WO2022163094A1 - 搬送装置、搬送システム及び搬送装置の制御方法 - Google Patents

搬送装置、搬送システム及び搬送装置の制御方法 Download PDF

Info

Publication number
WO2022163094A1
WO2022163094A1 PCT/JP2021/042901 JP2021042901W WO2022163094A1 WO 2022163094 A1 WO2022163094 A1 WO 2022163094A1 JP 2021042901 W JP2021042901 W JP 2021042901W WO 2022163094 A1 WO2022163094 A1 WO 2022163094A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
conveying device
target speed
moving
movement
Prior art date
Application number
PCT/JP2021/042901
Other languages
English (en)
French (fr)
Inventor
浩一 中野
Original Assignee
株式会社日立インダストリアルプロダクツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立インダストリアルプロダクツ filed Critical 株式会社日立インダストリアルプロダクツ
Priority to US18/267,135 priority Critical patent/US20240045436A1/en
Priority to CN202180087866.9A priority patent/CN116710372A/zh
Publication of WO2022163094A1 publication Critical patent/WO2022163094A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0492Storage devices mechanical with cars adapted to travel in storage aisles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/65Following a desired speed profile
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2105/00Specific applications of the controlled vehicles
    • G05D2105/20Specific applications of the controlled vehicles for transportation
    • G05D2105/28Specific applications of the controlled vehicles for transportation of freight
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2107/00Specific environments of the controlled vehicles
    • G05D2107/70Industrial sites, e.g. warehouses or factories
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/10Land vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management

