WO2022163036A1 - 脱硫装置 - Google Patents

脱硫装置 Download PDF

Info

Publication number
WO2022163036A1
WO2022163036A1 PCT/JP2021/038698 JP2021038698W WO2022163036A1 WO 2022163036 A1 WO2022163036 A1 WO 2022163036A1 JP 2021038698 W JP2021038698 W JP 2021038698W WO 2022163036 A1 WO2022163036 A1 WO 2022163036A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurizing agent
hydrocarbon fuel
desulfurization
desulfurizer
temperature
Prior art date
Application number
PCT/JP2021/038698
Other languages
English (en)
French (fr)
Inventor
清 田口
貴広 楠山
千絵 原田
朋宏 太田
基啓 鈴木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180092137.2A priority Critical patent/CN116887903A/zh
Priority to EP21923042.2A priority patent/EP4286032A1/en
Priority to JP2022578047A priority patent/JPWO2022163036A1/ja
Publication of WO2022163036A1 publication Critical patent/WO2022163036A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/308Carbonoxysulfide COS

Definitions

  • the present disclosure relates to a desulfurization device that removes sulfur compounds from hydrocarbon fuel.
  • Patent Document 1 discloses a configuration for removing sulfur compounds from a hydrocarbon fuel containing sulfur compounds using a metal-organic framework having copper ions and organic ligands.
  • Patent Document 2 includes a first desulfurizing agent that removes sulfur compounds contained in hydrocarbon fuel, and a second desulfurizing agent that is disposed downstream of the first desulfurizing agent and removes carbonium sulfide contained in hydrocarbon fuel.
  • a desulfurization apparatus is disclosed.
  • the present disclosure suppresses the deterioration of the adsorption performance of the first desulfurizing agent due to water deterioration at high temperatures, suppresses the deterioration of the carbonyl sulfide adsorption performance of the second desulfurizing agent, and suppresses the amount of desulfurizing agent and the size of the device.
  • a desulfurization device includes a flow path through which a hydrocarbon fuel containing a sulfur compound flows, a first desulfurization agent provided in the flow path, and a flow direction of the hydrocarbon fuel downstream of the first desulfurization agent.
  • a second desulfurizing agent provided in the flow path, a cooling section, and a heater are provided.
  • the first desulfurizing agent is composed of a metal-organic framework having copper ions and organic ligands, and is configured to remove at least part of the sulfur compounds contained in the hydrocarbon fuel.
  • the second desulfurizing agent is configured to remove carbonyl sulfide among the sulfur compounds contained in the hydrocarbon fuel.
  • the cooling unit is configured to cool the temperature of the first desulfurizing agent to a temperature higher than the dew point of the hydrocarbon fuel and lower than the temperature at which deterioration of the first desulfurizing agent is suppressed.
  • the heater is configured to raise the temperature of the second desulfurizing agent to a temperature at which the second desulfurizing agent can remove carbonyl sulfide contained in the hydrocarbon fuel.
  • the desulfurization apparatus suppresses deterioration of the adsorption performance of the first desulfurizing agent due to deterioration of the first desulfurizing agent with water at high temperatures, suppresses deterioration of the carbonyl sulfide adsorption performance of the second desulfurizing agent, The size of the desulfurization equipment can be suppressed.
  • FIG. 1 is a block diagram showing the configuration of a desulfurization apparatus according to Embodiment 1.
  • FIG. FIG. 2 is a block diagram showing the configuration of a desulfurization apparatus according to Embodiment 2.
  • FIG. 3 is a block diagram showing the configuration of a desulfurization apparatus according to Embodiment 3.
  • FIG. 4 is a block diagram showing the configuration of a desulfurization apparatus according to Embodiment 4.
  • a first desulfurizing agent for removing tetrahydrothiophene (hereinafter referred to as THT), which is part of the sulfur compound contained in the hydrocarbon fuel, and a first desulfurizing agent arranged downstream of the first desulfurizing agent and contained in the hydrocarbon fuel
  • THT tetrahydrothiophene
  • a desulfurization apparatus includes a second desulfurization agent that removes carbonyl sulfide. This desulfurization device can effectively remove carbonyl sulfide among the sulfur compounds contained in the fuel gas with the second desulfurization agent.
  • the metal organic framework having copper ions and organic ligands can be destroyed by the moisture. Therefore, when a metal-organic framework having copper ions and organic ligands is used as the first desulfurization agent, there is a problem that the adsorption performance of the first desulfurization agent for sulfur compounds is lowered.
  • the second desulfurizing agent that removes carbonyl sulfide has a problem that the adsorption performance of carbonyl sulfide decreases when the temperature drops.
  • the present disclosure suppresses the deterioration of the adsorption performance of the first desulfurizing agent due to water deterioration at high temperatures, suppresses the deterioration of the carbonyl sulfide adsorption performance of the second desulfurizing agent, and controls the amount of the desulfurizing agent and the size of the device.
  • Embodiment 1 A desulfurization apparatus 21 according to Embodiment 1, which is an example of a desulfurization apparatus according to the present disclosure, will be described below with reference to FIG.
  • FIG. 1 is a block diagram showing the configuration of a desulfurization device 21 according to Embodiment 1. As shown in FIG. In FIG. 1, arrows indicate flow paths through which hydrocarbon fuels containing sulfur compounds flow. This also applies to FIGS. 2 to 4, which will be described later.
  • the desulfurization device 21 includes a first desulfurizer 1 , a second desulfurizer 2 , a heater 3 , a cooler 4 and a controller 41 . Further, the desulfurization device 21 is configured to desulfurize the hydrocarbon fuel supplied to the desulfurization device 21 from the outside by the first desulfurizer 1 and the second desulfurizer 2, and then supply it to the fuel utilization device 31. ing.
  • the first desulfurizer 1 is provided in the middle of the flow path through which the hydrocarbon fuel containing sulfur compounds flows.
  • the hydrocarbon fuel in Embodiment 1 is city gas whose main component is methane, and contains THT and carbonyl sulfide as sulfur compounds. Also, the hydrocarbon fuel contains 1% by volume of water vapor.
  • the first desulfurizer 1 is filled with a first desulfurizing agent that mainly removes THT among sulfur compounds contained in hydrocarbon fuel.
  • HKUST-1 manufactured by BASF
  • BASF a metal organic structure composed of copper ions and benzene-1,3,5-tricarboxylic acid
  • the second desulfurizer 2 is filled with a second desulfurizing agent that removes carbonyl sulfide among the sulfur compounds contained in the hydrocarbon fuel.
  • the second desulfurizer 2 is provided in the flow path downstream of the first desulfurizer 1 in the flow direction of the hydrocarbon fuel, as shown in FIG.
  • Embodiment 1 a metal oxide containing nickel and copper that removes carbonyl sulfide is used as an example of the second desulfurization agent in the present disclosure.
  • the heater 3 is a heater that heats the second desulfurizer 2 so that the temperature of the second desulfurizing agent is higher than the temperature at which the second desulfurizing agent can remove carbonyl sulfide contained in the hydrocarbon fuel.
  • the cooler 4 is a cooling fan that cools the first desulfurizer 1 so that the temperature of the first desulfurizing agent is above the dew point of the hydrocarbon fuel and below the temperature at which deterioration of the first desulfurizing agent is suppressed.
  • the controller 41 controls the operation of the desulfurization device 21.
  • the controller 41 includes a signal input/output unit (not shown), an arithmetic processing unit (not shown), and a storage unit (not shown) that stores control programs. That is, controller 41 has a computer system with a processor and memory.
  • the computer system functions as the controller 41 by the processor executing the control program stored in the memory.
  • the control program executed by the processor is recorded in advance in the memory of the computer system here, it may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided by telecommunication such as the Internet. may be provided over the line.
  • the desulfurization device 21 is covered with an exterior (not shown).
  • controller 41 controlling the entire desulfurization apparatus 21 including the heater 3 and the cooler 4.
  • hydrocarbon fuel is supplied to the first desulfurizer 1 .
  • the conditions for the hydrocarbon fuel in Embodiment 1 are a flow rate of 3 NL/min, a temperature of 25° C., a water vapor concentration of 1% by volume, and sulfur compound concentrations of THT of 10 ppm and carbonyl sulfide of 0.1 ppm.
  • the first desulfurizer 1 mainly removes THT among the sulfur compounds contained in the hydrocarbon fuel.
  • the hydrocarbon fuel after passing through the first desulfurizer 1 is supplied to the second desulfurizer 2 .
  • the second desulfurizer 2 removes carbonyl sulfide that has not been removed by the first desulfurizer 1 .
  • the temperature of the second desulfurizer 2 is controlled by the heater 3 so as to be 60°C, for example.
  • the temperature of the first desulfurizer 1 is controlled by the cooler 4 so as to be 25°C, for example.
  • the hydrocarbon fuel After passing through the second desulfurizer 2, the hydrocarbon fuel is supplied to the fuel utilization device 31 with a sulfur compound concentration of 1 ppb or less.
  • Example 1 like the desulfurizer 21 in Embodiment 1, the temperature of the first desulfurizer 1 is set to 25° C. and the temperature of the second desulfurizer 2 is set to 60° C., and gas chromatography is performed. The hydrocarbon fuel downstream of the second desulfurizer 2 was periodically measured. In Example 1, an increase in the concentrations of THT and carbonyl sulfide was detected from the downstream after 1000 hours from the start of the test.
  • Comparative Example 1 when the hydrocarbon fuel downstream of the second desulfurizer 2 was periodically measured by gas chromatography, an increase in the concentration of THT was detected downstream 500 hours after the start of the test. That is, in Comparative Example 1 in which the temperature of the first desulfurizer 1 is higher (60° C.) than the temperature (25° C.) in Example 1, the first desulfurizing agent is used in a relatively short time (500 h). A decrease in adsorption performance due to deterioration in water at high temperatures was observed.
  • Comparative Example 2 when the hydrocarbon fuel downstream of the second desulfurizer 2 was periodically measured by gas chromatography, an increase in concentration of carbonyl sulfide was detected downstream 100 hours after the start of the test. That is, in Comparative Example 2, in which the temperature of the second desulfurizer 2 is lower (25°C) than the temperature (60°C) in Example 1, the second desulfurizing agent is used in a relatively short time (100 hours). A decrease in adsorption performance for carbonyl sulfide was observed.
