WO2022162970A1 - 電子機器、バッテリ充電制御方法及びプログラム - Google Patents

電子機器、バッテリ充電制御方法及びプログラム Download PDF

Info

Publication number
WO2022162970A1
WO2022162970A1 PCT/JP2021/023759 JP2021023759W WO2022162970A1 WO 2022162970 A1 WO2022162970 A1 WO 2022162970A1 JP 2021023759 W JP2021023759 W JP 2021023759W WO 2022162970 A1 WO2022162970 A1 WO 2022162970A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
charging mode
mode
charge
Prior art date
Application number
PCT/JP2021/023759
Other languages
English (en)
French (fr)
Inventor
創 園部
清一 米田
友則 筒井
徹 儘田
拓也 熊谷
Original Assignee
Dynabook株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynabook株式会社 filed Critical Dynabook株式会社
Priority to JP2022578021A priority Critical patent/JP7423824B2/ja
Publication of WO2022162970A1 publication Critical patent/WO2022162970A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to an electronic device, a battery charging control method, and a program.
  • a portable electronic device such as a notebook PC (Personal Computer) is equipped with a battery (secondary battery) as a power source.
  • Batteries have the characteristic of deteriorating and expanding due to repeated charging and discharging operations. Therefore, countermeasures such as monitoring the charge/discharge operation of the battery and notifying the user when the number of charge/discharge operations reaches a certain number are taken.
  • the causes of troubles that occur in batteries include not only repeated charging and discharging operations, but also leaving them in a fully charged state or in a high temperature state.
  • the AC adapter is always connected to the PC, the battery will be left in a fully charged state, and even if the number of charge/discharge cycles is small, the battery will suffer troubles.
  • the battery charge control functions there is a function that limits the charge amount of the battery to a certain amount (for example, 80%). However, since it is necessary for the user to consciously set the function by performing a predetermined operation, forgetting to set the function often causes battery trouble. In addition, if the battery charge amount is constantly suppressed by this function, the battery operating time will be shortened, which causes problems when using the electronic device in a mobile manner.
  • the problem to be solved by the present invention is to provide an electronic device, a battery charging control method, and a program that can reduce the occurrence of battery troubles by optimal charging control according to usage conditions without the user being aware of it. That is.
  • An electronic device includes a battery, a first charge mode in which the battery is charged with power from an external power source with a first charge amount set to a fully charged state, and a charge amount set lower than the first charge amount. and a second charging mode for charging the battery with the power from the external power source with the second charging amount as the fully charged state.
  • the power source control means controls the first charging mode. 1 charge mode is switched to the second charge mode, and when the first charge mode is switched to the second charge mode, the charge amount of the battery is discharged to the second charge amount. After that, the charging operation of the battery is controlled so as to maintain the second charge amount, and in the second charge mode, the second charge amount is controlled based on a threshold set for the charge amount of the battery. to the first charging mode.
  • FIG. 1 is a diagram showing a configuration example of an electronic device according to an embodiment.
  • FIG. 2 is a diagram showing an example of a BIOS setup screen in the same embodiment.
  • FIG. 3 is a diagram for explaining the display method on the BIOS setup screen in the embodiment.
  • FIG. 4 is a diagram showing an example of the eco utility screen in the same embodiment.
  • FIG. 5 is a diagram showing the relationship between mode setting and actual operation in the same embodiment.
  • FIG. 6 is a flowchart showing EC charging control processing in the embodiment.
  • FIG. 7 is a flow chart showing processing when shifting to the 80% charge mode in the same embodiment.
  • FIG. 8 shows the processing when shifting to the 100% charge mode in the same embodiment.
  • FIG. 9 is a diagram showing the relationship between the switching operation between the 100% charge mode/80% charge mode and the charge amount of the battery in the same embodiment.
  • FIG. 10 is a flowchart showing an EC charging control process as a modification.
  • FIG. 11 is a diagram showing a configuration example of an electronic device according to the second embodiment.
  • FIG. 12 is a flow chart showing the first charging control process (without external power supply check) of the EC in the second embodiment.
  • FIG. 13 is a flowchart showing second charging control processing (with external power supply check) of the EC in the second embodiment.
  • FIG. 1 is a diagram showing a configuration example of an electronic device according to an embodiment.
  • a PC Personal Computer
  • the PC 1 includes a CPU (central processing unit) 11, a system controller 12, an EC (embedded controller) 122, a main memory 13, a GPU (graphics processing unit) 14, a BIOS (basic input/output system)- It has ROM 15 , HDD (hard disk drive) 16 , ODD (optical disc drive) 17 , communication module 18 , power supply circuit 19 and battery 20 .
  • the PC 1 also has a display port 14A to which a display 2A can be connected, a plurality of USB (universal serial bus) ports 12A to which a keyboard 2B, a mouse 2C, etc. can be connected, and a power switch 12B for powering on/off the PC 1. is doing.
  • the display 2A and keyboard 2B are integrated into the PC body, the display 2A is directly connected to the GPU 14 without going through the display port 14A, and the keyboard 2B is connected to the system controller 12 without going through the USB port 12A. Directly connected.
  • the battery 20 consists of, for example, a lithium ion battery.
  • the battery 20 has a predetermined capacity and stores power supplied from an external power supply (commercial power supply) via the AC adapter 2D.
  • the PC 1 has an EC 122 connected to the system controller 12, a battery lamp 12C connected to the EC 122, and a timer 12D provided in the EC 122, as components related to the charging operation of the battery 20.
  • the battery lamp 12C notifies the user of the fully charged state of the battery 20 by lighting the lamp.
  • the timer 12D is used to count the period during which the battery 20 is left in a nearly fully charged state.
  • the CPU 11 comprehensively controls each component in the PC 1.
  • the CPU 11 loads various programs installed in the HDD 16 into the main memory 13 and executes them, and operates each component according to the procedures described in the various programs.
  • the PC 1 functions as various means by causing the CPU 11 to operate each component according to the description of various programs. In other words, various programs can cause the PC 1 to function as various means.
  • Various programs include an OS (operating system) 200, an eco utility 210 that operates under the control of this OS 200, and various other applications 220.
  • the eco utility 210 has a function of arbitrarily setting an eco charging mode, which will be described later, by user operation (see FIG. 4).
  • the CPU 11 executes the processing of the BIOS 150 stored in the BIOS-ROM 15 and the processing of the OS 200 stored in the main memory 13.
  • the main memory 13 consists of volatile memory such as DRAM.
  • the BIOS-ROM 15 consists of non-volatile memory such as EPROM.
  • the HDD 16 stores various data necessary for processing by the CPU 11 and the system controller 12 .
  • the GPU 14 performs display control of the display 2A. Specifically, the GPU 14 displays the display screens output by various programs on the display 2A.
  • the system controller 12 is a bridge device that connects the CPU 11 and each component (excluding some components such as the main memory 13 and GPU 14).
  • the system controller 12 incorporates a USB controller 121 that transmits and receives data to and from USB devices connected to the USB port 12A.
  • USB devices such as a USB memory (flash memory) and an external HDD can be connected to the USB port 12A in addition to the keyboard 2B and mouse 2C.
  • the system controller 12 is connected to an EC (embedded controller) 122 .
  • the EC 122 functions as a power control device that controls charging of the battery 20 .
  • the EC 122 reads from the BIOS-ROM 15 the mode information M1 set by setting up the BIOS 150, which will be described later.
  • the EC 122 has a storage area 122a that stores this mode information M1 together with preset threshold values C1 and C2 for the charge amount of the battery 20, monitoring period T1, and the like.
  • the EC 122 includes a KBC (keyboard controller) function. Power ON/OFF control of the PC 1 is executed by the EC 122 .
  • the EC 122 controls the power supply circuit 19 to start supplying power to the CPU 11 and each component.
  • the mode information M1 stored in the BIOS-ROM 15 is received from the BIOS 150 and stored in the storage area 122a.
  • the mode information M2 stored in the HDD 16 is received from the eco utility 210 and stored in the storage area 122a.
  • the EC 122 controls the power circuit 19 to stop power supply to each component other than the CPU 11 and the EC 122, the power circuit 19, and the power switch 12B. At this time, the information stored in the storage area 122a is held as it is. Therefore, the charging control process of the EC 122 shown in FIG. 6, which will be described later, is executed even when the power switch 12B is turned off.
  • the power supply circuit 19 uses power supplied from the external power supply via the AC adapter 2D to generate operating power for the CPU 11 and each component. This operating power is stored in the battery 20 and used when the AC adapter 2D is not connected to the PC1. Even when the power is off, power is continuously supplied to the EC 122 using the power of the battery 20 .
  • the communication module 18 performs communication conforming to the IEEE 802.3 standard and the IEEE 802.11 standard, for example. Although one communication module 18 is shown in FIG. 1, the PC 1 has a plurality of communication modules 18, each of which performs communication conforming to a predetermined standard.
  • the “100% charge mode” is a mode in which the battery 20 is charged with a 100% charge amount as a fully charged state, and is called a normal charge mode.
  • the "80% charge mode” is a mode in which the battery 20 is charged with a fully charged state of 80%, and is called an eco charge mode.
  • the battery 20 When the AC adapter 2D is connected to the PC 1, the battery 20 receives power from the external power supply and is charged to full charge. Therefore, in order to reduce troubles of the battery 20, it is preferable to switch to the 80% charge mode in which the full charge amount is lowered. However, in general, switching to the 80% charge mode is often forgotten and the 100% charge mode remains. In order to prevent such troubles of the battery 20 due to forgetting to switch, in the present embodiment, the setup function of the BIOS 150 is provided with an "Auto ECO mode" setting function, which will be described later (see FIG. 2).
  • FIG. 2 is a diagram showing an example of the BIOS setup screen.
  • the BIOS setup utility 150A is started by a predetermined operation
  • the BIOS setup screen 30 as shown in FIG. 2 is displayed.
  • the BIOS setup screen 30 has an [eco Charge Mode] item 31 and an [Auto eco Charge Mode] item 32 .
  • Normal ECO mode is a mode in which the battery 20 is charged at 80%.
  • the [Auto eco Charge Mode] item 32 is an item newly added to the BIOS setup. Selecting [Enabled] in this item 32 sets the Auto ECO mode.
  • Auto ECO mode has a 100% charge mode and an 80% charge mode. This mode automatically switches to the 80% charge mode or switches from the 80% charge mode to the 100% charge mode according to the amount of charge in the battery 20 .
  • Normal ECO mode and "Auto ECO mode” are set exclusively. In other words, when the Auto ECO mode is set, the Normal ECO mode cannot be set. Also, as shown in FIG. 3, when the Auto ECO mode is set, the [eco Charge Mode] item 31 on the BIOS setup screen 30 is grayed out. The mode information M1 and the like set on the BIOS setup screen 30 are written in the BIOS-ROM 15, and then the same content is transferred to the storage area 122a in the EC 122 and held in the storage area 122a.
