ショックアブソーバの取り付け部となるショックアブソーバ取り付け部6c、およびステアリング装置11(図2)の結合部となるステアリング装置結合部6dを有する。これらショックアブソーバ取り付け部6cおよびステアリング装置結合部6dも、ユニット支持部材本体3Aに一体に形成されている。ユニット支持部材本体3Aの外表面部における上部に、ショックアブソーバ取り付け部6cが突出するように形成されている。ユニット支持部材本体3Aの外表面部における側面部には、ステアリング装置結合部6dが突出するように形成されている。
 <制御系について>
 図2に示すように、制御装置29は、操舵制御部30と、アクチュエータ駆動制御部31とを有する。操舵制御部30は、上位制御部32から与えられた補助操舵角指令信号(指令信号)に応じた電流指令信号を出力する。このとき操舵制御部30は、位置センサ44から出力ロッド25aの進退位置情報である位置センサ出力を用いてフィードバック制御を行うことで、車輪9の角度を適切にかつ精度良く管理し得る。
 上位制御部32は操舵制御部30の上位の制御手段であり、この上位制御部32として、例えば、車両全般を制御する電気制御ユニット(Vehicle Control Unit,略称VCU)が適用される。アクチュエータ駆動制御部31は、操舵制御部30から入力された電流指令信号に応じた電流を出力して操舵用アクチュエータ5を駆動制御する。アクチュエータ駆動制御部31は、モータ26のコイルに供給する電力を制御する。このアクチュエータ駆動制御部31は、例えば、図示外のスイッチ素子を用いたハーフブリッジ回路を構成し、前記スイッチ素子のON-OFFデューティ比によりモータ印加電圧を決定するPWM制御を行う。これにより、運転者のハンドル操作による操舵に付加して、車輪9を微小に角度変化することができる。直線走行時にも、それぞれの場面に合わせてトー角の量を調整し得る。なお操舵システムは、運転者のハンドル操作に代えて、図示外の自動運転装置、運転支援装置の指令等によって操舵用アクチュエータ5,5を動作させてもよい。
 図11は、この操舵システムの制御を段階的に示すフローチャートである。図2も適宜参照しつつ説明する。
 制御装置29の操舵制御部30は、車両走行中に、この操舵システムの制御を継続するか停止するかを常時判定する。操舵制御部30は、例えば、車速センサ61または車輪速センサ等のセンサ出力から前記車両走行中であるか否かを判断可能である。本処理開始後、操舵制御部30は、角度センサ値1と角度センサ値2が正常に動作しているか確認するために、所定の角度検出範囲C内にあるか否かを確認する(ステップS1:|C|≧A,B)。
 このとき、角度センサ値1および角度センサ値2の値が所定の角度検出範囲外の場合(ステップS1:No)、角度センサ値1、角度センサ値2のどちらかの異常が考えられるため、操舵制御部30は、この操舵システムの制御を停止し(ステップS9)、角度センサ値1、2が異常である旨出力する(ステップS8)。ステップS1において、角度センサ54が正常に動作していると判断された場合(ステップS1:Yes)、操舵制御部30は、角度センサ54で検出され出力された各角度センサ値と、位置センサ44で検出され出力された位置センサ値とをそれぞれ比較することで、いずれかの角度センサ値が異常であるか否かを判定する(ステップS2,S3)。
 具体的には、ステップS2において、操舵制御部30は、位置センサ値Pと角度センサ値1の値Aとを比較し、相互チェックを行う。それぞれの値の偏差が小さい場合(ステップS2:Yes)、操舵制御部30は、位置センサ44および角度センサ54が正常に動作していると判断し、制御を継続する。前記偏差は、例えば、試験およびシミュレーションのいずれか一方または両方等により定められる。後述するステップS3,S6における偏差についても同様である。それぞれの値の偏差が大きい場合(ステップS2:No)、どちらかのセンサに異常が発生していると考えられるため、どちらのセンサに異常が発生しているかを判断するために、操舵制御部30は、位置センサ値Pと角度センサ値2の値Bとを比較する(ステップS3)。
 ステップS3において、位置センサ値Pと角度センサ値2の値Bの偏差が小さい場合(ステップS3:Yes)、操舵制御部30は、角度センサ値1の異常を出力し(ステップS4)、制御は継続する(ステップS5)。つまり操舵制御部30は、角度センサ値1が異常であり、角度センサ値2が正常であると判定したとき、操舵用アクチュエータ5を継続して制御する。位置センサ値Pと角度センサ値2の値Bの偏差が大きい場合(ステップS3:No)、操舵制御部30は、さらに角度センサ値1の値Aと角度センサ値2の値Bを比較する(ステップS6)。
 角度センサ値1の値Aと角度センサ値2の値Bの偏差が小さい場合(ステップS6:Yes)、操舵制御部30は、位置センサ値Pが異常と判断し、位置センサ値Pの異常を出力して(ステップS7)、制御を停止する(ステップS9)。角度センサ値1の値Aと角度センサ値2の値Bの偏差が大きい場合(ステップS6:No)、操舵制御部30は、角度センサ値1、2が異常である旨出力し(ステップS8)、制御を停止する(ステップS9)。