  • the first desulfurizer 1 when the first desulfurizing agent after the test was taken out and the BET surface area was measured, the first desulfurizer 1 was operated at a temperature of 25°C (Comparative Example 2) and at 60°C. (Comparative Example 1) were 90% and 50% of the initial values, respectively.
  • the desulfurization device 21 includes a flow path through which a hydrocarbon fuel containing a sulfur compound flows, a first desulfurization agent, a second desulfurization agent, the cooler 4, a heating and a vessel 3.
  • the first desulfurizing agent is filled in the first desulfurizer 1 provided in the flow path, is composed of a metal organic structure having copper ions and organic ligands, and contains at least part of the sulfur compounds contained in the hydrocarbon fuel. is configured to remove
  • the second desulfurizing agent is provided in a flow path downstream of the first desulfurizing agent filled in the first desulfurizer 1 in the flow direction of the hydrocarbon fuel, and removes carbonyl sulfide among the sulfur compounds contained in the hydrocarbon fuel. configured to remove.
  • the cooler 4 is an example of a cooling unit in the present disclosure, and is configured to cool the temperature of the first desulfurizing agent to a temperature above the dew point of the hydrocarbon fuel and below a temperature at which deterioration of the first desulfurizing agent is suppressed.
  • the heater 3 is configured to raise the temperature of the second desulfurizing agent to a temperature at which the second desulfurizing agent can remove carbonyl sulfide contained in the hydrocarbon fuel.
  • the desulfurization device 21 can suppress deterioration of the adsorption performance of the first desulfurizing agent due to deterioration of the first desulfurizing agent in water at high temperatures, and can suppress deterioration of the carbonyl sulfide adsorption performance of the second desulfurizing agent. Therefore, the desulfurization device 21 can reduce the amount of desulfurization agent and the size of the desulfurization device 21 .
  • FIG. 2 is a block diagram showing the configuration of the desulfurization device 22 according to Embodiment 2.
  • the desulfurization apparatus 22 in Embodiment 2 is provided with a fourth desulfurizer 6 in parallel with the third desulfurizer 5 instead of the first desulfurizer 1. It differs from device 21 .
  • the desulfurization device 22 includes a first on-off valve 7 and a second on-off valve 8 upstream and downstream of the third desulfurizer 5, respectively, and a third on-off valve 9 and a second on-off valve 9 upstream and downstream of the fourth desulfurizer 6, respectively. It is different from the desulfurization device 21 in that it includes four on-off valves 10 . Further, the desulfurization device 22 is different from the desulfurization device 21 in that the controller 42 is provided instead of the controller 41 .
  • the desulfurization device 22 differs from the desulfurization device 21 in that it is connected to the hydrogen generation device 32 instead of the fuel utilization equipment 31 of the first embodiment.
  • the desulfurization device 22 desulfurizes the hydrocarbon fuel supplied to the desulfurization device 22 from the outside by either the third desulfurizer 5 or the fourth desulfurizer 6 and the second desulfurizer 2, and then desulfurizes the hydrogen generator. 32. That is, the desulfurization device 22 includes a first on-off valve 7, a second on-off valve 8, a second A third on-off valve 9 and a fourth on-off valve 10 (hereinafter also referred to as each on-off valve) are provided.
  • the third desulfurizer 5 and the fourth desulfurizer 6 are filled with the same first desulfurizing agent as the first desulfurizer 1 of Embodiment 1 in half the amount of the first desulfurizer 1 . That is, the total amount of the first desulfurization agent used in the desulfurization device 22 in the second embodiment is the same as the amount of the first desulfurization agent used in the desulfurization device 21 in the first embodiment.
  • controller 42 controlling the entire desulfurization device 22 including the heater 3, the cooler 4, and the on-off valves.
  • the first on-off valve 7 and the second on-off valve 8 are open, the third on-off valve 9 and the fourth on-off valve 10 are closed, and the hydrocarbon fuel undergoes the third desulfurization. supplied to vessel 5.
  • the hydrocarbon fuel conditions in Embodiment 2 are a flow rate of 3 NL/min, a temperature of 25° C., a water vapor concentration of 1% by volume, and a sulfur compound concentration of THT of 10 ppm, carbonyl sulfide is 0.1 ppm.
  • the time of 550 hours is the time during which the concentration of THT increases downstream of the third desulfurizer 5, which was obtained in advance by test.
  • the temperature of the second desulfurizer 2 is controlled by the heater 3 so as to be 60° C., for example.
  • the temperatures of the third desulfurizer 5 and the fourth desulfurizer 6 are controlled by the cooler 4 so as to be 25°C, for example.
  • Example 2 like the desulfurizer 22 in Embodiment 2, the temperature of the third desulfurizer 5 and the fourth desulfurizer 6 is set to 25° C., and the temperature of the second desulfurizer 2 is set to 60° C.
  • the hydrocarbon fuel downstream of the second desulfurizer 2 was periodically measured by gas chromatography.
  • Example 2 an increase in the concentration of THT and carbonyl sulfide was detected from the downstream at 1100 hours after the start of the test. That is, in Example 2, without changing the amount of the first desulfurizing agent used, the elapsed time from the start of the test until the concentration increase of THT and carbonyl sulfide from the downstream is detected is made longer than in Example 1. was made.
  • Example 2 compared with Example 1, it was confirmed that the deterioration of the adsorption performance of the first desulfurizing agent due to water deterioration at high temperature was suppressed and the deterioration of the carbonyl sulfide adsorption performance of the second desulfurizing agent was suppressed. was taken.
  • the desulfurization device 22 includes a flow path through which a hydrocarbon fuel containing a sulfur compound flows, a first desulfurization agent, a second desulfurization agent, the cooler 4, and a heater. and a vessel 3.
  • the first desulfurizing agent is filled in each of the third desulfurizer 5 and the fourth desulfurizer 6 provided in parallel with each other in the flow path, is composed of a metal organic structure having copper ions and organic ligands, and is composed of a hydrocarbon It is configured to remove at least a portion of the sulfur compounds contained in the fuel.
  • the second desulfurizing agent is provided in a flow path downstream of the first desulfurizing agent filled in the third desulfurizer 5 and the fourth desulfurizer 6 in the flow direction of the hydrocarbon fuel, and removes sulfur contained in the hydrocarbon fuel. It is configured to remove carbonyl sulfide from the compound.
  • the cooler 4 is an example of a cooling unit in the present disclosure, is provided individually for each of the third desulfurizer 5 and the fourth desulfurizer 6, and adjusts the temperature of the first desulfurizing agent to the dew point or higher of the hydrocarbon fuel and the It is configured to cool below the temperature at which deterioration of the desulfurizing agent is suppressed.
  • the heater 3 is configured to raise the temperature of the second desulfurizing agent to a temperature at which the second desulfurizing agent can remove carbonyl sulfide contained in the hydrocarbon fuel.
  • the desulfurization device 22 can suppress deterioration in the adsorption performance of the first desulfurization agent due to deterioration of the first desulfurization agent in water at high temperatures, and can suppress deterioration in the adsorption performance of the second desulfurization agent for carbonyl sulfide. Therefore, the desulfurization device 22 can reduce the amount of desulfurization agent and the size of the desulfurization device 22 .
  • the desulfurization device 22 includes a first on-off valve 7, which is an example of a switching valve in the present disclosure for allowing hydrocarbon fuel to flow through at least one of the third desulfurizer 5 and the fourth desulfurizer 6, A second on-off valve 8 , a third on-off valve 9 and a fourth on-off valve 10 are provided.
  • the first on-off valve 7, the second on-off valve 8, the third on-off valve 9, and the fourth on-off valve 10 supply hydrocarbon fuel to at least one of the third desulfurizer 5 and the fourth desulfurizer 6. During this period, no hydrocarbon fuel is allowed to flow through any other desulfurizer except the at least one desulfurizer.
  • the desulfurization device 22 includes the first on-off valve 7 upstream of the third desulfurizer 5 in the branch flow path corresponding to the third desulfurizer 5, and the A second on-off valve 8 is provided downstream of the third desulfurizer 5 .
  • the desulfurization device 22 includes a third on-off valve 9 upstream of the fourth desulfurizer 6 in the branch flow path corresponding to the fourth desulfurizer 6, and a fourth desulfurization valve 9 in the branch flow path corresponding to the fourth desulfurizer 6.
  • a fourth on-off valve 10 is provided downstream of each vessel 6 .
  • the first on-off valve 7, the second on-off valve 8, the third on-off valve 9 and the The four on-off valves 10 open and close.
  • the first on-off valve 7 and the second on-off valve 8 are open.
  • the third on-off valve 9 and the fourth on-off valve 10 are closed, and the hydrocarbon fuel is not allowed to flow through the fourth desulfurizer 6 .
  • the third on-off valve 9 and the fourth on-off valve 10 are open.
  • the first on-off valve 7 and the second on-off valve 8 are closed, and no hydrocarbon fuel is allowed to flow through the third desulfurizer 5 .
  • the desulfurization device 22 can suppress the deterioration of the adsorption performance due to the deterioration of the first desulfurization agent due to the high temperature of the first desulfurization agent filled in the desulfurizer in which the hydrocarbon fuel is not circulated. It becomes unnecessary to mount an extra first desulfurizing agent. Therefore, the desulfurization device 22 can reduce the amount of desulfurization agent and the size of the desulfurization device 22 .
  • Embodiment 3 which is an example of the desulfurization apparatus according to the present disclosure, will be described with a focus on the differences from the desulfurization apparatus 21 according to Embodiment 1, with reference to FIG.
  • FIG. 3 is a block diagram showing the configuration of the desulfurization device 23 according to Embodiment 3. As shown in FIG. In addition, below, the vertical direction in a state where the desulfurization device 23 is installed in a usable state (corresponding to the installation state in the present disclosure) may be described as an up-down direction.