Definitions

  • the present invention relates to a transport device, a transport system, and a control method for the transport device.
  • the delivered items are stored, and when an order is received, the corresponding item is taken out, packed, and shipped to the customer.
  • a large amount of labor is required to move an article, but labor can be saved by adopting a transport system that transports an article using an unmanned guided vehicle.
  • a transport device having driving wheels and auxiliary wheels automatically travels to a designated shelf position, and after loading the shelf containing the articles on the table on the transport device,
  • a system that transports to the picking station There is a system that transports to the picking station.
  • a technology related to the transport system for example, there is a technology described in Patent Document 1.
  • the transport device drives a drive wheel coupled to an electric motor with electric power from a battery, and combines a turning mode in which the transport device itself turns and a straight mode in which the transport device moves forward, and moves on the floor surface in the warehouse. move automatically.
  • the driving wheel is used when starting the conveying device.
  • the inventors of the present application have found the problem that the driving force applied to the apparatus is increased, and the load applied to the conveying apparatus and the floor surface is increased.
  • the present invention provides a transport device, a transport system, and a method of controlling the transport device that can reduce the load on the transport device and the floor when starting the transport device after the movement mode of the transport device is switched.
  • a conveying device is a conveying device for conveying an article, the conveying device including a drive section for loading and moving the article, and a control section for controlling the drive section, wherein the conveying device can move in a plurality of movement modes including a movement mode in which the article moves straight in a predetermined direction and a movement mode in which the conveying device rotates in a different direction, and the controller controls the article With respect to the acceleration condition when the transport device loaded with the is moving from a stopped state, when the transport device moves in the same movement mode as the movement mode before stopping among the plurality of movement modes, a first acceleration Alternatively, when the driving unit is controlled to accelerate under a first acceleration condition including a first target speed, and the vehicle moves in a moving mode different from the moving mode before stopping among the plurality of moving modes, the first or a second target speed that is less than the first target speed.
  • FIG. 1 It is a block diagram which shows an example of a structure of a conveying system. It is a perspective view which shows an example of a conveying apparatus and a shelf. It is a bottom view which shows an example of a conveying apparatus. It is explanatory drawing which a conveying apparatus conveys a shelf. It is a figure which shows an example of order information. It is a figure which shows an example of inventory information. It is a figure which shows an example of shelf information. It is a figure which shows an example of floor information. It is a figure which shows an example of map information. It is a figure which shows an example of apparatus information.
  • FIG. 4 is a flowchart showing an example of processing performed by a warehouse control device; 4 is a flow chart showing an example of processing performed by a transport device; It is a figure which shows an example of the movement pattern of the conveying apparatus which combined straight mode and turning mode. It is a figure which shows an example of the movement pattern of the conveying apparatus which combined straight mode and temporary stop.
  • FIG. 10 is a perspective view from above showing an example of a training wheel in the case of switching from the straight mode to the straight mode after turning 90° in the turning mode.
  • FIG. 11 is a perspective view from above showing an example of the trajectory of the auxiliary wheels after turning 90° in the turning mode from the straight traveling mode; FIG.
  • FIG. 10 is a perspective view from above showing an example of the trajectory of the training wheels when starting in the straight mode after turning 90° in the turning mode; 4 is a graph showing an example of acceleration switching patterns in Example 1.
  • FIG. 9 is a graph showing an example of switching patterns between acceleration and target speed in Example 2.
  • FIG. 10 is a graph showing an example of acceleration switching patterns in Example 3.
  • FIG. 1 is a block diagram showing an example of the configuration of a transport system according to the first embodiment.
  • the transport system of this embodiment includes a warehouse control device 100 , a network 90 , and a plurality of transport devices 1 connected to the warehouse control device 100 via the network 90 .
  • the warehouse control device 100 transmits to the transport device 1 a transport command designating the shelf to be transported by the transport device 1 and the picking station of the transport destination, and causes the transport device 1 to transport automatically.
  • the warehouse control device 100 is a computer including an arithmetic device 110, a memory 120, an input device 130, an output device 140, a storage device 150, and a communication interface 170.
  • the storage device 150 has a non-volatile storage medium and stores programs executed by the arithmetic device 110 and data used by the programs.
  • a route creation program 161 a data input/output program 162, a data analysis program 163, and a transport device control program 164 are stored in the storage device 150, and the arithmetic device 110 loads necessary programs into the memory 120. to run.
  • Examples of data stored in the storage device 150 include order information 200, inventory information 220, shelf information 230, floor information 240, map information 250, device information 260, route data 270, and measurement data.
  • Data 280 is stored.
  • the route creation program 161 calculates the route along which the transport device 1 moves.
  • the route creation program 161 calculates the route along which the conveying device 1 moves from, for example, the position of the article (or product) to be picked and the position of the destination picking station.
  • the data input/output program 162 receives order information, receives sensor data from the conveying apparatus 1, and outputs information on articles to be picked.
  • the data analysis program 163 analyzes the state of the floor along the path along which the transport device 1 has moved, and updates the floor information 240 when the sensor data is an image or video of the floor. Based on the route calculated by the route creation program 161, the floor information 240, the status of the transport device 1, and the like, the transport device control program 164 instructs the available shelves and articles to be transported to the transport device 1, and the transport destination. .
  • the order information 200 is information of an order requesting shipment of goods, and stores information of goods to be picked.
  • the inventory information 220 stores information regarding the inventory of articles, such as information on shelves where articles are arranged, arrangement positions within the shelves, quantity, weight, and the like.
  • the shelf information 230 stores information such as the position and weight of the shelf.
  • the floor information 240 stores information indicating the state of the floor for each floor area.
  • the map information 250 stores map information in the warehouse.
  • the device information 260 stores identification information (identifiers), positions, operating states, and the like for each transport device 1 .
  • the route data 270 stores route information for each transport device 1 .
  • the measurement data 280 stores sensor data, position information, and the like received from each transport device 1 .
  • the input device 130 is composed of a keyboard, mouse, touch panel, or the like.
  • the output device 140 is configured by a display or the like.
  • the communication interface 170 communicates with the transport apparatus 1 and other computers via the network 90 .
  • the transport device 1 automatically transports the shelves loaded with articles in accordance with commands from the warehouse control device 100.
  • the transport device 1 is an automatic transport device having a control device (control section) 2 , a storage device 4 , a driving device (driving section) 3 , a sensor 5 and a communication interface 6 .
  • the control device 2 includes an arithmetic device 21 and a memory 22.
  • a self-position estimation program 23 , a travel control program 24 , a measurement program 25 and a communication program 26 are loaded into the memory 22 and executed by the arithmetic unit 21 .
  • the arithmetic unit 21 is composed of a microcomputer and a processor.
  • the self-position estimation program 23 calculates the position of the transport device 1 based on sensor data (for example, image data) obtained from the sensor 5.
  • the travel control program 24 controls the drive device 3 based on the current position of the transport device 1 and the route data received from the warehouse control device 100 .
  • the measurement program 25 acquires sensor data from the sensor 5 and outputs it to the warehouse control device 100.
  • the communication program 26 communicates with the warehouse control device 100 via the network 90 .
  • the storage device 4 is composed of a non-volatile storage medium and stores each program and data used by each program. Examples of data include route data 41 , map information 42 , measurement data 43 , device information 44 , travel record data 45 , and floor information 46 .
  • the route data 41 stores the route data received from the warehouse control device 100.
  • the map information 42 stores the map information 250 received from the warehouse control device 100 .
  • the measurement data 43 stores sensor data acquired by the sensor 5 .
  • the device information 44 stores the identifier (device ID) of the conveying device 1, the state of the device, information on the presence or absence of loading on the shelf, the position of the device, the remaining battery charge, and the like.
  • the device information 44 may be information equivalent to the information about the conveying device 1 in the device information 260 (FIG. 10).
  • the travel record data 45 stores a history such as the path traveled by the conveying apparatus 1, the state (vibration) of the floor surface for each area, and the mode of movement.
  • the floor information 46 stores the floor information 240 received from the warehouse control device 100.
  • the control device 2 can determine acceleration conditions for the transport device 1 based on information about the state of the floor on which the transport device 1 moves.
  • the driving device 3 supplies electric power to the truck 31, the driving wheels 33, the table 32, the auxiliary wheels (casters) 34, the motor 38 as a power source for driving the driving wheels 33 and the table 32, and the motor 38.
  • a battery 39 is included. The configuration of the driving device 3 will be described later.
  • the motor 38 for driving the driving wheels 33 and the table 32 can be composed of independent motors.
  • the sensor 5 is composed of a camera that photographs the floor, an acceleration sensor that detects vibration, and the like.
  • position information and route information such as marks are attached to the floor surface
  • the current position can be specified by photographing the floor surface with a camera as the sensor 5 and identifying the marks with the self-position estimation program 23.
  • An acceleration sensor as the sensor 5 detects vibration (acceleration) of the transport device 1, and the measurement program 25 can notify the warehouse control device 100 of the magnitude of the vibration as the state of the floor surface.
  • the computing device 21 operates as a functional unit that provides a predetermined function by executing processing according to the program of each functional unit.
  • the arithmetic unit 21 functions as a travel control unit by executing processing according to the travel control program 24 . The same is true for other programs. Further, the arithmetic unit 21 also operates as a functional unit that provides functions of multiple processes executed by each program.
  • FIG. 2 is a perspective view showing an example of the conveying device 1 and the shelf 7.
  • the conveying device 1 is an automatic traveling device including a rectangular parallelepiped carriage 31 that can move straight and turn, and a table 32 that is arranged on the upper surface of the carriage 31 and can move up and down and turn.
  • the carrier device 1 may be, for example, an automated guided vehicle (AGV) or an autonomous mobile robot (AMR). Bumpers 35 are arranged on the sides of the carriage 31 in the forward direction.
  • AGV automated guided vehicle
  • AMR autonomous mobile robot
  • the shelf 7 for storing articles (or products) is composed of a rectangular parallelepiped having a pair of openings on the side surfaces, and includes a bottom plate 72 supported by legs 71 at a predetermined height from the floor surface, and a 1 on which articles are placed.
  • the above shelf board 73 is arranged.
  • the transport device 1 After moving the carriage 31 below the bottom plate 72 of the shelf 7 with the table 32 lowered, the transport device 1 raises the table 32 to lift the shelf 7 .
  • the transport device 1 transports the shelf 7 by causing the cart 31 to travel while the shelf 7 is lifted by the table 32 .
  • the table 32 can turn with respect to the carriage 31, and when the carriage 31 turns on the floor surface, the orientation of the shelf 7 is maintained by rotating the table 32 relative to the carriage 31. can be used to change the traveling direction of the carriage 31 .
  • the shelf 7 has two opening surfaces, so that by rotating the table 32 by 180°, different openings can be provided to the picking station.
  • the structure of the shelf 7 is not limited to the illustrated example, but may be a box or pallet having openings on four sides or a hanger installed, and having a bottom plate 72 from which the table 32 can be lifted. I wish I had.
  • FIG. 3 is a bottom view showing an example of the transport device 1.
  • FIG. The bumper 35 side of the bottom surface of the carriage 31 faces forward, and drive wheels 33-L and 33-R are arranged on the left and right sides of the bottom surface in the front-rear direction to move the carriage 31 straight or turn.
  • the symbol "33" omitting "-" is used. The same applies to the codes of other constituent elements.
  • Auxiliary wheels 34-FL, 34-RL, 34-FR, and 34-RR are arranged in front and behind the drive wheels 33-L and 33-R, respectively, to support the truck 31.
  • Each auxiliary wheel 34 is rotatably supported around a shaft 36 provided on the bottom surface of the carriage 31 via a holder 37 .
  • Each auxiliary wheel 34 is rotatably supported on the floor by a shaft (not shown) supported by a holder 37 .
  • FIG. 4 is an explanatory diagram of how the transport device 1 transports the shelf 7.
  • FIG. 4 With the table 32 lowered, the transport device 1 moves the carriage 31 below the bottom plate 72 of the shelf 7 and between the legs 71, 71 (A). Next, the conveying device 1 stops the cart 31 with the table 32 facing the bottom plate 72, and then raises the table 32 to lift the bottom plate 72 to a predetermined height (B). It should be noted that the height at which the shelf 7 is lifted is sufficient as long as the carriage 31 can travel without the legs 71 of the shelf 7 coming into contact with the floor 80 .
  • the transport device 1 moves to the destination picking station ST by combining the rotation of the carriage 31 and the straight movement, and moves the table so that the opening of the shelf 7 faces the picking gate 8 . 32 or carriage 31 is turned. Then, the conveying device 1 makes the worker perform the picking work in a stopped state (C).
  • the worker takes out the articles to be shipped from the shelf 7 and sorts them out to the sorting shelves.
  • the transport device 1 moves to a predetermined storage location where the shelf 7 is stored, and unloads the shelf 7 at the storage location. After unloading the shelf 7, the carriage 31 is moved to a predetermined standby position to wait for the next transportation work.
  • FIG. 5 is a diagram showing an example of the order information 200.
  • the order information 200 includes a serial number 201, a slip number 202, a store name 203, a store code 204, a product name 205, a product code 206, a quantity 207, a delivery date 208, and an order reception date and time 209.
  • a work date and time 210 is included in one record.
  • the serial number 201 is a unique number assigned by the warehouse control device 100.
  • the slip number 202 is a number assigned by the warehouse control device 100 to each order.
  • the store name 203 indicates the shipping destination of the article.
  • the quantity 207 indicates the number of ordered products specified by the product name 205 and product code 206 in the slip number 202 of the record.
  • the date and time of work 210 stores the scheduled date and time of the picking work for the product name 205 of the slip number 202 .
  • the work date and time 210 is based on the customer's request (such as a request for early shipment before the delivery date) and the warehouse situation (such as when there is a reason for wanting to ship the product early). It is determined.
  • the work date and time 210 may be determined by other software that cooperates with the warehouse control device 100 (for example, a warehouse management system (WMS: Warehouse Management System)) or the like, or may be set by the user.
  • WMS warehouse management system
  • FIG. 6 is a diagram showing an example of the inventory information 220.
  • the stock information 220 includes a serial number 221, a product name 222, a product code 223, a stock quantity 224, a shelf ID 225, and a shelf arrangement position 226 in one record.
  • the shelf ID 225 stores the identifier of the shelf 7 on which the product is stored.
  • the placement position 226 in the shelf stores information used when picking by a person or a robot at the picking station ST, for example. For example, in a record that describes "U3R2", the placement position 226 in the shelf is "the third row from the top (U) and the second position from the right (R)" on the shelf 7. Indicates that the product is placed.
  • FIG. 7 is a diagram showing an example of the shelf information 230.
  • the shelf information 230 includes serial number 231, shelf ID 232, storage position 233, shelf weight 234, and product weight 235 in one record.
  • a unique identifier given to each shelf 7 is stored in the shelf ID 232 .
  • the shelf ID 232 for example, an identifier given by the warehouse control device 100 may be stored.
  • the storage position 233 stores the information of the position where the shelf 7 is stored, for example, the coordinates of the map information 250 are stored. When the shelf 7 is being transported, the storage position 233 stores “transporting”.
  • the shelf weight 234 stores the weight of the shelf 7 itself, and the product weight 235 stores the weight of the goods (products, containers that store the products, etc.) mounted on the shelf 7 .
  • the weight of the goods (shelf + product) transported by the transport device 1 is at least the sum of the "shelf weight” and the "product weight”.
  • the weight and inventory number of each product may be recorded, and the weight of the transported item (shelf + product) may be calculated.
  • the weight of some of the products on the shelf 7 and the products mounted on the shelf 7 may be excluded from the calculation.
  • a weight sensor capable of measuring "the weight of the goods (shelf + product)" transported by the transport device 1 is installed, and after the completion of picking, the shelf 7 is returned to the storage position. Weight may be measured on occasion. At this time, the weight measured by the transport device 1 may be received by the warehouse control device 100 and recorded as the “weight of the transported article (shelf + product)” in the shelf information 230 .
  • the warehouse control device 100 identifies the storage position 233 of the shelf 7 using the information of the shelf ID 225 obtained from the inventory information 220 of FIG. 6 as a key. For example, the warehouse control device 100 determines the position of the transport device 1 near the storage position of the shelf 7, the storage position 233 of the shelf 7, and the transport of the shelf 7 among the devices in the "standby" state in the transport device 1, for example.
  • the moving route of the transport device 1 is calculated from the information of the picking station ST to be the destination.
  • FIG. 8 is a diagram showing an example of the floor information 240.
  • the floor information 240 includes a serial number 241, an area 242, a floor state 243, an area setting 244, and an accumulated load 245 in one record.
  • the floor condition 243 stores information indicating the condition of the floor, especially the damage level. For example, it may be divided into levels such as “normal state”, “low damage level”, “medium damage level”, and “large damage level”. In addition, the floor state 243 may be, for example, "normal state”, “low damage level”, and “medium damage level” as travelable, and "large damage level” as travel disabled (prohibited travel).
  • the area setting 244 When the area setting 244 is “aisle area”, it indicates that the transport device 1 can travel, and the shelf 7 can also be transported. When the area setting 244 is “shelf storage area”, it indicates an area where the shelf 7 transported by the transport device 1 is placed or an area secured as a place for placing the shelf 7 .