  • FIG. 4 is a diagram showing an example of the eco utility screen.
  • the eco utility screen 40 As shown in FIG. 3 is displayed.
  • the eco utility screen 40 is provided with an item 41 for the user to arbitrarily set the eco charging mode. If this item 41 is turned on, the 80% charge mode is set as the "eco charge mode".
  • the eco utility screen 40 has items 42 and 43 related to message notification. If the item 42 is turned on, a message recommending the eco charge mode (80% charge mode) is notified while the AC adapter 2D is connected. If item 43 is turned on, a message is notified when switching to the general charging method (100 charging mode).
  • the mode information M2 related to the eco charging mode set on the eco utility screen 40 and the like are held in the HDD 16 .
  • the mode information M2 is also reflected in the storage area 122a of the EC 122.
  • FIG. 5 is a diagram showing the relationship between mode setting and actual operation.
  • the 80% charge mode is set by an application (eco utility 210) running on OS 200 or BIOS 150 setup.
  • the full charge flag F is set in the EC 122 when the charge amount of the battery 20 reaches 80%.
  • the fully charged state is notified by lighting the battery lamp 12C.
  • the EC 122 controls so that the charged amount of the battery 20 does not exceed 80% even when power is being supplied from the external power source.
  • the setup of the BIOS 150 is newly provided with an Auto ECO mode setting function.
  • the Auto ECO mode is set to Disable (prohibited)
  • the operation is indicated by the dashed-dotted line in the figure. That is, the 100% charge mode process or the 80% charge mode process is executed according to the setting of the application (eco utility 210) running on the OS 200 or the setup setting of the BIOS 150.
  • the application eco utility 210
  • FIG. 6 is a flow chart showing the charging control process of the EC 122. As shown in FIG. Note that the charging control process shown in this flowchart is controlled by the BIOS 150 . In the initial state, the Auto ECO mode is set, which is the 100% charge mode.
  • the EC 122 reads the mode information M1 held during setup of the BIOS 150 (step S101), and determines whether the Auto ECO mode is set (step S102). If the Auto ECO mode is not set (NO in step S103), either 100% charge mode processing or 80% charge mode processing is performed according to the application (eco utility 210) setting or the normal setting by BIOS 150 setup. is executed. Then, step S101 is repeatedly executed until the mode information indicates the Auto ECO mode. If the Auto ECO mode is set (YES in step S103), the following switching process between 100% charge mode and 80% charge mode is executed.
  • the EC 122 checks the current charge amount of the battery 20 through the power supply circuit 19 (step S103), and determines whether or not the charge amount of the battery 20 exceeds the first threshold value C1. (step S104).
  • the first threshold value C1 is a value close to the full charge of the battery 20, and is set to 90%, for example. If the charge amount of the battery 20 is equal to or less than the first threshold value C1 (NO in step S104), the battery 20 is charged in the 100% charge mode, which is the initial state (step S109).
  • the EC 122 activates the timer 12D and determines that the charge amount of the battery 20 exceeds the first threshold value C1.
  • the period is monitored (step S105).
  • the EC 122 determines that the battery 20 has been left in a fully charged or nearly fully charged state for a long period of time.
  • Switch to % charge mode step S107).
  • the monitoring period T1 is set in consideration of the deterioration characteristics of the battery 20, and is, for example, 30 days. Therefore, in the present embodiment, over the monitoring period T1, when the charge amount of the battery 20 continuously exceeds 90% and is maintained within the range of 100% or less, the 80% charge mode in which the full charge amount is lowered is selected. are switching.
  • FIG. 7 shows the processing when shifting to the 80% charge mode.
  • the EC 122 switches the drive source from the external power source to the battery 20 .
  • the power stored in the battery 20 can be used to supply power to the PC 1 or can be discharged naturally.
  • the battery 20 is discharged to less than 80% charge (step S201), and then the power supply circuit 19 is instructed to bring the fully charged state of the battery 20 to 80%.
  • the battery 20 is always charged by the amount of the decrease as long as the power is supplied from the external power source.
  • the amount is maintained at 80% (step S202).
  • the power supply circuit 19 notifies the EC 122 of the completion of charging, and the full charge flag F is set in the EC 122 . Accordingly, the EC 122 lights the battery lamp 12C to notify that the battery 20 is fully charged (step S203).
  • the EC 122 checks the current charge amount of the battery 20 through the power supply circuit 19 (step S108), and determines that the charge amount of the battery 20 is higher than the second threshold value C1. It is determined whether or not it has decreased (step S109). For example, when the user removes the AC adapter 2D from the PC 1 and operates the PC 1, the charging operation is not performed, so the charging amount of the battery 20 gradually decreases. At this time, the full charge flag F is reset, and the lighting of the battery lamp 12C is also extinguished.
  • the EC 122 switches from the 80% charge mode to the 100% charge mode (step S100).
  • the second threshold C2 is set in consideration of the battery drive time and the like, and is, for example, 50%. That is, when the charge amount of the battery 20 reaches 50%, the 100 charge mode is restored.
  • FIG. 8 shows the processing when shifting to the 100% charge mode.
  • the EC 122 After resetting the value of the timer 12D (step S301), the EC 122 instructs the power supply circuit 19 to set the fully charged state of the battery 20 to 100%.
  • the battery 20 is charged to 100% (step S302).
  • the power supply circuit 19 notifies the EC 122 of the completion of charging, and the full charge flag F is set in the EC 122 . Accordingly, the EC 122 lights the battery lamp 12C to notify that the battery 20 is fully charged (step S203). Thereafter, returning to step S103, the 100% charge mode and the 80% charge mode are repeated according to the state of charge of the battery 20.
  • FIG. 9 is a diagram showing the relationship between the 100% charge mode/80% charge mode switching operation in the Auto ECO mode and the charge amount of the battery 20.
  • the AC adapter 2D is connected to the PC 1 and the battery 20 is charged in the initial state of 100% charge mode.
  • the mode is switched to the 80% charge mode at the timing when the monitoring period T1 elapses after the state in which the charge amount of the battery 20 exceeds 90%, which is the first threshold value C1.
  • the battery 20 is not charged to 100% and is maintained at 80%. Therefore, troubles of the battery 20 due to excessive charging can be prevented.
  • the 80% charge mode is switched to the 100% charge mode when the charge amount of the battery 20 becomes less than 50%, which is the second threshold value C2.
  • the AC adapter 2D is connected to the PC 1 to supply power, the battery 20 can be fully charged to 100%, thereby extending the battery driving time.
  • the battery 20 is charged to 100% for users who frequently use the PC 1 as a mobile terminal, and for users who mainly use the PC 1 on a desk or the like by connecting it to the AC adapter 2D. It is possible to prevent troubles of the battery 20 by optimal charging control according to the usage of the user, such as charging the battery 20 at 80%.
  • the life of the battery 20 can be extended by preventing careless charging to 100%.
  • the power consumption of the PC 1 is large when the charge amount of the battery 20 is gradually decreasing. Therefore, in the 80% charge mode, only the state of charge of the battery 20 is used as a condition to control the transition to the 100% charge mode, thereby eliminating unnecessary monitoring and control as much as possible. As a result, it is possible to prevent an unnecessary increase in power consumption, and it is possible to prevent a decrease in operating time even when the AC adapter 2D is not connected.
  • the charging amount of the battery 20 is monitored in the Auto ECO mode, and the mode is switched from the 100% charge mode to the 80% charge mode (see FIG. 10), but the connection state of the AC adapter 2D is monitored. Then, it is possible to estimate whether or not the power supply from the external power source can be received, and switch from the 100% charge mode to the 80% charge mode.
  • the connection state of the AC adapter 2D and the charge amount of the battery 20 may be ANDed or ORed as a condition for switching.
  • the connection state of the AC adapter 2D may be detected by providing a switch that interlocks with the connection port of the AC adapter 2D provided in the PC 1 when the plug of the AC adapter 2D is inserted.
  • the connection state of the AC adapter 2D may be detected by the power supply circuit 19 detecting the current from the AC adapter 2D.
  • FIG. 10 shows a flowchart for monitoring the connection state of the AC adapter 2D and switching from the 100% charge mode to the 80% charge mode.
  • the Auto ECO mode is set (YES in steps S401-S402), the following switching process between 100% charge mode and 80% charge mode is executed.
  • the EC 122 checks the connection state of the AC adapter 2D through the power supply circuit 19 (step S403). If the AC adapter 2D is connected (YES in step S403), the EC 122 activates the timer 12D and switches to the 80% charge mode after the monitoring period T2 has elapsed (steps S404-S407).
  • the monitoring period T2 may have the same value as or a different value from the monitoring period T1 in FIG. Therefore, in the present embodiment, the mode is switched to the 80% charge mode in which the full charge amount is lowered while the connection of the AC adapter 2D is maintained over the monitoring period T2.
  • the transition control from the 80% charge mode to the 100% charge mode is executed based only on the amount of charge in the battery 20, not the connected state of the AC adapter 2D. Specifically, when the charge amount of the battery 20 becomes less than 50%, which is the second threshold value C2, the mode is switched to the 100% charge mode (steps S408-S411). Thus, by switching to the 80% charge mode when the AC adapter 2D is connected for a certain period of time, it is possible to reduce troubles of the battery 20 as in the above-described embodiment.
  • the EC 122 is provided with a function as a power supply control device, but this function may be provided in the power supply circuit 19, for example.
  • a PC was used as an example, but the present invention can be applied to all electronic devices, such as tablet terminals and smartphones, as long as they are electronic devices equipped with a battery.
  • the method described in the above embodiment is a program that can be executed by a computer. It is also possible to apply The computer reads the program recorded on the recording medium, and executes the above-described processing under the control of the program. In the example of FIG. 1, by installing the program in the PC 1 through a recording medium such as the HDD 16 or the ODD 17, the same effects as in the present embodiment can be easily achieved.
  • an electronic device a battery charging control method, and a program that can reduce the occurrence of battery troubles by optimal charging control according to usage conditions without the user's awareness. can provide.
  • FIG. 11 is a diagram showing a configuration example of an electronic device according to the second embodiment. As in the first embodiment, the second embodiment will also be described using a PC as an example of an electronic device. The same reference numerals are used for the same components as in the first embodiment, and redundant description of the same components is omitted.
  • the battery 20 has a temperature sensor 20a.
  • the EC 122 acquires the temperature of the battery 20 detected by the temperature sensor 20a via the power supply circuit 19, for example, every five minutes.
  • the battery 20 of the first embodiment may also have the temperature sensor 20a.