  • the desulfurization apparatus 23 according to Embodiment 3 differs from the desulfurization apparatus 21 according to Embodiment 1 in that it includes an intake fan 11, an exhaust port 12, and an intake port 13 instead of the cooler 4.
  • the desulfurization device 23 has the first desulfurizer 1 installed below the second desulfurizer 2 in the vertical direction (vertical direction) in the installation state of the desulfurization device 23, and instead of the controller 41, It differs from the desulfurization apparatus 21 in that a controller 43 is provided.
  • the desulfurization device 23 differs from the desulfurization device 21 in that it is connected to the hydrogen generator 32 instead of the fuel utilization device 31 of the first embodiment.
  • the desulfurization device 23 is configured to desulfurize the hydrocarbon fuel supplied to the desulfurization device 23 from the outside by the first desulfurizer 1 and the second desulfurizer 2, and then supply it to the hydrogen generator 32. .
  • the temperature inside the desulfurization device 23 is higher than the outside air due to the heat inside. Assume that the temperature is 60°C.
  • the exterior is provided with an intake port 13 for taking in outside air and an exhaust port 12 for discharging the air inside the exterior (the air in the desulfurization device 23) to the outside of the exterior (outside the desulfurization device 23).
  • the intake fan 11 is a fan that is provided at the intake port 13 and operates to take in outside air from the intake port 13 .
  • the intake fan 11 is configured to cool the first desulfurizing agent to a temperature (eg, 25° C.) that is higher than the dew point of the hydrocarbon fuel and lower than the temperature at which deterioration of the first desulfurizing agent is suppressed.
  • the intake fan 11 (intake port 13) is located below the first desulfurizer 1 in the up-down direction (vertical direction) when the desulfurization device 23 is installed. Further, the exhaust port 12 is located above the second desulfurizer 2 in the up-down direction (vertical direction) when the desulfurization device 23 is installed. As described above, the first desulfurizer 1 is installed below the second desulfurizer 2 in the up-down direction (vertical direction) when the desulfurization device 23 is installed. That is, the outside air taken into the exterior of the desulfurization device 23 by the intake fan 11 cools the first desulfurizer 1 and is then discharged out of the exterior of the desulfurization device 23 through the exhaust port 12. An intake fan 11 (intake port 13), an exhaust port 12 and a first desulfurizer 1 are arranged.
  • controller 43 controlling the entire desulfurization device 23 including the intake fan 11.
  • the temperature of the first desulfurizer 1 is controlled by the intake fan 11 so as to be 25°C, for example.
  • the desulfurization device 23 includes a flow path through which a hydrocarbon fuel containing a sulfur compound flows, a first desulfurization agent, a second desulfurization agent, and a cooling unit according to the present disclosure.
  • An intake port 13, an intake fan 11, an exhaust port 12, and a heater 3 are provided.
  • the first desulfurizing agent is filled in the first desulfurizer 1 provided in the flow path, is composed of a metal organic structure having copper ions and organic ligands, and contains at least part of the sulfur compounds contained in the hydrocarbon fuel. is configured to remove
  • the second desulfurization agent is filled in the second desulfurizer 2 provided in the flow path downstream of the first desulfurizer 1 in the flow direction of the hydrocarbon fuel, and removes carbonyl sulfide among the sulfur compounds contained in the hydrocarbon fuel. configured to remove.
  • the intake fan 11 is configured to cool the temperature of the first desulfurizing agent to a temperature higher than the dew point of the hydrocarbon fuel and lower than the temperature at which deterioration of the first desulfurizing agent is suppressed.
  • the heater 3 is configured to raise the temperature of the second desulfurizing agent to a temperature at which the second desulfurizing agent can remove carbonyl sulfide contained in the hydrocarbon fuel.
  • the desulfurization device 23 can suppress the deterioration of the adsorption performance of the first desulfurizing agent due to the deterioration of the first desulfurizing agent with water at high temperatures, and can suppress the deterioration of the carbonyl sulfide adsorption performance of the second desulfurizing agent. Therefore, the desulfurization device 23 can reduce the amount of desulfurization agent and the size of the desulfurization device 23 .
  • the desulfurization device 23 has an exterior so as to be isolated from the outside air, and has an intake port 13, an exhaust port 12, and an intake fan 11 as a cooling unit.
  • An intake port 13 is provided on the exterior to take in outside air.
  • the exhaust port 12 is provided in the exterior for discharging the air inside the exterior to the outside of the exterior.
  • the intake fan 11 is provided at the intake port 13 and operates to take in outside air from the intake port 13 .
  • the first desulfurization agent filled in the first desulfurizer 1 is lower than the second desulfurization agent filled in the second desulfurizer 2 in the vertical direction when the desulfurization device 23 is installed.
  • the intake port 13 (intake fan 11 ) is positioned vertically below the first desulfurizing agent filled in the first desulfurizer 1 when the desulfurization device 23 is installed.
  • the desulfurization device 23 can cool the first desulfurization agent relatively efficiently with a relatively simple configuration, and can suppress a decrease in the temperature of the second desulfurization agent. Therefore, the desulfurization device 23 with reduced size can be provided at a relatively low cost.
  • Embodiment 4 which is an example of the desulfurization apparatus according to the present disclosure, will be described with a focus on the differences from the desulfurization apparatus 23 according to Embodiment 3, with reference to FIG.
  • FIG. 4 is a block diagram showing the configuration of the desulfurization device 24 according to Embodiment 4. As shown in FIG. As shown in the figure, in the desulfurization device 24 in Embodiment 4, the first desulfurizer 1 is arranged closer to the exterior than the second desulfurizer 2, and the control instead of the controller 43 It differs from the desulfurization apparatus 23 in Embodiment 3 shown in FIG.
  • controller 44 controlling the entire desulfurization device 24 including the intake fan 11.
  • the temperature of the first desulfurizer 1 is controlled by the intake fan 11 so as to be 25°C.
  • the desulfurization device 24 includes a flow path through which a hydrocarbon fuel containing a sulfur compound flows, a first desulfurization agent, a second desulfurization agent, and a cooling unit according to the present disclosure.
  • An intake port 13, an intake fan 11, an exhaust port 12, and a heater 3 are provided.
  • the first desulfurizing agent is filled in the first desulfurizer 1 provided in the flow path, is composed of a metal organic structure having copper ions and organic ligands, and contains at least part of the sulfur compounds contained in the hydrocarbon fuel. is configured to remove
  • the second desulfurization agent is filled in the second desulfurizer 2 provided in the flow path downstream of the first desulfurizer 1 in the flow direction of the hydrocarbon fuel, and removes carbonyl sulfide among the sulfur compounds contained in the hydrocarbon fuel. configured to remove.
  • the intake fan 11 is configured to cool the temperature of the first desulfurizing agent to a temperature higher than the dew point of the hydrocarbon fuel and lower than the temperature at which deterioration of the first desulfurizing agent is suppressed.
  • the heater 3 is configured to raise the temperature of the second desulfurizing agent to a temperature at which the second desulfurizing agent can remove carbonyl sulfide contained in the hydrocarbon fuel.
  • the desulfurization device 24 can suppress the deterioration of the adsorption performance of the first desulfurizing agent due to water deterioration at high temperature, and can suppress the deterioration of the carbonyl sulfide adsorption performance of the second desulfurization agent. Therefore, the desulfurization device 24 can reduce the amount of desulfurization agent and the size of the desulfurization device 21 .
  • the desulfurization device 24 has an exterior so as to be isolated from the outside air, and has an intake port 13, an exhaust port 12, and an intake fan 11 as a cooling unit.
  • An intake port 13 is provided on the exterior to take in outside air.
  • the exhaust port 12 is provided in the exterior for discharging the air inside the exterior to the outside of the exterior.
  • the intake fan 11 is provided at the intake port 13 and operates to take in outside air from the intake port 13 .
  • the first desulfurization agent filled in the first desulfurizer 1 is arranged closer to the exterior than the second desulfurization agent filled in the second desulfurizer 2.
  • the desulfurization device 24 can cool the first desulfurization agent relatively efficiently with a relatively simple configuration, and can suppress a decrease in the temperature of the second desulfurization agent. Therefore, a smaller desulfurization device 24 can be provided at a relatively low cost.
  • Embodiments 1 to 4 have been described as examples of the technology of the present disclosure.
  • the technology in the present disclosure is not limited to this, and can also be applied to embodiments with modifications, replacements, additions, omissions, and the like.
  • Embodiments 1 to 4 town gas containing methane as a main component is exemplified as the hydrocarbon fuel in the present disclosure, but LPG (Liquefied Petroleum Gas) or natural gas may also be used.
  • LPG Liquefied Petroleum Gas
  • natural gas may also be used.
  • THT is exemplified as a sulfur compound in the present disclosure
  • dimethyl sulfide and tertiary butyl mercaptan which are used as an odorant for city gas, may also be used.
  • two desulfurizers, the third desulfurizer 5 and the fourth desulfurizer 6, are illustrated as the plurality of desulfurizers in the present disclosure that are installed in parallel and filled with the first desulfurizer. , three or more desulfurizers may be used. It should be noted that the desulfurization device in this modification must have two on-off valves for each additional desulfurizer.
  • the four on-off valves of the first on-off valve 7, the second on-off valve 8, the third on-off valve 9, and the fourth on-off valve 10 are illustrated as the switching valves in the present disclosure.
  • a two-way valve may be used.
  • multi-way valves corresponding to the number of desulfurizers may be used.
  • the present disclosure is applicable to desulfurization equipment that removes sulfur compounds in hydrocarbon fuel. Specifically, the present disclosure is applicable to, for example, a fuel cell system and a hydrogen production device equipped with a hydrogen generator that generates hydrogen from city gas or LPG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