  • the transport device 1 in a state where the shelf 7 is not transported can pass under the shelf 7, so it can travel, but the transport device 1 in a state where the shelf 7 is transported cannot move in the area where the other shelf 7 is located. Do not run to avoid collision with 7.
  • the area setting 244 is "travel prohibited area"
  • this is an area in which travel of the transport device 1 is restricted.
  • an area with “severe damage” may be set as a “no-driving area”.
  • an area where an obstacle that hinders travel is detected, an area where people or other devices work, and the like may be set as the "no travel area”.
  • An area that satisfies a predetermined condition may automatically be set as the "no-travel area", or the user may set the "no-travel area”.
  • the accumulated load 245 is a value obtained by accumulating the load received by the floor of the area from the transport device 1 .
  • the load includes the load when the transport device 1 passes (the number of passes, the weight at the time of passage, etc.), the load when the transport device turns (the number of rotations, the weight at the time of rotation), and the acceleration or deceleration of the transport device 1. load (number of times of acceleration, weight when accelerating, number of times of deceleration, weight when decelerating, etc.).
  • the cumulative load 245 may be a value calculated based on information on some or all of these loads. For example, it may be a total weight value obtained by accumulating the weight when passing.
  • FIG. 9 is a diagram showing an example of the map information 250.
  • the map information 250 is information indicating the position of an “area” specified by a row number 251 and a column number 252 . Each area is a rectangular area, and is set to one of the "passage area”, “shelf storage area”, and "travel prohibited area” according to the area setting 244 of the floor information 240 described above.
  • FIG. 10 is a diagram showing an example of the device information 260.
  • the device information 260 includes a serial number 261, a device ID 262, a device state 263, a rack presence/absence 264, a device position 265, and a remaining battery level 266 in one record.
  • the device ID 262 stores a unique identifier given to each transport device 1.
  • the device status 263 stores information about the status of each transport device 1 . As the state, for example, states such as “standby”, “moving”, “charging”, and “failure” are input.
  • the shelf loading status 264 is information about the loading status of the shelf 7 in the transport device 1 .
  • the presence/absence of loading of the shelf 264 is information indicating whether or not the shelf 7 is loaded on the table 32 of the transport device 1 .
  • the warehouse control device 100 selects the transport device 1 that processes a certain transport task (instructs transport), the selection can be made based on the transport efficiency or the like. For example, even if the transport device 1 is in the "moving" state, if the current task is completed early and the next transport task (the above-mentioned certain transport task) can be processed earlier than the others. , may be selected.
  • the device position 265 stores information about the position of each transport device 1 .
  • the conveying device 1 uses a sensor (camera) to read information (eg, mark) attached to a predetermined position on the floor surface of each area.
  • the information read by the conveying device 1 includes information about the position of the area, and the self position can be specified. Note that the self-position specifying method may be based on other techniques.
  • the remaining battery capacity 266 is information about the remaining capacity of the battery 39 of each transport device 1 .
  • the carrier device 1 may go to the charging station for charging when the remaining battery charge 266 becomes equal to or less than a predetermined remaining battery charge.
  • the charging schedule may be determined according to the availability of charging stations (reservation status), the transportation schedule, the remaining battery capacity of each transportation device 1, and the like. For example, if many transport devices 1 are charged at the same timing, the charging station may be crowded and waiting for charging may occur. Therefore, a schedule that takes transport efficiency into consideration is desirable.
  • FIG. 11 is a flowchart showing an example of processing performed by the warehouse control device 100.
  • This processing is executed at a predetermined timing such as a predetermined period or timing when an order is received.
  • the route creation program 161 sorts the order information 200 in ascending order of the work date and time 210, and performs the following processing in order from the top record (S1).
  • the route creation program 161 selects the order information 200, searches the inventory information 220 from the product code 206, and determines whether there is an inventory quantity 224 or not. If there is inventory, the route creation program 161 acquires the shelf ID 225 and the arrangement position 226 within the shelf, searches the shelf information 230, and specifies the storage position 233 (S2).
  • the route creation program 161 refers to the map information 250, the area setting 244 of the floor information 240, and the device information 260, and as described above, selects the transport device that maximizes the transport efficiency from the storage position 233 to the picking station ST. 1 is selected from the device information 260 .
  • the picking station ST as the transport destination may be set in advance according to the shipping destination (the store name 203), or may be set in advance according to the product to be picked and the type of product.
  • the route creation program 161 calculates the transport route of the transport device 1 from the map information 250, the area setting 244 of the floor information 240, the information of the storage position 233 and the picking station ST (S3).
  • well-known or a well-known method can be employ
  • the transport device control program 164 sends a command to the determined transport device 1 to transport the determined shelf 7 using the calculated route information (S4).
  • the transport device 1 which has received a transport command from the warehouse control device 100, travels along the accepted route, loads the specified shelf 7, and transports it to a predetermined picking station ST.
  • the transport device 1 loads the shelf 7, transports it to the storage location, and unloads the shelf 7 onto the floor 80. After that, the transport device 1 moves to a predetermined waiting place and ends the transport task.
  • the position to which the transport device 1 returns the shelf 7 may be the original storage location, or may be stored in a different position based on the frequency of use of the shelf 7 or the like. For example, if the shelf 7 is frequently used, the transport device 1 may place the shelf 7 near the picking station ST.
  • FIG. 12 is a flowchart showing an example of processing performed by the transport device 1.
  • FIG. This processing shows an example in which the control device 2 executes the travel control program 24 to perform acceleration control, and is executed when the transport device 1 stops and then starts.
  • the control device 2 of the conveying device 1 has two movement modes: a straight mode in which the driving wheels 33-L and 33-R are driven at a constant speed, and a turning mode in which the driving wheels 33-L and 33-R are rotated in opposite directions. (or transport mode) to move the carriage 31 .
  • a straight mode in which the driving wheels 33-L and 33-R are driven at a constant speed
  • a turning mode in which the driving wheels 33-L and 33-R are rotated in opposite directions. (or transport mode) to move the carriage 31 .
  • the orientation of the shelf 7 can be maintained by turning the table 32 in the direction opposite to the turning direction of the carriage 31 . If the drive wheels 33-L and 33-R are driven at different speeds in the same rotational direction, the truck 31 can be turned while traveling.
  • the turning mode in which the drive wheels 33-L and 33-R are driven in the opposite direction is the spin turn, and for example, it turns around the center of the bottom surface of the carriage 31.
  • the pivot turn is simply referred to as a turn.
  • the control device 2 determines the movement mode and controls the drive wheels 33 based on the route data 41 received from the warehouse control device 100 and the current position of the carriage 31 detected by the self-position estimation program 23 .
  • the control device 2 determines whether or not the shelf 7 is loaded on the table 32 (S11). Regarding the presence or absence of the shelf 7, for example, a sensor for detecting articles such as the shelf 7 is provided on the table 32, and if the output of the sensor satisfies a predetermined condition, the control device 2 loads the shelf 7 on the table 32. It determines that it is, and proceeds to step S12. On the other hand, if the predetermined condition is not satisfied, the control device 2 determines that the table 32 is not loaded with the shelf 7, and proceeds to step S15.
  • step S12 the control device 2 determines whether or not the previous travel mode and the next travel mode are the same. This determination is made by the control device 2 referring to the travel performance data 45 to acquire the previous travel mode and comparing the next travel mode determined based on the route data 41 . If the previous travel mode and the next travel mode are the same, the process proceeds to step S13, and if the previous travel mode and the next travel mode are different, the process proceeds to step S14.
  • the control device 2 selects the maximum acceleration A to drive the driving wheels 33 or the table 32.
  • the controller 2 selects the acceleration B smaller than the acceleration A to drive the drive wheels 33 or the table 32 in step S13.
  • the control device 2 selects the minimum acceleration C smaller than the acceleration B to drive the drive wheels 33 or the table 32 in step S14.
  • maximum acceleration A indicates that acceleration A is the maximum acceleration among acceleration A, acceleration B, and acceleration C.
  • minimum acceleration C indicates that among acceleration A, acceleration B, and acceleration C, acceleration C is the minimum acceleration.
  • the accelerations A to C are set in advance to the acceleration during straight running and the angular acceleration during turning.
  • a predetermined acceleration A1, a predetermined acceleration B1, and a predetermined acceleration C1 may be set in advance as the acceleration A, the acceleration B, and the acceleration C during straight running.
  • a predetermined angular acceleration A2, a predetermined angular acceleration B2, and a predetermined angular acceleration C2 may be set in advance.
  • the acceleration during straight running (accelerations A1, B1, C1) and the acceleration during turning (angular accelerations A2, B2, C2) may be different.
  • the above processing shows the case where the transport device 1 controls the acceleration mainly, and the acceleration is determined according to the movement mode based on the route data received from the warehouse control device 100 .
  • the control device 2 may specify the immediately preceding travel mode from the route data 41 or from the travel record data 45 . Further, the control device 2 may determine the presence or absence of loading on the shelf 7 based on the path data received from the warehouse control device 100 or the device information 44 possessed by the transport device 1 to determine the acceleration.
  • the warehouse control device 100 can determine from the route data or the device information 260 whether or not the shelf 7 is loaded on the transport device 1 , determine the acceleration, and issue a command to the transport device 1 .
  • step S4 of FIG. 11 information on acceleration in movement between areas can be included in the route data and transmitted to the transport device 1.
  • Acceleration information is not limited to acceleration itself, but information that can specify acceleration (eg, acceleration mode A, acceleration mode B, acceleration mode C) and information related to acceleration (eg, motor 38 of the drive device). torque, rotation speed, speed at a certain time, speed when passing through a certain area).
  • the acceleration and the target speed may be controlled as acceleration conditions.
  • the conveying apparatus 1 accelerates under a first acceleration condition (first acceleration and first target speed) and moves in a movement mode different from that before stopping. After that, the transport device 1 may be accelerated under a second acceleration condition (second acceleration and second target speed) that is smaller than the first acceleration condition.
  • the speed threshold value it is possible to prevent the speed difference between the left and right wheels from increasing. It is possible to prevent the load from being applied to the floor surface.
  • step S15 when the conveying device 1 does not load the shelf 7, the carriage 31 is accelerated at the maximum acceleration A. This is because there is no need to accelerate slowly because the load on the vehicle is small.
  • the degree of damage of the floor condition 243 in the floor information 240 shown in FIG. may be used to control the acceleration. Specifically, if the degree of damage to the floor surface is large, if the accumulated load is high, or if there are unevenness (joints or steps) on the floor surface, accelerate more slowly than if there is no damage. Acceleration may be reduced immediately.
  • the vehicle is slowly accelerated according to the state of the floor surface.
  • efficient operation of the transport system is expected.
  • the acceleration may be determined based on the weight, such as the total value of the shelf weight 234 and product weight 235 in the shelf information 230 in FIG. For example, when the weight is heavy, it may be controlled to accelerate more slowly than when it is light.
  • the control device 2 when moving in the same movement mode as the movement mode before stopping among the plurality of movement modes, Control the driving device 3 to accelerate at acceleration A (third acceleration or third acceleration condition including third target speed), and move in a different movement mode from the movement mode before stopping among a plurality of movement modes. 19), which is smaller than the acceleration A, or the fourth target speed which is smaller than the third target speed. good.
  • acceleration A third acceleration or third acceleration condition including third target speed
  • the fourth target speed which is smaller than the third target speed. good.
  • FIG. 13 is a plan view showing an example of a movement pattern of the conveying device 1 in which the straight mode and the turning mode are combined.
  • the conveying device 1 goes straight, turns by 90 degrees, and then goes straight.
  • the conveying device 1 When the shelf 7 is not loaded on the table 32, the conveying device 1 turns at acceleration A (angular acceleration A) to turn the carriage 31 leftward in the drawing, regardless of the previous movement mode.
  • the transport apparatus 1 turns with the minimum acceleration C (angular acceleration C) because the immediately preceding movement mode is the straight advance mode and the next movement mode is switched to the turning mode. to turn the carriage 31 to the left in the figure.
  • the transport device 1 moves straight from area (A, e) to area (A, c). In this case, when the shelf 7 is not loaded on the table 32, the transport device 1 moves straight with the maximum acceleration A to move the carriage 31 leftward in the figure.
  • the transport device 1 is switched to the revolving mode in the previous movement mode and the straight movement mode in the next movement. Move left in the middle direction.
  • the conveying apparatus 1 starts moving (or turning) with the minimum acceleration C, thereby reducing the driving force can be reduced to suppress consumption of the battery 39 .
  • the load applied to the conveying device 1 and the floor surface can be reduced.
  • FIG. 14 is a plan view showing an example of a movement pattern of the conveying device 1 that repeats the straight mode and pause.
  • the conveying device 1 goes straight, stops once, and then goes straight again.
  • the conveying device 1 moves straight ahead, stops temporarily, and moves straight forward, for example, when another conveying device 1 passes through the destination area first, the other conveying device 1 passes through the area. Pause to wait for it to do so.
  • the conveying apparatus 1 is temporarily stopped.
  • the transport device 1 travels straight from area (E, c) to area (C, c) and then stops. Then, go straight from area (C, c) to area (A, c).
  • area (E, c) When the shelf 7 is not loaded on the table 32, it accelerates at the maximum acceleration A and moves between areas.
  • the shelf 7 is loaded on the table 32, it accelerates at an intermediate acceleration B and moves between areas.
  • FIG. 15 is a perspective view from above showing an example of a training wheel in the case of switching from the straight mode to the straight mode after turning 90° counterclockwise in the turning mode.
  • FIGS. 15A to 15C show changes in movement of the training wheels 34 in the movement pattern of the conveying device 1 shown in FIG.
  • Friction between the auxiliary wheels 34 and the floor increases when the transition from the straight mode to the turning mode is started and when the turning mode is changed to the straight mode.
  • Fig. 16 is a perspective view from above showing an example of the trajectory of the training wheels when turning 90° counterclockwise in the turning mode from the straight driving mode.
  • (A) to (C) in the figure show part of the trajectory of the auxiliary wheel 34 from (A) to (B) in FIG. 15 .
  • each auxiliary wheel 34 stops at a position parallel to the drive wheel 33 along with the shaft 36, as shown in (A) in the figure.
  • each auxiliary wheel 34 starts moving toward the circle C1 as the shaft 36 turns, as shown in (B) in the drawing.
  • P0, P1, and P2 in the drawing indicate the positions of the shaft 36.
  • the auxiliary wheel 34-FR which is the right front wheel, rotates on the floor while turning slightly counterclockwise of the shaft 36 toward the circle C1 from the position P0 in the drawing where it stops in the straight-ahead mode, and reaches the circle C1. It gradually moves to a position P2 along the line.
  • the safety wheel 34-FR since the safety wheel 34-FR only turns slightly around the shaft 36 while rotating, there is little friction with the floor surface.
  • the auxiliary wheel 34-RR which is the right rear wheel, rotates on the floor while turning slightly clockwise about the axis 36 toward the circle C1 from the position P0 where it stopped in the straight-ahead mode, and reaches the position P2 along the circle C1. move up to In this case, since the auxiliary wheels 34-RR only turn slightly around the shaft 36 while rotating, there is little friction with the floor surface.
  • the auxiliary wheel 34-FL which is the left front wheel, moves to the inside of the circle C1 so as to be pushed by the shaft 36 in response to the turning of the shaft 36 along the circle C1 at the position P0 in FIG. While rotating the shaft 36 clockwise, it follows the radial direction of the circle C1 at the position P1.
  • auxiliary wheel 34-FL turns clockwise about the shaft 36 while being pulled by the shaft 36 from the position P1 in accordance with the turning of the shaft 36 along the circle C1. Then, when the shaft 36 turns on the circle C1 to the position P2, the auxiliary wheel 34-FL finally rotates toward the circle C1.
  • the safety wheel 34-FL is pushed by the shaft 36 from position P0 to position P1, rotates clockwise about the shaft 36 and is pushed inside the circle C1, and is pushed inside the circle C1 from position P1 to position P2. Rotate clockwise about axis 36 while being pulled by 36 . Therefore, the auxiliary wheel 34-FL turns on the floor surface without rotating, and the friction with the floor surface becomes large.
  • the auxiliary wheel 34-RL which is the left rear wheel, is pushed by the shaft 36 while moving to the outside of the circle C1 in response to the turning of the shaft 36 along the circle C1 from the position P0 in the drawing where it stops in the straight-ahead mode. , orbits the axis 36 clockwise. After traveling along the radial direction of the circle C1, the auxiliary wheel 34-RL is pulled by the shaft 36 at the position P1 and turns clockwise around the shaft 36 while heading toward the circle C1.
  • the auxiliary wheel 34-RL rotates while turning clockwise around the shaft 36 while being pulled by the shaft 36 from the position P1.
  • the auxiliary wheel 34-RL follows the circle C1.
  • the safety wheel 34-RL is pushed by the shaft 36 from the position P0 to the vicinity of the position P1, moves to the outside of the circle C1 while rotating clockwise about the shaft 36, and moves from the vicinity of the position P1 to the vicinity of the position P2. It is pulled by the shaft 36 until it rotates while rotating clockwise of the shaft 36 . Therefore, the auxiliary wheel 34-RL rotates after turning on the floor surface, and the friction with the floor surface becomes large.
  • the control device 2 switches to the minimum acceleration C (angular acceleration C), thereby suppressing an increase in the driving force according to the increase in friction.
  • the load on the motor 38 and the consumption of the battery 39 can be suppressed.
  • the load applied to the conveying device 1 and the floor surface can be reduced.
  • FIG. 17 is a perspective view from above showing an example of the trajectory of the training wheels when going straight from the turning mode to the straight running mode.
  • (A) to (C) in the drawing show part of the trajectory of the auxiliary wheel 34 from (B) to (C) in FIG. 15 .
  • each auxiliary wheel 34 stops at a position along the circle C1 as shown in (A) in the figure.
  • each auxiliary wheel 34 is pulled by the shaft 36 and starts to move away from the circle C1 as shown in (B) in the figure.
  • the auxiliary wheel 34-FR which is the right front wheel, is pulled by the shaft 36 from the position P0 in the drawing where it is stopped in the turning mode, and rotates slightly in the clockwise direction of the shaft 36 toward the inside of the truck 31 on the floor. to rotate.