 <作用効果>
 以上説明した操舵システムによれば、車輪9を支持するハブベアリング15を含むハブユニット本体2を、操舵用アクチュエータ5の駆動により、転舵軸心A回りに自由に回転させることができる。この回転は、運転者のハンドル操作による操舵に付加して、すなわちステアリング装置11によるキングピン軸回りのナックル6の回転に付加して、補助的な操舵として行われ、また1輪の独立操舵が行える。左右の車輪9,9の補助操舵の角度を異ならせることで、左右の車輪9,9間のトー角を任意に変更することができる。
 そのため、操舵機能付ハブユニット1を前輪等の操舵輪および後輪等の非操舵輪のいずれに用いてもよい。操舵輪に用いる場合は、ステアリング装置11により方向が変化させられる部材に設置されることにより、運転者のハンドル操作による操舵に付加して、左右の車輪個別の、または左右輪に連動した車輪9の微小な角度変化を行わせる機構となる。補助操舵の角度については、車両の運動性能の向上、走行の安定・安全性向上を図るにつき、僅かな角度で足り、補助操舵可能角度が±5度以下であっても十分に足りる。補助操舵の角度は操舵用アクチュエータ5の制御により行う。
 また、旋回走行時に、走行速度に応じて左右輪の舵角差を変えることができる。例えば高速域の旋回走行においてはパラレルジオメトリとし、低速域の旋回走行においてはアッカーマンジオメトリとするなど、走行中にステアリングジオメトリを変化させることができる。このように走行中に車輪角度を任意に変更することができるため、車両の運動性能を向上させ、安定・安全に走行することが可能となる。旋回走行時における左右の操舵輪の操舵角度を適切に変えることで、車両の旋回半径を小さくし、小回り性能を向上させることもできる。
 さらに直線走行時にも、それぞれの場面に合わせてトー角の量を調整することで、低速時には走行抵抗を下げ燃費を悪化させることなく、高速時には走行安定性を確保するなど調整が可能である。
 操舵機能付ハブユニット1を後輪9Rである非操舵輪に適用した場合は、旋回走行時に、舵角を前輪9Fと同じ位相にすると、操舵時に発生するヨーを抑え、車両の安定性を高めることができる。直線走行時にも左右独立でトー角を調整することで、走行安定性を確保することができる。
 このように車両の挙動を制御するためには、正確に車輪9の舵角を制御する必要があると共に、異常時には車輪9の角度を初期状態に戻して、安全に制御を停止させる必要がある。
 この実施形態では、モータ26の回転角度を検出する角度センサ54に二以上の角度センサ値を出力可能なセンサを用いる。制御装置29は、角度センサ54で検出され出力された各角度センサ値と、位置センサ44で検出され出力された位置センサ値とをそれぞれ比較することで、いずれかの角度センサ値が異常であるか否かを判定する。これにより、冗長性を確保し、システムの安全を確保しつつ、モータ角度センサを2個設置する従来構造等よりも、全体をコンパクトな構造とすることができる。
 制御装置29は、いずれかの角度センサ値が異常であり、他のいずれかの角度センサ値が正常であると判定したとき、操舵用アクチュエータ5を継続して制御する。このようにいずれかの角度センサ値が異常であっても、他のいずれかの角度センサ値が正常である場合には、制御を停止することなく継続することができる。したがって操舵システムの安全を確保することができる。
 角度センサ54および位置センサ44がそれぞれ磁気センサである。このため、光源等が不要で構成が簡素となり、また走行に伴い振動を受ける環境下での耐久性に優れる。
 <他の実施形態について>
 次に、他の実施形態について説明する。以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 <非操舵輪への適用について>
 操舵機能付ハブユニット1は、非操舵輪に対して用いてもよい。例えば、図13に示すように、前輪操舵の車両において、後輪9Rを支持する懸架装置12Rの車輪用軸受設置部となる足回りフレーム部品6Rに設定し、後輪操舵に用いてもよい。非操舵輪の操舵機能付ハブユニット1において、車両制御の要求によっては、前述の微小な操舵角度に限らず例えば10°~20°等の比較的大きな角度を左右輪個別に採ることもある。
 その他図14に示すように、操舵機能付ハブユニット1を、操舵輪である左右の前輪9F,9Fおよび非操舵輪である左右の後輪9R,9Rにそれぞれ用いてもよい。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更、削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
 1…操舵機能付ハブユニット
 2…ハブユニット本体
 3…ユニット支持部材
 5…操舵用アクチュエータ
 6…ナックル(足回りフレーム部品)
 9…車輪
 9F…前輪
 9R…後輪
 15…ハブベアリング
 25…直動機構
 25a…出力ロッド
 26…モータ
 29…制御装置
 30…操舵制御部
 31…アクチュエータ駆動制御部
 32…上位制御部
 44…位置センサ
 54…角度センサ