脱硫装置(21)は、硫黄化合物を含む炭化水素燃料が通流する流路と、第一脱硫器(1)に充填された第一脱硫剤と、第二脱硫器(2)に充填された第二脱硫剤と、冷却器(4)と、加熱器(3)と、を備える。第一脱硫剤は、流路に設けられ、銅イオンと有機配位子とをもつ金属有機構造体で構成され、炭化水素燃料に含まれる硫黄化合物の少なくとも一部を除去する。第二脱硫剤は、炭化水素燃料の流れ方向において第一脱硫剤よりも下流側の流路に設けられ、炭化水素燃料に含まれる硫黄化合物のうち硫化カルボニルを除去する。冷却器(4)は、第一脱硫剤の温度を炭化水素燃料の露点以上かつ第一脱硫剤の劣化が抑制される温度以下に冷却する。加熱器(3)は、第二脱硫剤の温度を、炭化水素燃料に含まれる硫化カルボニルが第二脱硫剤で除去できる温度以上にする。

Description

脱硫装置
 本開示は、炭化水素燃料から硫黄化合物を除去する脱硫装置に関する。
 特許文献1は、銅イオンと有機配位子とをもつ金属有機構造体を用いて、硫黄化合物を含む炭化水素燃料から、硫黄化合物を除去する構成を開示する。
 特許文献2は、炭化水素燃料に含まれる硫黄化合物を除去する第一脱硫剤と、第一脱硫剤の下流に配置され、炭化水素燃料に含まれる硫化カルボニウムを除去する第二脱硫剤とを備えた脱硫装置を開示する。
国際公開第2017/150019号 特開2015-135789号公報
 本開示は、第一脱硫剤の高温下における水での劣化による吸着性能低下を抑制し、第二脱硫剤での硫化カルボニルの吸着性能低下を抑制し、脱硫剤の量および装置のサイズを抑えることが可能な脱硫装置を提供する。
 本開示における脱硫装置は、硫黄化合物を含む炭化水素燃料が通流する流路と、この流路に設けられる第一脱硫剤と、炭化水素燃料の流れ方向において第一脱硫剤よりも下流側の流路に設けられる第二脱硫剤と、冷却部と、加熱器と、を備えている。
 第一脱硫剤は、銅イオンと有機配位子とをもつ金属有機構造体で構成され、炭化水素燃料に含まれる硫黄化合物の少なくとも一部を除去するように構成されている。
 第二脱硫剤は、炭化水素燃料に含まれる硫黄化合物のうち硫化カルボニルを除去するように構成されている。
 冷却部は、第一脱硫剤の温度を、炭化水素燃料の露点以上かつ第一脱硫剤の劣化が抑制される温度以下に冷却するように構成されている。
 加熱器は、第二脱硫剤の温度を、炭化水素燃料に含まれる硫化カルボニルが第二脱硫剤で除去できる温度以上にするように構成されている。
 本開示における脱硫装置は、第一脱硫剤の高温下における水での劣化による吸着性能の低下を抑制し、第二脱硫剤での硫化カルボニルの吸着性能の低下を抑制し、脱硫剤の量および脱硫装置のサイズを抑えることができる。
図1は、実施の形態1における脱硫装置の構成を示すブロック図である。 図2は、実施の形態2における脱硫装置の構成を示すブロック図である。 図3は、実施の形態3における脱硫装置の構成を示すブロック図である。 図4は、実施の形態4における脱硫装置の構成を示すブロック図である。
 (本開示の基礎になった知見等)
 発明者らが本開示に想到するに至った当時から、銅イオンと有機配位子とをもつ金属有機構造体を用いて、硫黄化合物を含む炭化水素燃料から、硫黄化合物を除去する脱硫装置が知られている。この脱硫装置は、炭化水素燃料に含まれる硫黄化合物を簡単かつ効果的に除去することができる。
 また、炭化水素燃料に含まれる硫黄化合物の一部であるテトラハイドロチオフェン(以下、THTと記載)を除去する第一脱硫剤と、第一脱硫剤の下流に配置され、炭化水素燃料に含まれる硫化カルボニルを除去する第二脱硫剤とを備える脱硫装置が知られている。この脱硫装置は、燃料ガスに含まれる硫黄化合物のうち硫化カルボニルを第二脱硫剤で効果的に除去することができる。
 しかしながら、銅イオンと有機配位子とをもつ金属有機構造体は、炭化水素燃料に水分が含まれ、温度が高い場合、金属有機構造体の構造が水分で破壊され得る。そのため、銅イオンと有機配位子とをもつ金属有機構造体を第一脱硫剤として用いた場合、第一脱硫剤における硫黄化合物の吸着性能が低下するという課題がある。
 また、硫化カルボニルを除去する第二脱硫剤は温度が低下すると、硫化カルボニルの吸着性能が低下するという課題がある。
 そこで、本開示は、第一脱硫剤の高温下における水での劣化による吸着性能低下を抑制し、第二脱硫剤での硫化カルボニルの吸着性能低下を抑制し、脱硫剤の量および装置のサイズを抑えることが可能な脱硫装置を提供する。
 以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより請求の範囲に記載の主題を限定することを意図していない。
 (実施の形態1)
 以下、図1を用いて、本開示における脱硫装置の一例である実施の形態1における脱硫装置21を説明する。
 [1-1.構成]
 図1は、実施の形態1における脱硫装置21の構成を示すブロック図である。なお、図1では、硫黄化合物を含む炭化水素燃料が通流する流路を矢印で示している。このことは、後述する図2~図4においても同様である。図1に示すように、脱硫装置21は、第一脱硫器1と、第二脱硫器2と、加熱器3と、冷却器4と、制御器41とを備える。また、脱硫装置21は、外部から脱硫装置21に供給された炭化水素燃料を、第一脱硫器1と第二脱硫器2とで脱硫してから、燃料利用機器31に供給するように構成されている。
 第一脱硫器1は、硫黄化合物を含む炭化水素燃料が通流する流路の途中に設けられる。
 本実施の形態1における炭化水素燃料は、メタンを主成分とする都市ガスであり、硫黄化合物として、THTと硫化カルボニルが含まれている。また、炭化水素燃料には水蒸気が1体積%含まれている。
 第一脱硫器1には、炭化水素燃料に含まれる硫黄化合物のうちTHTを主に除去する第一脱硫剤が充填されている。
 本実施の形態1では、本開示における第一脱硫剤の一例として、銅イオンとベンゼン-1,3,5-トリカルボン酸とからなる金属有機構造体であるHKUST-1(BASF社製)が用いられている。
 第二脱硫器2には、炭化水素燃料に含まれる硫黄化合物のうち硫化カルボニルを除去する第二脱硫剤が充填されている。第二脱硫器2は、図1に示すように、炭化水素燃料の流れ方向において第一脱硫器1よりも下流側の流路に設けられる。
 本実施の形態1では、本開示における第二脱硫剤の一例として、硫化カルボニルを除去するニッケルと銅とを含む金属酸化物が用いられている。
 加熱器3は、第二脱硫剤の温度が、炭化水素燃料に含まれる硫化カルボニルが第二脱硫剤で除去できる温度以上になるように、第二脱硫器2を加熱するヒーターである。
 冷却器4は、第一脱硫剤の温度が、炭化水素燃料の露点以上かつ第一脱硫剤の劣化が抑制される温度以下になるように、第一脱硫器1を冷却する冷却ファンである。
 制御器41は、脱硫装置21の運転を制御する。制御器41は、信号入出力部(図示せず)と、演算処理部(図示せず)と、制御プログラムを記憶する記憶部(図示せず)とを備える。即ち、制御器41は、プロセッサおよびメモリを有するコンピュータシステムを有している。そして、プロセッサがメモリに格納されている制御プログラムを実行することにより、コンピュータシステムが制御器41として機能する。プロセッサが実行する制御プログラムは、ここではコンピュータシステムのメモリに予め記録されているとしたが、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。
 また、脱硫装置21は、外装で覆われている(図示せず)。