  • the auxiliary wheel 34-FR is pulled by the shaft 36 and gradually becomes parallel to the drive wheel 33 while moving from position P1 to position P2. Since the training wheels 34-FR only turn slightly around the shaft 36 while rotating, there is little friction between them and the floor surface.
  • the auxiliary wheel 34-RR which is the right rear wheel, rotates on the floor while rotating slightly counterclockwise of the shaft 36 toward the outside of the carriage 31 from the position P0 where it stops in the straight traveling mode, and is pulled by the shaft 36. and moves to positions P1 and P2. In this case, since the auxiliary wheels 34-RR only turn slightly around the shaft 36 while rotating, there is little friction with the floor surface.
  • the auxiliary wheel 34-FL which is the left front wheel, moves to the inside of the carriage 31 so as to be pushed by the shaft 36 in response to the straight movement of the shaft 36 upward in the drawing at the position P0 in the drawing where it stops in the straight traveling mode. While rotating the shaft 36 counterclockwise, it crosses the straight direction at a position P1.
  • the auxiliary wheel 34-FL rotates counterclockwise of the shaft 36 while being pulled by the shaft 36 from the position P1 in accordance with the straight movement of the shaft 36.
  • the auxiliary wheel 34-FL finally rotates upward in the figure.
  • the auxiliary wheel 34-FL rotates in parallel with the drive wheel 33. As shown in FIG.
  • the safety wheels 34-FL are pushed by the shaft 36 from the position P0 to the position P1, turn counterclockwise about the shaft 36, are pushed inward of the carriage 31, and are pushed inward from the carriage 31 from the position P1 to the position P2. It rotates counterclockwise of the shaft 36 while being pulled by the shaft 36 . Therefore, the auxiliary wheel 34-FL turns on the floor surface without rotating, and the friction with the floor surface becomes large.
  • the auxiliary wheel 34-RL which is the left rear wheel, moves to the outside of the truck 31 so as to be pushed by the shaft 36 in accordance with the straight movement of the shaft 36 upward in the drawing from the position P0 in the drawing where it is stopped in the turning mode. , orbits the axis 36 counterclockwise. Then, after the auxiliary wheel 34-RL is substantially perpendicular to the straight-ahead direction at the position P1, it is pulled by the shaft 36 this time to turn the shaft 36 counterclockwise.
  • auxiliary wheel 34-RL is pulled by the shaft 36 from the position P1, rotates counterclockwise of the shaft 36, and gradually moves toward the inner side of the carriage 31. Then, when the shaft 36 goes straight to the position P2, the auxiliary wheel 34-RL rotates in parallel with the drive wheel 33. As shown in FIG.
  • the auxiliary wheel 34-RL is pushed by the shaft 36 from the position P0 to the vicinity of the position P1, moves to the outside of the carriage 31 while rotating counterclockwise of the shaft 36, and moves from the vicinity of the position P1 to the position P1. Up to P2, it is towed by the shaft 36, rotates while turning counterclockwise of the shaft 36, and heads toward the inside of the carriage 31. - ⁇ Therefore, the auxiliary wheel 34-RL starts rotating after turning on the floor surface, and the friction with the floor surface becomes large.
  • FIG. 18 is a graph showing the relationship between speed and time, showing an example of acceleration switching patterns (acceleration conditions) performed by the control device 2 . As shown in FIG. 12, when the shelf 7 is not loaded, the control device 2 accelerates the carriage 31 to the target speed Vt at the maximum acceleration A ( ⁇ A in the figure).
  • the control device 2 accelerates the carriage 31 to the target speed Vt at an intermediate acceleration B ( ⁇ B in the figure).
  • the control device 2 moves the cart 31 up to the target speed Vt at the minimum acceleration C ( ⁇ C in the figure). to accelerate.
  • the target velocity Vt shall be replaced with the target angular velocity.
  • the transport device 1 of the present embodiment suppresses the acceleration when starting the transport device 1 after the movement mode is switched, thereby reducing the driving force at the time of starting and reducing the load on the motor 38. and the consumption of the battery 39 can be suppressed. Moreover, the load applied to the conveying device 1 and the floor surface can be reduced.
  • control device 2 of the transport device 1 estimates the state of the floor surface for each area from the vibration (acceleration) of the running performance data 45, and starts or turns in an area where the magnitude of the vibration is equal to or greater than a predetermined threshold value. In this case, the acceleration C can be suppressed to the minimum even if the movement mode is not switched.
  • control device 2 of the transport device 1 acquires the floor information 240 from the warehouse control device 100, and starts in an area where the floor condition 243 satisfies predetermined conditions such as "low damage level” or "medium damage level".
  • predetermined conditions such as "low damage level” or "medium damage level”.
  • the warehouse control device 100 updates the accumulated load 245 of the floor information 240 from the route of each transport device 1, and when the transport device 1 starts or turns in an area where the value of the accumulated load 245 exceeds a predetermined threshold value, , to switch the acceleration to the acceleration C.
  • a command for switching acceleration can be added to the route data 270 .
  • FIG. 19 is a graph showing the relationship between speed and time, showing an example of the switching pattern of acceleration performed by the control device 2, according to the second embodiment.
  • the first embodiment an example was shown in which the acceleration up to the target velocity (or target angular velocity) is switched depending on whether the shelf 7 is present and whether the movement mode is switched.
  • This embodiment shows an example of switching the target velocity (target angular velocity) in addition to the acceleration.
  • Other configurations are the same as those of the first embodiment.
  • control device 2 accelerates the carriage 31 to the maximum acceleration A ( ⁇ A in the figure) and to the maximum target speed Vt1.
  • the control device 2 accelerates the carriage 31 to the second target speed Vt2 at the second acceleration B ( ⁇ B in the figure) when the shelf 7 is loaded and there is no change from the previous movement mode. do. Then, when the shelf 7 is loaded and when the previous movement mode and the next movement mode are different, the control device 2 sets a smaller acceleration C ( ⁇ C in the figure) and a lower target speed. The truck 31 is accelerated to Vt3.
  • the acceleration B and the target speed Vt2 when the shelf 7 is loaded are set as a first acceleration condition, and the acceleration C and the target speed Vt3 when the previous movement mode and the next movement mode are different are set as a second acceleration condition,
  • the acceleration A and the target speed Vt1 when the shelf 7 is not loaded can be set as the third acceleration condition.
  • the transport device 1 accelerates under the second acceleration condition (acceleration B, target speed Vt3), instead of accelerating at an acceleration lower than the acceleration C or lower than the target speed Vt3.
  • the driving device 3 can be controlled to accelerate under acceleration conditions including the target speed.
  • the target speed is replaced with the target angular speed.
  • the acceleration smaller than the acceleration C may be, for example, the acceleration D of ⁇ D in the figure.
  • the target speed smaller than the target speed Vt3 may be, for example, the target speed Vt4 in the figure.
  • This acceleration D is the minimum acceleration among acceleration A, acceleration B, acceleration C, and acceleration D, and is sometimes referred to as "minimum acceleration D" in the following description.
  • the transport device 1 when the acceleration is large, the transport device 1 also sets the target speed high to shorten the movement time of the carriage 31 to improve the transport efficiency, and when the acceleration is small, the target speed is set low. , it is possible to suppress an increase in driving force due to friction of the auxiliary wheels 34 and vibration in an area where the floor condition is poor. Moreover, the load applied to the conveying device 1 and the floor surface can be reduced.
  • control device 2 can change the acceleration and the target speed according to the movement distance between areas. For example, in FIG. 9, when moving only to the next area, the vehicle may be gradually accelerated and then decelerated, and the target speed may be set low. On the other hand, the control device 2 can move at a higher speed when the moving distance between areas is sufficiently long (at least a predetermined distance or at least a predetermined number of squares).
  • the entity that controls the acceleration and target speed is not limited to the transport device 1, and the warehouse control device 100 may determine the acceleration and target speed, add them to the route data, and issue a command.
  • the transport device 1 may acquire the damage state of the floor surface from the floor information 46 (or the floor information 240), but if the floor surface has an accumulated running performance (cumulative load 245) that exceeds a predetermined standard, or if the floor surface has unevenness, Even when moving on a certain floor surface, instead of accelerating under the second acceleration condition as a damaged floor surface, control is performed under an acceleration condition including an acceleration smaller than the acceleration B or a target speed smaller than the target speed Vt. good too.
  • FIG. 20 is a graph showing the relationship between speed and time, showing an example of a switching pattern of acceleration performed by the control device 2, according to the second embodiment.
  • the acceleration up to the target velocity (or target angular velocity) is switched depending on whether the shelf 7 is present and whether the movement mode is switched.
  • the acceleration is increased to shorten the time required to reach the target speed (target angular speed).
  • Other configurations are the same as those of the first embodiment. Note that the maximum acceleration A and the intermediate acceleration B are the same as those in the first embodiment, so redundant description will be omitted.
  • the transport device 1 drives the carriage 31 by selecting the minimum acceleration C ( ⁇ C in the figure) when the shelf 7 is loaded and the straight mode and the next movement mode are different.
  • the conveying device 1 accelerates at a minimum acceleration C until the predetermined time t1 elapses, but increases the acceleration after the elapse of the predetermined time t1.
  • the transport device 1 can increase the acceleration C to an intermediate acceleration B to shorten the time required for the truck 31 to reach the target speed Vt.
  • the time t1 is set, for example, to the time at which the axis 36 passes through the position P2 with the minimum acceleration C, as shown in FIGS.
  • the transfer device 1 increases the acceleration to B after the friction between the training wheels 34 and the floor surface decreases, thereby smoothly increasing the speed of the carriage 31 while reducing the load applied to the transfer device 1 and the floor surface.
  • the acceleration when starting straight movement from a stopped state, in the section where the load due to acceleration is large (moving distance, number of moving areas, time, etc. determined), accelerate slowly and reduce the target speed, and pass the section Alternatively, if the load associated with acceleration decreases, the acceleration may be increased and the target speed may be set high.
  • the conveying apparatus 1 of Examples 1 to 3 can be configured as follows.
  • a conveying device (1) for conveying an article comprising a drive section (drive device 3) that loads and moves the article, and a control section (control device 2) that controls the drive section (3).
  • the transport device (1) has a movement mode (straight forward mode) in which the transport device (1) moves straight in a predetermined direction, and a movement mode (turning mode) in which the transport device (1) rotates so as to face a different direction.
  • the control unit (2) controls the acceleration conditions when the conveying device (1) loaded with the articles moves from a stopped state, when the conveying device (1) is a first acceleration including a first acceleration (acceleration B) or a first target velocity (Vt2) when moving in the same movement mode as the movement mode before stopping among the plurality of movement modes;
  • the driving unit (3) is controlled to accelerate under certain conditions, and when moving in a moving mode different from the moving mode before stopping among the plurality of moving modes, a first acceleration (B) smaller than the first acceleration (B) controlling the drive unit (3) to accelerate under a second acceleration condition including a second acceleration (acceleration C) or a second target speed (Vt3) smaller than the first target speed (Vt2);
  • a transport device characterized by:
  • the transport device 1 suppresses the acceleration when starting the cart 31 after the movement mode is switched, thereby reducing the driving force at the time of starting and reducing the load on the transport device 1 and the floor surface. can be reduced.
  • the drive unit (3) includes a drive wheel (33) connected to a power source (motor 38) and the conveying apparatus (1). and auxiliary wheels (34) for supporting the
  • the drive section (3) can load a shelf (7) for storing the article, and the control section (2) , the acceleration condition when the conveying device (1) on which the article is not loaded moves from the stopped state is a third acceleration (B) that is greater than the first acceleration (B) regardless of the movement mode before the stop.
  • the driving unit (3) is controlled to accelerate under a third acceleration condition including acceleration (acceleration A) or a third target speed (Vt1) greater than the first target speed (Vt2). and transport device.
  • the transport device 1 when the shelf 7 is not loaded, the transport device 1 can move the carriage 31 at the maximum acceleration A regardless of whether the movement mode is switched or not, and the transport efficiency of the transport system is considered. It is possible to effectively reduce the load applied to the conveying device 1 and the floor surface while reducing the load.
  • the control unit (2) moves from a state in which the conveying apparatus (1) without the articles (7) is stopped. with respect to the acceleration condition when the transport device (1) moves in the same movement mode as the movement mode before stopping among the plurality of movement modes, a third acceleration (B) larger than the first acceleration (B) controlling the driving unit (3) to accelerate under a third acceleration condition including acceleration (A) or a third target speed (Vt1) greater than the first target speed (Vt2);
  • the fourth acceleration (D) smaller than the third acceleration (A) or smaller than the third target velocity (Vt1) when moving in a movement mode different from the movement mode before stopping among the movement modes and a fourth acceleration condition including a fourth target speed (Vt4).
  • the carrier device can be used. 1 and the load on the floor can be reduced.
  • the first target speed (Vt2) is set as the first acceleration condition
  • the second acceleration condition is set as the second acceleration condition.
  • the control unit (2) controls the driving unit (3) so that the target speed is achieved at the acceleration set in the acceleration condition.
  • the transport device 1 when the movement mode is switched, the transport device 1 suppresses an increase in the driving force due to the friction of the training wheels 34 by setting the target speed for acceleration to a low value. This load can be reduced.
  • a first acceleration (B) is set as the first acceleration condition
  • a second acceleration is set as the second acceleration condition
  • (C) is set, and the control section (2) controls the driving section (3) so as to achieve a predetermined target speed.
  • the transport device 1 sets a low acceleration during acceleration to suppress an increase in the driving force due to the friction of the auxiliary wheels 34, and the driving force is applied to the transport device 1 and the floor surface. It becomes possible to reduce the load.
  • the first acceleration condition is to accelerate to a first target speed (Vt2) at the first acceleration (B). and wherein the second acceleration condition is to accelerate to the second target speed (Vt3) at the second acceleration (C).
  • the transport device 1 sets both the acceleration and the target speed at the time of acceleration to be low, thereby suppressing an increase in the driving force due to the friction of the training wheels 34. and the load on the floor can be reduced.
  • control unit (2) controls the movement of the second acceleration (C) after a predetermined time (t1) has passed. 2.
  • the transport device 1 sets the predetermined time t1 to the time required for the axis 36 to pass through the position P2 with the minimum acceleration C, or the like.
  • the transfer device 1 increases the acceleration to B after the friction between the training wheels 34 and the floor surface decreases, thereby smoothly increasing the speed of the carriage 31 while reducing the load applied to the transfer device 1 and the floor surface.
  • the transport device (1) according to (1) above, further comprising a storage unit (storage device 4) for storing information on the state of the floor on which the transport device (1) moves, A conveying device, wherein the control unit (2) determines an acceleration condition of the conveying device (1) based on information (floor information 46) on the state of the floor surface.
  • a storage unit storage device 4 for storing information on the state of the floor on which the transport device (1) moves
  • the control unit (2) determines an acceleration condition of the conveying device (1) based on information (floor information 46) on the state of the floor surface.
  • the load applied to the floor surface can be reduced by changing the acceleration conditions.
  • the information on the state of the floor includes information on the presence or absence of damage to the floor (floor information 46), ), regarding the acceleration conditions when the conveying device (1) loaded with the articles moves from a stopped state, when moving in a moving mode different from the moving mode before stopping among the plurality of moving modes, damage
  • a conveying apparatus characterized by controlling the driving section (3) so as to accelerate under a fourth acceleration condition including:
  • the load applied to the floor surface can be reduced by, for example, starting with the minimum acceleration D. .
  • the information (46) on the state of the floor surface is the cumulative travel record (accumulated load 245), and the control unit (2) selects one of the plurality of movement modes for acceleration conditions when the conveying device (1) loaded with the article moves from a stopped state.
  • the second acceleration condition is used.
  • a conveying apparatus characterized in that the driving section (3) is controlled to accelerate under an acceleration condition including an acceleration smaller than the acceleration (C) or a target speed smaller than the second target speed (Vt3).
  • the load applied to the floor surface is reduced by, for example, starting with the minimum acceleration D. can be reduced.
  • the information (47) on the state of the floor includes information (243) on the presence or absence of unevenness on the floor, and the control unit (2) moves in a moving mode different from the moving mode before stopping among the plurality of moving modes with respect to an acceleration condition when the conveying device (1) loaded with the article (7) moves from a stopped state;
  • acceleration smaller than the second acceleration (C) or the second target speed (Vt3) instead of accelerating under the second acceleration condition, acceleration smaller than the second acceleration (C) or the second target speed (Vt3) and controlling the drive unit (3) so as to accelerate under acceleration conditions including a target speed smaller than the target speed.
  • the load applied to the floor surface is reduced by, for example, starting with the minimum acceleration D. can be reduced.
  • the conveying device (1) described in (1) above stores conveyed article information (shelf information 230) including weight information (product weight 235) of articles to be loaded by the conveying device (1). , wherein the second acceleration (C) and the second target velocity (Vt3) are set based on at least the conveyed article information (230).
  • the transport device 1 can reduce the load on the floor surface by, for example, starting with a small acceleration C.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above embodiments are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • addition, deletion, or replacement of other configurations for a part of the configuration of each embodiment can be applied singly or in combination.
  • each of the above configurations, functions, processing units, processing means, etc. may be implemented in hardware, for example, by designing them in integrated circuits, in part or in whole.
  • each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function.
  • Information such as programs, tables, and files that implement each function can be placed in a recording device such as a memory, hard disk, SSD (Solid State Drive), or recording medium such as an IC card, SD card, or DVD.
  • control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it may be considered that almost all configurations are interconnected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

