WO2022160942A1 - 振膜及发声装置 - Google Patents

振膜及发声装置 Download PDF

Info

Publication number
WO2022160942A1
WO2022160942A1 PCT/CN2021/135901 CN2021135901W WO2022160942A1 WO 2022160942 A1 WO2022160942 A1 WO 2022160942A1 CN 2021135901 W CN2021135901 W CN 2021135901W WO 2022160942 A1 WO2022160942 A1 WO 2022160942A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
vibrating diaphragm
liquid
group
production device
Prior art date
Application number
PCT/CN2021/135901
Other languages
English (en)
French (fr)
Inventor
王伟超
闫付臻
李春
王婷
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2022160942A1 publication Critical patent/WO2022160942A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2231/00Details of apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor covered by H04R31/00, not provided for in its subgroups
    • H04R2231/001Moulding aspects of diaphragm or surround
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/023Diaphragms comprising ceramic-like materials, e.g. pure ceramic, glass, boride, nitride, carbide, mica and carbon materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/025Diaphragms comprising polymeric materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/027Diaphragms comprising metallic materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/029Diaphragms comprising fibres

Definitions

  • the invention relates to the field of acoustics, in particular to a vibrating membrane and a sound producing device.
  • thermoplastic elastomer diaphragms especially thermoplastic polyurethane elastomer (TPU) and thermoplastic polyester elastomer (TPEE) diaphragms. Due to the good damping and processability of thermoplastic polyurethane elastomer and thermoplastic polyester elastomer diaphragm, these two types of elastomers have been popularized and applied in the speaker field with the high demand for waterproof and sound quality in the speaker field.
  • thermoplastic elastomer When the ordinary thermoplastic elastomer is used as the diaphragm of the sound device, it will face the problem of high temperature reliability.
  • the thermoplastic polyurethane elastomer and the thermoplastic polyester elastomer have a linear structure, and the hydrogen bond is easily destroyed at high temperature. It is easy to age under the action of, resulting in the loss of mechanical properties.
  • electronic products such as mobile phones and wristbands will inevitably come into contact with the skin during use. Cosmetics, sunscreen, and secreted oils applied on the skin surface penetrate into the product, causing the diaphragm to swell and affect the product's performance. performance and longevity, bring a bad experience to the user.
  • thermoplastic elastomer diaphragms are often formed by air pressure. During the molding process, the stretching is uneven, the molecular chain movement is insufficient, and the folding ring part is inevitably stretched. There is a certain stress inside and the molding is not in place. There are phenomena such as uneven thickness and deformation of the diaphragm, resulting in a decrease in yield and affecting acoustic performance.
  • the main purpose of the present invention is to provide a vibrating film and a sounding device, which aims to improve the problems of poor high temperature resistance, uneven thickness and easy deformation, which exist in the existing sounding device often using thermoplastic elastomer diaphragms.
  • the present invention proposes a vibrating membrane, the raw material of the vibrating membrane comprises a liquid fluororubber and a vulcanizing agent, and the liquid fluororubber is a liquid polymer with fluorine atoms in the main chain or side chain;
  • the diaphragm is prepared by pouring the raw material into the diaphragm forming mold, and then undergoing a cross-linking reaction; the diaphragm is baked at a temperature of 150 ° C for 120 hours, and the elongation at break rate of change is less than 40%.
  • the oil absorption rate is less than 8%.
  • the molecular structural formula of the liquid fluororubber is wherein, R is a fluorine atom or a fluorine-containing side chain group, and X is any one of a hydrogen group, a mercapto group, a hydroxyl group, a carboxyl group, a halogen group, a polyamine and an amide group.
  • the hardness of the diaphragm is 10-95A, and the thickness is 10-300 ⁇ m.
  • the elongation at break of the diaphragm is greater than 50%, and the Young's modulus is in the range of 3-100 MPa.
  • the weight part of the liquid fluororubber is 100, and the weight part of the vulcanizing agent is 5-15.
  • the raw material further includes 0-60 parts by weight of fillers
  • the fillers include carbon black, silica, calcium carbonate, calcium fluoride, zinc sulfide, aluminum powder, graphite, titanium dioxide, clay, mica, carbon fiber, At least one of magnesium silicate fibers.
  • the raw material further includes 0-50 parts by weight of a plasticizer
  • the plasticizer includes phthalates, chlorinated biphenyls, dioctyl sebacate, fluorinated perether, and hydroxy silicone oil , at least one of dimethylsiloxane.
  • the raw material further includes 0.1 to 5 parts by weight of a scorch inhibitor, and the scorch inhibitor includes benzoic acid, phthalic anhydride, salicylic acid, acetylsalicylic acid, sodium acetate, triclomelamine, At least one of N-cyclohexylthiophthalimide (CTP), hexaisopropylthiomelamine, and N-phthalimide.
  • a scorch inhibitor includes benzoic acid, phthalic anhydride, salicylic acid, acetylsalicylic acid, sodium acetate, triclomelamine, At least one of N-cyclohexylthiophthalimide (CTP), hexaisopropylthiomelamine, and N-phthalimide.
  • CTP N-cyclohexylthiophthalimide
  • the raw material further includes 0.1 to 20 parts by weight of an acid acceptor, and the acid acceptor includes at least one of magnesium oxide, zinc oxide, calcium oxide, calcium hydroxide, and magnesium hydroxide.
  • the vulcanizing agent includes at least one of inorganic oxides, inorganic peroxides, inorganic oxidants, organic peroxides, organic amines and derivatives thereof or dihydroxy compounds.
  • the raw materials of the diaphragm include liquid fluororubber and a vulcanizing agent, and the liquid fluororubber is a liquid polymer with fluorine atoms in the main chain or side chain;
  • the diaphragm is poured into the diaphragm by pouring the raw materials into the diaphragm. After the mold is formed, it is prepared through a cross-linking reaction, and the change rate of the elongation at break of the diaphragm is less than 40% after being baked at a temperature of 150° C. for 120 hours. Since the material of the diaphragm is a cross-linked structure, the oil absorption rate is less than 8%, and the oil resistance and solvent resistance are good.
  • the vibrating membrane of the present invention is formed by casting liquid fluorine rubber and vulcanizing agent. Compared with the vibrating membrane formed by pressing solid raw materials, it has the advantages of uniform thickness, small residual stress after molding, and high flatness of the vibrating membrane, which improves the acoustics of the sounding device. performance.
  • FIG. 1 is a cross-sectional view of a sound generating device according to an embodiment of the present invention.
  • the invention provides a vibrating membrane.
  • the raw materials of the vibrating membrane include liquid fluorine rubber and a vulcanizing agent, and the liquid fluorine rubber has a fluorine atom liquid polymer in the main chain or side chain; the vibrating membrane is formed by pouring the raw materials into the vibrating membrane. After the mold is formed, it is prepared by cross-linking reaction; after baking at a temperature of 150° C. for 120 hours, the change rate of the elongation at break of the diaphragm is less than 40%.
  • the inventor selects a plurality of diaphragms made of liquid fluororubber and a vulcanizing agent, and after baking at a temperature of 150 ° C for 120 hours, the elongation at break of each diaphragm is The change rates are all less than 15%, which can prove that the vibrating membrane cast and molded by using the liquid fluororubber and the vulcanizing agent in the present invention has good temperature resistance.
  • the liquid fluororubber in this embodiment is a liquid polymer at room temperature. After the liquid fluorororubber and the vulcanizing agent are evenly mixed, they are poured into the diaphragm forming mold, and the mold cavity is filled and cross-linked under a certain temperature and pressure to form the diaphragm.
  • the temperature here means 25 degreeC - 230 degreeC
  • the pressure means 0.01 MPa - 10 MPa.
  • the main chain or side chain of the liquid liquid fluororubber has fluorine atoms, and the group located at the end of the liquid fluororubber is an active group, which is cross-linked with a vulcanizing agent, specifically a hydrogen group, a mercapto group, a hydroxyl group, a carboxyl group, a halogen group, and a halogen group. group, amine group or amide group.
  • the molecular structure of liquid fluororubber is wherein, R is a fluorine atom or a fluorine-containing side chain group, and X is a hydrogen group, a mercapto group, a hydroxyl group, a carboxyl group, a halogen, a polyamine or an amide group.