  • the temperature sensor 20a is not limited to the one provided in the battery 20, and may be provided in the vicinity of the battery 20, for example.
  • the EC 122 in the second embodiment further controls switching between the 100% charge mode/80% charge mode in the Auto ECO mode according to the temperature state of the battery 20 as described in the first embodiment.
  • the storage area 122a of the ECC 122 in addition to the thresholds C1 and C2 for the charge amount of the battery 20 and the monitoring period T1, the monitoring period T2 and the threshold X1 for the temperature of the battery 20 are stored. Also, the timer 12D of the EC 122 can count a plurality of elapsed times.
  • the ECC 122 calculates, for example, the average temperature of the battery 20 over the last hour each time the temperature of the battery 20 detected by the temperature sensor 20a is obtained. When acquiring the temperature of the battery 20 every 5 minutes, the ECC 122 calculates an average of 12 acquired temperatures in order of newest.
  • the ECC 122 when in the 100% charge mode under the Auto ECO mode, the ECC 122 first determines whether the average temperature of the battery 20 exceeds the threshold value X1.
  • the threshold value X1 is set in consideration of deterioration characteristics of the battery 20 and the like. For example, if the battery 20 is a lithium ion battery, the threshold value X1 is set to 45° C., for example, as the high temperature of "left at high temperature", which is one of the conditions for advancing deterioration.
  • the AC adapter 2D is always connected and power is continuously supplied from the external power supply via the AC adapter 2D. More specifically, in a situation where the charge level of the battery 20 is at a high level of 90% or more, for example, charging to compensate for the natural discharge is intermittently performed using power supplied from an external power supply. is assumed. Intermittent charging of the nearly fully charged battery 20 causes heat generation.
  • the ECC 122 monitors the duration in which the average temperature of the battery 20 exceeds the threshold X1.
  • the ECC 122 switches the charging mode of the battery 20 from the current 100% charging mode to the 80% charging mode when the duration of the state in which the average temperature of the battery 20 exceeds the threshold X1 reaches the monitoring period T2.
  • the monitoring period T2 is, for example, 24 hours.
  • the EC 122 when shifting to the 80% charge mode, switches the drive source from the external power supply to the battery 20 and discharges the battery 20 until the charge amount becomes less than 80%. After the completion of this discharge, the EC 122 switches the drive source from the battery 20 to the external power supply, and instructs the power supply circuit 19 to bring the battery 20 to a fully charged state of 80%.
  • the charging for compensating for the natural discharge is performed when the charge amount of the battery 20 is less than 80%.
  • the ECC 122 prevents intermittent charging of the battery 20 in a nearly fully charged (100%) state, which causes heat generation.
  • "left at high temperature" which is one of the conditions for progress of deterioration, is eliminated.
  • the EC 122 uses, for example, the battery lamp 12C to notify the user that switching from the 100% charging mode to the 80% charging mode is recommended. may
  • the ECC 122 uses the average temperature of the battery 20 to determine whether to switch from the 100% charge mode to the 80% charge mode. to prevent
  • the ECC 122 determines whether the average temperature of the battery 20 is equal to or less than the threshold value X1.
  • the ECC 122 determines whether the charge amount of the battery 20 is equal to or lower than the threshold C2.
  • the threshold C2 is set in consideration of the battery drive time and the like, and is set to 50%, for example.
  • the ECC 122 switches the charging mode of the battery 20 from the current 80% charging mode to the 100% charging mode when the average temperature of the battery 20 is equal to or less than the threshold X1 and the amount of charge of the battery 20 is equal to or less than the threshold C2. . That is, the charge mode of the battery 20 is returned to the 100% charge mode.
  • FIG. 12 is a flow chart showing the first charging control process of the EC 122 in the second embodiment. As in the first embodiment, the charging control process shown in this flowchart is controlled by the BIOS 150 . In the initial state, the Auto ECO mode is set, which is the 100% charge mode.
  • the EC 122 starts recording the temperature of the battery 20 by acquiring the temperature from the temperature sensor 20a of the battery 20 through the power supply circuit 19 at predetermined intervals such as every five minutes (step S501).
  • the EC 122 also reads the mode information M1 held during setup of the BIOS 150 (step S502), and determines whether or not the Auto ECO mode is set (step S503). If the Auto ECO mode is not set (NO in step S503), either 100% charge mode processing or 80% charge mode processing is performed according to the application (eco utility 210) setting or the normal setting by BIOS 150 setup. is executed. Then, step S502 is repeatedly executed until the mode information indicates the Auto ECO mode. If the Auto ECO mode is set (YES in step S503), the following switching process between 100% charge mode and 80% charge mode is executed.
  • the EC 122 checks the current charge amount of the battery 20 through the power supply circuit 19 (step S504), and determines whether or not the charge amount of the battery 20 exceeds the first threshold value C1. (step S505). If the charge amount of the battery 20 is equal to or less than the first threshold value C1 (NO in step S505), the battery 20 is charged in the 100% charge mode, which is the initial state.
  • Step S505 if the charge amount of the battery 20 exceeds the first threshold value C1 (YES in step S505), the EC 122 activates the timer 12D (timer 1) so that the charge amount of the battery 20 exceeds the first threshold value C1. is monitored (step S506).
  • the EC 122 determines that the battery 20 has been left in a fully charged or nearly fully charged state for a long period of time, and the 100% The charge mode is switched to the 80% charge mode (step S512).
  • Steps S502 to S507 and step S517 correspond to the flow of control for switching from the 100% charge mode to the 80% charge mode according to the charge amount of the battery 20 described in the first embodiment (steps in FIG. 6 S101 to S107).
  • the EC 122 uses the temperature of the battery 20 whose recording was started in step S501 to determine the most recent temperature, such as 24 hours.
  • the average temperature of the battery 20 for a predetermined period is acquired (step S508).
  • the EC 122 determines whether or not the average temperature of the battery 20 is equal to or higher than the threshold value X1 (step S509).
  • the EC 122 activates the timer 12D (timer 2) to monitor the period during which the average temperature of the battery 20 is equal to or higher than the threshold X1 (step S510). If the value of the timer 12D (timer 2) exceeds the monitoring period T2 (YES in step S510), the EC 122 determines that the battery 122 has been left in a high temperature state for a long period of time, and exits the 100% charge mode. Switch to 80% charge mode (step S512). Steps S508 to S512 are the control flow for switching from the 100% charge mode to the 80% charge mode according to the average temperature of the battery 20, which is added in the second embodiment. The order of steps S502 to S507 and steps S508 to S512 may be interchanged.
  • step S509 If the average temperature of the battery 20 is less than the threshold value X1 (NO in step S509), or if the value of the timer 12D (timer 2) does not exceed the monitoring period T2 (NO in step S510), the EC 122 proceeds to step S504. and repeat the above process.
  • the EC 122 After switching to the 80% charge mode, the EC 122 checks the current charge amount of the battery 20 through the power supply circuit 19 (step S513), and determines whether the charge amount of the battery 20 has decreased below the second threshold value C1. Determine (step S514). If the charge amount of the battery 20 has fallen below the second threshold value C2 (YES in step S514), the EC 122 uses the temperature of the battery 20 whose recording was started in step S501, and uses the temperature of the battery 20 for the most recent predetermined time period, such as 24 hours. The average temperature of the battery 20 for the period is obtained (step S514). The EC 122 then determines whether or not the average temperature of the battery 20 has decreased below the threshold X1 (step S516).
  • step S517 the 80% The charge mode is switched to the 100% charge mode (step S517). After switching to the 100% charge mode, the EC 122 returns to step S504 and repeats the above processing.
  • Steps S513 to S514 and step S517 correspond to the flow of control for switching from the 80% charge mode to the 100% charge mode according to the charge amount of the battery 20 described in the first embodiment (steps in FIG. 6 S108-S110).
  • Steps S515 to S517 are the control flow for switching from the 800% charge mode to the 100% charge mode according to the average temperature of the battery 20, which is added in the second embodiment.
  • the order of steps S513 to S514 and steps S515 to S516 may be interchanged.
  • FIG. 13 is a flowchart showing the second charging control process of the EC 122 in the second embodiment.
  • the difference from the first charging control process is that the second charging control process includes steps S601 and S602 between steps S509 and S510.
  • the EC 122 checks the connection state of the AC adapter 2D through the power supply circuit 19 (step S601). If the AC adapter 2D is connected (YES in step S602), the EC 122 activates the timer 12D (timer 2) to monitor the period during which the average temperature of the battery 20 is equal to or higher than the threshold value X1 (step S510). If the AC adapter 2D is not connected (NO in step S602), the EC 122 returns to step S504 and repeats the above processing.
  • one of the use cases of the PC 1 in which the average temperature of the battery 20 exceeds the threshold value X1 is the case where the AC adapter 2D is always connected and power is continuously supplied from the external power supply via the AC adapter 2D. is assumed. If the AC adapter 2D is disconnected, it is expected that the average temperature of the battery 20 will decrease thereafter. may determine whether to start monitoring the period in which the average temperature of is equal to or higher than the threshold value X1. Also, in the present embodiment, the connection state of the AC adapter is confirmed, but even if a mobile battery or the like is connected in addition to the AC adapter, the connection is confirmed in the same manner. It may be determined whether to start monitoring the period in which the average temperature is equal to or higher than the threshold value X1. Also, an AC adapter, a mobile battery, and the like are referred to as an external power supply device in this specification.
  • the second embodiment in addition to controlling the switching of the 100% charge mode/80% charge mode in the Auto ECO mode according to the charge amount of the battery 20 described in the first embodiment, Therefore, by performing control according to the average temperature of the battery 20, it is possible to perform the operation more appropriately according to the usage conditions.
  • controlling the switching of the 100% charge mode/80% charge mode in the Auto ECO mode according to the average temperature of the battery 20 described in the second embodiment is controlled according to the amount of charge of the battery 20. Appropriate execution according to the usage situation can be realized even if it is applied alone, without necessarily being combined with doing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一実施形態に係る電子機器は、バッテリと、第1の充電量を満充電状態として外部電源からの電力を前記バッテリに充電する第1の充電モードと、前記第1の充電量よりも低く設定された第2の充電量を満充電状態として前記外部電源からの電力を前記バッテリに充電する第2の充電モードとを有する電源制御手段とを具備する。前記電源制御手段は、前記第1の充電モード時に、前記バッテリが満充電状態または満充電状態に近い状態あるいは外部電源から電力を受給可能な状態で一定期間経過している場合に、前記第1の充電モードから前記第2の充電モードへの切り替えを行い、前記第1の充電モードから前記第2の充電モードに切り替えた際に、前記バッテリの充電量を前記第2の充電量まで放電した後、前記第2の充電量を維持するように前記バッテリの充電動作を制御し、前記第2の充電モード時に、前記バッテリの充電量に対して設定された閾値に基づいて、前記第2の充電モードから前記第1の充電モードへの切り替えを行う。