 [1-2.動作]
 以上のように構成された脱硫装置21について、その動作を以下説明する。
 以下の動作は、制御器41が加熱器3および冷却器4を含む脱硫装置21全体を制御することによって行われる。
 まず、炭化水素燃料が第一脱硫器1に供給される。本実施の形態1における炭化水素燃料の条件は、流量が3NL/min、温度が25℃、水蒸気濃度が1体積%、硫黄化合物濃度については、THTが10ppm、硫化カルボニルが0.1ppmである。
 第一脱硫器1は、炭化水素燃料に含まれる硫黄化合物のうちTHTを主に除去する。第一脱硫器1通過後の炭化水素燃料は、第二脱硫器2に供給される。第二脱硫器2は、第一脱硫器1で除去されなかった硫化カルボニルを除去する。
 第二脱硫器2の温度は、一例として60℃となるように加熱器3で制御されている。
 第一脱硫器1の温度は、一例として25℃になるように冷却器4で制御されている。
 第二脱硫器2を通過後の炭化水素燃料は、硫黄化合物濃度が1ppb以下となって燃料利用機器31に供給される。
 以下では、第一脱硫器1および第二脱硫器2の温度を変えて、ガスクロマトグラフィーによって定期的に第二脱硫器2の下流の炭化水素燃料を測定した結果を説明する。
 まず、実施例1として、実施の形態1における脱硫装置21のように、第一脱硫器1の温度が25℃、第二脱硫器2の温度が60℃になるようにして、ガスクロマトグラフィーによって定期的に第二脱硫器2の下流の炭化水素燃料を測定した。実施例1においては、試験開始から1000hで下流からTHTと硫化カルボニルの濃度上昇が検出された。
 次に、比較例1として、冷却器4を停止させ、第一脱硫器1が60℃、第二脱硫器2は60℃となるようにして、運転を開始した。
 比較例1において、ガスクロマトグラフィーによって定期的に第二脱硫器2の下流の炭化水素燃料を測定したところ、試験開始から500hで下流からTHTの濃度上昇が検出された。即ち、第一脱硫器1の温度が、実施例1での温度(25℃)と比較して高温(60℃)である比較例1では、比較的短時間(500h)で第一脱硫剤での高温下における水での劣化による吸着性能の低下が認められた。
 また、比較例2として、加熱器3を停止させて、第一脱硫器1の温度が25℃、第二脱硫器2の温度が25℃となるようにして、運転を開始した。
 比較例2において、ガスクロマトグラフィーによって定期的に第二脱硫器2の下流の炭化水素燃料を測定したところ、試験開始から100hで下流から硫化カルボニルの濃度上昇が検出された。即ち、第二脱硫器2の温度が、実施例1での温度(60℃)と比較して低温(25℃)である比較例2では、比較的短時間(100h)で第二脱硫剤での硫化カルボニルの吸着性能の低下が認められた。
 また、試験後の第一脱硫剤を取り出してBET表面積を測定したところ、第一脱硫器1の温度が25℃の条件で運転したもの(比較例2)と、60℃の条件で運転したもの(比較例1)は、それぞれ初期の90%、50%であった。
 [1-3.効果等]
 以上のように、本実施の形態1において、脱硫装置21は、硫黄化合物を含む炭化水素燃料が通流する流路と、第一脱硫剤と、第二脱硫剤と、冷却器4と、加熱器3と、を備える。
 第一脱硫剤は、流路に設けられる第一脱硫器1に充填され、銅イオンと有機配位子とをもつ金属有機構造体で構成され、炭化水素燃料に含まれる硫黄化合物の少なくとも一部を除去するように構成されている。
 第二脱硫剤は、炭化水素燃料の流れ方向において第一脱硫器1に充填された第一脱硫剤よりも下流側の流路に設けられ、炭化水素燃料に含まれる硫黄化合物のうち硫化カルボニルを除去するように構成されている。
 冷却器4は、本開示における冷却部の一例であり、第一脱硫剤の温度を、炭化水素燃料の露点以上かつ第一脱硫剤の劣化が抑制される温度以下に冷却するように構成されている。
 加熱器3は、第二脱硫剤の温度を、炭化水素燃料に含まれる硫化カルボニルが第二脱硫剤で除去できる温度以上にするように構成されている。
 これにより、脱硫装置21は、第一脱硫剤の高温下における水での劣化による吸着性能低下を抑制し、第二脱硫剤での硫化カルボニルの吸着性能低下を抑制することができる。そのため、脱硫装置21は、脱硫剤の量および脱硫装置21のサイズを抑えることができる。
 (実施の形態2)
 以下、図2を用いて、本開示における脱硫装置の一例である実施の形態2における脱硫装置22を、実施の形態1における脱硫装置21との相違点を中心に説明する。
 [2-1.構成]
 図2は、実施の形態2における脱硫装置22の構成を示すブロック図である。同図に示すように、実施の形態2における脱硫装置22は、第一脱硫器1に代えて、第三脱硫器5と並列に第四脱硫器6を備える点で、実施の形態1における脱硫装置21とは異なる。また、脱硫装置22は、第三脱硫器5の上流と下流にそれぞれ第一開閉弁7と第二開閉弁8とを、第四脱硫器6の上流と下流にそれぞれ第三開閉弁9と第四開閉弁10とを備える点で、脱硫装置21とは異なる。また、脱硫装置22は、制御器41の代わりに制御器42を備える点で、脱硫装置21とは異なる。
 また、脱硫装置22は、実施の形態1の燃料利用機器31の代わりに水素生成装置32に接続されている点で、脱硫装置21とは異なる。
 脱硫装置22は、外部から脱硫装置22に供給された炭化水素燃料を、第三脱硫器5または第四脱硫器6のどちらか一方と第二脱硫器2とで脱硫してから、水素生成装置32に供給するように構成されている。即ち、脱硫装置22は、第三脱硫器5および第四脱硫器6のうち、どちらか1つの脱硫器に炭化水素燃料を流通させるようにする第一開閉弁7、第二開閉弁8、第三開閉弁9および第四開閉弁10(以下、各開閉弁とも記載)を備える。各開閉弁は、第三脱硫器5および第四脱硫器6のうち、1つの脱硫器(例えば、第三脱硫器5)に炭化水素燃料を流通させている間は、他の脱硫器(例えば、第四脱硫器6)には流通させないよう、制御器42により開閉が制御される。
 また、第三脱硫器5と第四脱硫器6とは、実施の形態1の第一脱硫器1と同じ第一脱硫剤が第一脱硫器1の半分の量だけ充填されている。即ち、実施の形態2における脱硫装置22で用いられる第一脱硫剤の総量は、実施の形態1における脱硫装置21で用いられる第一脱硫剤の量と同じである。
 [2-2.動作]
 以上のように構成された脱硫装置22について、その動作を以下説明する。
 以下の動作は、制御器42が加熱器3、冷却器4および各開閉弁を含む脱硫装置22全体を制御することによって行われる。
 運転開始時は、第一開閉弁7と第二開閉弁8とが開いており、第三開閉弁9と第四開閉弁10が閉まっている状態となっており、炭化水素燃料が第三脱硫器5に供給される。
 実施の形態1と同様、本実施の形態2における炭化水素燃料の条件は、流量が3NL/min、温度が25℃、水蒸気濃度が1体積%、硫黄化合物濃度については、THTが10ppm、硫化カルボニルが0.1ppmである。
 運転開始から550hで、第一開閉弁7と第二開閉弁8とを閉め、第三開閉弁9と第四開閉弁10とを開け、第四脱硫器6に炭化水素燃料が供給されるように切り替える。
 ここで、550hの時間は、あらかじめ試験で求めていた第三脱硫器5の下流でTHTの濃度が上昇する時間である。
 また、第二脱硫器2の温度は、一例として60℃となるように加熱器3で制御されている。
 第三脱硫器5と第四脱硫器6との温度は、一例として25℃になるように冷却器4で制御されている。