Claims (5)

  1.  車輪を回転支持するハブベアリングを有するハブユニット本体、懸架装置の足回りフレーム部品に設けられ前記ハブユニット本体を上下方向に延びる転舵軸心回りに揺動自在に支持するユニット支持部材、および前記ハブユニット本体を前記転舵軸心回りに揺動駆動させる操舵用アクチュエータを有する操舵機能付ハブユニットと、
     前記操舵用アクチュエータを制御する制御装置と、を備え、
     前記操舵用アクチュエータは、モータと、このモータの回転出力を出力ロッドの直進運動に変換する直動機構とを有し、前記出力ロッドが進退することで、前記ハブユニット本体が前記転舵軸心回りに回転駆動される操舵システムであって、
     前記モータの回転角度を検出し二以上の角度センサ値を出力可能な角度センサが設けられ、前記出力ロッドの移動量である前記直動機構の位置を検出し位置センサ値として出力可能な位置センサが設けられ、
     前記制御装置は、前記角度センサで検出され出力された各角度センサ値と、前記位置センサで検出され出力された位置センサ値とをそれぞれ比較することで、いずれかの角度センサ値が異常であるか否かを判定する、操舵システム。
  2.  請求項1に記載の操舵システムにおいて、前記制御装置は、いずれかの角度センサ値が異常であり、他のいずれかの角度センサ値が正常であると判定したとき、前記操舵用アクチュエータを継続して制御する操舵システム。
  3.  請求項1または請求項2に記載の操舵システムにおいて、前記角度センサおよび前記位置センサがそれぞれ磁気センサである操舵システム。
  4.  請求項1ないし請求項3のいずれか1項に記載の操舵システムにおいて、前記制御装置は、上位制御部の指令信号および前記位置センサからの位置センサ値を受け、前記モータに対する電流指令信号を出力する操舵制御部、および前記電流指令信号に応じた電流を出力して前記モータに印加し前記操舵用アクチュエータを駆動するアクチュエータ駆動制御部を有する操舵システム。
  5.  請求項1ないし請求項4のいずれか1項に記載の操舵システムを備えた車両であり、前記操舵機能付ハブユニットを用いて前輪および後輪のいずれか一方または両方が支持された車両。
PCT/JP2022/002366 2021-01-27 2022-01-24 操舵システムおよびこれを備えた車両 WO2022163567A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22745788.4A EP4286248A1 (en) 2021-01-27 2022-01-24 Steering system and vehicle provided with same
US18/223,143 US20230356777A1 (en) 2021-01-27 2023-07-18 Steering system and vehicle provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021010857A JP2022114555A (ja) 2021-01-27 2021-01-27 操舵システムおよびこれを備えた車両
JP2021-010857 2021-01-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/223,143 Continuation US20230356777A1 (en) 2021-01-27 2023-07-18 Steering system and vehicle provided with same

Publications (1)

Publication Number Publication Date
WO2022163567A1 true WO2022163567A1 (ja) 2022-08-04

Family

ID=82653475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002366 WO2022163567A1 (ja) 2021-01-27 2022-01-24 操舵システムおよびこれを備えた車両

Country Status (4)

Country Link
US (1) US20230356777A1 (ja)
EP (1) EP4286248A1 (ja)
JP (1) JP2022114555A (ja)
WO (1) WO2022163567A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7182455B2 (ja) * 2018-12-20 2022-12-02 Ntn株式会社 操舵機能付ハブユニットおよびこれを備えた車両