物品を搬送する搬送装置であって、物品を積載して移動する駆動部と、駆動部を制御する制御部と、を有し、所定の方向へ直進して移動する移動モードと、異なる方向へ向くように回転移動する移動モードとを含み、制御部は、物品を積載した搬送装置が停止した状態から移動する場合の加速条件について、複数の移動モードのうち停止前の移動モードと同じ移動モードで移動する場合に、第1の加速度又は第1の目標速度を含む第1の加速条件で加速し、停止前の移動モードと異なる移動モードで移動する場合に、第1の加速度よりも小さい第2の加速度又は前記第1の目標速度よりも小さい第2の目標速度を含む第2の加速条件で加速する。

Description

搬送装置、搬送システム及び搬送装置の制御方法 参照による取り込み
 本出願は、令和3年(2021年)1月27日に出願された日本出願である特願2021-011356の優先権を主張し、その内容を参照することにより、本出願に取り込む。
 本発明は、搬送装置、搬送システム及び搬送装置の制御方法に関する。
 物流倉庫では、納入された物品を保管し、注文を受け付けると該当する物品を取り出して、梱包した後に顧客あてに発送している。物品の移動には多大な労力が必要とされるが、無人搬送車によって物品を運搬する搬送システムを採用することで省力化を図ることができる。
 搬送システムの一例として、駆動輪と補助輪を有する搬送装置が、指定された棚の位置へ自動走行で移動して、物品を格納した棚を搬送装置上のテーブルに搭載してから、指定されたピッキングステーションへ搬送するシステムがある。搬送システムに関する技術として、例えば、特許文献1に記載の技術がある。
特開2020-83548号公報
 搬送装置は、例えば、バッテリからの電力で電動機に結合された駆動輪を駆動し、搬送装置自体を旋回させる旋回モードと、搬送装置を前進させる直進モードを組み合わせて、倉庫内の床面上を自動で移動する。
 ここで、搬送装置が旋回モードの直後に直進モードへ移行する際、補助輪の向きが移動方向とは異なる方向を向いている場合、床面と補助輪の摩擦が大きくなり、補助輪と床面に高い負荷が加わる。
 例えば、直進モードから停止した後に、再度直進モードで搬送装置を移動させる場合に比して、旋回モードの後に直進モードに切り替えて搬送装置を移動させる場合では、搬送装置を発進させる際に駆動輪に与える駆動力が増大し、搬送装置や床面へかかる負荷が増大するという課題を、本願の発明者は見出した。
 同様に、例えば、直進モードの後に旋回モードに切り替えて搬送装置を移動させる場合では、搬送装置を旋回させる際に駆動輪に与える駆動力が増大し、搬送装置や床面へかかる負荷が増大するという課題がある。
 そこで、搬送装置の移動モードが切り替わった後に、搬送装置を発進させる際の搬送装置や床面へかかる負荷を低減可能な搬送装置、搬送システム及び搬送装置の制御方法を提供する。
 本発明の一態様である搬送装置は、物品を搬送する搬送装置であって、前記物品を積載して移動する駆動部と、前記駆動部を制御する制御部と、を有し、前記搬送装置は、所定の方向へ直進して移動する移動モードと、前記搬送装置が異なる方向へ向くように回転移動する移動モードとを含む複数の移動モードで移動可能であり、前記制御部は、前記物品を積載した前記搬送装置が停止した状態から移動する場合の加速条件について、前記搬送装置が、前記複数の移動モードのうち停止前の移動モードと同じ移動モードで移動する場合に、第1の加速度又は第1の目標速度を含む第1の加速条件で加速するように前記駆動部を制御し、前記複数の移動モードのうち停止前の移動モードと異なる移動モードで移動する場合に、前記第1の加速度よりも小さい第2の加速度又は前記第1の目標速度よりも小さい第2の目標速度を含む第2の加速条件で加速するように前記駆動部を制御する。
 本発明によれば、搬送装置の移動モードが切り替わった後に、搬送装置を発進させる際の搬送装置や床面へかかる負荷を低減することが可能となる。
 本明細書において開示される主題の、少なくとも一つの実施の詳細は、添付されている図面と以下の記述の中で述べられる。開示される主題のその他の特徴、態様、効果は、以下の開示、図面、請求項により明らかにされる。
搬送システムの構成の一例を示すブロック図である。 搬送装置と棚の一例を示す斜視図である。 搬送装置の一例を示す底面図である。 搬送装置が棚を搬送する説明図である。 オーダー情報の一例を示す図である。 在庫情報の一例を示す図である。 棚情報の一例を示す図である。 床情報の一例を示す図である。 地図情報の一例を示す図である。 装置情報の一例を示す図である。 倉庫制御装置で行われる処理の一例を示すフローチャートである。 搬送装置で行われる処理の一例を示すフローチャートである。 直進モードと旋回モードを組み合わせた搬送装置の移動パターンの一例を示す図である。 直進モードと一時停止を組み合わせた搬送装置の移動パターンの一例を示す図である。 直進モードから旋回モードで90°旋回した後に直進モードに切り替わる場合の補助輪の一例を示す上方からの透視図である。 直進モードから旋回モードで90°旋回した後の補助輪の軌跡の一例を示す上方からの透視図である。 旋回モードで90°旋回した後に直進モードで発進する際の補助輪の軌跡の一例を示す上方からの透視図である。 実施例1における、加速度の切り替えパターンの一例を示すグラフである。 実施例2における、加速度と目標速度の切り替えパターンの一例を示すグラフである。 実施例3における、加速度の切り替えパターンの一例を示すグラフである。
 以下、本発明の実施形態を添付図面に基づいて説明する。
 図1は、実施例1における搬送システムの構成の一例を示すブロック図である。本実施例の搬送システムは、倉庫制御装置100と、ネットワーク90と、ネットワーク90を介して倉庫制御装置100と接続する複数の搬送装置1と、を備える。例えば、倉庫制御装置100が、搬送装置1に搬送させる棚と、搬送先のピッキングステーションを指定した搬送指令を搬送装置1に送信して、搬送装置1に自動で搬送させる例を示す。
 倉庫制御装置100は、演算装置110と、メモリ120と、入力装置130と、出力装置140と、記憶装置150と、通信インタフェース170を含む計算機である。
 記憶装置150は、不揮発性の記憶媒体を有し、演算装置110が実行するプログラムと、プログラムが使用するデータを格納する。プログラムの一例として、経路作成プログラム161と、データ入出力プログラム162と、データ分析プログラム163と、搬送装置制御プログラム164が記憶装置150に格納され、演算装置110は必要なプログラムをメモリ120にロードして実行する。
 また、記憶装置150が格納するデータの一例としては、オーダー情報200と、在庫情報220と、棚情報230と、床情報240と、地図情報250と、装置情報260と、経路データ270と、計測データ280が格納される。
 経路作成プログラム161は、搬送装置1が移動する経路を算出する。経路作成プログラム161は、例えば、ピッキング対象の物品(又は商品)の位置と、行き先のピッキングステーションの位置等から、搬送装置1が移動する経路を算出する。データ入出力プログラム162は、オーダー情報の受け付けや、搬送装置1からセンサデータの受け付け等を実施し、ピッキング対象の物品の情報の出力などを実施する。
 データ分析プログラム163は、センサデータが床の画像や映像の場合、搬送装置1が移動した経路の床の状態を分析して、床情報240の更新などを実施する。搬送装置制御プログラム164は、経路作成プログラム161が算出した経路と、床情報240や搬送装置1の状態等に基づいて、利用可能な搬送装置1に搬送する棚及び物品と、搬送先を指令する。
 オーダー情報200は、物品の出荷を要求するオーダーの情報で、ピッキング対象の物品の情報を格納する。在庫情報220は、物品の在庫に関し、物品が配置された棚の情報や、棚内の配置位置や、数量、重量等の情報を格納する。
 棚情報230は、棚の位置や重さ等の情報を格納する。床情報240は、床のエリア毎に、床の状態を示す情報を格納する。地図情報250は、倉庫内の地図情報を格納する。装置情報260は、搬送装置1其々についての識別情報(識別子)や位置や稼働状態などを格納する。経路データ270は、搬送装置1毎の経路の情報を格納する。計測データ280は、各搬送装置1から受信したセンサデータや位置情報等を格納する。
 入力装置130は、キーボードやマウスあるいはタッチパネル等で構成される。出力装置140は、ディスプレイ等で構成される。通信インタフェース170は、ネットワーク90を介して搬送装置1や他の計算機と通信を行う。
 搬送装置1は、倉庫制御装置100からの指令に応じて物品を搭載した棚を自動搬送する。搬送装置1は、制御装置(制御部)2と、記憶装置4と、駆動装置(駆動部)3と、センサ5と、通信インタフェース6を有する自動搬送装置である。
 制御装置2は、演算装置21と、メモリ22を含む。メモリ22には自己位置推定プログラム23と、走行制御プログラム24と、計測プログラム25と、通信プログラム26がロードされて演算装置21によって実行される。演算装置21は、マイクロコンピュータやプロセッサで構成される。
 自己位置推定プログラム23は、センサ5から取得したセンサデータ(例えば、画像データ)等に基づいて搬送装置1の位置を算出する。走行制御プログラム24は、搬送装置1の現在位置と、倉庫制御装置100から受信した経路データに基づいて駆動装置3を制御する。
 計測プログラム25は、センサ5からセンサデータを取得して倉庫制御装置100へ出力する。通信プログラム26は、ネットワーク90を介して倉庫制御装置100と通信を行う。
 記憶装置4は、不揮発性の記憶媒体で構成されて、各プログラムや各プログラムが使用するデータを格納する。データの一例としては、経路データ41と、地図情報42と、計測データ43と、装置情報44と、走行実績データ45と、床情報46が含まれる。
 経路データ41は、倉庫制御装置100から受信した経路データを格納する。地図情報42は、倉庫制御装置100から受信した地図情報250を格納する。計測データ43は、センサ5が取得したセンサデータを格納する。
 装置情報44は、搬送装置1の識別子(装置ID)や装置の状態、棚の積載有無に関する情報、装置の位置、バッテリ残量等を格納する。例えば、装置情報44は、装置情報260(図10)のうち、当該搬送装置1に関する情報と同等の情報であってもよい。走行実績データ45は、搬送装置1が移動した経路や、各エリア毎の床面の状態(振動)や移動のモード等の履歴が格納される。
 床情報46は、倉庫制御装置100から受信した床情報240を格納する。制御装置2は、搬送装置1が移動する床面の状態についての情報に基づいて、搬送装置1の加速条件を決定することができる。
 駆動装置3は、台車31と、駆動輪33と、テーブル32と、補助輪(キャスター)34と、駆動輪33やテーブル32を駆動する動力源としてのモータ38と、モータ38に電力を供給するバッテリ39を含む。駆動装置3の構成については後述する。なお、駆動輪33とテーブル32を駆動するモータ38は、独立したモータで構成することができる。
 センサ5は、床を撮影するカメラや、振動を検出する加速度センサ等で構成される。床面にマークなどの位置情報や経路情報が付与されている場合、センサ5としてのカメラで床面を撮影し、自己位置推定プログラム23でマークを識別することで現在位置を特定することができる。センサ5としての加速度センサは、搬送装置1の振動(加速度)を検出し、計測プログラム25は、床面の状態として振動の大きさ等を倉庫制御装置100に通知することができる。
 演算装置21は、各機能部のプログラムに従って処理を実行することによって、所定の機能を提供する機能部として稼働する。例えば、演算装置21は、走行制御プログラム24に従って処理を実行することで走行制御部として機能する。他のプログラムについても同様である。さらに、演算装置21は、各プログラムが実行する複数の処理のそれぞれの機能を提供する機能部としても稼働する。
 図2は、搬送装置1と棚7の一例を示す斜視図である。搬送装置1は、直進及び旋回可能な直方体の台車31と、台車31の上面に配置されて昇降可能かつ旋回可能なテーブル32を含む自動走行装置である。搬送装置1は、例えば無人搬送車(AGV:Automated Guided Vehicle)であってもよいし、自律移動ロボット(AMR:Autonomous Mobile Robot)であってもよい。なお、台車31の前進方向の辺には、バンパ35が配置される。
 物品(又は商品)を格納する棚7は、側面に一対の開口部を有する直方体で構成され、床面から所定の高さで脚部71によって支持された底板72と、物品を載置する1以上の棚板73が配置される。
 搬送装置1は、テーブル32を下降した状態で棚7の底板72の下方に台車31を移動した後、テーブル32を上昇させて棚7を持ち上げる。搬送装置1は、テーブル32で棚7を持ち上げた状態で台車31を走行させることで、棚7の搬送を行う。
 テーブル32は、台車31に対して旋回可能であり、台車31が床面上で旋回する際には、テーブル32を台車31に対して相対的に回転させることで、棚7の向きを保持して台車31の進行方向を変更することができる。
 図示の例では、棚7が2つの開口面を有しているので、テーブル32を180°旋回させることで、異なる開口部をピッキングステーションに提供することができる。なお、棚7の構成は、図示の例に限定されるものではなく、4面の開口部を設けたり、ハンガーを設置した箱ややパレット等で、テーブル32が持ち上げ可能な底板72を有するものであればよい。
 図3は、搬送装置1の一例を示す底面図である。台車31の底面はバンパ35側を前方とし、底面の前後方向の中間の左右には駆動輪33-L、33-Rが配置されて台車31を直進又は旋回させる。なお、以下の説明は、駆動輪の左右を特定しない場合には、「-」以降を省略した符号「33」を用いる。他の構成要素の符号についても同様である。
 駆動輪33-L、33-Rの前方と後方には、それぞれ補助輪34-FL、34-RL、34-FR、34-RRが配置されて台車31を支持する。各補助輪34は、ホルダ37を介して台車31の底面に設けた軸36回りで旋回可能に支持される。また、各補助輪34は、ホルダ37に支持された軸(図示省略)によって床面上を回転自在に支持される。
 図4は、搬送装置1が棚7を搬送する説明図である。搬送装置1は、テーブル32を下降した状態で、棚7の底板72の下方かつ脚部71、71の間に台車31を移動させる(A)。次に、搬送装置1は、底板72にテーブル32を対向させた状態で台車31を停止させてから、テーブル32を上昇させて底板72を所定の高さまで持ち上げる(B)。なお、棚7を持ち上げる高さは、棚7の脚部71が床80に接触せずに、台車31が走行可能であればよい。
 搬送装置1は、棚7をテーブル32持ち上げた状態で、台車31の旋回と、直進を組み合わせて搬送先のピッキングステーションSTまで移動し、棚7の開口部がピッキングゲート8と対向するようにテーブル32又は台車31を旋回させる。そして、搬送装置1は、停止した状態で作業者にピッキング作業を行わせる(C)。
 ピッキングゲート8では、作業者が棚7から発送する物品を取り出して、仕分棚に振り分けるピッキング作業を行う。ピッキング作業が完了すると、搬送装置1は、棚7を保管する所定の保管場所へ移動し、保管場所で棚7を降ろす。棚7を降ろした後には、台車31を所定の待機位置へ移動して次回の搬送作業を待つ。
 図5は、オーダー情報200の一例を示す図である。オーダー情報200は、シリアル番号201と、伝票番号202と、販売店名203と、販売店コード204と、商品名205と、商品コード206と、個数207と、納期208と、オーダー受信日時209と、作業日時210を1つのレコードに含む。
 シリアル番号201は、倉庫制御装置100が付与したユニークな番号である。伝票番号202は、注文毎に倉庫制御装置100が付与した番号である。販売店名203は、物品の出荷先を示す。
 本実施例では、伝票番号202が同一でも、商品名205及び商品コード206が異なる場合は、異なるシリアル番号201を付与する例を示す。これは、商品名205及び商品コード206が異なる場合は、それぞれの商品が保管されている棚7が異なる可能性があるためである。
 個数207は、当該レコードの伝票番号202において、商品名205及び商品コード206で特定される商品が注文された数量を示す。作業日時210は、伝票番号202の商品名205に対して、ピッキング作業が行われる予定日時が格納される。作業日時210は、納期208に加えて、顧客の要望(納期より前に、早く出荷してほしい要望など)や、倉庫の状況(当該商品を早く出荷したい事情がある場合など)に基づいて、決定される。作業日時210は、倉庫制御装置100と連携する他のソフトウェア(例えば倉庫管理システム(WMS:Warehouse Management System))などにより、決められてもよいし、ユーザにより設定されてもよい。
 図6は、在庫情報220の一例を示す図である。在庫情報220は、シリアル番号221と、商品名222と、商品コード223と、在庫数224と、棚ID225と、棚内の配置位置226を1つのレコードに含む。
 棚ID225は、当該商品が格納されている棚7の識別子が格納される。棚内の配置位置226は、例えばピッキングステーションSTで、人やロボットがピッキングする際に使用される情報を格納する。棚内の配置位置226は、例えば「U3R2」と記載しているレコードでは、棚7において、「上(U)から3番目の段で、右(R)から2番目の位置」に、対象の商品が配置されていることを示す。
 図7は、棚情報230の一例を示す図である。棚情報230は、シリアル番号231と、棚ID232と、保管位置233と、棚重量234と、商品重量235を1つのレコードに含む。
 棚ID232は、各棚7に付与されたユニークな識別子が格納される。棚ID232として、例えば倉庫制御装置100が付与した識別子を格納してもよい。保管位置233は棚7を保管する位置の情報が格納され、例えば地図情報250の座標が格納される。棚7が搬送されている場合には、保管位置233には「搬送中」が格納される。
 棚重量234には、棚7自体の重さが格納され、商品重量235には棚7が搭載する物品(商品や商品を保管する容器など)の重さが格納される。搬送装置1が搬送する搬送物(棚+商品)の重さは、少なくとも「棚重量」と「商品重量」の和となる。
 例えば、図6の在庫情報220等において、各商品の重さと在庫数などを記録しておき、例えば、搬送物(棚+商品)の重さを計算により求めてもよい。なお、「重さ」を計算により求める場合、実際の搬送物の重さと計算値の誤差の許容範囲内に収まるのであれば、棚7及び棚7が搭載する商品のうち、一部の重量について、計算に含めないとすることも可能である。
 また、別の例として、例えば、搬送装置1が搬送する「搬送物(棚+商品)の重さ」を測定可能な重量センサを搭載しており、ピッキング完了後の棚7を保管位置に戻す際などに重量を計測してもよい。このとき、搬送装置1で計測した重量を、倉庫制御装置100が受信し、棚情報230における当該「搬送物(棚+商品)の重さ」として記録してもよい。
 倉庫制御装置100は、図6の在庫情報220から取得した棚ID225の情報をキーとして、当該棚7の保管位置233を特定する。倉庫制御装置100は、例えば搬送装置1の中で「待機」状態にある装置の中で、棚7の保管位置に近い搬送装置1の位置と、棚7の保管位置233と、棚7の搬送先となるピッキングステーションSTの情報などから、当該搬送装置1の移動経路を算出する。
 図8は、床情報240の一例を示す図である。床情報240は、シリアル番号241と、エリア242と、床の状態243と、エリア設定244と、累積負荷245を1つのレコードに含む。
 エリア242は、倉庫の床の状態をエリア(区画)単位で管理しており、その各エリアを識別する情報が格納される。例えば、シリアル番号241=1の(a,A)は、図9の地図情報250において、左上の番地(a,A)を示す。
 床の状態243は、床の状態、特に損傷レベルを示す情報が格納される。例えば「正常状態」、「損傷程度 小」、「損傷程度 中」、「損傷程度 大」のようにレベル分けしてもよい。また、床の状態243は、例えば「正常状態」、「損傷程度 小」、「損傷程度 中」は走行可、「損傷程度 大」は走行不可(走行禁止)としてもよい。
 エリア設定244が「通路エリア」の場合、搬送装置1が走行可能な領域であり、棚7を搬送することも可能であることを示す。エリア設定244が「棚保管エリア」の場合、搬送装置1が搬送する棚7が置かれている領域、又は棚7の置き場所として確保されている領域を示す。
 棚7を搬送していない状態の搬送装置1は、棚7の下を通り抜けられるので走行可能だが、棚7を搬送している状態の搬送装置1は、他の棚7があるエリアは、棚7の衝突を避けるため走行しない。