 実施例2として、実施の形態2における脱硫装置22のように、第三脱硫器5および第四脱硫器6の温度が25℃、第二脱硫器2の温度が60℃になるようにして、ガスクロマトグラフィーによって定期的に第二脱硫器2の下流の炭化水素燃料を測定した。その結果、実施例2においては、試験開始から1100hで下流からTHTと硫化カルボニルとの濃度上昇が検出された。即ち、実施例2では、用いられる第一脱硫剤の量は変えることなく、下流からTHTと硫化カルボニルの濃度上昇が検出までの試験開始からの経過時間を、実施例1よりもさらに長くすることができた。つまり、実施例2では、実施例1と比較し、さらに第一脱硫剤の高温下における水での劣化による吸着性能低下の抑制および第二脱硫剤での硫化カルボニルの吸着性能低下の抑制が認められた。
 [2-3.効果等]
 以上のように、本実施の形態2において、脱硫装置22は、硫黄化合物を含む炭化水素燃料が通流する流路と、第一脱硫剤と、第二脱硫剤と、冷却器4と、加熱器3と、を備える。
 第一脱硫剤は、流路に互いに並列に設けられる第三脱硫器5および第四脱硫器6それぞれに充填され、銅イオンと有機配位子とをもつ金属有機構造体で構成され、炭化水素燃料に含まれる硫黄化合物の少なくとも一部を除去するように構成されている。
 第二脱硫剤は、炭化水素燃料の流れ方向において第三脱硫器5および第四脱硫器6に充填された第一脱硫剤よりも下流側の流路に設けられ、炭化水素燃料に含まれる硫黄化合物のうち硫化カルボニルを除去するように構成されている。
 冷却器4は、本開示における冷却部の一例であり、第三脱硫器5および第四脱硫器6のそれぞれに個別に設けられ、第一脱硫剤の温度を、炭化水素燃料の露点以上かつ第一脱硫剤の劣化が抑制される温度以下に冷却するように構成されている。
 加熱器3は、第二脱硫剤の温度を、炭化水素燃料に含まれる硫化カルボニルが第二脱硫剤で除去できる温度以上にするように構成されている。
 これにより、脱硫装置22は、第一脱硫剤の高温下における水での劣化による吸着性能低下を抑制し、第二脱硫剤での硫化カルボニルの吸着性能低下を抑制することができる。そのため、脱硫装置22は、脱硫剤の量および脱硫装置22のサイズを抑えることができる。
 また、本実施の形態2のように、脱硫装置22では、第一脱硫剤を充填した第三脱硫器5および第四脱硫器6が並列に設置される。脱硫装置22は、第三脱硫器5および第四脱硫器6のうち、少なくとも一つの脱硫器に炭化水素燃料を流通させるようにする本開示における切替弁の一例である第一開閉弁7、第二開閉弁8、第三開閉弁9および第四開閉弁10を備える。第一開閉弁7、第二開閉弁8、第三開閉弁9および第四開閉弁10は、第三脱硫器5および第四脱硫器6のうちの少なくとも一つの脱硫器に炭化水素燃料を供給している間は、その少なくとも一つの脱硫器を除く他の脱硫器には炭化水素燃料を流通させない。
 具体的には、脱硫装置22は、第三脱硫器5に対応する分岐流路における第三脱硫器5の上流側に第一開閉弁7を、第三脱硫器5に対応する分岐流路における第三脱硫器5の下流側に第二開閉弁8をそれぞれ備える。また、脱硫装置22は、第四脱硫器6に対応する分岐流路における第四脱硫器6の上流側に第三開閉弁9を、第四脱硫器6に対応する分岐流路における第四脱硫器6の下流側に第四開閉弁10をそれぞれ備える。
 この場合は、炭化水素燃料が、第三脱硫器5および第四脱硫器6のどちらか一方を通流するように、第一開閉弁7、第二開閉弁8、第三開閉弁9および第四開閉弁10が開閉する。
 例えば、炭化水素燃料が第三脱硫器5を通流する(第三脱硫器5に炭化水素燃料を供給している)間は、第一開閉弁7と第二開閉弁8とが開状態で、第三開閉弁9と第四開閉弁10とが閉状態になっており、第四脱硫器6には炭化水素燃料を通流させない。
 逆に、炭化水素燃料が第四脱硫器6を通流する(第四脱硫器6に炭化水素燃料を供給している)間は、第三開閉弁9と第四開閉弁10とが開状態で、第一開閉弁7と第二開閉弁8とが閉状態になっており、第三脱硫器5には炭化水素燃料を通流させない。
 これにより、脱硫装置22は、炭化水素燃料を流通させていない脱硫器に充填された第一脱硫剤の高温化における水での劣化による吸着性能低下を抑制することができ、吸着性能低下分の余分な第一脱硫剤の搭載が不要となる。そのため、脱硫装置22は、脱硫剤の量および脱硫装置22のサイズを抑えることができる。
 (実施の形態3)
 以下、図3を用いて、本開示における脱硫装置の一例である実施の形態3における脱硫装置22を、実施の形態1における脱硫装置21との相違点を中心に説明する。
 [3-1.構成]
 図3は、実施の形態3における脱硫装置23の構成を示すブロック図である。なお、以下では、脱硫装置23が使用可能に設置された状態(本開示における設置状態に相当)での鉛直方向を上下方向として記載する場合がある。
 図3に示すように、実施の形態3における脱硫装置23は、冷却器4の代わりに吸気ファン11と排気口12と吸気口13とを備える点で実施の形態1における脱硫装置21と異なる。また、脱硫装置23は、第一脱硫器1が第二脱硫器2よりも、脱硫装置23の設置状態における上下方向(鉛直方向)の下方に設置されている点と、制御器41の代わりに制御器43を備えている点で、脱硫装置21と異なる。
 また、脱硫装置23は、実施の形態1の燃料利用機器31の代わりに水素生成装置32に接続されている点で、脱硫装置21と異なる。
 脱硫装置23は、外部から脱硫装置23に供給された炭化水素燃料を、第一脱硫器1と第二脱硫器2とで脱硫してから、水素生成装置32に供給するように構成されている。
 また、脱硫装置23は外装でおおわれており、外気と隔離されているため、内部の熱により、外気より高温になっており、外気が25℃に対し、脱硫装置23の内部の温度は一例として60℃となっているものとする。
 外装には、外気を取り入れるための吸気口13と、外装内の空気(脱硫装置23内の空気)を外装の外(脱硫装置23の外)に排出するための排気口12とが設けられている。吸気ファン11は、吸気口13に設けられ、吸気口13から外気が取り入れられるように動作するファンである。吸気ファン11は、第一脱硫剤を、炭化水素燃料の露点以上かつ第一脱硫剤の劣化が抑制される温度以下の温度(一例として25℃)に冷却するように構成されている。
 吸気ファン11(吸気口13)は、第一脱硫器1よりも、脱硫装置23の設置状態における上下方向(鉛直方向)の下方に位置する。また、排気口12は、第二脱硫器2よりも、脱硫装置23の設置状態における上下方向(鉛直方向)の上方に位置する。上述のように、第一脱硫器1は、第二脱硫器2よりも、脱硫装置23の設置状態における上下方向(鉛直方向)の下方に設置されている。つまり、吸気ファン11によって脱硫装置23の外装内に取り入れられた外気が、第一脱硫器1を冷却してから、排気口12を通って脱硫装置23の外装の外に排出されるように、吸気ファン11(吸気口13)と排気口12と第一脱硫器1が配置されている。
 [3-2.動作]
 以上のように構成された脱硫装置23について、その動作を以下説明する。
 以下の動作は、制御器43が、吸気ファン11を含む脱硫装置23全体を制御することによって行われる。
 第一脱硫器1の温度は、一例として25℃になるように吸気ファン11で制御されている。
 その他の動作は、実施の形態1における脱硫装置21と同じため省略する。
 [3-3.効果等]
 以上のように、本実施の形態3において、脱硫装置23は、硫黄化合物を含む炭化水素燃料が通流する流路と、第一脱硫剤と、第二脱硫剤と、本開示における冷却部の一例を構成する吸気口13、吸気ファン11および排気口12と、加熱器3と、を備える。