Description

電子機器、バッテリ充電制御方法及びプログラム
 本発明の実施形態は、電子機器、バッテリ充電制御方法及びプログラムに関する。
 例えば、ノート型PC(Personal Computer)等の持ち運び可能な電子機器には、電源としてバッテリ(二次電池)が備えられている。バッテリは、充放電動作の繰り返しによって劣化や、膨張する特性を有する。そのため、バッテリの充放電動作を監視し、一定回数に達したときにユーザに通知するなどの対策を行っている。
 ところが、バッテリに生ずるトラブル原因は、充放電動作の繰り返しだけでなく、満充電状態での放置や高温状態での放置も含まれる。例えば、PCにACアダプタを常時接続した状態にあると、満充電状態のまま放置されてしまい、充放電回数が少なくても、バッテリにトラブルが発生する。
 従来、バッテリが満充電状態に近い状態が一定期間続いた場合に、強制放電によりバッテリの充電量を一定量(例えば60%)まで下げる方法が知られている。しかしながら、バッテリの充電量を下げても、ACアダプタが接続されていれば、再び満充電状態になる。このため、充放電動作が繰り返され、結果的にバッテリのトラブルが発生しやすい状況になってしまう。また、バッテリが高温の状態が一定期間続いた場合も、バッテリの充電に関して何らかの対策を施すことが好ましい。
特許第3157369号公報 特許第6860172号公報
 バッテリの充電制御機能の1つとして、バッテリの充電量を一定量(例えば80%)までに抑える機能がある。しかし、ユーザが所定の操作により意識的に当該機能を設定しておく必要があるため、設定忘れによってバッテリのトラブルを発生させてしまうことが多い。また、当該機能により常時バッテリの充電量が抑えられた状態にあると、バッテリ駆動時間が短くなるため、電子機器をモバイルで使用するときに不具合がある。
 本発明が解決しようとする課題は、ユーザが意識しなくとも、使用状況に応じた最適な充電制御によりバッテリのトラブルの発生を低減することのできる電子機器、バッテリ充電制御方法及びプログラムを提供することである。
 一実施形態に係る電子機器は、バッテリと、第1の充電量を満充電状態として外部電源からの電力を前記バッテリに充電する第1の充電モードと、前記第1の充電量よりも低く設定された第2の充電量を満充電状態として前記外部電源からの電力を前記バッテリに充電する第2の充電モードとを有する電源制御手段とを具備する。前記電源制御手段は、前記第1の充電モード時に、前記バッテリが満充電状態または満充電状態に近い状態あるいは前記外部電源から電力を受給可能な状態で一定期間経過している場合に、前記第1の充電モードから前記第2の充電モードへの切り替えを行い、前記第1の充電モードから前記第2の充電モードに切り替えた際に、前記バッテリの充電量を前記第2の充電量まで放電した後、前記第2の充電量を維持するように前記バッテリの充電動作を制御し、前記第2の充電モード時に、前記バッテリの充電量に対して設定された閾値に基づいて、前記第2の充電モードから前記第1の充電モードへの切り替えを行う。
図1は一実施形態に係る電子機器の一構成例を示す図である。 図2は同実施形態におけるBIOSセットアップ画面の一例を示す図である。 図3は同実施形態におけるBIOSセットアップ画面上の表示方式を説明するための図である。 図4は同実施形態におけるecoユーティリティ画面の一例を示す図である。 図5は同実施形態におけるモード設定と実際の動作との関係を示す図である。 図6は同実施形態におけるECの充電制御処理を示すフローチャートである。 図7は同実施形態における80%充電モードに移行したときの処理を示すフローチャートである。 図8は同実施形態における100%充電モードに移行したときの処理を示す。 図9は同実施形態における100%充電モード/80%充電モードの切り替え動作と、バッテリの充電量との関係を示す図である。 図10は変形例としてのECの充電制御処理を示すフローチャートである。 図11は第2実施形態に係る電子機器の一構成例を示す図である。 図12は第2実施形態におけるECの第1の充電制御処理(外部電源チェック無し)を示すフローチャートである。 図13は第2実施形態におけるECの第2の充電制御処理(外部電源チェック有り)を示すフローチャートである。
 以下、図面を参照して実施形態を説明する。
 なお、開示はあくまで一例にすぎず、以下の実施形態に記載した内容により発明が限定されるものではない。当業者が容易に想到し得る変形は、当然に開示の範囲に含まれる。説明をより明確にするため、図面において、各部分のサイズ、形状等を実際の実施態様に対して変更して模式的に表す場合もある。複数の図面において、対応する要素には同じ参照数字を付して、詳細な説明を省略する場合もある。
 (第1実施形態)
 図1は一実施形態に係る電子機器の一構成例を示す図である。ここでは、電子機器として、PC(Personal Computer)を例にして説明する。
 図1に示すように、PC1は、CPU(central processing unit)11、システムコントローラ12、EC(embedded controller)122、主メモリ13、GPU(graphics processing unit)14、BIOS(basic input/output system)-ROM15、HDD(hard disk drive)16、ODD(optical disc drive)17、通信モジュール18、電源回路19、バッテリ20を有している。
 また、PC1は、ディスプレイ2Aを接続可能なディスプレイポート14A、キーボード2Bやマウス2Cなどを接続可能な複数のUSB(universal serial bus)ポート12A、PC1を電源オン/オフするための電源スイッチ12Bを有している。PC1がノート型の場合、ディスプレイ2Aとキーボード2BはPC本体に一体化され、ディスプレイ2Aはディスプレイポート14Aを介さずにGPU14に直接接続され、キーボード2BはUSBポート12Aを介さずにシステムコントローラ12に直接接続される。
 バッテリ20は、例えばリチウムイオン電池からなる。バッテリ20は、所定の容量を有し、外部電源(商用電源)からACアダプタ2Dを介して供給される電力を蓄える。PC1には、このバッテリ20の充電動作に関わる構成要素として、システムコントローラ12に接続されたEC122と、EC122に接続されたバッテリランプ12C、EC122内に備えられたタイマ12Dを有している。バッテリランプ12Cは、バッテリ20の満充電状態をランプの点灯によりユーザに通知する。タイマ12Dは、バッテリ20が満充電に近い状態で放置されている期間などをカウントするために用いられる。
 CPU11は、PC1内の各コンポーネントを統合的に制御する。CPU11は、HDD16にインストールされている各種プログラムを主メモリ13にロードして実行し、各種プログラムで記述される手順に従い、各コンポーネントを稼働させる。各種プログラムの記述に則ってCPU11が各コンポーネントを稼働させることで、PC1は、様々な手段として機能する。つまり、各種プログラムにより、PC1を様々な手段として機能させることができる。
 各種プログラムの中には、OS(operating system)200、このOS200の制御下で動作するecoユーティリティ210、その他の各種アプリケーション220などが含まれる。ecoユーティリティ210は、ユーザ操作により、後述するeco充電モードを任意に設定する機能を備える(図4参照)。
 CPU11は、BIOS-ROM15に格納されているBIOS150の処理と、主メモリ13に格納されているOS200の処理を実行する。主メモリ13は、DRAMなどの揮発性メモリからなる。BIOS-ROM15は、EPROMなどの不揮発性メモリからなる。HDD16は、CPU11やシステムコントローラ12の処理に必要な各種データを記憶する。GPU14は、ディスプレイ2Aの表示制御を行う。具体的には、GPU14は、各種プログラムが出力する表示画面をディスプレイ2Aに表示する。
 システムコントローラ12は、CPU11と、各コンポーネント(主メモリ13やGPU14などの一部コンポーネントを除く)との間を繋ぐブリッジデバイスである。システムコントローラ12は、USBポート12Aに接続されるUSBデバイスとの間でデータを送受信するUSBコントローラ121を内蔵している。USBポート12Aには、キーボード2Bやマウス2Cのほか、USBメモリ(フラッシュメモリ)や外付けHDDなどといった様々なUSBデバイスを接続することができる。
 また、システムコントローラ12は、EC(embedded controller)122に接続されている。本実施形態では、このEC122がバッテリ20の充電制御を行う電源制御装置として機能する。EC122は、後述するBIOS150のセットアップで設定されたモード情報M1をBIOS-ROM15から読み込む。EC122は、このモード情報M1を予め設定されたバッテリ20の充電量に対する閾値C1,C2、監視期間T1などともに記憶する記憶領域122aを有する。
 なお、EC122には、KBC(keyboard controller)の機能が含まれる。PC1の電源オン/オフの制御は、EC122によって実行される。電源スイッチ12Bがオンした場合、EC122は、電源回路19を制御して、CPU11および各コンポーネントに対する電力供給を開始する。その際、BIOS-ROM15に記憶されたモード情報M1をBIOS150から受け取り、記憶領域122aに記憶をさせる。また、OS200が立ち上がった後に、HDD16に記憶されたモード情報M2をecoユーティリティ210から受け取り、同じく記憶領域122aに記憶させる。電源スイッチ12Bがオフした場合、EC122は、電源回路19を制御して、CPU11およびEC122、電源回路19、電源スイッチ12B以外の各コンポーネントに対する電力供給を停止する。この時、記憶領域122aに記憶された情報は、そのまま保持されている。そのため、後述する図6に示したEC122の充電制御処理は、電源スイッチ12Bがオフした場合でも、実行される。
 PC1にACアダプタ2Dが接続されている場合、電源回路19は、外部電源からACアダプタ2Dを介して供給される電力を用いて、CPU11および各コンポーネントの動作用電力を生成する。この動作用電力はバッテリ20に蓄えられ、PC1にACアダプタ2Dが接続されていない場合に利用される。電源オフの状態にある場合でも、EC122に対する電力供給は、バッテリ20の電力を利用して継続的に行われている。
 通信モジュール18は、例えば、IEEE 802.3規格やIEEE 802.11規格に準拠した通信を実行する。なお、図1には、1つの通信モジュール18を示しているが、PC1は、各々が所定の規格に準拠した通信を実行する複数の通信モジュール18を有している。
 次に、バッテリ20の充電モードについて説明する。
 ユーザは、アプリケーションであるecoユーティリティ210を用いて、100%充電モードと80%充電モードを任意に設定できる。「100%充電モード」は、100%の充電量を満充電状態としてバッテリ20を充電するモードであり、通常充電モードと呼ばれる。「80%充電モード」は、80%の充電量を満充電状態としてバッテリ20を充電するモードであり、eco充電モードと呼ばれる。
 PC1にACアダプタ2Dが接続されている場合、バッテリ20は、外部電源からの電力を受けて満充電まで充電される。このため、バッテリ20のトラブルを低減するために、満充電量を低くした80%充電モードに切り替えておくことが好ましい。しかしながら、一般的には80%充電モードへの切り替えを忘れて、100%充電モードのままであることが多い。このような切り替え忘れによるバッテリ20のトラブルを防ぐために、本実施形態では、BIOS150のセットアップに、後述する「Auto ECOモード」の設定機能を設けている(図2参照)。
 図2はBIOSセットアップ画面の一例を示す図である。
 所定の操作により、BIOSセットアップユーティリティ150Aを起動すると、図2に示すようなBIOSセットアップ画面30が表示される。このBIOSセットアップ画面30には、[eco Charge Mode]項目31と、[Auto eco Charge Mode]項目32が設けられている。
 [eco Charge Mode]項目31の中で[Enabled]を選択するとNormal ECOモードが設定される。「Normal ECOモード」は、バッテリ20を80%で充電するモードである。[Auto eco Charge Mode]項目32は、新たにBIOSセットアップに追加された項目である。この項目32の中で[Enabled]を選択すると、Auto ECOモードが設定される。「Auto ECOモード」は、100%充電モードと80%充電モードを有し、バッテリ20の充電量と、その充電量が所定の範囲内に維持されている経過時間に応じて100%充電モードから80%充電モードへの切り替え、あるいは、バッテリ20の充電量に応じて80%充電モードから100%充電モードへの切り替えを自動的に行うモードである。
 ここで、「Normal ECOモード」と「Auto ECOモード」は排他的に設定される。つまり、Auto ECOモードが設定されている場合には、Normal ECOモードは設定できない仕組みになっている。また、図3に示すように、Auto ECOモードが設定されている場合、BIOSセットアップ画面30上の[eco Charge Mode]項目31はグレーアウト表示となる。このBIOSセットアップ画面30で設定されるモード情報M1などは、BIOS-ROM15に書き込まれ、その後、EC122内の記憶領域122aにも同じ内容が転送され、記憶領域122aにも保持される。
 図4はecoユーティリティ画面の一例を示す図である。