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206337A1 (de) 2012-04-18 2013-10-24 Schaeffler Technologies AG & Co. KG Gelenkige Lagerung eines Radlagers zur Sturz- und/oder Spurverstellung
JP2014061744A (ja) 2012-09-20 2014-04-10 Jtekt Corp 転舵装置および車両
WO2015125235A1 (ja) * 2014-02-19 2015-08-27 三菱電機株式会社 モータ回転角度検出装置及びこれを用いた電動パワーステアリング装置
WO2018051550A1 (ja) * 2016-09-15 2018-03-22 日立オートモティブシステムズ株式会社 車両搭載機器のアクチュエータ及びパワーステアリング装置
JP2019006226A (ja) 2017-06-23 2019-01-17 Ntn株式会社 補助転舵機能付ハブユニットおよび車両
JP2019151230A (ja) * 2018-03-05 2019-09-12 Ntn株式会社 転舵機能付きハブユニット、転舵システム、および転舵機能付きハブユニットを備えた車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206337A1 (de) 2012-04-18 2013-10-24 Schaeffler Technologies AG & Co. KG Gelenkige Lagerung eines Radlagers zur Sturz- und/oder Spurverstellung
JP2014061744A (ja) 2012-09-20 2014-04-10 Jtekt Corp 転舵装置および車両
WO2015125235A1 (ja) * 2014-02-19 2015-08-27 三菱電機株式会社 モータ回転角度検出装置及びこれを用いた電動パワーステアリング装置
WO2018051550A1 (ja) * 2016-09-15 2018-03-22 日立オートモティブシステムズ株式会社 車両搭載機器のアクチュエータ及びパワーステアリング装置
JP2019006226A (ja) 2017-06-23 2019-01-17 Ntn株式会社 補助転舵機能付ハブユニットおよび車両
JP2019151230A (ja) * 2018-03-05 2019-09-12 Ntn株式会社 転舵機能付きハブユニット、転舵システム、および転舵機能付きハブユニットを備えた車両

Also Published As

Publication number Publication date
EP4286248A1 (en) 2023-12-06
US20230356777A1 (en) 2023-11-09
JP2022114555A (ja) 2022-08-08

Similar Documents

Publication Publication Date Title
US11731693B2 (en) Hub unit with steering function, steering system, and vehicle
US11565548B2 (en) Hub unit having steering function, and vehicle provided with said hub unit
WO2022163567A1 (ja) 操舵システムおよびこれを備えた車両
WO2021182312A1 (ja) 操舵機能付ハブユニットおよびこれを備えた車両
JP7177681B2 (ja) 操舵機能付ハブユニットおよびこれを備えた車両
JP7236858B2 (ja) 操舵機能付ハブユニットおよび操舵システム並びにこれを備えた車両
JP7245077B2 (ja) 操舵機能付ハブユニットおよびこれを備えた車両
JP7060984B2 (ja) 転舵機能付ハブユニットおよびこれを備えた車両
JP2022119413A (ja) 操舵機能付ハブユニット、操舵システムおよび車両
WO2019189102A1 (ja) 操舵機能付ハブユニットおよびこれを備えた車両
WO2019172091A1 (ja) 転舵機能付きハブユニットおよび転舵システム
JP2022108179A (ja) 操舵機能付ハブユニット、操舵システムおよびそれを備えた車両
WO2019189100A1 (ja) 転舵機能付ハブユニットおよびこれを備えた車両
JP2024017372A (ja) 操舵システムおよび車両
JP6720393B2 (ja) 転舵軸付ハブベアリングおよび転舵機能付ハブユニット
WO2024048562A1 (ja) 操舵機能付ハブユニット、操舵システムおよび車両
JP7229751B2 (ja) 操舵機能付ハブユニットおよび操舵システム並びにこれを備えた車両
JP2023051233A (ja) 操舵システムおよびこれを備えた車両
JP2023047456A (ja) 操舵機能付ハブユニット、操舵システムおよび車両
JP2023047680A (ja) 操舵機能付ハブユニット、操舵システムおよび車両
WO2022163568A1 (ja) 操舵機能付ハブユニット、操舵システムおよび車両
JP2023178765A (ja) 操舵機能付ハブユニット、操舵システムおよび車両
JP2023178764A (ja) 転舵軸付ハブユニット、操舵システムおよび車両
JP2023047681A (ja) アクチュエータ制御システム、操舵機能付ハブユニットおよび操舵システム
JP2023047457A (ja) 操舵機能付ハブユニット、操舵システムおよび車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745788

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022745788

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022745788

Country of ref document: EP

Effective date: 20230828