 エリア設定244が「走行禁止エリア」の場合は、搬送装置1の走行が制限されるエリアである。例えば「損傷程度 大」のエリアは、「走行禁止エリア」としてもよい。また、他にも、走行の障害となる障害物が検出された領域や、人や他の機器が作業するエリアなどが、この「走行禁止エリア」に設定されてもよい。所定の条件を満たすものを自動的に「走行禁止エリア」としてもよいし、ユーザが「走行禁止エリア」を設定してもよい。累積負荷245は、搬送装置1から当該エリアの床が受けた負荷を累積した値である。負荷としては、搬送装置1が通過したときの負荷(通過回数や通過時の重量など)、搬送装置が旋回したときの負荷(回転回数や回転時の重量)や、搬送装置1が加速又は減速したときの負荷(加速回数や加速したときの重量、減速回数や減速したときの重量など)などがある。
 累積負荷245は、これらの負荷の一部又は全部の情報を基に算出された値であってもよい。例えば、通過時の重量を累積した合計重量値であってもよい。
 図9は、地図情報250の一例を示す図である。地図情報250は、行番号251と、列番号252で指定される「エリア」の位置を示す情報である。各エリアは矩形領域で、上述した床情報240のエリア設定244に応じて、「通路エリア」、「棚保管エリア」、「走行禁止エリア」のいずれかに設定される。
 図10は、装置情報260の一例を示す図である。装置情報260は、シリアル番号261と、装置ID262と、装置の状態263と、棚の積載有無264と、装置の位置265と、バッテリ残量266を1つのレコードに含む。
 装置ID262は、各搬送装置1に付与されたユニークな識別子を格納する。装置の状態263は、各搬送装置1の状態に関する情報を格納する。状態としては、例えば、「待機」や、「移動中」、「充電中」、「故障」等の状態が入力される。棚の積載有無264は、当該搬送装置1における棚7の積載有無に関する情報である。棚の積載有無264は、当該搬送装置1のテーブル32に棚7を積載しているか否かを示す情報である。
 なお、倉庫制御装置100が、例えば、ある搬送タスクを処理する(搬送指示する)搬送装置1を選択する際に、搬送効率などに基づいて選択することができる。例えば「移動中」の状態である搬送装置1であっても、早く現在のタスクが完了して、他と比べて早く、次の搬送タスク(上述の、ある搬送タスク)を処理できる場合には、選択される可能性がある。
 装置の位置265は、各搬送装置1の位置に関する情報を格納する。例えば、搬送装置1は、センサ(カメラ)で、各エリアの床面の所定の位置に付与されている情報(例:マーク)を読み取る。搬送装置1が読み取った情報には、当該エリアの位置に関する情報が含まれており、自己位置を特定可能である。なお、自己位置の特定方法は、他の手法によるものであってもよい。
 バッテリ残量266は、各搬送装置1のバッテリ39の残量に関する情報である。搬送装置1はバッテリ残量266が所定のバッテリ残量以下となったときに、充電ステーションへ充電しに行ってもよい。
 ただし、充電ステーションの空き状況(予約状況)や、搬送スケジュール、各搬送装置1のバッテリ残量などに応じて、充電に関するスケジュールが決められてもよい。例えば、多数の搬送装置1が、同じタイミングで充電すると、充電ステーションが混雑して、充電待ちが発生する可能性があるため、搬送効率を考慮したスケジュールが望ましい。
 図11は、倉庫制御装置100で行われる処理の一例を示すフローチャートである。この処理は、所定の周期やオーダーを受け付けたタイミングなど、所定のタイミングで実行される。
 倉庫制御装置100では経路作成プログラム161が、オーダー情報200を作業日時210の昇順でソートして、先頭のレコードから順に以下の処理を実施する(S1)。経路作成プログラム161は、オーダー情報200を選択して、商品コード206から在庫情報220を検索して在庫数224の有無を判定する。在庫がある場合には経路作成プログラム161が棚ID225と棚内の配置位置226を取得して、棚情報230を検索して保管位置233を特定する(S2)。
 経路作成プログラム161は、地図情報250と、床情報240のエリア設定244と、装置情報260を参照して、上述のように、保管位置233からピッキングステーションSTまでの搬送効率が最大となる搬送装置1を装置情報260から選択する。なお、搬送先のピッキングステーションSTは、発送先(販売店名203)に応じて予め設定されてもよいし、ピッキング作業を行う商品や商品の種類に応じて予め設定されてもよい。
 そして、経路作成プログラム161は、地図情報250と、床情報240のエリア設定244と、保管位置233とピッキングステーションSTの情報から搬送装置1の搬送経路を算出する(S3)。なお、搬送経路の算出については周知又は公知の手法を採用することができる。
 次に、搬送装置制御プログラム164は、上記決定された搬送装置1に対して、決定された棚7を、上記算出された経路情報で搬送する指令を送信する(S4)。倉庫制御装置100から搬送の指令を受信した搬送装置1は、受け付けた経路を走行して、指定された棚7を搭載して所定のピッキングステーションSTへ搬送する。
 ピッキング作業が完了した後は、搬送装置1が棚7を搭載して保管場所まで搬送し、棚7を床80に降ろす。その後、搬送装置1は、所定の待機場所へ移動して搬送のタスクを終了する。
 なお、搬送装置1が棚7を戻す位置は、元の保管場所に戻してもよいし、棚7の使用頻度などに基づいて、異なる位置に保管してもよい。例えば、使用頻度が高い棚7であれば、搬送装置1がピッキングステーションSTの近傍に棚7を置くようにしてもよい。
 図12は、搬送装置1で行われる処理の一例を示すフローチャートである。この処理は、制御装置2が走行制御プログラム24を実行して加速制御を実施する例を示し、搬送装置1が停止してから発進する際に実行される。
 搬送装置1の制御装置2は、駆動輪33-L、33-Rを等速で駆動する直進モードと、駆動輪33-L、33-Rを逆方向に回転する旋回モードの2つの移動モード(又は搬送モード)を切り替えて台車31を移動させる。なお、旋回モードでは、台車31の旋回とは逆方向にテーブル32を旋回させることで、棚7の向きを保持することができる。なお、駆動輪33-L、33-Rを同一の回転方向の異なる速度で駆動した場合は、走行しながら台車31を旋回させることができる。
 駆動輪33-L、33-Rを逆方向に駆動する旋回モードは、信地旋回(Spin Turn)であり、例えば、台車31の底面の中心を軸として旋回する。以下では、信地旋回を単に旋回という。
 制御装置2は、倉庫制御装置100から受信した経路データ41と、自己位置推定プログラム23が検出した台車31の現在位置に基づいて、上記移動モードを決定して駆動輪33を制御する。
 制御装置2は、テーブル32に棚7を積載しているか否かを判定する(S11)。棚7の有無については、例えば、テーブル32の上に棚7等の物品を検出するセンサを設けて、センサの出力が所定の条件を満たしていれば制御装置2はテーブル32に棚7を積載していると判定してステップS12へ進む。一方、所定の条件を満たしていなければ、制御装置2はテーブル32が棚7を積載していないと判定してステップS15へ進む。
 ステップS12では、制御装置2が、直前の移動モードと次の移動モードが同一であるか否かを判定する。この判定は、制御装置2が走行実績データ45を参照して直前の移動モードを取得し、経路データ41に基づいて決定した次の移動モードを比較することで行われる。直前の移動モードと次の移動モードが同一である場合にはステップS13へ進み、直前の移動モードと次の移動モードが異なる場合にはステップS14へ進む。
 ステップS15の棚7を積載していない場合、制御装置2は、最大の加速度Aを選択して駆動輪33又はテーブル32を駆動する。棚7を積載し、かつ移動モードが直前と同一の場合には、ステップS13で制御装置2は加速度Aよりも小さい加速度Bを選択して駆動輪33又はテーブル32を駆動する。棚7を積載し、かつ移動モードが直前と異なる場合には、ステップS14で制御装置2は加速度Bよりも小さい最小の加速度Cを選択して駆動輪33又はテーブル32を駆動する。
 ここで、「最大の加速度A」とは、加速度A、加速度B、加速度Cの中で、加速度Aが最大の加速度であることを示すものである。同様に、「最小の加速度C」とは、加速度A、加速度B、加速度Cの中で、加速度Cが最小の加速度であることを示すものである。
 なお、加速度A~Cには、直進時の加速度と、旋回時の角加速度が予め設定される。例えば、直進時の加速度A、加速度B、加速度Cとして、所定の加速度A1、所定の加速度B1、所定の加速度C1が予め設定されてもよい。また、旋回時の加速度A、加速度B、加速度Cとして、所定の角加速度A2、所定の角加速度B2、所定の角加速度C2が予め設定されてもよい。直進時の加速度(加速度A1、B1、C1)と旋回時の加速度(角加速度A2、B2、C2)は異なっていてもよい。
 以上の処理では、搬送装置1が主体となって加速度を制御する場合を示し、倉庫制御装置100から受信した経路データを基に移動モードに応じて加速度を決定する。なお、直前の移動モードは、制御装置2が経路データ41から特定してもよいし、走行実績データ45から特定してもよい。また、制御装置2が倉庫制御装置100から受信した経路データ、又は搬送装置1が有する装置情報44から、棚7の積載の有無を判定して加速度を決定してもよい。
 上記では、搬送装置1が加速度を制御する例を示したが、これに限定されるものではない。例えば、倉庫制御装置100が、経路データ又は装置情報260から搬送装置1における棚7の積載の有無を判定し加速度を決定して、搬送装置1へ指令することができる。
 倉庫制御装置100が加速度制御の主体となる場合には、図11のステップS4で、例えば、各エリア間の移動における加速度の情報を経路データに含めて搬送装置1に送信することができる。
 加速度の情報は、加速度そのものに限定されるものではなく、加速度を特定可能な情報(例:加速モードA、加速モードB、加速モードC)や、加速度に関わる情報(例:駆動装置のモータ38のトルクや回転数、ある時間における速度、あるエリア通過時の速度)であってもよい。
 また、上記では、搬送装置1で加速度を制御する例を示したが、これに限定されるものではなく、加速度と目標速度を加速条件として制御してもよい。例えば、搬送装置1は、第1の加速条件(第1の加速度と第1の目標速度)で加速し、停止前とは異なる移動モードで移動する。その後、搬送装置1は、第1の加速条件よりも小さい第2の加速条件(第2の加速度と第2の目標速度)で加速してもよい。
 上記加速条件についても、必ずしも加速度を変化させる必要はなく、例えば、速度の閾値を小さく設定することで、左右の車輪の速度のずれが開くことを予防できるため、無理に加速しようとして駆動部や床面へ負荷をかけることを防止できる。
 また、搬送装置1が棚7を積載していない場合のステップS15では、最大の加速度Aで台車31を加速するが、これは、棚7を積載していない場合は、床面に加わる台車31の負荷が小さいために、ゆっくりと加速する必要がないためである。
 しかしながら、別の一例として、棚7を積載していなくても搬送装置1や床面への負荷が高い場合(例えば、床面が傷つきやすい材質の場合など)は、「次の移動モードは、直前の移動モードと同じモードか?」の判定を行うステップを加えて、この判定が「No」の場合(異なるモードの場合)は、「加速度Aよりも小さい加速度で加速」するように制御してもよい。
 上記の他、図8に示した床情報240における床の状態243の損傷程度や、累積負荷245や、床面の凹凸(床面の仕様として元から設けられている継ぎ目や段差など)に応じて、加速度を制御してもよい。具体的には、床面の損傷程度が大きい場合、あるいは累積負荷が高い場合、又は床面に凹凸(継ぎ目や段差)がある場合には、損傷がない場合に比して、ゆっくり加速するように加速度を低減させてもよい。
 また、床面及び搬送装置1に係る負荷が特に大きい場合、例えば、棚7を積載する搬送装置1が直前の移動モードと異なる移動モードで移動する場合に、床面の状態に応じてゆっくり加速するように加速度を低減させることで、床面及び搬送装置1に係る負荷と共に搬送効率も考慮した効率的な搬送システムの運用が期待される。
 あるいは、図7の棚情報230における棚重量234や商品重量235の合計値など、重量に基づいて、加速度を決めてもよい。例えば、重量が重い場合には、軽い場合に比べて、ゆっくり加速するよう制御してもよい。
 また、棚7を積載していない搬送装置1が停止した状態から移動する場合の加速度について、制御装置2は、複数の移動モードのうち停止前の移動モードと同じ移動モードで移動する場合に、加速度A(第3の加速度又は第3の目標速度を含む第3の加速条件)で加速するように駆動装置3を制御し、複数の移動モードのうち停止前の移動モードと異なる移動モードで移動する場合に、加速度Aよりも小さい加速度D(図19参照)又は第3の目標速度よりも小さい第4の目標速度を含む第4の加速条件で加速するように駆動装置3を制御してもよい。すなわち、棚7の積載に関わらず搬送装置1単体で移動する場合でも床面などの状況によっては、異なる移動モードで加速条件を切り替えることができきる。
 図13は、直進モードと旋回モードを組み合わせた搬送装置1の移動パターンの一例を示す平面図である。図示の例は、搬送装置1が直進した後に90°単位で旋回し、その後、直進する。
 搬送装置1は、図9に示した行番号251=「C」、列番号252=「e」のエリア(以下、C,eとする)から、位置エリア(A,e)まで直進し、直進モードから旋回モードに切り替えて、エリア(A,e)で反時計回りに90°旋回する。
 テーブル32に棚7を積載していない場合、搬送装置1は直前の移動モードに関わらず、加速度A(角加速度A)で旋回して台車31を図中左方向に旋回させる。一方、テーブル32に棚7を積載している場合、搬送装置1は直前の移動モードが直進モードで、次回の移動モードが旋回モードに切り替わるため、最小の加速度C(角加速度C)で旋回して台車31を図中左方向に旋回させる。
 次に、搬送装置1は、エリア(A,e)からエリア(A,c)に直進移動する。この場合、テーブル32に棚7を積載していない場合、搬送装置1は最大の加速度Aで直進して台車31を図中左方向に移動する。
 一方、テーブル32に棚7を積載している場合、搬送装置1は直前の移動モードが旋回モードで、次回の移動モードが直進モードに切り替わるため、最小の加速度Cで加速して台車31を図中左方向に移動させる。
 後述するように、移動モードが切り替わると、補助輪34と床面の間の摩擦が増大し、移動開始時のモータ38の負荷が増大する。そこで、搬送装置1は、直前の移動モードと次回の移動モードが切り替わり、かつ、棚7を積載している場合には、最小の加速度Cで移動(又は旋回)を開始することで、駆動力を低減してバッテリ39の消費を抑制することができる。また、搬送装置1や床面へかかる負荷を低減することができる。なお、棚7を積載していない場合には、最大の加速度Aで移動(又は旋回)を開始することで、移動に要する時間を短縮して搬送処理の効率を向上させることができる。
 図14は、直進モードと一時停止を繰り返す搬送装置1の移動パターンの一例を示す平面図である。図示の例は、搬送装置1が直進した後に一旦停止し、その後、再度直進する。搬送装置1が直進移動後に、一旦停止し、直進移動する例としては、例えば、移動先のエリアに、他の搬送装置1が先に通過する場合で、他の搬送装置1が当該エリアを通過するのを待つために、一旦停止する。あるいは、ピッキングステーションSTで搬送装置1が順番待ちする場合などでも、一旦停止する。
 搬送装置1は、エリア(E,c)から、エリア(C,c)まで直進した後に一旦停止する。そして、エリア(C,c)からエリア(A,c)まで直進する。テーブル32に棚7を積載していない場合は、最大の加速度Aで加速してエリア間を移動する。テーブル32に棚7を積載している場合は、中間の加速度Bで加速してエリア間を移動する。
 棚7を積載していない場合には、最大の加速度Aで移動を開始することで、移動に要する時間を短縮して搬送処理の効率を向上させることができる。
 図15は、直進モードから旋回モードで反時計回りへ90°旋回した後に、直進モードに切り替わる場合の補助輪の一例を示す上方からの透視図である。図15の(A)~(C)は、図13に示した搬送装置1の移動パターンを補助輪34の動きの変化を示す。
 まず、図15の(A)では台車31が図中左方から直進モードで右方向へ移動する。各補助輪34は、軸36に牽引されて駆動輪33と平行となって図中右方向へ回転していく。
 図15の(B)では台車31が一旦停止し、制御装置2は直進モードから旋回モードへ切り替えて、台車31を図中反時計回りに90°旋回させる。台車31の旋回開始時では、各補助輪34は(A)の位置から(B)の円C1へ向けて移動する。
 そして、旋回中では、軸36が台車31の旋回に伴ってホルダ37に支持された補助輪34を牽引し、補助輪34は円C1に沿って回転する。(B)は、台車31の旋回が完了した状態を示し、各補助輪34は、円C1に沿って停止する。
 図15の(C)では制御装置2は旋回モードから直進モードへ切り替えて、図中上方へ直進する。台車31の直進開始時では、各補助輪34は(C)の円C1上から駆動輪33と平行となる位置へ向けて移動する。
 上記直進モードから旋回モードへの移行開始の際と、旋回モードから直進モードへ移行する際に補助輪34と床面の摩擦が増大する。
 図16は、直進モードから旋回モードで反時計回りへ90°旋回する場合の補助輪の軌跡の一例を示す上方からの透視図である。図中(A)~(C)が、図15の(A)から(B)に至るまでの補助輪34の軌跡の一部を示す。
 直進モードが完了した状態では、図中(A)のように、各補助輪34が軸36に伴って駆動輪33と平行な位置で停止する。台車31が反時計回りへ旋回を開始すると、図中(B)のように、各補助輪34は軸36の旋回に伴って円C1に向けて移動を開始する。なお、図中P0、P1、P2は軸36の位置を示す。
 旋回の開始時では、各補助輪34の動きは異なり、右側の補助輪34-FR、34-RRに比して、左側の補助輪34-FL、34-RLは床面との摩擦が大きくなる。
 まず、右前輪となる補助輪34-FRは、直進モードで停止した図中位置P0から円C1へ向けて軸36の反時計回りに若干旋回しながら床面上を回転して、円C1に沿った位置P2まで徐々に移動する。この場合、補助輪34-FRは回転しながら軸36の周りでわずかに旋回するだけであるので、床面との間の摩擦は少ない。
 右後輪となる補助輪34-RRは、直進モードで停止した位置P0から円C1へ向けて軸36の時計回りに若干旋回しながら床面上を回転して、円C1に沿った位置P2まで移動する。この場合、補助輪34-RRは回転しながら軸36の周りでわずかに旋回するだけであるので、床面との間の摩擦は少ない。
 一方、左前輪となる補助輪34-FLは、直進モードで停止した図中位置P0で軸36の円C1に沿った旋回に応じて、軸36に押されるように円C1の内側へ移動しながら、軸36を時計回りに旋回して、位置P1で円C1の半径方向に沿う。
 さらに補助輪34-FLは、円C1に沿った軸36の旋回に応じて、位置P1からは軸36に牽引されながら軸36の時計回りに旋回する。そして、軸36が位置P2まで円C1上を旋回すると、ようやく補助輪34-FLは円C1上に向けて回転していく。
 このように、補助輪34-FLは、位置P0から位置P1までは軸36に押されながら、軸36の時計回りに旋回して円C1の内側へ押され、位置P1から位置P2までは軸36に牽引されながら、軸36の時計回りに旋回する。このため、補助輪34-FLは殆ど回転せずに床面上で旋回することになり、床面との間の摩擦は大きなものとなる。
 左後輪となる補助輪34-RLは、直進モードで停止した図中位置P0から軸36の円C1に沿った旋回に応じて、軸36に押されるように円C1の外側へ移動しながら、軸36を時計回りに旋回する。そして、補助輪34-RLは円C1の半径方向に沿った後に位置P1では軸36に牽引されて円C1に向かいながら、軸36を時計回りに旋回する。
 さらに補助輪34-RLは、位置P1からは軸36に牽引されながら軸36の時計回りに旋回しながら回転する。そして、軸36が位置P2まで円C1上を旋回すると、補助輪34-RLは円C1上に沿うことになる。
 このように、補助輪34-RLは、位置P0から位置P1近傍までは軸36に押されて、軸36の時計回りに旋回しながら円C1の外側へ移動し、位置P1の近傍から位置P2までは軸36に牽引されて、軸36の時計回りに旋回しながら回転する。このため、補助輪34-RLは床面上で旋回してから回転することになり、床面との間の摩擦は大きなものとなる。
 以上のように、直進モードから旋回モードへ切り替えて、台車31の旋回を開始すると旋回方向の補助輪34-FL、34-RLの床面との摩擦が大きくなる。このため、台車31が棚7を積載している場合には、制御装置2が最小の加速度C(角加速度C)に切り替えることで、摩擦の増大に応じた駆動力の増大を抑制して、モータ38の負荷とバッテリ39の消費を抑制することができる。また、搬送装置1や床面へかかる負荷を低減することができる。
 図17は、旋回モードから直進モードで直進する場合の補助輪の軌跡の一例を示す上方からの透視図である。図中(A)~(C)が、図15の(B)から(C)に至るまでの補助輪34の軌跡の一部を示す。