  • the diaphragm made of cast fluororubber has better high temperature resistance. Since the diaphragm of this embodiment is a cross-linked structure, and the oil absorption rate is less than 4%, it has excellent performance.
  • thermoplastic elastomer diaphragms are often formed by air pressure, and the stretching is uneven during the molding process, resulting in uneven thickness of the diaphragm after molding and uneven molding, resulting in a decrease in the yield of the diaphragm and the acoustic performance.
  • the diaphragm of this embodiment is formed by casting, the thickness of the diaphragm is uniform, the residual stress after molding is small, the diaphragm is flat, and the acoustic performance of the sounding device is improved.
  • the surface energy of liquid fluororubber is extremely low, and the affinity with glue is very poor. It is technically difficult and costly to realize the bonding of the diaphragm made of conventional solid fluororubber with other materials.
  • the vibrating membrane prepared by the method is different from the solid fluorine rubber, does not need large-scale equipment, and can be continuously processed, thereby saving power and reducing labor intensity.
  • the hardness of the diaphragm is 10-95A. If the hardness of the diaphragm is lower than 10A, the rigidity of the diaphragm is poor, and it is easy to generate polarization, resulting in poor THD (Total Harmonic Distortion); if the hardness is higher than 95A, the rubber will break. The length becomes smaller, the film is easy to break during the low temperature reliability verification, and the product fails, and the excessive filler in the formula leads to defects. More preferably, when the hardness of the diaphragm is 30-85A, the loudspeaker using the diaphragm has more excellent acoustic performance.
  • the thickness of the diaphragm is 10-300 ⁇ m, more preferably, the thickness of the diaphragm is 10-200 ⁇ m, and the sound generating device has more excellent acoustic performance. If the thickness of the diaphragm is less than 10um, the damping of the diaphragm is small, and the listening performance is poor; if the thickness of the diaphragm is greater than 300um, the weight of the diaphragm is too large, and the sensitivity becomes poor. Therefore, controlling the thickness of the rubber layer in a specific range of 10-300 ⁇ m has more excellent acoustic performance.
  • the thickness of the diaphragm can be 10um, 50um, 200um and 300um.
  • the oil absorption rate of the diaphragm is less than 8%, the elongation at break is greater than 50% (preferably greater than 200%), and the Young's modulus is 3-100 MPa (preferably 3-50 MPa).
  • the use of thermoplastic elastomer diaphragms is prone to brittleness and decreased toughness under long-term high-temperature reliability. During the working process of the diaphragm, the products may face temperatures above 120°C, and some products even need to work above 150°C.
  • the diaphragm made of cast fluororubber has better temperature resistance, and the long-term use temperature is above 150 °C, and it still guarantees good toughness under long-term high temperature without becoming brittle.
  • the sounding device using the common thermoplastic elastomer diaphragm material contacts the skin, the skin care products and secreted oil on the skin surface easily enter the electronic product, which reduces the performance of the diaphragm and reduces the service life, and the diaphragm is connected to the sounding device.
  • the small molecules When the small molecules enter the interior, they will swell and affect the performance and reliability of the sound-emitting device.
  • the cast-type fluororubber has a very high cohesive energy, and it is difficult for small molecules to enter.
  • the oil absorption rate can be as low as 8% or less, so when the diaphragm is bonded to the sounding device and the electronic product is in contact with the skin, the diaphragm will not swell, the product can still maintain good performance, and the user experience is good.
  • the weight part of the liquid fluororubber is 100, the weight part of the vulcanizing agent is 5-15, the liquid fluororubber is liquid, and the molecular viscosity is low.
  • the raw materials also include 0-60 parts by weight of fillers, and the fillers include carbon black, silica, calcium carbonate, calcium fluoride, zinc sulfide, aluminum powder, graphite, titanium dioxide, clay, mica, carbon fiber, silicic acid At least one of magnesium fibers.
  • the weight part of the filler is preferably 10-60.
  • the above-mentioned reinforcing filler can adjust the hardness, enhance and improve the physical and mechanical properties.
  • carbon black is an amorphous structure, and the particles form aggregates through physical and chemical bonding between each other.
  • the primary structure of carbon black is composed of aggregates, and there are van der Waals forces or hydrogen bonds between the aggregates, which can aggregate into a spatial network structure, that is, the secondary structure of carbon black.
  • the surface of carbon black has the ability to undergo substitution, reduction, and oxidation reactions. and other groups such as hydrogen, carboxyl, lactone, free radical, quinone group, etc., when they are added to liquid fluororubber, due to the strong interaction between the carbon black surface and the rubber interface, when the material is stressed, the molecular chain is relatively It is easy to slide on the carbon black surface, but it is not easy to separate from the carbon black.
  • the elastomer and the carbon black form a strong bond that can slide, and the mechanical strength increases.
  • the raw materials also include 0-50 parts by weight of plasticizers
  • the plasticizers include phthalates, chlorinated biphenyls, dioctyl sebate, fluorinated perether, hydroxy silicone oil, at least one of dimethylsiloxane.
  • the weight part of the plasticizer is preferably 2-30. After adding more fillers to the liquid fluororubber, the viscosity increases. After adding the plasticizer, the hardness can be adjusted, and the processing performance and low temperature toughness can be improved.
  • the polar groups on the plasticizer and the polar groups on the rubber molecules attract each other, which reduces the interaction of the polar groups on the rubber molecules.
  • the polar groups on the molecule are covered up and become shielding, resulting in a reduction of physical cross-linking points.
  • the molecules of plasticizers are much smaller than rubber molecules, they are more mobile, and they can easily provide chains.
  • the space required for segment activity increases, the free volume between molecules is increased, the glass transition temperature of the material is reduced, and the cold resistance of the material is increased.
  • the raw material further includes 0.1-5 parts by weight of a scorch inhibitor
  • the scorch inhibitor includes benzoic acid, phthalic anhydride, salicylic acid, acetylsalicylic acid, sodium acetate, triclomelamine, At least one of N-cyclohexylthiophthalimide, hexaisopropylthiomelamine, and N-phthalimide.
  • Scorch inhibitor also known as vulcanization retarder, can prolong scorch time, prevent scorch, balance the contradiction between processing efficiency and the scorch property of liquid fluororubber material itself, and improve processing safety.
  • the raw material further includes 0.1-20 parts by weight of an acid acceptor, and the acid acceptor includes at least one of magnesium oxide, zinc oxide, calcium oxide, calcium hydroxide, and magnesium hydroxide.
  • the weight part of the acid acceptor is preferably 0.1 to 10.
  • the acid acceptor can also be called an acid absorbing agent or an acid binding agent, which can neutralize the hydrogen fluoride precipitated during the vulcanization of the liquid fluororubber.
  • the acid acceptor can also increase the crosslinking density of the liquid fluororubber, improve the temperature resistance of the diaphragm, and can also be used as a heat stabilizer.
  • the vulcanizing agent includes at least one of inorganic oxides, inorganic peroxides, inorganic oxidants, organic peroxides, organic amines and derivatives thereof or dihydroxy compounds.
  • Inorganic oxides include zinc oxide, calcium oxide, magnesium oxide, copper oxide, copper oxide, etc.
  • inorganic peroxides include zinc peroxide, calcium peroxide, potassium peroxide, manganese peroxide, iron peroxide, magnesium peroxide, peroxide Hydrogen oxide, tin peroxide, etc.
  • Inorganic oxidants include sodium chromate, potassium chromate, sodium dichromate, potassium dichromate, sodium chlorate, potassium chlorate, etc.; Cumene, cumene hydroperoxide, methyl ethyl ketone peroxide, tert-butyl perbenzoic acid, tert-butyl hydroperoxide, etc.
  • Organic amines and derivatives thereof include p-phenylenediamine, triethylenetetramine, and the like.
  • Other vulcanizing agents can also be selected, such as nitrobenzene, dinitrobenzene, trinitrobenzene, p-benzoquinone dioxime, diisocyanate, organosilicate, organoborate, organostannate, phenolic resin, Oxygen resin, activated phenol, etc.