 所定の操作により、ecoユーティリティ210を起動すると、図3に示すようなecoユーティリティ画面40が表示される。ecoユーティリティ画面40には、ユーザがeco充電モードを任意に設定するための項目41が設けられている。この項目41をオンにすれば、「eco充電モード」として、80%充電モードが設定される。
 なお、ecoユーティリティ画面40には、メッセージ通知に関する項目42,43が設けられている。項目42をオンにすれば、ACアダプタ2Dを接続しているときに、eco充電モード(80%充電モード)を推奨するメッセージが通知される。項目43をオンにすれば、一般的な充電方式(100充電モード)に切り替えたときにメッセージが通知される。このecoユーティリティ画面40で設定されるeco充電モードに関するモード情報M2などは、HDD16に保持される。また、モード情報M2はEC122の記憶領域122aにも反映される。
 図5はモード設定と実際の動作との関係を示す図である。
 80%充電モードは、OS200上で動作するアプリケーション(ecoユーティリティ210)またはBIOS150のセットアップで設定される。80%充電モードでは、バッテリ20の充電量が80%になったときに、EC122に満充電フラグFがセットされる。この場合、OS200上から確認できるバッテリ20の充電量は80%であるが、バッテリランプ12Cの点灯によって満充電状態が通知される。そして、外部電源から電力が供給されている状態であっても、バッテリ20の充電量80%を超えないように、EC122によって制御する。
 上述したように、BIOS150のセットアップに新たにAuto ECOモードの設定機能が設けられている。Auto ECOモードがDisable(禁止)に設定されている場合には、図中の一点鎖線で囲んだ動作になる。つまり、OS200上で動作するアプリケーション(ecoユーティリティ210)の設定またはBIOS150のセットアップによる設定に従って、100%充電モードの処理または80%充電モードの処理が実行される。
 一方、Auto ECOモードがEanble(許可)に設定されている場合には、バッテリ20の充電量に応じて、100%充電モードと80%充電モードが自動的に切り替えられて実行される。ただし、OS200上で動作するアプリケーション(ecoユーティリティ210)によって80%充電モードがEanble(許可)に設定されている場合には、ユーザの意図的な設定であるため、当該アプリケーションの設定が優先される。
 以下に具体的な動作について説明する。
 図6はEC122の充電制御処理を示すフローチャートである。なお、このフローチャートで示される充電制御処理は、BIOS150によって制御されている。初期状態では、Auto ECOモードが設定されており、100%充電モードである。
 まず、EC122は、BIOS150のセットアップ時に保持されたモード情報M1をリードし(ステップS101)、Auto ECOモードが設定されているか否かを判定する(ステップS102)。Auto ECOモードが設定されていない場合(ステップS103のNO)、アプリケーション(ecoユーティリティ210)の設定またはBIOS150のセットアップによる通常設定に従って、100%充電モードの処理または80%充電モードの処理のどちらか一方が実行される。そして、モード情報がAuto ECOモードになるまで、ステップS101が繰り返し実行される。Auto ECOモードが設定されている場合(ステップS103のYES)、以下のような100%充電モードと80%充電モードの切り替え処理が実行される。
 すなわち、100%充電モードのとき、EC122は、電源回路19を通じて現在のバッテリ20の充電量を確認し(ステップS103)、バッテリ20の充電量が第1の閾値C1を超えているか否かを判定する(ステップS104)。第1の閾値C1は、バッテリ20の満充電に近い値であり、例えば90%に設定されている。バッテリ20の充電量が第1の閾値C1以下であれば(ステップS104のNO)、初期状態である100%充電モードでバッテリ20が充電される(ステップS109)。
 一方、バッテリ20の充電量が第1の閾値C1を超えていた場合(ステップS104のYES)、EC122は、タイマ12Dを起動して、バッテリ20の充電量が第1の閾値C1を超えている期間を監視する(ステップS105)。タイマ12Dの値が監視期間T1を超えると(ステップS106のYES)、EC122は、バッテリ20が満充電あるいは満充電に近い状態で長期間放置されているものと判断し、100%充電モードから80%充電モードに切り替える(ステップS107)。監視期間T1は、バッテリ20の劣化特性などを考慮して設定されており、例えば30日である。したがって、本実施形態では、監視期間T1にわたって、連続的にバッテリ20の充電量が90%を超え、100%以下の範囲内で維持されているときに満充電量を低くした80%充電モードに切り替えている。
 図7に80%充電モードに移行したときの処理を示す。
 EC122は、駆動源を外部電源からバッテリ20に切り替える。そして、外部電源からACアダプタ2Dを介して電力が供給される状態であっても、バッテリ20に蓄電された電力を用いてPC1に費やされる電力を供給したり、自然に放電したりすることで、充電量が80%未満になるまで放電した後(ステップS201)、バッテリ20の満充電状態を80%とするように電源回路19に指示する。これにより、例えば自然放電などにより、バッテリ20の充電量が80%よりも減少したとしても、外部電源から電力が供給された状態にあれば、その減少分が充電されて、常にバッテリ20の充電量が80%の状態で維持される(ステップS202)。
 また、バッテリ20の充電量が80%になると、電源回路19からEC122に充電完了通知があり、EC122に満充電フラグFがセットされる。これにより、EC122は、バッテリランプ12Cを点灯して、バッテリ20が満充電状態にあることを通知する(ステップS203)。
 図6に戻って、80%充電モードへの切り替え後、EC122は、電源回路19を通じて現在のバッテリ20の充電量を確認し(ステップS108)、バッテリ20の充電量が第2の閾値C1よりも低下したか否かを判定する(ステップS109)。例えば、ユーザがPC1からACアダプタ2Dを外してPC1を操作している場合には、充電動作が行われないので、バッテリ20の充電量が徐々に低下していく。このとき、満充電フラグFはリセットされ、バッテリランプ12Cの点灯も消えている。
 ここで、バッテリ20の充電量が第2の閾値C2未満に低下したことを確認すると(ステップS109のYES)、EC122は、80%充電モードから100充電モードに切り替える(ステップS100)。第2の閾値C2は、バッテリ駆動時間などを考慮して設定されており、例えば50%である。つまり、バッテリ20の充電量が50%になると、100充電モードに復帰する。
 図8に100%充電モードに移行したときの処理を示す。
 EC122は、タイマ12Dの値をリセットした後(ステップS301)、バッテリ20の満充電状態を100%とするように電源回路19に指示する。これにより、例えばユーザがPC1にACアダプタ2Dを接続したときに、バッテリ20の充電量が100%になるまで充電される(ステップS302)。
 また、バッテリ20の充電量が100%になると、電源回路19からEC122に充電完了通知があり、EC122に満充電フラグFがセットされる。これにより、EC122は、バッテリランプ12Cを点灯して、バッテリ20が満充電状態にあることを通知する(ステップS203)。以後、前記ステップS103に戻って、バッテリ20の充電状態に応じて、100%充電モードと80%充電モードが繰り返されることになる。
 図9はAuto ECOモードによる100%充電モード/80%充電モードの切り替え動作とバッテリ20の充電量との関係を示す図である。
 PC1にACアダプタ2Dが接続され、初期状態である100%充電モードでバッテリ20が充電されているとする。バッテリ20の充電量が第1の閾値C1である90%を超えた状態が監視期間T1経過したときのタイミングで80%充電モードに切り替えられる。このとき、PC1にACアダプタ2Dが接続された状態にあっても、バッテリ20は100%まで充電されず、80%の状態で維持される。したがって、過度な充電によるバッテリ20のトラブルを防ぐことができる。
 一方、80%充電モードでは、バッテリ20の充電量が第2の閾値C2である50%未満になったときに、100%充電モードに切り替えられる。このとき、PC1にACアダプタ2Dを接続して給電状態とすれば、バッテリ20を100%までフルに充電できるので、バッテリ駆動時間を延ばすことができる。
 このように本実施形態によれば、例えばPC1を頻繁にモバイル端末として利用するユーザにはバッテリ20を100%で充電し、主に机上などでPC1をACアダプタ2Dに接続して利用するユーザにはバッテリ20を80%で充電するといった、利用者の使い方に合わせた最適な充電制御によってバッテリ20のトラブルを防ぐことができる。
 特に、80%充電モードから100%充電モードに戻すときに、バッテリ20の充電量に対して設定された閾値(C2)を用いることで、例えばACアダプタ2Dの接続状態などの外部給電の状態によって復帰させる方法と違って、不用意に100%まで充電してしまうことを防いで、バッテリ20の長寿命化を図ることができる。
 また、バッテリ20の充電量が逐次減少していく状況下においては、PC1への消費電力が大きい。したがって、80%充電モード時においては、バッテリ20の充電量のみを条件にして、100%充電モードへの移行制御を行うことで、極力無駄な監視や制御を排している。これにより、不要な消費電力の増大を防ぐことができ、ACアダプタ2Dが未接続の状態であっても稼働時間の低下を防ぐことができる。
 (変形例)
 (1)前記実施形態では、BIOSのセットアップで、Auto ECOモードを許可/禁止に切り替えられようにしたが(図5参照)、このような切り替えの方法を提示せずに、Auto ECOモードの処理を常に実行することでも良い。
 (2)前記実施形態では、Auto ECOモード時に、バッテリ20の充電量を監視して、100%充電モードから80%充電モードに切り替えたが(図10参照)、ACアダプタ2Dの接続状態を監視して、外部電源からの電力を受給可能な状態にあるかどうかを推定し、100%充電モードから80%充電モードに切り替える構成としても良い。また、ACアダプタ2Dの接続状態とバッテリ20の充電量とのANDもしくはORを条件として切り替えることでも良い。
 なお、ACアダプタ2Dの接続状態の検出には、PC1に設けられたACアダプタ2Dの接続ポートに、ACアダプタ2Dのプラグが差し込まれると連動するスイッチを設けて検出しても良い。また、電源回路19がACアダプタ2Dからの電流を検出することで、ACアダプタ2Dの接続状態の検出を行っても良い。
 図10にACアダプタ2Dの接続状態を監視して、100%充電モードから80%充電モードに切り替える場合のフローチャートを示す。Auto ECOモードが設定されている場合に(ステップS401-S402のYES)、以下のような100%充電モードと80%充電モードの切り替え処理が実行される。
 100%充電モードのとき、EC122は、電源回路19を通じてACアダプタ2Dの接続状態を確認する(ステップS403)。ACアダプタ2Dが接続されていれば(ステップS403のYES)、EC122は、タイマ12Dを起動して監視期間T2経過後に80%充電モードに切り替える(ステップS404-S407)。前記監視期間T2は、図6の監視期間T1と同じ値でも異なる値であっても良い。したがって、本実施形態では、監視期間T2にわたって、ACアダプタ2Dの接続が維持されているときに満充電量を低くした80%充電モードに切り替えている。このようにACアダプタ2Dが接続されているか否かを検出することにより、外部電源からの電力が受給可能か否かを推定して、モードを変更することも可能である。
 以後は図6のステップS108-S110と同様である。
 上述したように、80%充電モードから100%充電モードへの移行制御は、ACアダプタ2Dの接続状態ではなく、バッテリ20の充電量のみを条件として実行される。具体的には、バッテリ20の充電量が第2の閾値C2である50%未満になったときに、100%充電モードに切り替えられる(ステップS408-S411)。このように、ACアダプタ2Dが一定期間接続されている場合に80%充電モードに切り替えることでも、前記実施形態と同様にバッテリ20のトラブルを低減することができる。
 なお、図1の例では、EC122に電源制御装置としての機能を設けたが、この機能を例えば電源回路19に設けるなどしても良い。
 また、前記実施形態では、PCを例にして説明したが、例えばタブレット端末、スマートフォンなど、バッテリを備えた電子機器であれば、そのすべての電子機器に本発明を適用可能である。
 上述した実施形態において記載した手法(図6-8,図10に示した処理)は、コンピュータに実行させることのできるプログラムとして、例えば磁気ディスク、光ディスク、半導体メモリなどの記録媒体に書き込んでコンピュータに適用することも可能である。コンピュータは、記録媒体に記録されたプログラムを読み込み、このプログラムによって動作が制御されることにより、上述した処理を実行する。図1の例で言えば、HDD16やODD17などの記録媒体を通じて当該プログラムをPC1にインストールすることで、本実施形態と同様の効果を容易に実現することができる。
 以上述べた少なくとも1つの実施形態によれば、ユーザが意識しなくとも、使用状況に応じた最適な充電制御によりバッテリのトラブルの発生を低減することのできる電子機器、バッテリ充電制御方法及びプログラムを提供することができる。
 (第2実施形態)
 次に、第2実施形態について説明する。