 旋回モードが完了した状態では、図中(A)のように各補助輪34は円C1に沿った位置で停止している。台車31が図中上方へ直進を開始すると、図中(B)のように、各補助輪34は軸36に牽引されて円C1から離れて移動を開始する。
 直進を開始すると、各補助輪34の動きは異なり、右側の補助輪34-FR、34-RRに比して、左側の補助輪34-FL、34-RLは床面との摩擦が大きくなる。
 まず、右前輪となる補助輪34-FRは、旋回モードで停止した図中位置P0から軸36に牽引されて、台車31の内側へ向けて軸36の時計回りに若干旋回しながら床面上を回転する。補助輪34-FRは軸36に牽引されて位置P1から位置P2まで移動しながら徐々に駆動輪33に平行となる。補助輪34-FRは回転しながら軸36の周りでわずかに旋回するだけであるので、床面との間の摩擦は少ない。
 右後輪となる補助輪34-RRは、直進モードで停止した位置P0から台車31の外側へ向けて軸36の反時計回りに若干旋回しながら床面上を回転して、軸36に牽引されて位置P1、P2へ移動する。この場合、補助輪34-RRは回転しながら軸36の周りでわずかに旋回するだけであるので、床面との間の摩擦は少ない。
 一方、左前輪となる補助輪34-FLは、直進モードで停止した図中位置P0で軸36の図中上方への直進に応じて、軸36に押されるように台車31の内側へ移動しながら、軸36を反時計回りに旋回して、位置P1で直進方向と直交する。
 さらに補助輪34-FLは、軸36の直進に応じて、位置P1からは軸36に牽引されながら軸36の反時計回りに旋回する。そして、軸36が位置P2の近傍まで直進すると、ようやく補助輪34-FLは図中上方に向けて回転していく。そして、位置P2では補助輪34-FLは駆動輪33と平行となって回転する。
 このように、補助輪34-FLは、位置P0から位置P1までは軸36に押されながら、軸36の反時計回りに旋回して台車31の内側へ押され、位置P1から位置P2までは軸36に牽引されながら、軸36の反時計回りに旋回する。このため、補助輪34-FLは殆ど回転せずに床面上で旋回することになり、床面との間の摩擦は大きなものとなる。
 左後輪となる補助輪34-RLは、旋回モードで停止した図中位置P0から軸36の図中上方への直進に応じて、軸36に押されるように台車31の外側へ移動しながら、軸36を反時計回りに旋回する。そして、補助輪34-RLは位置P1で直進方向とほぼ直交した後に、今度は軸36に牽引されて、軸36を反時計回りに旋回する。
 さらに補助輪34-RLは、位置P1からは軸36に牽引されながら軸36の反時計回りに旋回しながら回転して徐々に台車31の内側へ向かう。そして、軸36が位置P2まで直進すると、補助輪34-RLは駆動輪33と平行となって回転する。
 このように、補助輪34-RLは、位置P0から位置P1近傍までは軸36に押されて、軸36の反時計回りに旋回しながら台車31の外側へ移動し、位置P1の近傍から位置P2までは軸36に牽引されて、軸36の反時計回りに旋回しながら回転して台車31の内側へ向かう。このため、補助輪34-RLは床面上で旋回してから回転を始めることになり、床面との間の摩擦は大きなものとなる。
 以上のように、旋回モードから直進モードへ切り替えて、台車31の直進を開始すると旋回した側の補助輪34-FL、34-RLの床面との摩擦が大きくなる。このため、台車31が棚7を積載している場合には、制御装置2が最小の加速度Cに切り替えることで、摩擦の増大に応じた駆動力の増大を抑制して、モータ38の負荷とバッテリ39の消費を抑制し、搬送装置1や床面へかかる負荷を低減することができる。
 図18は、制御装置2が行う加速度の切り替えパターン(加速条件)の一例を示す速度と時間の関係を示すグラフである。制御装置2は、図12で示したように、棚7を積載していない場合には、最大の加速度A(図中αA)で目標速度Vtまで台車31を加速する。
 制御装置2は、棚7を積載している場合で、直前の移動モードから変化がない場合には、中間の加速度B(図中αB)で目標速度Vtまで台車31を加速する。そして、制御装置2は、棚7を積載している場合で、かつ、直前の移動モードと次回の移動モードが異なる場合には、最小の加速度C(図中αC)で目標速度Vtまで台車31を加速する。なお、旋回モードの場合は、目標速度Vtは、目標角速度に置き換えるものとする。
 以上のように、本実施例の搬送装置1は、移動モードが切り替わった後に、搬送装置1を発進させる際の加速度を抑制することで、発進の際の駆動力を低減してモータ38の負荷とバッテリ39の消費を抑制することが可能となる。また、搬送装置1や床面へかかる負荷を低減することができる。
 また、搬送装置1の制御装置2は、走行実績データ45の振動(加速度)から床面の状態をエリア毎に推定しておき、振動の大きさが所定の閾値以上のエリアで発進又は旋回する場合には、移動モードの切り替えがない場合でも、最小の加速度Cに抑制することができる。
 また、搬送装置1の制御装置2は、倉庫制御装置100から床情報240を取得して、床の状態243が「損傷程度 小」や「損傷程度 中」等の所定の条件を満たすエリアで発進又は旋回する場合には、移動モードの切り替えがない場合でも、最小の加速度C(加速条件)に抑制することができる。
 また、倉庫制御装置100は、各搬送装置1の経路から床情報240の累積負荷245を更新し、累積負荷245の値が所定の閾値を超えるエリアで搬送装置1が発進又は旋回する場合には、加速度を加速度Cへ切り替えるように指令してもよい。加速度を切り替える指令は、経路データ270に付加することができる。
 図19は、実施例2を示し、制御装置2が行う加速度の切り替えパターンの一例を示す速度と時間の関係を示すグラフである。前記実施例1では、目標速度(又は目標角速度)までの加速度を、棚7の有無と、移動モードの切り替えの有無で切り替える例を示した。本実施例では、加速度に加えて目標速度(目標角速度)を切り替える例を示す。なお、その他の構成は前記実施例1と同様である。
 制御装置2は、棚7を積載していない場合には、最大の加速度A(図中αA)で、かつ最大の目標速度Vt1まで台車31を加速する。
 制御装置2は、棚7を積載している場合で、直前の移動モードから変化がない場合には、2番目の加速度B(図中αB)で、2番目の目標速度Vt2まで台車31を加速する。そして、制御装置2は、棚7を積載している場合で、かつ、直前の移動モードと次回の移動モードが異なる場合には、より小さい加速度C(図中αC)で、かつより低い目標速度Vt3まで台車31を加速する。
 棚7を積載している場合の加速度Bと目標速度Vt2を第1の加速条件とし、直前の移動モードと次回の移動モードが異なる場合の加速度Cと目標速度Vt3を第2の加速条件とし、棚7を積載していない場合の加速度Aと目標速度Vt1を第3の加速条件とすることができる。
 さらに、搬送装置1は、損傷の有る床面で加速する場合は、第2の加速条件(加速度B、目標速度Vt3)で加速する代わりに、加速度Cよりも小さい加速度又は目標速度Vt3よりも小さい目標速度を含む加速条件で加速するように駆動装置3を制御することができる。なお、旋回モードの場合は、目標速度は、目標角速度に置き換えるものとする。なお、加速度Cよりも小さい加速度は、例えば、図中αDの加速度Dとしてもよい。また、目標速度Vt3よりも小さい目標速度として、例えば、図中の目標速度Vt4としてもよい。この加速度Dは、加速度A、加速度B、加速度C、加速度Dの中で、最小の加速度であり、以降の説明において「最小の加速度D」と呼ぶことがある。
 上記により、搬送装置1は、加速度が大きい場合には目標速度も高く設定して台車31の移動時間を短縮して搬送効率を向上させ、加速度が小さい場合には、目標速度を低く設定することで、補助輪34の摩擦による駆動力の増大や、床の状態が悪いエリアでの振動を抑制することが可能となる。また、搬送装置1や床面へかかる負荷を低減することができる。
 なお、上記の他、制御装置2は、エリア間の移動距離に応じて加速度と目標速度を変更することができる。例えば、図9において、隣のエリアにしか移動しない場合は、緩やかに加速して減速すればよく、また、目標速度を低く設定してもよい。一方、制御装置2は、エリア間の移動距離が十分に長い場合(所定の距離以上、又は所定のマス目の数以上移動する場合)は、より速い速度で移動することができる。
 なお、加速度及び目標速度を制御する主体は搬送装置1に限定されるものではなく、倉庫制御装置100が加速度と目標速度を決定して、経路データに付加して指令するようにしてもよい。
 なお、搬送装置1は、床面の損傷状態を床情報46(又は床情報240)から取得してもよいが、累積走行実績(累積負荷245)が所定の基準を超える床面や、凹凸の有る床面で移動する場合にも損傷のある床面として、第2の加速条件で加速する代わりに、加速度Bよりも小さい加速度又は目標速度Vtよりも小さい目標速度を含む加速条件で制御してもよい。
 図20は、実施例2を示し、制御装置2が行う加速度の切り替えパターンの一例を示す速度と時間の関係を示すグラフである。
 前記実施例1では、目標速度(又は目標角速度)までの加速度を、棚7の有無と、移動モードの切り替えの有無で切り替える例を示した。本実施例では、最小の加速度Cで移動(又は旋回)を開始した後に、加速度を増大して目標速度(目標角速度)に到達するまでの時間を短縮する例を示す。なお、その他の構成は前記実施例1と同様である。なお、最大の加速度Aと、中間の加速度Bについては前記実施例1と同様であるので、重複した説明を省略する。
 搬送装置1は、棚7を積載し、かつ直進モードと次回の移動モードが異なる場合には最小の加速度C(図中αC)を選択して台車31を駆動する。搬送装置1は、所定時間t1が経過するまでは最小の加速度Cで加速するが、所定時間t1が経過すると加速度を増大させる。搬送装置1は、例えば、加速度Cから中間の加速度Bへ増大させて、台車31が目標速度Vtまで到達する時間を短縮することができる。
 時間t1は、例えば、図16、図17で示したように、最小の加速度Cで軸36が位置P2を通過する時間等に設定する。これにより、搬送装置1は、補助輪34と床面の摩擦が低下してから加速度Bへ増大することで、搬送装置1や床面へかかる負荷を低減しつつ台車31の速度を円滑に上昇させることができる。
 なお、停止状態から直進移動を開始して、加速に伴う負荷が大きい区間(移動距離、移動エリア数、時間など決定)は、ゆっくりと加速して目標速度も遅くし、当該区間を通過して、加速に伴う負荷が低下すれば加速度を増大して、目標速度を高く設定する制御としてもよい。
 <結び>
 以上のように、上記実施例1~3の搬送装置1は、以下のような構成とすることができる。
 (1)物品を搬送する搬送装置(1)であって、前記物品を積載して移動する駆動部(駆動装置3)と、前記駆動部(3)を制御する制御部(制御装置2)と、を有し、前記搬送装置(1)は、所定の方向へ直進して移動する移動モード(直進モード)と、前記搬送装置(1)が異なる方向へ向くように回転移動する移動モード(旋回モード)とを含む複数の移動モードで移動可能であり、前記制御部(2)は、前記物品を積載した前記搬送装置(1)が停止した状態から移動する場合の加速条件について、前記搬送装置(1)が、前記複数の移動モードのうち停止前の移動モードと同じ移動モードで移動する場合に、第1の加速度(加速度B)又は第1の目標速度(Vt2)を含む第1の加速条件で加速するように前記駆動部(3)を制御し、前記複数の移動モードのうち停止前の移動モードと異なる移動モードで移動する場合に、前記第1の加速度(B)よりも小さい第2の加速度(加速度C)又は前記第1の目標速度(Vt2)よりも小さい第2の目標速度(Vt3)を含む第2の加速条件で加速するように前記駆動部(3)を制御することを特徴とする搬送装置。
 上記構成により、搬送装置1は、移動モードが切り替わった後に、台車31を発進させる際の加速度を抑制することで、発進の際の駆動力を低減して搬送装置1や床面へかかる負荷を低減することが可能となる。
 (2)上記(1)に記載の搬送装置(1)であって、前記駆動部(3)は、動力源(モータ38)に接続された駆動輪(33)と、前記搬送装置(1)を支持する補助輪(34)と、を有することを特徴とする搬送装置。
 上記構成により、搬送装置1は、移動モードが切り替わった後に、台車31を発進させる際に補助輪34の向きが移動方向とは異なる方向を向いている場合、床面と補助輪34の摩擦が大きくなり、補助輪34と床面に高い負荷が加わる。この場合、搬送装置1は加速度を抑制することで、発進の際の駆動力を低減して搬送装置1や床面へかかる負荷を低減することが可能となる。
 (3)上記(1)に記載の搬送装置(1)であって、前記駆動部(3)は、前記物品を格納する棚(7)を積載可能であって、前記制御部(2)は、前記物品を積載していない前記搬送装置(1)が停止した状態から移動する場合の加速条件について、停止前の移動モードによらず、前記第1の加速度(B)よりも大きい第3の加速度(加速度A)又は前記第1の目標速度(Vt2)よりも大きい第3の目標速度(Vt1)を含む第3の加速条件で加速するように前記駆動部(3)を制御することを特徴とする搬送装置。
 上記構成により、搬送装置1は、棚7を積載していない場合には、移動モードの切り替えの有無に関わらず最大の加速度Aで台車31を移動させることができ、搬送システムの搬送効率を考慮しつつ効果的に搬送装置1や床面へかかる負荷を低減することが可能となる。
 (4)上記(1)に記載の搬送装置(1)であって、前記制御部(2)は、前記物品(7)を積載していない前記搬送装置(1)が停止した状態から移動する場合の加速条件について、前記搬送装置(1)が、前記複数の移動モードのうち停止前の移動モードと同じ移動モードで移動する場合に、前記第1の加速度(B)よりも大きい第3の加速度(A)又は前記第1の目標速度(Vt2)よりも大きい第3の目標速度(Vt1)を含む第3の加速条件で加速するように前記駆動部(3)を制御し、前記複数の移動モードのうち停止前の移動モードと異なる移動モードで移動する場合に、前記第3の加速度(A)よりも小さい前記第4の加速度(D)又は第3の目標速度(Vt1)よりも小さい第4の目標速度(Vt4)を含む第4の加速条件とを含む加速条件で加速するように前記駆動部(3)を制御することを特徴とする搬送装置。
 上記構成により、搬送装置1の状況や床面などの状況により、棚7の積載に関わらず搬送装置1単体で移動する場合についても異なる移動モードで加速条件を切り替える方が好ましい場合において、搬送装置1や床面へかかる負荷を低減することが可能となる。
 (5)上記(1)に記載の搬送装置(1)であって、前記第1の加速条件には前記第1の目標速度(Vt2)が設定され、前記第2の加速条件には第2の目標速度(Vt3)が設定され、前記制御部(2)は、前記加速条件に設定された加速度で目標速度となるように前記駆動部(3)を制御することを特徴とする搬送装置。
 上記構成により、搬送装置1は、移動モードが切り替わる場合において、加速する際の目標速度を低く設定することで、補助輪34の摩擦による駆動力の増大を抑制し、搬送装置1や床面へかかる負荷を低減することが可能となる。
 (6)上記(1)に記載の搬送装置(1)であって、前記第1の加速条件には第1の加速度(B)が設定され、前記第2の加速条件には第2の加速度(C)が設定され、前記制御部(2)は、所定の目標速度となるように前記駆動部(3)を制御することを特徴とする搬送装置。
 上記構成により、搬送装置1は、移動モードが切り替わる場合において、加速する際の加速度を低く設定することで、補助輪34の摩擦による駆動力の増大を抑制し、搬送装置1や床面へかかる負荷を低減することが可能となる。
 (7)上記(1)に記載の搬送装置(1)であって、前記第1の加速条件は、前記第1の加速度(B)で第1の目標速度(Vt2)となるように加速するものであり、前記第2の加速条件は、前記第2の加速度(C)で第2の目標速度(Vt3)となるように加速するものであることを特徴とする搬送装置。
 上記構成により、搬送装置1は、移動モードが切り替わる場合において、加速する際の加速度と目標速度の両方を低く設定することで、補助輪34の摩擦による駆動力の増大を抑制し、搬送装置1や床面へかかる負荷を低減することが可能となる。
 (8)上記(1)に記載の搬送装置(1)であって、前記制御部(2)は、前記第2の加速度(C)で移動を開始してから所定時間(t1)後に前記第2の加速度(C)よりも大きい所定の加速度に切り替えることを特徴とする搬送装置。
 上記構成により、搬送装置1は、所定時間t1を、最小の加速度Cで軸36が位置P2を通過する時間等に設定する。これにより、搬送装置1は、補助輪34と床面の摩擦が低下してから加速度Bへ増大することで、搬送装置1や床面へかかる負荷を低減しつつ台車31の速度を円滑に上昇させることができる。
 (9)上記(1)に記載の搬送装置(1)であって、前記搬送装置(1)が移動する床面の状態の情報を記憶する記憶部(記憶装置4)を、さらに有し、前記制御部(2)は、前記床面の状態の情報(床情報46)に基づいて、前記搬送装置(1)の加速条件を決定することを特徴とする搬送装置。
 上記構成により、搬送装置1は、床面に損傷が生じているエリアで移動を開始する場合には、加速条件を変更することで、床面に与える負荷を低減することができる。
 (10)上記(9)に記載の搬送装置(1)であって、前記床面の状態の情報は、前記床面の損傷の有無の情報(床情報46)を含み、前記制御部(2)は、前記物品を積載した前記搬送装置(1)が停止した状態から移動する場合の加速条件について、前記複数の移動モードのうち停止前の移動モードと異なる移動モードで移動する場合に、損傷の有る前記床面で加速する場合は、前記第2の加速条件で加速する代わりに、前記第2の加速度(C)よりも小さい加速度又は前記第2の目標速度(Vt3)よりも小さい目標速度を含む第4の加速条件で加速するように前記駆動部(3)を制御することを特徴とする搬送装置。
 上記構成により、搬送装置1は、床面に損傷が生じているエリアで移動を開始する場合には、例えば、最小の加速度Dで発進することで、床面に与える負荷を低減することができる。
 (11)上記(9)に記載の搬送装置(1)であって、前記床面の状態の情報(46)は、前記床面上を前記搬送装置(1)が走行した累積走行実績(累積負荷245)の情報を含み、前記制御部(2)は、前記物品を積載した前記搬送装置(1)が停止した状態から移動する場合の加速条件について、前記複数の移動モードのうち停止前の移動モードと異なる移動モードで移動する場合に、前記累積走行実績(245)が所定の基準を超える前記床面で加速する場合は、前記第2の加速条件で加速する代わりに、前記第2の加速度(C)よりも小さい加速度又は前記第2の目標速度(Vt3)よりも小さい目標速度を含む加速条件で加速するように前記駆動部(3)を制御することを特徴とする搬送装置。
 上記構成により、搬送装置1は、床面に損傷が生じているエリアで移動モードを切り替えて移動を開始する場合には、例えば、最小の加速度Dで発進することで、床面に与える負荷を低減することができる。
 (12)上記(9)に記載の搬送装置(1)であって、前記床面の状態の情報(47)は、前記床面上の凹凸の有無の情報(243)を含み、前記制御部(2)は、前記物品(7)を積載した前記搬送装置(1)が停止した状態から移動する場合の加速条件について、前記複数の移動モードのうち停止前の移動モードと異なる移動モードで移動する場合に、凹凸の有る前記床面で加速する場合は、前記第2の加速条件で加速する代わりに、前記第2の加速度(C)よりも小さい加速度又は前記第2の目標速度(Vt3)よりも小さい目標速度を含む加速条件で加速するように前記駆動部(3)を制御することを特徴とする搬送装置。
 上記構成により、搬送装置1は、床面に凹凸が生じているエリアで移動モードを切り替えて移動を開始する場合には、例えば、最小の加速度Dで発進することで、床面に与える負荷を低減することができる。
 (13)上記(1)に記載の搬送装置(1)であって、前記搬送装置(1)が積載する物品の重量の情報(商品重量235)を含む搬送物情報(棚情報230)を記憶する記憶部をさらに有し、前記第2の加速度(C)及び前記第2の目標速度(Vt3)は、少なくとも前記搬送物情報(230)に基づいて設定されることを特徴とする搬送装置。
 上記構成により、搬送装置1は、棚7に積載した物品の重量が重い場合には、例えば、小さい加速度Cで発進することで、床面に与える負荷を低減することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、又は置換のいずれもが、単独で、又は組み合わせても適用可能である。
 また、上記の各構成、機能、処理部、及び処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、及び機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、又は、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 