  • the main chain or side chain of the liquid fluororubber molecule has fluorine atoms. It is a liquid polymer at room temperature. It can undergo cross-linking reaction with organic amines and their derivatives, dihydroxy compounds and other vulcanizing agents. According to the corresponding different hardness and physical property requirements choose one or more of these cross-linking agents.
  • the vibration system 20 includes a voice coil 22 and a diaphragm 21 made of the above-mentioned liquid fluororubber.
  • the outer periphery of the diaphragm 21 is provided with a fixed part 211, the fixed part 211 is connected with the casing 10, one end of the voice coil 22 is connected with the diaphragm 21, and the magnetic circuit system 30 includes a main magnetic steel 31 and a secondary magnetic steel 32 arranged at intervals.
  • a magnetic gap 33 is formed between the main magnetic steel 31 and the auxiliary magnetic steel 32 , the other end of the voice coil 22 extends into the magnetic gap 33 of the magnetic circuit system 30 , and an alternating current flows into the voice coil 22 , and the voice coil 22 is in the magnetic gap 33 .
  • the diaphragm 21 vibrates up and down to drive the diaphragm 21 to vibrate up and down, so as to produce sound.
  • the electrical signal is input to the voice coil 22 of the product, and the voice coil 22 is subjected to the force of the magnetic field, and moves in different amplitudes and directions with the alternating changes of the signal size and the positive and negative directions, thereby driving the diaphragm 21 to vibrate and emit Sound, complete the electricity-power-sound energy conversion process.
  • the diaphragm 21 of the present invention may be a ring diaphragm or a flat diaphragm.
  • the resonant frequency F0 of the micro-sounding device can reach 100-1500 Hz. excellent low frequency performance.
  • the diaphragm of the present invention is described in detail below with three specific embodiments and two comparative examples, wherein the difference between the F0 of the diaphragm in the embodiment and the comparative example under normal room temperature conditions is within 20, that is, It is said that the F0 of the diaphragms in the example and the comparative example is similar at room temperature. It should be understood that the following description is only exemplary, rather than a specific limitation of the present application.
  • the diaphragm of this embodiment includes the following raw materials: 100g liquid fluororubber, 18g carbon black, 3g p-phenylenediamine, 2g triethylenetetramine, 0.5g N-cyclohexylthiophthalimide, 0.5g Zinc oxide, 6g hydroxy silicone oil.
  • carbon black is a filler
  • p-phenylenediamine and triethylenetetramine are vulcanizing agents
  • N-cyclohexylthiophthalimide is an anti-scorch agent
  • zinc oxide is an acid acceptor
  • hydroxy silicone oil is an accelerator plasticizer.
  • the preparation method of the vibrating membrane of this embodiment includes the following steps: the above-mentioned raw materials are uniformly mixed and then poured into a vibrating membrane forming mold, and the cavity is filled and cross-linked at a temperature of 150° C. and a pressure of 0.3 MPa to form a hardness of 45A and a thickness of 45A. 120 ⁇ m diaphragm.
  • the diaphragm of this embodiment includes the following raw materials: 100g liquid fluororubber, 18g carbon black, 8g p-phenylenediamine, 1.5g triethylenetetramine, 0.5g N-cyclohexylthiophthalimide, 0.5g g zinc oxide, 8 g hydroxy silicone oil.
  • carbon black is a filler
  • p-phenylenediamine and triethylenetetramine are vulcanizing agents
  • N-cyclohexylthiophthalimide is an anti-scorch agent
  • zinc oxide is an acid acceptor
  • hydroxy silicone oil is an accelerator plasticizer.
  • the preparation method of the diaphragm of this embodiment includes the following steps: the above raw materials are uniformly mixed and then poured into a diaphragm forming mold, and the mold cavity is filled and cross-linked at a temperature of 150° C. and a pressure of 0.3MPa to form a hardness of 70A and a thickness of 70A. 90 ⁇ m diaphragm.
  • the diaphragm of this embodiment includes the following raw materials: 100g liquid fluorine rubber, 18g carbon black, 12g p-phenylenediamine, 1g triethylenetetramine, 0.5g N-cyclohexylthiophthalimide, 0.5g Zinc oxide, 10g hydroxy silicone oil.
  • carbon black is a filler
  • p-phenylenediamine and triethylenetetramine are vulcanizing agents
  • N-cyclohexylthiophthalimide is an anti-scorch agent
  • zinc oxide is an acid acceptor
  • hydroxy silicone oil is an accelerator plasticizer.
  • the preparation method of the vibrating membrane of this embodiment includes the following steps: the above raw materials are uniformly mixed and then poured into a vibrating membrane forming mold, and the mold cavity is filled and cross-linked at a temperature of 150° C. and a pressure of 0.3 MPa to form a hardness of 80A and a thickness of 80A. 80 ⁇ m diaphragm.
  • Comparative Example 1 is a thermoplastic polyurethane elastomer diaphragm with a thickness of 95 ⁇ m
  • Comparative Example 2 is a thermoplastic polyester elastomer composite diaphragm with a three-layer structure, in which both surface layers are thermoplastic polyester elastomer layers with a thickness of 95 ⁇ m. is 15 ⁇ m, and the middle layer is a polyacrylate pressure-sensitive adhesive film with a thickness of 20 ⁇ m.
  • Both Comparative Example 1 and Comparative Example 2 were prepared by the method of air pressure forming.
  • the elongation at break of the untreated sample is taken as l 0
  • the elongation at break of the treated sample is taken as l 1
  • the change rate of elongation at break (l 0 -l 1 )/l 0 *100%.
  • the vibrating film made of cast fluororubber in Example 1-3 has high mechanical properties after long-term high-temperature baking, indicating that long-term Good temperature resistance.
  • the temperature of the voice coil is very high and may reach 200 °C, and the heat is transferred to the diaphragm.
  • the vibration time of the diaphragms in Comparative Examples 1, 2 and Examples 1-3 is 96h under the simulated normal working environment, and the rupture rate of each diaphragm is detected.
  • the diaphragm made of cast fluororubber in Examples 1-3 has better temperature resistance, more uniform diaphragm thickness, and the ring part is more uniform. It is more balanced, and the membrane rupture rate is significantly lower than that of thermoplastic polyurethane elastomer and thermoplastic polyester elastomer composite diaphragm.
  • Product defect rate test method Make 100 sound-emitting devices from the diaphragms of Comparative Examples 1, 2 and Example 1. After adding acid, place them in an oven at 65 °C for 96 hours, and disassemble the products to calculate the diaphragm deformation. product ratio.
  • Diaphragm raw materials 65°C*96h oil absorption rate/% Product defect rate Comparative Example 1 25% 100% Comparative Example 2 30% 100% Example 1 1% 0 Example 2 0.8 0 Example 3 0.5 0
  • the warpage degree of the diaphragm in the examples 1-3 and comparative examples 1 and 2 was tested.
  • the tester consists of three parts: a test probe, a display, and a granite platform, wherein the test probe is a non-contact displacement sensor; during the test, the product is placed on the three fulcrums of the granite platform, and the upper and lower test probes scan synchronously according to the same trajectory product, record the distance between the test probe and the nearest surface of the product, and calculate the difference between the two test probes at each test point. Half of the difference is the test value of the warpage of the test point.
  • the warpage test value is defined as the warpage of the product. According to the preparation methods of Example 1 and Comparative Examples 1 and 2, 100 parallel products were made in each example, the warpage of each parallel product was tested respectively, and the distribution of warpage of each parallel product was counted. The test results are shown in Table 4. .
  • the diaphragm in the present invention uses liquid fluorine rubber and vulcanizing agent as raw materials, and the liquid fluorine rubber is a liquid polymer with fluorine atoms in the main chain or side chain; the diaphragm is poured into the diaphragm by pouring the raw materials. After the diaphragm is formed into a mold, it is prepared through a cross-linking reaction.
  • the diaphragm in the present invention has good heat resistance and oil absorption. The advantages of low rate and good product flatness can greatly improve the reliability, structural stability and acoustic performance of the diaphragm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Manufacturing & Machinery (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种振膜(21)及发声装置,振膜(21)为浇注型成型工艺制备,振膜(21)的原料包括液态氟橡胶和硫化剂,液态氟橡胶为主链或侧链带有氟原子液态聚合物;浇注型振膜(21)通过将原料浇注进入成型模具后,经交联反应制备得到;振膜(21)在150℃的温度下烘烤120h后断裂伸长率变化率小于40%;由于振膜(21)的材料为交联结构,且振膜(21)的吸油率小于8%,耐油性和抗溶剂性良好,因此在振膜(21)组装为发声装置的情况下,以及当含有该发声装置的电子产品接触皮肤时,振膜(21)不会出现溶胀的现象,发声装置依然能够保持良好的性能,提高了用户体验;振膜(21)采用浇注成型,厚度均匀且平整,成型后残余应力小,提高了发声装置的声学性能。