 図11は、第2実施形態に係る電子機器の一構成例を示す図である。第2実施形態においても、第1実施形態と同様、電子機器として、PCを例にして説明する。第1実施形態と同一の構成要素については同一の符号を使用し、また、当該同一の構成要素についての重複する説明は省略する。
 図11に示すように、第2実施形態においては、バッテリ20が温度センサ20aを有する。EC122は、当該温度センサ20aが検知するバッテリ20の温度を、たとえば5分ごとに、電源回路19経由で取得する。なお、第1実施形態のバッテリ20も温度センサ20aを有していてもよい。また、温度センサ20aは、バッテリ20が有するものに限られず、たとえばバッテリ20の近傍に設けられるものであってもよい。
 そして、第2実施形態におけるEC122は、第1実施形態で説明した、Auto ECOモードでの100%充電モード/80%充電モードの切り替えを、さらに、バッテリ20の温度状態に応じて制御する。ECC122の記憶領域122aには、前述の、バッテリ20の充電量に対する閾値C1,C2、監視期間T1に加えて、監視期間T2と、バッテリ20の温度に対する閾値X1とが記憶されている。また、EC122のタイマ12Dは、複数の経過時間を計数することができる。
 ECC122は、PC1がAuto ECOモードであるとき、温度センサ20aが検知するバッテリ20の温度を取得する都度、たとえば直近一時間のバッテリ20の平均温度を算出する。5分ごとにバッテリ20の温度を取得する場合、ECC122は、新しい順に12回分の取得温度の平均を算出する。
 たとえば、Auto ECOモード下で100%充電モードにあるとき、ECC122は、まず、バッテリ20の平均温度が閾値X1を越えているか否かを判定する。閾値X1は、バッテリ20の劣化特性などを考慮して設定される。たとえばバッテリ20がリチウムイオン電池の場合、閾値X1は、劣化が進行する条件の1つである「高温での放置」の高温として、たとえば45℃が設定される。
 バッテリ20の平均温度が閾値X1を越えるPC1のユースケースの1つとして、ACアダプタ2Dが常時接続され、ACアダプタ2Dを介して外部電源から電力が供給され続けている場合が想定される。より詳しくは、たとえばバッテリ20の充電量が90%以上といった高い水準にある状況下において、自然放電分を補うための充電が、外部電源から供給される電力を用いて断続的に行われている場合が想定される。満充電に近い状態のバッテリ20に対して充電を断続的に行うことは、発熱を惹き起こす原因となる。
 バッテリ20の平均温度が閾値X1を越えている場合、ECC122は、バッテリ20の平均温度が閾値X1を越えている状態での継続時間を監視する。ECC122は、バッテリ20の平均温度が閾値X1を越えている状態での継続時間が監視期間T2に達した場合、バッテリ20の充電モードを、現在の100%充電モードから80%充電モードに切り替える。監視期間T2は、たとえば24時間である。
 第1実施形態で説明したように、80%充電モードに移行すると、EC122は、駆動源を外部電源からバッテリ20に切り替えて、充電量が80%未満になるまでバッテリ20を放電させる。そして、この放電完了後、EC122は、駆動源をバッテリ20から外部電源に切り換えるとともに、バッテリ20の満充電状態を80%とするように電源回路19に指示する。
 これにより、自然放電分を補うための充電は、バッテリ20の充電量が80%未満の状態で行われることになる。つまり、ECC122は、発熱を惹き起こす原因となる、満充電(100%)に近い状態のバッテリ20に対して充電が断続的に行われることを抑止する。つまり、劣化が進行する条件の1つである「高温での放置」を解消する。なお、EC122は、充電モードの切り替えを自身が行うことに代えて、たとえばバッテリランプ12Cを用いて、100%充電モードから80%充電モードへの切り替えが推奨されることをユーザに通知するようにしてもよい。
 バッテリ20の平均温度が閾値X1を越えていない場合、または、バッテリ20の平均温度が閾値X1を越えているが、当該バッテリ20の平均温度が閾値X1を越えている状態での経過時間が監視期間T2に達していない場合、ECC122は、充電モードを100%充電モードに維持する。ECC122は、100%充電モードから80%充電モードへの切り替えの判定に、バッテリ20の平均温度を用いることで、偶々閾値X1以下の温度が取得されて、経過時間の監視を途切れさせてしまうことを防止する。
 一方、Auto ECOモード下で80%充電モードにあるとき、ECC122は、バッテリ20の平均温度が閾値X1以下となっているか否かを判定する。バッテリ20の平均温度が閾値X1以下となっている場合、ECC122は、バッテリ20の充電量が閾値C2以下か否かを判定する。第1実施形態で説明したように、閾値C2は、バッテリ駆動時間などを考慮して設定され、たとえば50%である。
 ECC122は、バッテリ20の平均温度が閾値X1以下であり、かつ、バッテリ20の充電量が閾値C2以下である場合、バッテリ20の充電モードを、現在の80%充電モードから100%充電モードに切り替える。つまり、バッテリ20の充電モードを100%充電モードに復帰させる。
 図12は、第2実施形態におけるEC122の第1の充電制御処理を示すフローチャートである。第1実施形態と同様、このフローチャートで示される充電制御処理は、BIOS150によって制御されている。初期状態では、Auto ECOモードが設定されており、100%充電モードである。
 EC122は、たとえば5分間隔などの所定間隔で電源回路19を通じてバッテリ20の温度センサ20aから温度を取得するといった、バッテリ20の温度記録を開始する(ステップS501)。また、EC122は、BIOS150のセットアップ時に保持されたモード情報M1をリードし(ステップS502)、Auto ECOモードが設定されているか否かを判定する(ステップS503)。Auto ECOモードが設定されていない場合(ステップS503のNO)、アプリケーション(ecoユーティリティ210)の設定またはBIOS150のセットアップによる通常設定に従って、100%充電モードの処理または80%充電モードの処理のどちらか一方が実行される。そして、モード情報がAuto ECOモードになるまで、ステップS502が繰り返し実行される。Auto ECOモードが設定されている場合(ステップS503のYES)、以下のような100%充電モードと80%充電モードの切り替え処理が実行される。
 すなわち、100%充電モードのとき、EC122は、電源回路19を通じて現在のバッテリ20の充電量を確認し(ステップS504)、バッテリ20の充電量が第1の閾値C1を超えているか否かを判定する(ステップS505)。バッテリ20の充電量が第1の閾値C1以下であれば(ステップS505のNO)、初期状態である100%充電モードでバッテリ20が充電される。
 一方、バッテリ20の充電量が第1の閾値C1を超えていた場合(ステップS505のYES)、EC122は、タイマ12D(タイマ1)を起動して、バッテリ20の充電量が第1の閾値C1を超えている期間を監視する(ステップS506)。タイマ12D(タイマ1)の値が監視期間T1を超えると(ステップS507のYES)、EC122は、バッテリ20が満充電あるいは満充電に近い状態で長期間放置されているものと判断し、100%充電モードから80%充電モードに切り替える(ステップS512)。ステップS502~ステップS507、ステップS517は、第1実施形態で説明した、バッテリ20の充電量に応じた100%充電モードから80%充電モードへの切り替えの制御の流れに相当する(図6のステップS101~S107)。
 一方、タイマ12D(タイマ1)の値が監視期間T1を超えていない場合(ステップS507のNO)、EC122は、ステップS501で記録を開始したバッテリ20の温度を用いて、たとえば24時間などの直近所定期間のバッテリ20の平均温度を取得する(ステップS508)。EC122は、バッテリ20の平均温度が閾値X1以上か否かを判定する(ステップS509)。
 バッテリ20の平均温度が閾値X1以上である場合(ステップS509のYES)、EC122は、タイマ12D(タイマ2)を起動して、バッテリ20の平均温度が閾値X1以上である期間を監視する(ステップS510)。タイマ12D(タイマ2)の値が監視期間T2を超えている場合(ステップS510のYES)、EC122は、バッテリ122が高温の状態で長期間放置されているものと判断し、100%充電モードから80%充電モードに切り替える(ステップS512)。ステップS508~ステップS512が、第2実施形態で追加された、バッテリ20の平均温度に応じた100%充電モードから80%充電モードへの切り替えの制御の流れである。ステップS502~ステップS507と、ステップS508~ステップS512とは、順序が入れ替わってもよい。
 バッテリ20の平均温度が閾値X1未満である場合(ステップS509のNO)、あるいは、タイマ12D(タイマ2)の値が監視期間T2を超えていない場合(ステップS510のNO)、EC122は、ステップS504へ戻り、前述の処理を繰り返す。
 80%充電モードへの切り替え後、EC122は、電源回路19を通じて現在のバッテリ20の充電量を確認し(ステップS513)、バッテリ20の充電量が第2の閾値C1よりも低下したか否かを判定する(ステップS514)。バッテリ20の充電量が第2の閾値C2未満に低下している場合(ステップS514のYES)、EC122は、ステップS501で記録を開始したバッテリ20の温度を用いて、たとえば24時間などの直近所定期間のバッテリ20の平均温度を取得する(ステップS514)。そして、EC122は、バッテリ20の平均温度が閾値X1よりも低下したか否かを判定する(ステップS516)。EC122は、バッテリ20の充電量が第2の閾値C1よりも低下していることに加えて、バッテリ20の平均温度が閾値X1よりも低下したことを確認すると(ステップS516のYES)、80%充電モードから100%充電モードに切り替える(ステップS517)。100%充電モードへの切り替え後、EC122は、ステップS504へ戻り、前述の処理を繰り返す。
 ステップS513~ステップS514、ステップS517は、第1実施形態で説明した、バッテリ20の充電量に応じた80%充電モードから100%充電モードへの切り替えの制御の流れに相当する(図6のステップS108~S110)。ステップS515~ステップS517が、第2実施形態で追加された、バッテリ20の平均温度に応じた800%充電モードから100%充電モードへの切り替えの制御の流れである。ステップS513~ステップS514と、ステップS515~ステップS516とは、順序が入れ替わってもよい。
 また、図13は、第2実施形態におけるEC122の第2の充電制御処理を示すフローチャートである。第1の充電制御処理との違いは、第2の充電制御処置においては、ステップS509とステップS510との間に、ステップS601とステップS602とを設けている点にある。
 より詳しくは、100%充電モード時にバッテリ20の平均温度が閾値X1以上である場合(ステップS509のYES)、EC122は、電源回路19を通じてACアダプタ2Dの接続状態を確認する(ステップS601)。ACアダプタ2Dが接続されていれば(ステップS602のYES)、EC122は、タイマ12D(タイマ2)を起動して、バッテリ20の平均温度が閾値X1以上である期間を監視する(ステップS510)。ACアダプタ2Dが接続されていなければ(ステップS602のNO)、EC122は、ステップS504へ戻り、前述の処理を繰り返す。
 前述したように、バッテリ20の平均温度が閾値X1を越えるPC1のユースケースの1つとして、ACアダプタ2Dが常時接続され、ACアダプタ2Dを介して外部電源から電力が供給され続けている場合が想定される。ACアダプタ2Dが外されると、以後、バッテリ20の平均温度は低下していくことが予測されるので、ACアダプタ2Dが接続されているか否かを判定し、この判定結果に基づき、バッテリ20の平均温度が閾値X1以上である期間の監視を開始するか否かを決定してもよい。また、本形態ではACアダプタの接続状態を確認するとして説明したが、ACアダプタ以外にも、モバイルバッテリなどが接続されていても、同様に接続確認がなされ、この判定結果に基づき、バッテリ20の平均温度が閾値X1以上である期間の監視を開始するか否かを決定してもよい。また、ACアダプタやモバイルバッテリなど、を本明細書では外部電源装置と称す。
 このように、第2実施形態によれば、Auto ECOモードでの100%充電モード/80%充電モードの切り替えを、第1実施形態で説明したバッテリ20の充電量に応じて制御することに加えて、バッテリ20の平均温度に応じて制御することにより、より使用状況に応じて適切に実行することが実現される。
 また、第2実施形態で説明した、Auto ECOモードでの100%充電モード/80%充電モードの切り替えを、バッテリ20の平均温度に応じて制御することは、バッテリ20の充電量に応じて制御することと必ずしも組み合わせなくとも、単独で適用した場合であっても、使用状況に応じて適切に実行することが実現される。
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…電子機器(PC)、2A…ディスプレイ、2B…キーボード、2C…マウス、2D…ACアダプタ、11…CPU、12…システムコントローラ、12A…USBポート、12B…電源スイッチ、12C…バッテリランプ、12D…タイマ、13…主メモリ、14…GPU、14A…ディスプレイポート、15…BIOS-ROM、16…HDD、17…ODD、18…通信モジュール、19…電源回路、20…バッテリ、20a…温度センサ、121…USBコントローラ、122…EC、150…BIOS、200…OS、210…ecoユーティリティ。