 第一脱硫剤は、流路に設けられる第一脱硫器1に充填され、銅イオンと有機配位子とをもつ金属有機構造体で構成され、炭化水素燃料に含まれる硫黄化合物の少なくとも一部を除去するように構成されている。
 第二脱硫剤は、炭化水素燃料の流れ方向において第一脱硫器1よりも下流側の流路に設けられる第二脱硫器2に充填され、炭化水素燃料に含まれる硫黄化合物のうち硫化カルボニルを除去するように構成されている。
 吸気ファン11は、第一脱硫剤の温度を、炭化水素燃料の露点以上かつ第一脱硫剤の劣化が抑制される温度以下に冷却するように構成されている。
 加熱器3は、第二脱硫剤の温度を、炭化水素燃料に含まれる硫化カルボニルが第二脱硫剤で除去できる温度以上にするように構成されている。
 これにより、脱硫装置23は、第一脱硫剤の高温下における水での劣化による吸着性能低下を抑制し、第二脱硫剤での硫化カルボニルの吸着性能低下を抑制することができる。そのため、脱硫装置23は、脱硫剤の量および脱硫装置23のサイズを抑えることができる。
 また、本実施の形態3のように、脱硫装置23は、外気と隔離されるように外装を備え、冷却部として、吸気口13と、排気口12と、吸気ファン11とを備える。吸気口13は、外気を取り入れるために外装に設けられている。排気口12は、外装内の空気を外装の外に排出するために外装に設けられている。吸気ファン11は、吸気口13に設けられ、吸気口13から外気が取り入れられるように動作する。
 また、脱硫装置23では、第一脱硫器1に充填された第一脱硫剤は、第二脱硫器2に充填された第二脱硫剤よりも、脱硫装置23の設置状態における上下方向の下方に位置する。また、吸気口13(吸気ファン11)は、第一脱硫器1に充填された第一脱硫剤よりも、脱硫装置23の設置状態における上下方向の下方に位置する。
 これにより、脱硫装置23は、比較的簡素な構成で比較的効率よく第一脱硫剤を冷却することができ、第二脱硫剤の温度の低下を抑制できる。そのため、サイズを抑えた脱硫装置23が比較的安価に提供できる。
 (実施の形態4)
 以下、図4を用いて、本開示における脱硫装置の一例である実施の形態4における脱硫装置24を、実施の形態3における脱硫装置23との相違点を中心に説明する。
 [4-1.構成]
 図4は、実施の形態4における脱硫装置24の構成を示すブロック図である。同図に示すように、実施の形態4における脱硫装置24は、第一脱硫器1が、第二脱硫器2よりも外装に近接して配置されている点と、制御器43の代わりに制御器44を備えている点で、図3に示す実施の形態3における脱硫装置23と異なる。
 [4-2.動作]
 以上のように構成された脱硫装置24について、その動作を以下説明する。
 以下の動作は、制御器44が吸気ファン11を含む脱硫装置24全体を制御することによって行われる。
 第一脱硫器1の温度は、一例として25℃になるように吸気ファン11で制御している。
 その他の動作は実施の形態1と同じため省略する。
 [4-3.効果等]
 以上のように、本実施の形態4において、脱硫装置24は、硫黄化合物を含む炭化水素燃料が通流する流路と、第一脱硫剤と、第二脱硫剤と、本開示における冷却部の一例を構成する吸気口13、吸気ファン11および排気口12と、加熱器3と、を備える。
 第一脱硫剤は、流路に設けられる第一脱硫器1に充填され、銅イオンと有機配位子とをもつ金属有機構造体で構成され、炭化水素燃料に含まれる硫黄化合物の少なくとも一部を除去するように構成されている。
 第二脱硫剤は、炭化水素燃料の流れ方向において第一脱硫器1よりも下流側の流路に設けられる第二脱硫器2に充填され、炭化水素燃料に含まれる硫黄化合物のうち硫化カルボニルを除去するように構成されている。
 吸気ファン11は、第一脱硫剤の温度を、炭化水素燃料の露点以上かつ第一脱硫剤の劣化が抑制される温度以下に冷却するように構成されている。
 加熱器3は、第二脱硫剤の温度を、炭化水素燃料に含まれる硫化カルボニルが第二脱硫剤で除去できる温度以上にするように構成されている。
 これにより、脱硫装置24は、第一脱硫剤の高温下における水での劣化による吸着性能低下を抑制し、第二脱硫剤での硫化カルボニルの吸着性能低下を抑制することができる。そのため、脱硫装置24は、脱硫剤の量および脱硫装置21のサイズを抑えることができる。
 また、本実施の形態4のように、脱硫装置24は、外気と隔離されるように外装を備え、冷却部として、吸気口13と、排気口12と、吸気ファン11とを備える。吸気口13は、外気を取り入れるために外装に設けられている。排気口12は、外装内の空気を外装の外に排出するために外装に設けられている。吸気ファン11は、吸気口13に設けられ、吸気口13から外気が取り入れられるように動作する。
 また、脱硫装置24では、第一脱硫器1に充填された第一脱硫剤は、第二脱硫器2に充填された第二脱硫剤よりも外装に近接して配置される。
 これにより、脱硫装置24は、比較的簡素な構成で比較的効率よく第一脱硫剤を冷却することができ、第二脱硫剤の温度の低下を抑制できる。そのため、よりサイズの小さい脱硫装置24が比較的安価に提供できる。
 (他の実施の形態)
 以上のように、本開示における技術の例示として、実施の形態1~4を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1~4で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下、他の実施の形態を例示する。
 本実施の形態1~4では、本開示における炭化水素燃料としてメタンを主成分とする都市ガスを例示したが、LPG(Liquefied Petroleum Gas)や天然ガスが用いられてもよい。
 また、本開示における硫黄化合物としてTHTを例示したが、都市ガスの付臭剤に使われるジメチルスルフィドやターシャリーブチルメルカプタンが用いられてもよい。
 また、実施の形態2においては、並列に設置され、第一脱硫剤を充填した本開示における複数の脱硫器として、第三脱硫器5および第四脱硫器6の2つの脱硫器を例示したが、3つ以上の脱硫器が用いられてもよい。なお、この変形における脱硫装置は、増加した脱硫器毎に2つの開閉弁を備える必要がある。
 また、実施の形態2においては、本開示における切替弁として、第一開閉弁7、第二開閉弁8、第三開閉弁9および第四開閉弁10の4つの開閉弁を例示したが、例えば、二方弁が用いられてもよい。また、3つ以上の脱硫器を備える上記変形における脱硫装置では、例えば、脱硫器の数に応じた多方弁が用いられてもよい。
 なお、上述の実施の形態1~4および他の実施の形態は、本開示における技術を例示するものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、炭化水素燃料中の硫黄化合物を除去する脱硫装置に適用可能である。具体的には、例えば、都市ガスやLPGから水素を生成する水素生成装置を搭載した燃料電池システムや水素製造装置などに、本開示は適用可能である。
 1 第一脱硫器
 2 第二脱硫器
 3 加熱器
 4 冷却器
 5 第三脱硫器
 6 第四脱硫器
 7 第一開閉弁
 8 第二開閉弁
 9 第三開閉弁
 10 第四開閉弁
 11 吸気ファン
 12 排気口
 13 吸気口
 21 脱硫装置
 22 脱硫装置
 23 脱硫装置
 24 脱硫装置
 31 燃料利用機器
 32 水素生成装置
 41 制御器
 42 制御器
 43 制御器
 44 制御器