Description

振膜及发声装置 技术领域
本发明涉及声学领域,具体涉及一种振膜及发声装置。
背景技术
现有发声装置常采用热塑性弹性体振膜,尤其热塑性聚氨酯弹性体(TPU)和热塑性聚酯类弹性体(TPEE)振膜比较常见。由于热塑性聚氨酯弹性体和热塑性聚酯类弹性体振膜具有良好的阻尼性和加工性,随着扬声器领域对防水和音质的高需求,这两类弹性体在扬声器领域得到了推广应用。
普通的热塑性弹性体作为发声装置的振膜时,会面临高温可靠性的问题,例如热塑性聚氨酯弹性体和热塑性聚酯类弹性体为线性结构,在高温下氢键容易被破坏,在加热和氧气的作用下容易老化,使得机械性能损失。另一方面,电子产品如手机、手环等在使用时不可避免地会接触到皮肤,皮肤表面涂抹的化妆品、防晒霜、分泌的油脂等渗入到产品内部,导致振膜出现溶胀,影响产品的性能和寿命,给用户带来不好的体验。
而且,常规的热塑性弹性体振膜常采用气压成型,成型过程中拉伸不均匀,分子链运动不充分,折环部分不可避免的拉伸,内部存在一定应力且有成型不到位的现象,易出现厚度不均、振膜变形等现象,导致良率下降,影响声学性能。
发明内容
本发明的主要目的是提供一种振膜及发声装置,旨在改善现有发声装置常采用热塑性弹性体振膜存在的耐高温可靠性差、厚度不均且易变形的问题。
为实现上述目的,本发明提出一种振膜,所述振膜的原料包括液态氟橡胶和硫化剂,所述液态氟橡胶为主链或侧链带有氟原子的液态聚合物;所述振膜通过将所述原料浇注进入振膜成型模具后,经交联反应制备得到;所述 振膜在150℃的温度下烘烤120h后断裂伸长率变化率小于40%,所述振膜的吸油率小于8%。
优选地,所述液态氟橡胶的分子结构式为
Figure PCTCN2021135901-appb-000001
其中,R为氟原子或含氟的侧链基团,X为氢基、巯基、羟基、羧基、卤素、多胺和酰胺基团中的任意一种。
优选地,所述振膜的硬度为10~95A,厚度为10~300μm。
优选地,所述振膜的断裂伸长率大于50%,杨氏模量处于3~100MPa。
优选地,所述液态氟橡胶的重量份为100,所述硫化剂的重量份为5~15。
优选地,所述原料还包括0~60重量份的填料,所述填料包括炭黑、白炭黑、碳酸钙、氟化钙、硫化锌、铝粉、石墨、二氧化钛、陶土、云母、碳纤维、硅酸镁纤维中的至少一种。
优选地,所述原料还包括0~50重量份的增塑剂,所述增塑剂包括邻苯二甲酸酯类、氯化联苯、葵二酸二辛脂、含氟全醚、羟基硅油、二甲基硅氧烷中的至少一种。
优选地,所述原料还包括0.1~5重量份的防焦剂,所述防焦剂包括苯甲酸、邻苯二甲酸酐、水杨酸、乙酰水杨酸、乙酸钠、三氯密胺、N-环己基硫代邻苯二甲酰亚胺(CTP)、六异丙基硫代三聚氰胺、N-邻苯二甲酰亚胺中的至少一种。
优选地,所述原料还包括0.1~20重量份的酸接受剂,所述酸接受剂包括氧化镁、氧化锌、氧化钙、氢氧化钙、氢氧化镁中的至少一种。
优选地,所述硫化剂包括无机氧化物、无机过氧化物、无机氧化剂、有机过氧化物、有机胺及其衍生物或二羟基化合物中的至少一种。
本发明技术方案中,振膜的原料包括液态氟橡胶和硫化剂,所述液态氟橡胶为主链或侧链带有氟原子液态聚合物;所述振膜通过将所述原料浇注进入振膜成型模具后,经交联反应制备得到,所述振膜在150℃的温度下烘烤120h后断裂伸长率变化率小于40%。由于振膜的材料为交联结构,且吸油率小于8%,耐油性和抗溶剂性好,因此在振膜组装为发声装置的情况下,以及当含有该发声装置的电子产品接触皮肤时,振膜不会出现溶胀的现象,发声装置依然能够保持良好的性能,提高了用户体验。而且本发明的振膜采用液 态氟橡胶和硫化剂浇注成型,相对于固态原材料压制成型的振膜,具有厚度均匀、成型后残余应力小、振膜平整度高的优点,提高了发声装置的声学性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明一实施例的发声装置的剖视图。
实施例附图标号说明:
10 壳体 20 振动系统
21 振膜 211 固定部
22 音圈 30 磁路系统
31 主磁钢 32 副磁钢
33 磁间隙    
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
现在将详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
本发明提出了一种振膜,振膜的原料包括液态氟橡胶和硫化剂,液态氟 橡胶为主链或侧链带有氟原子液态聚合物;振膜通过将所述原料浇注进入振膜成型模具后,经交联反应制备得到;150℃的温度下烘烤120h后,振膜的断裂伸长率变化率小于40%。
在本发明的一个具体示例中,发明人选取多个采用液态氟橡胶和硫化剂浇注成型制成的振膜,分别在150℃的温度下烘烤120h后,每个振膜的断裂伸长率变化率均小于15%,由此可以证明本发明中采用液态氟橡胶和硫化剂浇注成型的振膜具有良好的耐温性能。
本实施例的液态氟橡胶在常温下为液态聚合物,将液态氟橡胶和硫化剂均匀混合后浇注进入振膜成型模具后,在一定温度和压力下充满模腔并交联,形成振膜,需要说明的是,此处的温度是指25℃~230℃,压力是指0.01MPa~10MPa。液体液态氟橡胶的主链或侧链带有氟原子,位于液态氟橡胶端部的基团为活性基团,与硫化剂进行交联,具体可以为氢基、巯基、羟基、羧基、卤素基团、胺基或酰胺基。液态氟橡胶的分子结构式为
Figure PCTCN2021135901-appb-000002
其中,R为氟原子或含氟的侧链基团,X为氢基、巯基、羟基、羧基、卤素、多胺或酰胺基团。由于相比普通的热塑性弹性体振膜,浇注型氟橡胶制成的振膜具有更好的耐高温性能,由于本实施例的振膜为交联结构,且吸油率小于4%,有极好的耐油性和抗溶剂性,因此在振膜组装为发声装置的情况下,以及当含有该发声装置的电子产品接触皮肤时,振膜不会出现溶胀的现象,发声装置依然能够保持良好的性能,提高了用户体验。另一方面,常规的热塑性弹性体振膜常采用气压成型,成型过程中拉伸不均匀,导致成型后振膜厚度不均且成型不平整等不良,导致振膜良率降低,声学性能也会受到影响,而本实施例的振膜采用浇注成型,振膜厚度均匀,成型后残余应力小,振膜平整,提高了发声装置的声学性能。此外,液态氟橡胶表面能极低,与胶水亲和性很差,常规固体氟橡胶制备的振膜要实现与其它材料的粘接,技术难度和成本很高,而本实施例采用浇注型加工方法制备的振膜与固体氟橡胶不同,无需大型设备,而且可以进行连续加工,因而节省动力、减轻劳动强度。