Claims (13)

  1.  バッテリと、
     第1の充電量を満充電状態として外部電源からの電力を前記バッテリに充電する第1の充電モードと、前記第1の充電量よりも低く設定された第2の充電量を満充電状態として前記外部電源からの電力を前記バッテリに充電する第2の充電モードとを有する電源制御手段とを具備し、
     前記電源制御手段は、
     前記第1の充電モード時に、前記バッテリが満充電状態または満充電状態に近い状態あるいは外部電源から電力を受給可能な状態で一定期間経過している場合に、前記第1の充電モードから前記第2の充電モードへの切り替えを行い、
     前記第1の充電モードから前記第2の充電モードに切り替えた際に、前記バッテリの充電量を前記第2の充電量まで放電した後、前記第2の充電量を維持するように前記バッテリの充電動作を制御し、
     前記第2の充電モード時に、前記バッテリの充電量に対して設定された閾値に基づいて、前記第2の充電モードから前記第1の充電モードへの切り替えを行う電子機器。
  2.  前記電源制御手段は、
     前記第2の充電モード時に、前記バッテリの充電量のみを条件にして前記第1の充電モードへの移行制御を行う請求項1記載の電子機器。
  3.  前記電源制御手段は、
     前記バッテリの充電量を監視し、
     前記第1の充電モード時に、第1の閾値を超えた状態で前記一定期間経過した場合に、前記第1の充電モードから前記第2の充電モードへの切り替えを行い、
     前記第2の充電モード時に、前記バッテリの充電量が前記第1の閾値よりも低く設定された第2の閾値未満になった場合に、前記第2の充電モードから前記第1の充電モードへの切り替えを行う請求項1記載の電子機器。
  4.  前記電源制御手段は、
     前記バッテリに前記外部電源からの電力を供給する外部電源装置の接続状態を監視し、
     前記第1の充電モード時に、前記外部電源装置が前記一定期間接続された状態にある場合に、前記第1の充電モードから前記第2の充電モードへの切り替えを行う請求項1記載の電子機器。
  5.  前記電源制御手段は、
     前記第1の充電モード時に、前記バッテリが前記第1の充電量を満たしたときに満充電状態を通知し、
     前記第2の充電モード時に、前記バッテリが前記第2の充電量を満たしたときに満充電状態を通知する請求項1記載の電子機器。
  6.  前記電子機器は、BIOS(Basic Input Output System)とOS(Operating System)を実行可能であり、
     前記BIOSは、前記電源制御手段によって、前記第1の充電モード時に、前記バッテリが満充電状態または満充電状態に近い状態あるいは外部電源から電力を受給可能な状態で一定期間経過している場合に、前記第1の充電モードから前記第2の充電モードへの切り替えを行う動作を設定する請求項1記載の電子機器。
  7.  前記電源制御手段は、さらに、
     前記第1の充電モード時に、前記バッテリの直近第1期間の平均温度が閾値温度を越えている状態で閾値期間を超える期間が経過した場合に、前記第1の充電モードから前記第2の充電モードへの切り替えを行い、
     前記第2の充電モード時に、前記バッテリの充電量が前記第2の充電量よりも低く設定された閾値充電量以下であり、かつ、前記バッテリの平均温度が前記閾値温度以下である場合に、前記第2の充電モードから前記第1の充電モードへの切り替えを行う、
     請求項1記載の電子機器。
  8.  前記電源制御手段は、
     前記バッテリに前記外部電源からの電力を供給する外部電源装置の接続状態を監視し、
     前記第1の充電モード時に、前記外部電源装置の接続が検出された場合に、前記第1の充電モードから前記第2の充電モードへの切り替えを行う、
     請求項7の電子機器。
  9.  バッテリと、
     第1の充電量を満充電状態として外部電源からの電力を前記バッテリに充電する第1の充電モードと、前記第1の充電量よりも低く設定された第2の充電量を満充電状態として前記外部電源からの電力を前記バッテリに充電する第2の充電モードとを有する電源制御手段とを具備し、
     前記電源制御手段は、
     前記第1の充電モード時に、前記バッテリの直近第1期間の平均温度が閾値温度を越えている状態で閾値期間を超える期間が経過した場合に、前記第1の充電モードから前記第2の充電モードへの切り替えを行い、
     前記第1の充電モードから前記第2の充電モードに切り替えた際に、前記バッテリの充電量を前記第2の充電量まで放電した後、前記第2の充電量を維持するように前記バッテリの充電動作を制御し、
     前記第2の充電モード時に、前記バッテリの平均温度が前記閾値温度以下である場合に、前記第2の充電モードから前記第1の充電モードへの切り替えを行う、
     電子機器。
  10.  バッテリと、
     第1の充電量を満充電状態として外部電源からの電力を前記バッテリに充電する第1の充電モードと、前記第1の充電量よりも低く設定された第2の充電量を満充電状態として前記外部電源からの電力を前記バッテリに充電する第2の充電モードとを有する電源制御装置とを備えたコンピュータによって実行されるバッテリ充電制御方法であって、
     前記第1の充電モード時に、前記バッテリが満充電状態または満充電状態に近い状態あるいは外部電源から電力を受給可能な状態で一定期間経過している場合に、前記第1の充電モードから前記第2の充電モードへの切り替えを行い、
     前記第1の充電モードから前記第2の充電モードに切り替えた際に、前記バッテリの充電量を前記第2の充電量まで放電した後、前記第2の充電量を維持するように前記バッテリの充電動作を制御し、
     前記第2の充電モード時に、前記バッテリの充電量に対して設定された閾値に基づいて、前記第2の充電モードから前記第1の充電モードへの切り替えを行う、
     バッテリ充電制御方法。
  11.  さらに、
     前記第1の充電モード時に、前記バッテリの直近第1期間の平均温度が閾値温度を越えている状態で閾値期間を超える期間が経過した場合に、前記第1の充電モードから前記第2の充電モードへの切り替えを行い、
     前記第2の充電モード時に、前記バッテリの充電量が前記第2の充電量よりも低く設定された閾値充電量以下であり、かつ、前記バッテリの平均温度が前記閾値温度以下である場合に、前記第2の充電モードから前記第1の充電モードへの切り替えを行う、
     請求項10記載のバッテリ充電制御方法。
  12.  バッテリと、
     第1の充電量を満充電状態として外部電源から電力を前記バッテリに充電する第1の充電モードと、前記第1の充電量よりも低く設定された第2の充電量を満充電状態として前記外部電源からの電力を前記バッテリに充電する第2の充電モードとを有する電源制御装置とを備えたコンピュータによって実行されるプログラムであって、
     前記コンピュータに、
     前記第1の充電モード時に、前記バッテリが満充電状態または満充電状態に近い状態あるいは前記外部電源から電力を受給可能な状態で一定期間経過している場合に、前記第1の充電モードから前記第2の充電モードへの切り替えを行う機能と、
     前記第1の充電モードから前記第2の充電モードに切り替えた際に、前記バッテリの充電量を前記第2の充電量まで放電した後、前記第2の充電量を維持するように前記バッテリの充電動作を制御する機能と、
     前記第2の充電モード時に、前記バッテリの充電量に対して設定された閾値に基づいて、前記第2の充電モードから前記第1の充電モードへの切り替えを行う機能と
     を実行させるプログラム。
  13.  前記コンピュータに、さらに、
     前記第1の充電モード時に、前記バッテリの直近第1期間の平均温度が温度閾値を越えている状態で期間閾値を越える期間が経過した場合に、前記第1の充電モードから前記第2の充電モードへの切り替えを行う機能と、
     前記第2の充電モード時に、前記バッテリの充電量が前記第2の充電量よりも低く設定された充電量閾値以下であり、かつ、前記バッテリの平均温度が前記温度閾値以下である場合に、前記第2の充電モードから前記第1の充電モードへの切り替えを行う機能と、
     を実行させる請求項12記載のプログラム。
PCT/JP2021/023759 2021-01-29 2021-06-23 電子機器、バッテリ充電制御方法及びプログラム WO2022162970A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022578021A JP7423824B2 (ja) 2021-01-29 2021-06-23 電子機器、バッテリ充電制御方法及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/003401 WO2022162910A1 (ja) 2021-01-29 2021-01-29 電子機器、バッテリ充電制御方法及びプログラム
JPPCT/JP2021/003401 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022162970A1 true WO2022162970A1 (ja) 2022-08-04