Claims (15)

  1.  物品を搬送する搬送装置であって、
     前記物品を積載して移動する駆動部と、
     前記駆動部を制御する制御部と、を有し、
     前記搬送装置は、所定の方向へ直進して移動する移動モードと、前記搬送装置が異なる方向へ向くように回転移動する移動モードとを含む複数の移動モードで移動可能であり、
     前記制御部は、
     前記物品を積載した前記搬送装置が停止した状態から移動する場合の加速条件について、前記搬送装置が、前記複数の移動モードのうち停止前の移動モードと同じ移動モードで移動する場合に、第1の加速度又は第1の目標速度を含む第1の加速条件で加速するように前記駆動部を制御し、
     前記複数の移動モードのうち停止前の移動モードと異なる移動モードで移動する場合に、前記第1の加速度よりも小さい第2の加速度又は前記第1の目標速度よりも小さい第2の目標速度を含む第2の加速条件で加速するように前記駆動部を制御することを特徴とする搬送装置。
  2.  請求項1に記載の搬送装置であって、
     前記駆動部は、
     動力源に接続された駆動輪と、前記搬送装置を支持する補助輪と、を有することを特徴とする搬送装置。
  3.  請求項1に記載の搬送装置であって、
     前記駆動部は、
     前記物品を格納する棚を積載可能であって、
     前記制御部は、
     前記物品を積載していない前記搬送装置が停止した状態から移動する場合の加速条件について、
     停止前の移動モードによらず、前記第1の加速度よりも大きい第3の加速度又は前記第1の目標速度よりも大きい第3の目標速度を含む第3の加速条件で加速するように前記駆動部を制御することを特徴とする搬送装置。
  4.  請求項1に記載の搬送装置であって、
     前記制御部は、前記物品を積載していない前記搬送装置が停止した状態から移動する場合の加速条件について、
     前記搬送装置が、前記複数の移動モードのうち停止前の移動モードと同じ移動モードで移動する場合に、前記第1の加速度よりも大きい第3の加速度又は前記第1の目標速度よりも大きい第3の目標速度を含む第3の加速条件で加速するように前記駆動部を制御し、
     前記複数の移動モードのうち停止前の移動モードと異なる移動モードで移動する場合に、前記第3の加速度よりも小さい第4の加速度又は前記第3の目標速度よりも小さい第4の目標速度を含む第4の加速条件とを含む加速条件で加速するように前記駆動部を制御することを特徴とする搬送装置。
  5.  請求項1に記載の搬送装置であって、
     前記第1の加速条件には前記第1の目標速度が設定され、前記第2の加速条件には前記第2の目標速度が設定され、
     前記制御部は、
     前記加速条件に設定された加速度で目標速度となるように前記駆動部を制御することを特徴とする搬送装置。
  6.  請求項1に記載の搬送装置であって、
     前記第1の加速条件には前記第1の加速度が設定され、前記第2の加速条件には前記第2の加速度が設定され、
     前記制御部は、所定の目標速度となるように前記駆動部を制御することを特徴とする搬送装置。
  7.  請求項1に記載の搬送装置であって、
     前記第1の加速条件は、前記第1の加速度で前記第1の目標速度となるように加速するものであり、
     前記第2の加速条件は、前記第2の加速度で前記第2の目標速度となるように加速するものであることを特徴とする搬送装置。
  8.  請求項1に記載の搬送装置であって、
     前記制御部は、
     前記第2の加速度で移動を開始してから所定時間後に前記第2の加速度よりも大きい所定の加速度に切り替えることを特徴とする搬送装置。
  9.  請求項1に記載の搬送装置であって、
     前記搬送装置が移動する床面の状態の情報を記憶する記憶部を、さらに有し、
     前記制御部は、
     前記床面の状態の情報に基づいて、前記搬送装置の加速条件を決定することを特徴とする搬送装置。
  10.  請求項9に記載の搬送装置であって、
     前記床面の状態の情報は、前記床面の損傷の有無の情報を含み、
     前記制御部は、前記物品を積載した前記搬送装置が停止した状態から移動する場合の加速条件について、
     前記複数の移動モードのうち停止前の移動モードと異なる移動モードで移動する場合に、
     損傷の有る前記床面で加速する場合は、前記第2の加速条件で加速する代わりに、前記第2の加速度よりも小さい加速度又は前記第2の目標速度よりも小さい目標速度を含む加速条件で加速するように前記駆動部を制御することを特徴とする搬送装置。
  11.  請求項9に記載の搬送装置であって、
     前記床面の状態の情報は、前記床面上を前記搬送装置が走行した累積走行実績の情報を含み、
     前記制御部は、前記物品を積載した前記搬送装置が停止した状態から移動する場合の加速条件について、
     前記複数の移動モードのうち停止前の移動モードと異なる移動モードで移動する場合に、
     前記累積走行実績が所定の基準を超える前記床面で加速する場合は、前記第2の加速条件で加速する代わりに、前記第2の加速度よりも小さい加速度又は前記第2の目標速度よりも小さい目標速度を含む加速条件で加速するように前記駆動部を制御することを特徴とする搬送装置。
  12.  請求項9に記載の搬送装置であって、
     前記床面の状態の情報は、前記床面上の凹凸の有無の情報を含み、
     前記制御部は、前記物品を積載した前記搬送装置が停止した状態から移動する場合の加速条件について、
     前記複数の移動モードのうち停止前の移動モードと異なる移動モードで移動する場合に、
     凹凸の有る前記床面で加速する場合は、前記第2の加速条件で加速する代わりに、前記第2の加速度よりも小さい加速度又は前記第2の目標速度よりも小さい目標速度を含む加速条件で加速するように前記駆動部を制御することを特徴とする搬送装置。
  13.  請求項1に記載の搬送装置であって、
     前記搬送装置が積載する物品の重量の情報を含む搬送物情報を記憶する記憶部をさらに有し、
     前記第2の加速度及び前記第2の目標速度は、少なくとも前記搬送物情報に基づいて設定されることを特徴とする搬送装置。
  14.  物品を搬送する搬送装置と、
     前記搬送装置の走行を制御する制御装置と、を有する搬送システムであって、
     前記搬送装置は、所定の方向へ直進して移動する移動モードと、前記搬送装置が異なる方向へ向くように回転移動する移動モードとを含む複数の移動モードで移動可能であり、
     前記制御装置は、
     前記物品を積載した前記搬送装置が停止した状態から移動する場合の加速条件について、前記搬送装置が、前記複数の移動モードのうち停止前の移動モードと同じ移動モードで移動する場合に、第1の加速度又は第1の目標速度を含む第1の加速条件で加速するように前記搬送装置を制御し、
     前記複数の移動モードのうち停止前の移動モードと異なる移動モードで移動する場合に、前記第1の加速度よりも小さい第2の加速度又は前記第1の目標速度よりも小さい第2の目標速度を含む第2の加速条件で加速するように前記搬送装置を制御することを特徴とする搬送システム。
  15.  搬送装置が停止した状態から移動する場合、所定の方向へ直進して移動する移動モードと前記搬送装置が異なる方向へ向くように回転移動する移動モードとを含む複数の移動モードのうち、停止前の移動モードと同じ移動モードで移動するか否かを判定するステップと、
     前記搬送装置が前記複数の移動モードのうち停止前の移動モードと同じ移動モードで移動する場合に、第1の加速度又は第1の目標速度を含む第1の加速条件で加速するように前記搬送装置を制御し、前記搬送装置が前記複数の移動モードのうち停止前の移動モードと異なる移動モードで移動する場合に、前記第1の加速度よりも小さい第2の加速度又は前記第1の目標速度よりも小さい第2の目標速度を含む第2の加速条件で加速するように前記搬送装置を制御するステップと、を備えることを特徴とする搬送装置の制御方法。
PCT/JP2021/042901 2021-01-27 2021-11-24 搬送装置、搬送システム及び搬送装置の制御方法 WO2022163094A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/267,135 US20240045436A1 (en) 2021-01-27 2021-11-24 Transport apparatus, transport system, and control method for transport apparatus
CN202180087866.9A CN116710372A (zh) 2021-01-27 2021-11-24 运送装置、运送系统和运送装置的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021011356A JP2022114889A (ja) 2021-01-27 2021-01-27 搬送装置、搬送システム及び搬送装置の制御方法
JP2021-011356 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022163094A1 true WO2022163094A1 (ja) 2022-08-04

Family

ID=82653100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042901 WO2022163094A1 (ja) 2021-01-27 2021-11-24 搬送装置、搬送システム及び搬送装置の制御方法

Country Status (4)

Country Link
US (1) US20240045436A1 (ja)
JP (1) JP2022114889A (ja)
CN (1) CN116710372A (ja)
WO (1) WO2022163094A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024202330A1 (ja) * 2023-03-29 2024-10-03 株式会社日立インダストリアルプロダクツ 搬送システム、自走式ロボット、制御装置、及び制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004094417A (ja) * 2002-08-30 2004-03-25 Daifuku Co Ltd 走行体の走行制御方法
WO2015136627A1 (ja) * 2014-03-11 2015-09-17 株式会社島津製作所 移動型x線撮影装置
US10209682B1 (en) * 2018-03-09 2019-02-19 Amazon Technologies, Inc. Autonomous traction measurement of a surface
US10336150B1 (en) * 2016-12-02 2019-07-02 Amazon Technologies, Inc. Determining payload properties using actuator parameter data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004094417A (ja) * 2002-08-30 2004-03-25 Daifuku Co Ltd 走行体の走行制御方法
WO2015136627A1 (ja) * 2014-03-11 2015-09-17 株式会社島津製作所 移動型x線撮影装置
US10336150B1 (en) * 2016-12-02 2019-07-02 Amazon Technologies, Inc. Determining payload properties using actuator parameter data
US10209682B1 (en) * 2018-03-09 2019-02-19 Amazon Technologies, Inc. Autonomous traction measurement of a surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024202330A1 (ja) * 2023-03-29 2024-10-03 株式会社日立インダストリアルプロダクツ 搬送システム、自走式ロボット、制御装置、及び制御方法

Also Published As

Publication number Publication date
CN116710372A (zh) 2023-09-05
US20240045436A1 (en) 2024-02-08
JP2022114889A (ja) 2022-08-08

Similar Documents

Publication Publication Date Title
US11760570B2 (en) Storage and retrieval system
US12037195B2 (en) Hybrid modular storage fetching system
JP6871303B2 (ja) 保管システム及び方法
US10067501B2 (en) Method and system for transporting inventory items
US9511934B2 (en) Maneuvering a mobile drive unit
US20180065805A1 (en) Pallet-conveyor system
WO2022163094A1 (ja) 搬送装置、搬送システム及び搬送装置の制御方法
CA3049401A1 (en) Hybrid modular storage fetching system
JP2003285906A (ja) 搬送システム
JP6954958B2 (ja) 搬送車システム
JP3355347B2 (ja) 搬送システム
WO2023181340A1 (ja) 制御システム、搬送システム、及び制御方法
JP7528984B2 (ja) 搬送設備
WO2023053645A1 (ja) 搬送システム、搬送方法及び制御装置
JPS5992805A (ja) 水平循環式保管棚への自動移載設備
JP7474857B2 (ja) 制御装置、配送システム及び制御方法
JPH03231313A (ja) 複数台無人搬送車の運行制御装置
JP2024081384A (ja) 移動体の管理装置、管理方法及び管理プログラム
CN111784220A (zh) 仓储调度方法、装置和仓储系统
JPS6371002A (ja) 物品仕分け設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18267135

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180087866.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923099

Country of ref document: EP

Kind code of ref document: A1