振膜的硬度为10~95A,若振膜的硬度低于10A,振膜刚性差,易产生偏振,造成THD(总谐波失真,Total Harmonic Distortion)不良;若硬度高于95A,橡胶断裂伸长率变小,低温可靠性验证中易破膜造成产品失效,且配方 中填料过多导致缺陷。更优选地,振膜硬度为30~85A时,使用该振膜的扬声器具有更优异的声学性能。
振膜的厚度为10~300μm,更优选地,振膜厚度为10~200μm,发声装置具有更优异的声学性能。若振膜的厚度小于10um,振膜的阻尼小,听音性能差;若振膜的厚度大于300um,振膜重量过大,灵敏度变差。因此,控制橡胶层的厚度在10-300μm这一特定范围,具有更优异的声学性能。可选地,振膜的厚度可以为10um、50um、200um和300um。
振膜的吸油率小于8%,断裂伸长率大于50%(优选大于200%),杨氏模量处于3~100MPa(优选3~50MPa)。使用热塑性弹性体振膜在长期高温可靠性下,容易发生变脆,韧性下降状况,振膜在工作过程中,产品可能会面临120℃以上的温度,某些产品甚至需要在150℃以上工作,而浇注型氟橡胶制成的振膜有更好的耐温性能,长期使用温度150℃以上,在长期高温下仍然保证较好的韧性,未发生变脆现象。另外使用普通的热塑性弹性体振膜材料的发声装置在接触皮肤时,皮肤表面的护肤品、分泌的油脂容易进入电子产品,使振膜性能下降,使用寿命降低,且在振膜与发声装置连接时,小分子进入内部导致溶胀,影响发声装置的性能和可靠性,而浇注型氟橡胶为内聚能极高,小分子难以进入,且分子为网状、分子间有化学键连接不易产生形变,吸油率可低至8%以下,因此在振膜与发声装置粘接以及在电子产品接触皮肤时,振膜不会出现溶胀,产品依然能够保持良好的性能,用户体验感好。
在一实施例中,液态氟橡胶的重量份为100,硫化剂的重量份为5~15,液态氟橡胶为液体,分子粘度低,采用功率较低的设备即可搅拌均匀。
进一步地,所述原料还包括0~60重量份的填料,填料包括炭黑、白炭黑、碳酸钙、氟化钙、硫化锌、铝粉、石墨、二氧化钛、陶土、云母、碳纤维、硅酸镁纤维中的至少一种。填料的重量份优选为10~60,上述补强用的填料能够调节硬度、增强和改善物理机械性能,例如炭黑是一种无定形结构,粒子通过相互之间的物理化学结合构成聚集体,炭黑的一次结构由聚集体构成,同时聚集体之间存在范德华力或氢键,能够聚集成空间网络结构,也就是炭黑的二次结构,炭黑表面具有能够发生取代、还原、氧化反应等的氢、羧基、内酯基、自由基、醌基等基团,当将其加入液态氟橡胶中,由于炭黑表面与橡胶界面之间的强相互作用,材料受力时,分子链比较容易在碳黑表面上滑 动,但不易和炭黑脱离,弹性体与炭黑构成了一种能够滑动的强固的键,力学强度增大。
更进一步地,所述原料还包括0~50重量份的增塑剂,增塑剂包括邻苯二甲酸酯类、氯化联苯、葵二酸二辛脂、含氟全醚、羟基硅油、二甲基硅氧烷中的至少一种。增塑剂的重量份优选为2~30,液态氟橡胶加入较多填料后,粘度上升,加入增塑剂后能够调节硬度,改善加工性能及低温韧性等。增塑剂上的极性基团与橡胶分子上的极性基团有相互吸引的作用,减少了橡胶分子上极性基团的相互作用,因而增塑剂的加入,相当于把液态氟橡胶分子上的极性基团给遮盖起来,成为屏蔽作用,结果使物理交联点减少,另一方面,增塑剂的分子比橡胶分子小得多,它们比较容易活动,可以很方便的提供链段活动所需要的空间,增大分子间的自由体积,降低材料的玻璃化转变温度,增加材料的耐寒性能。
一实施例中,所述原料还包括0.1~5重量份的防焦剂,防焦剂包括苯甲酸、邻苯二甲酸酐、水杨酸、乙酰水杨酸、乙酸钠、三氯密胺、N-环己基硫代邻苯二甲酰亚胺、六异丙基硫代三聚氰胺、N-邻苯二甲酰亚胺中的至少一种。防焦剂又称硫化延缓剂,能够延长焦烧时间,防止发生焦烧,平衡加工效率与液态氟橡胶材料本身焦烧性质之间的矛盾,提高加工安全性。
更具体地,所述原料还包括0.1~20重量份的酸接受剂,酸接受剂包括氧化镁、氧化锌、氧化钙、氢氧化钙、氢氧化镁中的至少一种。酸接受剂的重量份优选为0.1~10,酸接受剂也可以称为吸酸剂或缚酸剂,可中和液态氟橡胶硫化过程中析出的氟化氢。同时在制备过程中,酸接受剂还可以提高液态氟橡胶的交联密度,并提高振膜的耐温性,也可作为热稳定剂。
优选地,硫化剂包括有无机氧化物、无机过氧化物、无机氧化剂、有机过氧化物、有机胺及其衍生物或二羟基化合物中的至少一种。无机氧化物包含氧化锌、氧化钙、氧化镁、氧化铜、氧化铜等;无机过氧化物包含过氧化锌、过氧化钙、过氧化钾、过氧化锰、过氧化铁、过氧化镁、过氧化氢、过氧化锡等;无机氧化剂包含络酸钠、络酸钾、重铬酸钠、重铬酸钾、氯酸钠、氯酸钾等;有机过氧化物包含过氧苯甲酰、过氧化二异丙苯、异丙苯过氧化氢、过氧化甲乙酮、叔丁基过苯甲酸、叔丁基过氧化氢等。有机胺及其衍生物包含对苯二胺、三亚乙基四胺等。还可以选用其它硫化剂,例如硝基苯、 二硝基苯、三硝基苯、对苯醌二肟、二异氰酸酯、有机硅酸盐、有机硼酸盐、有机锡酸盐、酚醛树脂、环氧树脂、活性苯酚等。液态氟橡胶分子主链或侧链带有氟原子,常温下为液态聚合物,可以与有机胺类及其衍生物、二羟基化合物等硫化剂发生交联反应,根据对应的不同硬度和物性需求选择其中一种或多种交联剂。
此外,本发明还提供了一种发声装置,如图1所示,发声装置包括壳体10、振动系统20和磁路系统30,振动系统20和磁路系统30设在壳体10内。振动系统20包括音圈22和上述液态氟橡胶制成的振膜21。振膜21的外周沿设有固定部211,固定部211与壳体10相连,音圈22的一端与振膜21相连,磁路系统30包括间隔设置的主磁钢31和副磁钢32,主磁钢31和副磁钢32之间形成有磁间隙33,音圈22的另一端伸入至磁路系统30的磁间隙33内,音圈22中通入交变电流,音圈22在磁场力的作用下上下振动以带动振膜21上下振动,进而能够发声。
当发声装置工作时,电信号输入产品音圈22,音圈22受到磁场的作用力,并随着信号大小、正负方向的交替变化做不同幅度和方向的运动,从而带动振膜21振动发出声音,完成电-力-声能量转化过程。
可选地,本发明的振膜21可以为折环振膜或者平板振膜。在本发明的一个具体的实施例中,振膜的邵氏硬度在10~95A,厚度在10~300μm这一范围内时,能够使得微型发声装置的谐振频率F0达到100~1500Hz,微型发声装置的低频性能优良。