Family

ID=82653063

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/003401 WO2022162910A1 (ja) 2021-01-29 2021-01-29 電子機器、バッテリ充電制御方法及びプログラム
PCT/JP2021/023759 WO2022162970A1 (ja) 2021-01-29 2021-06-23 電子機器、バッテリ充電制御方法及びプログラム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003401 WO2022162910A1 (ja) 2021-01-29 2021-01-29 電子機器、バッテリ充電制御方法及びプログラム

Country Status (2)

Country Link
JP (1) JP7423824B2 (ja)
WO (2) WO2022162910A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359008A (ja) * 2001-03-28 2002-12-13 Japan Storage Battery Co Ltd 二次電池の運用方法及び二次電池装置
JP2004159382A (ja) * 2002-11-01 2004-06-03 Toshiba Corp 電子機器
JP2007166846A (ja) * 2005-12-16 2007-06-28 Nec Corp バッテリ制御装置
JP2008259256A (ja) * 2007-04-02 2008-10-23 Nec Saitama Ltd 携帯端末装置の充電制御方法、及び、携帯端末装置の充電制御方式
JP2013081262A (ja) * 2011-08-29 2013-05-02 Toshiba Corp 充電装置および充電方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359008A (ja) * 2001-03-28 2002-12-13 Japan Storage Battery Co Ltd 二次電池の運用方法及び二次電池装置
JP2004159382A (ja) * 2002-11-01 2004-06-03 Toshiba Corp 電子機器
JP2007166846A (ja) * 2005-12-16 2007-06-28 Nec Corp バッテリ制御装置
JP2008259256A (ja) * 2007-04-02 2008-10-23 Nec Saitama Ltd 携帯端末装置の充電制御方法、及び、携帯端末装置の充電制御方式
JP2013081262A (ja) * 2011-08-29 2013-05-02 Toshiba Corp 充電装置および充電方法

Also Published As

Publication number Publication date
JPWO2022162970A1 (ja) 2022-08-04
JP7423824B2 (ja) 2024-01-29
WO2022162910A1 (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
JP6888772B2 (ja) 無線バッテリー管理システム及びこれを含むバッテリーパック
US9841805B2 (en) Power management circuit and electronic device employing the same
TWI666545B (zh) 電力管理方法及行動裝置
US20080238358A1 (en) Electronic apparatus, charging method therefor, and battery
JP5301008B1 (ja) 電子機器、充電制御装置および充電制御方法
JP6799754B2 (ja) バッテリ制御装置、電子機器、バッテリパック及びバッテリ制御方法
JP6377560B2 (ja) 情報処理装置、cpu印加電圧制御装置、情報処理装置の制御方法
JP2011229337A (ja) 情報処理装置および充放電制御方法
TW200928710A (en) Methods and apparatus for managing power on a computer in the event of a power interruption
WO2013161425A1 (ja) 情報処理装置、情報処理方法及びプログラム
CN110416643B (zh) 一种处理方法、装置以及电子设备
TWI591931B (zh) Power control device and information processing device
WO2022162970A1 (ja) 電子機器、バッテリ充電制御方法及びプログラム
US20140354242A1 (en) Device and charge control method
JP2021197104A (ja) 電子機器及び電子機器が実行する方法
JP6396185B2 (ja) 電子機器および電子機器の制御方法
TW201535100A (zh) 電子裝置與電源管理方法
CN110148992B (zh) 一种充电控制方法、终端设备及存储介质
JP2007124783A (ja) 無停電電源装置およびバッテリユニット
JP6973857B2 (ja) バッテリ制御システム、バッテリ装置、コンピュータ装置、バッテリ制御方法及びプログラム
CN117175752B (zh) 充电异常处理方法、设备、系统、存储介质及程序产品
JP2017117093A (ja) 電子システム、端末装置、機能拡張装置、電源管理装置及び電源管理プログラム
JP2010011682A (ja) 情報処理装置、バッテリ装置、バッテリ充電方法およびプログラム
JP6025436B2 (ja) バッテリー装置
CN110247454B (zh) 一种处理方法以及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578021

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922978

Country of ref document: EP

Kind code of ref document: A1