Claims (5)

  1.  硫黄化合物を含む炭化水素燃料が通流する流路と、
     前記流路に設けられ、銅イオンと有機配位子とをもつ金属有機構造体で構成され、前記炭化水素燃料に含まれる前記硫黄化合物の少なくとも一部を除去する第一脱硫剤と、
     前記炭化水素燃料の流れ方向において前記第一脱硫剤よりも下流側の前記流路に設けられ、前記炭化水素燃料に含まれる前記硫黄化合物のうち硫化カルボニルを除去する第二脱硫剤と、
     前記第一脱硫剤の温度を、前記炭化水素燃料の露点以上かつ前記第一脱硫剤の劣化が抑制される温度以下に冷却する冷却部と、
     前記第二脱硫剤の温度を、前記炭化水素燃料に含まれる硫化カルボニルが前記第二脱硫剤で除去できる温度以上にする加熱器と、を備える
     ことを特徴とする脱硫装置。
  2.  前記第一脱硫剤を充填した複数の脱硫器が並列に設置され、
     前記複数の前記脱硫器のうち、少なくとも一つの前記脱硫器に前記炭化水素燃料を流通させるようにする切替弁を備え、
     前記切替弁は、前記複数の前記脱硫器のうち、少なくとも一つの前記脱硫器に前記炭化水素燃料を供給している間は、前記複数の前記脱硫器のうち、少なくとも一つの前記脱硫器を除く他の前記脱硫器には前記炭化水素燃料を流通させない
     ことを特徴とする請求項1記載の脱硫装置。
  3.  前記脱硫装置は、外気と隔離されるように外装を備え、
     前記冷却部は、前記外気を取り入れるために前記外装に設けられた吸気口と、前記外装内の空気を前記外装の外に排出するために前記外装に設けられた排気口と、前記吸気口から前記外気が取り入れられるように動作する吸気ファンとで構成される
     ことを特徴とする請求項1または2記載の脱硫装置。
  4.  前記第一脱硫剤は、前記第二脱硫剤よりも、前記脱硫装置の設置状態における上下方向の下方に位置し、
     前記吸気口は、前記第一脱硫剤よりも、前記脱硫装置の前記設置状態における前記上下方向の下方に位置している
     ことを特徴とする請求項3記載の脱硫装置。
  5.  前記第一脱硫剤は、前記第二脱硫剤よりも前記外装に近接して配置されている
     ことを特徴とする請求項3記載の脱硫装置。
PCT/JP2021/038698 2021-01-29 2021-10-20 脱硫装置 WO2022163036A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180092137.2A CN116887903A (zh) 2021-01-29 2021-10-20 脱硫装置
EP21923042.2A EP4286032A1 (en) 2021-01-29 2021-10-20 Desulfurizing device
JP2022578047A JPWO2022163036A1 (ja) 2021-01-29 2021-10-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021012564 2021-01-29
JP2021-012564 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163036A1 true WO2022163036A1 (ja) 2022-08-04

Family

ID=82654336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038698 WO2022163036A1 (ja) 2021-01-29 2021-10-20 脱硫装置

Country Status (4)

Country Link
EP (1) EP4286032A1 (ja)
JP (1) JPWO2022163036A1 (ja)
CN (1) CN116887903A (ja)
WO (1) WO2022163036A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359023U (ja) * 1989-10-13 1991-06-10
JP2005068337A (ja) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd 液化石油ガスの脱硫装置及び硫化カルボニル分解触媒
JP2015135789A (ja) 2014-01-20 2015-07-27 パナソニックIpマネジメント株式会社 脱硫装置及び脱硫装置の使用方法
WO2017150019A1 (ja) 2016-03-01 2017-09-08 パナソニック株式会社 流体からの硫黄化合物の除去

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359023U (ja) * 1989-10-13 1991-06-10
JP2005068337A (ja) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd 液化石油ガスの脱硫装置及び硫化カルボニル分解触媒
JP2015135789A (ja) 2014-01-20 2015-07-27 パナソニックIpマネジメント株式会社 脱硫装置及び脱硫装置の使用方法
WO2017150019A1 (ja) 2016-03-01 2017-09-08 パナソニック株式会社 流体からの硫黄化合物の除去

Also Published As

Publication number Publication date
CN116887903A (zh) 2023-10-13
EP4286032A1 (en) 2023-12-06
JPWO2022163036A1 (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
US9334164B2 (en) Hydrogen generator and fuel cell system
US9252443B2 (en) Hydrogen generation apparatus, fuel cell system, and hydrogen generation apparatus operation method
KR100796110B1 (ko) 고용량 황 흡착제 베드 및 가스 탈황 방법
KR101264330B1 (ko) 연료전지용 연료가스의 탈황 장치 및 이를 이용한 탈황방법
US20190135629A1 (en) Operation Method for Hydrogen Production Apparatus, and Hydrogen Production Apparatus
JP4485917B2 (ja) 水素製造装置および燃料電池システムの起動停止方法
KR100968580B1 (ko) 다중 탈황 구조를 갖는 연료처리장치 및 이를 구비한연료전지 시스템
WO2012164897A1 (ja) 水素生成装置及びその運転方法並びに燃料電池システム
WO2022163036A1 (ja) 脱硫装置
JP2011096400A (ja) 燃料電池発電システム及び脱硫装置
JP5879552B2 (ja) 水素生成装置、それを備える燃料電池システム、水素生成装置の運転方法、及び燃料電池システムの運転方法
JP5687147B2 (ja) 燃料電池システム
WO2009130907A1 (ja) 水素生成装置、およびそれを備える燃料電池システム
JP2007258182A (ja) 燃料電池システム
WO2022176657A1 (ja) 脱硫方法
JP5636079B2 (ja) 燃料電池発電システム
JP2007269526A (ja) 水素精製装置とその運転方法
JP6500237B2 (ja) 水素生成装置および水素生成装置の運転方法
JP2010235733A (ja) 脱硫剤の処理方法および脱硫剤処理装置
JP2023073555A (ja) 水素生成装置およびその運転方法
WO2020170491A1 (ja) 脱硫器の前処理方法、水素生成装置の起動準備方法および燃料電池システムの起動準備方法
JP2016130192A (ja) 水素生成装置及び燃料電池システムとそれらの運転方法
KR20160007710A (ko) 연료전지용 탈황장치 및 이를 포함하는 탈황 시스템
JP2005100680A (ja) 脱硫装置およびそれを有する燃料電池発電装置
JP2003142138A (ja) 燃料電池発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578047

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180092137.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021923042

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021923042

Country of ref document: EP

Effective date: 20230829