下面以三个具体的实施例和两个对比例详细描述本发明的振膜,其中,实施例和对比例中的振膜在正常室温条件下的F0之间的差值在20以内,也就是说,实施例和对比例中的振膜在室温条件下的F0相近。值得理解的是,下面描述仅是示例性的,而不是对本申请的具体限制。
实施例1
本实施例的振膜包括以下原料:100g液态氟橡胶,18g炭黑,3g对苯二胺,2g三亚乙基四胺,0.5g N-环己基硫代邻苯二甲酰亚胺,0.5g氧化锌,6g羟基硅油。其中,炭黑为填料,对苯二胺和三亚乙基四胺为硫化剂,N-环己 基硫代邻苯二甲酰亚胺为防焦剂,氧化锌为酸接受剂,羟基硅油为增塑剂。本实施例的振膜的制备方法包括以下步骤:将上述原料均匀混合后浇注进入振膜成型模具,在150℃的温度和0.3MPa的压力下充满模腔并交联,形成硬度为45A,厚度为120μm的振膜。
实施例2
本实施例的振膜包括以下原料:100g液态氟橡胶,18g炭黑,8g对苯二胺,1.5g三亚乙基四胺,0.5g N-环己基硫代邻苯二甲酰亚胺,0.5g氧化锌,8g羟基硅油。其中,炭黑为填料,对苯二胺和三亚乙基四胺为硫化剂,N-环己基硫代邻苯二甲酰亚胺为防焦剂,氧化锌为酸接受剂,羟基硅油为增塑剂。本实施例的振膜的制备方法包括以下步骤:将上述原料均匀混合后浇注进入振膜成型模具,在150℃的温度和0.3MPa的压力下充满模腔并交联,形成硬度为70A,厚度为90μm的振膜。
实施例3
本实施例的振膜包括以下原料:100g液态氟橡胶,18g炭黑,12g对苯二胺,1g三亚乙基四胺,0.5g N-环己基硫代邻苯二甲酰亚胺,0.5g氧化锌,10g羟基硅油。其中,炭黑为填料,对苯二胺和三亚乙基四胺为硫化剂,N-环己基硫代邻苯二甲酰亚胺为防焦剂,氧化锌为酸接受剂,羟基硅油为增塑剂。本实施例的振膜的制备方法包括以下步骤:将上述原料均匀混合后浇注进入振膜成型模具,在150℃的温度和0.3MPa的压力下充满模腔并交联,形成硬度为80A,厚度为80μm的振膜。
对比例1为热塑性聚氨酯弹性体振膜,振膜厚度为95μm;对比例2为三层结构的热塑性聚酯类弹性体复合振膜,其中两个表层均为热塑性聚酯类弹性体层,厚度为15μm,中间层为聚丙烯酸酯压敏胶膜,厚度为20μm。对比例1和对比例2均采用气压成型的方法制备得到。
取对比例1、2及实施例1-3中振膜原材料,置于120℃与150℃环境下,烘烤120h后取出,与未经处理的振膜原材料,用万能拉伸机测试断裂伸长率。振膜原材料的断裂伸长率按照ASTM-D882测试标准进行测试,标距为30mm, 拉伸速率为300mm/min。未经处理的样品断裂伸长率计为l 0,处理后的样品断裂伸长率计为l 1,断裂伸长率变化率=(l 0-l 1)/l 0*100%。
表1断裂伸长率变化率
振膜材质 120℃后断裂伸长率变化率/% 150℃后断裂伸长率变化率/%
对比例1 93 99
对比例2 85 99
实施例1 5 8
实施例2 4 8
实施例3 3 7
由表1可以看出:相较热塑性聚氨酯弹性体和热塑性聚酯类弹性体复合料,本实施例1-3的浇注型氟橡胶制成的振膜长期高温烘烤后机械性能高,表明长期耐温性好。
取对比例1、2及实施例1-3中振膜,在做大功率可靠性时,音圈温度很高可能到达200℃,热量传递到振膜上,高温振动时会造成破膜,做相同大振幅可靠性时,对比例1、2及实施例1-3中的振膜在模拟正常的工作环境下振动时间均为96h,检测每个振膜的破膜率。
表2大振幅下的破膜率
振膜材质 破膜/%
对比例1 30
对比例2 45
实施例1 5
实施例2 7
实施例3 8
由表2可以看出,大振幅振动时温度升高,相同声学性能下,实施例1-3浇注型氟橡胶制成的振膜的耐温性更优异,振膜厚度更均匀,折环部分更加 平衡,破膜率明显低于热塑性聚氨酯弹性体和热塑性聚酯类弹性体复合振膜。
取对比例1、2以及实施例1-实施例3中对应的振膜原材料裁成5cm*5cm的样品,称其质量为m,置于装有油酸的玻璃瓶中,保证浸泡完全,盖上盖子,放于预热到65℃的烘箱中烘烤96h,取出,用无尘布擦拭表面油污后称其重量为m1,吸油率=(m1-m)/m*100%,详细数据见表3。
产品不良率测试方法:由对比例1、2以及实施例1的振膜制成发声装置各100只,滴加油酸后置于65℃的烘箱中烘烤96h,拆解产品后计算振膜变形产品的比例。
表3吸油率及产品不良率
振膜原材料 65℃*96h吸油率/% 产品不良率
对比例1 25% 100%
对比例2 30% 100%
实施例1 1% 0
实施例2 0.8 0
实施例3 0.5 0
由表3可以看出:相较对比例1、2中的热塑性弹性体类振膜原材,本发明实施例1-3所述浇注型氟橡胶制成的振膜的吸油率明显较低。
为验证本实施例1-3例产品性能,测试实施例1-3和对比例1、2中振膜的翘曲程度,具体测试方法为:在正常室温条件上用测试仪对产品进行测试,测试仪包括三部分:测试探头、显示器、和花岗岩平台,其中测试探头为非接触式位移传感器;测试时,将产品放置在花岗岩平台的三个支点上,上下两个测试探头按照相同轨迹同步扫描产品,记录测试探头到产品最近表面的距离,求出每个测试点两个测试探头的差值,其中差值的一半即是该测试点翘曲度的测试值,其中取各个测试点中最大的翘曲度的测试值定义为该产品的翘曲度。分别根据实施例1和对比例1、2的制备方法,每个实例制作100个平行产品,分别测试各平行产品的翘曲度,统计各平行产品翘曲度的分布 情况,测试结果参见表4。
表4振膜翘曲结果
Figure PCTCN2021135901-appb-000003
由表4可知,所述对比例1、2的振膜采用气压成型的方式制备而成,实施例1-3为本实施例所述浇注型氟橡胶制成的振膜,采用注塑方法制备,可明显看出,本实施例浇注型氟橡胶制成的振膜的翘曲程度明显优于传统的气压成型的热塑性弹性体振膜。
综上对比可知,本发明中的振膜,以液态氟橡胶和硫化剂为原料,液态氟橡胶为主链或侧链带有氟原子液态聚合物;所述振膜通过将所述原料浇注进入振膜成型模具后,经交联反应制备得到,相对于热塑性聚氨酯弹性体(TPU)振膜和热塑性聚酯类弹性体TPEE)复合振膜,本发明中的振膜具有耐热性能好、吸油率低、产品平整度好的优点,从而可以大大提升振膜的可靠性、结构稳定性和声学性能。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的构思下,利用本发明说明书所作的等效变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (11)

  1. 一种振膜,其特征在于,所述振膜的原料包括液态氟橡胶和硫化剂,所述液态氟橡胶为主链或侧链带有氟原子的液态聚合物;所述振膜通过将所述原料浇注进入振膜成型模具后,经交联反应制备得到;所述振膜在150℃的温度下烘烤120h后的断裂伸长率变化率小于40%,所述振膜的吸油率小于8%。
  2. 如权利要求1所述的振膜,其特征在于,所述液态氟橡胶的分子结构式为
    Figure PCTCN2021135901-appb-100001
    其中,R为氟原子或含氟的侧链基团,X为氢基、巯基、羟基、羧基、卤素、多胺和酰胺基团中的任意一种。
  3. 如权利要求1所述的振膜,其特征在于,所述振膜的硬度为10~95A,所述振膜的厚度为10~300μm。
  4. 如权利要求1所述的振膜,其特征在于,所述振膜的断裂伸长率大于50%,所述振膜的杨氏模量处于3~100MPa。
  5. 如权利要求1所述的振膜,其特征在于,所述液态氟橡胶的重量份为100,所述硫化剂的重量份为5~15。
  6. 如权利要求5所述的振膜,其特征在于,所述原料还包括0~60重量份的填料,所述填料包括炭黑、白炭黑、碳酸钙、氟化钙、硫化锌、铝粉、石墨、二氧化钛、陶土、云母、碳纤维、硅酸镁纤维中的至少一种。
  7. 如权利要求5所述的振膜,其特征在于,所述原料还包括0~50重量份的增塑剂,所述增塑剂包括邻苯二甲酸酯类、氯化联苯、葵二酸二辛脂、含氟全醚、羟基硅油、二甲基硅氧烷中的至少一种。
  8. 如权利要求5所述的振膜,其特征在于,所述原料还包括0.1~5重量份的防焦剂,所述防焦剂包括苯甲酸、邻苯二甲酸酐、水杨酸、乙酰水杨酸、乙酸钠、三氯密胺、N-环己基硫代邻苯二甲酰亚胺、六异丙基硫代三聚氰胺、N-邻苯二甲酰亚胺中的至少一种。
  9. 如权利要求5所述的振膜,其特征在于,所述原料还包括0.1~20重量份的酸接受剂,所述酸接受剂包括氧化镁、氧化锌、氧化钙、氢氧化钙、氢氧化镁中的至少一种。
  10. 如权利要求1~9中任一项所述的振膜,其特征在于,所述硫化剂包括无机氧化物、无机过氧化物、无机氧化剂、有机过氧化物、有机胺及其衍生物或二羟基化合物中的至少一种。
  11. 一种发声装置,其特征在于,包括如权利要求1~10中任一项所述的振膜。
PCT/CN2021/135901 2021-01-29 2021-12-07 振膜及发声装置 WO2022160942A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110134090.3A CN114827873B (zh) 2021-01-29 2021-01-29 振膜及发声装置
CN202110134090.3 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022160942A1 true WO2022160942A1 (zh) 2022-08-04

Family

ID=82525415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135901 WO2022160942A1 (zh) 2021-01-29 2021-12-07 振膜及发声装置

Country Status (2)

Country Link
CN (1) CN114827873B (zh)
WO (1) WO2022160942A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001016683A (ja) * 1999-07-01 2001-01-19 Onkyo Corp ソフトドーム振動板
CN101058657A (zh) * 2006-04-20 2007-10-24 上海道氟化工科技有限公司 氟橡胶组合物及其成型制品
CN103062366A (zh) * 2013-01-06 2013-04-24 沈阳化工大学 一种由氟橡胶复合制备的齿轮
CN106792377A (zh) * 2017-01-23 2017-05-31 瑞声科技(南京)有限公司 振膜及发声器件
CN109790348A (zh) * 2016-09-27 2019-05-21 大金工业株式会社 氟橡胶成型品
CN110591254A (zh) * 2019-10-14 2019-12-20 中国工程物理研究院化工材料研究所 一种增强型氟橡胶23及其制备方法
CN110784806A (zh) * 2019-10-31 2020-02-11 歌尔股份有限公司 一种用于微型发声装置的振膜及微型发声装置
CN111925568A (zh) * 2020-08-24 2020-11-13 保定毓嘉泵业制造有限公司 一种螺杆泵定子橡胶材料及其制备方法
CN211982127U (zh) * 2020-04-17 2020-11-20 歌尔股份有限公司 振膜以及发声装置
CN113542987A (zh) * 2020-04-17 2021-10-22 歌尔股份有限公司 扬声器振膜以及发声装置
CN113542989A (zh) * 2020-04-17 2021-10-22 歌尔股份有限公司 一种振膜以及微型发声装置
CN113542990A (zh) * 2020-04-17 2021-10-22 歌尔股份有限公司 一种振膜以及发声装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1204533A (en) * 1980-11-20 1986-05-13 Akitaro Nakahira Rubber material
DK171958B1 (da) * 1995-07-14 1997-08-25 Oticon As Horeapparat med en gummidel af fluorelastomer fluorelastomer til fremstilling af gummidele i horeapparater samt anvendelse af denne
JP3508431B2 (ja) * 1996-11-08 2004-03-22 Nok株式会社 フッ素ゴム組成物
EP0898076A1 (en) * 1997-08-19 1999-02-24 Westinghouse Air Brake Company Abrasion resistant plastic bonded to a diaphragm
JP4011057B2 (ja) * 2004-11-02 2007-11-21 横浜ゴム株式会社 熱可塑性エラストマー
CN101544762B (zh) * 2009-04-30 2011-12-28 北京化工大学 一种端硅氢活性硅橡胶或氟硅橡胶的制备方法
EP2828901B1 (en) * 2012-03-21 2017-01-04 Parker Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
CN111654790A (zh) * 2020-06-29 2020-09-11 歌尔股份有限公司 发声器件及电子设备

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001016683A (ja) * 1999-07-01 2001-01-19 Onkyo Corp ソフトドーム振動板
CN101058657A (zh) * 2006-04-20 2007-10-24 上海道氟化工科技有限公司 氟橡胶组合物及其成型制品
CN103062366A (zh) * 2013-01-06 2013-04-24 沈阳化工大学 一种由氟橡胶复合制备的齿轮
CN109790348A (zh) * 2016-09-27 2019-05-21 大金工业株式会社 氟橡胶成型品
CN106792377A (zh) * 2017-01-23 2017-05-31 瑞声科技(南京)有限公司 振膜及发声器件
CN110591254A (zh) * 2019-10-14 2019-12-20 中国工程物理研究院化工材料研究所 一种增强型氟橡胶23及其制备方法
CN110784806A (zh) * 2019-10-31 2020-02-11 歌尔股份有限公司 一种用于微型发声装置的振膜及微型发声装置
CN211982127U (zh) * 2020-04-17 2020-11-20 歌尔股份有限公司 振膜以及发声装置
CN113542987A (zh) * 2020-04-17 2021-10-22 歌尔股份有限公司 扬声器振膜以及发声装置
CN113542989A (zh) * 2020-04-17 2021-10-22 歌尔股份有限公司 一种振膜以及微型发声装置
CN113542990A (zh) * 2020-04-17 2021-10-22 歌尔股份有限公司 一种振膜以及发声装置
CN111925568A (zh) * 2020-08-24 2020-11-13 保定毓嘉泵业制造有限公司 一种螺杆泵定子橡胶材料及其制备方法

Also Published As

Publication number Publication date
CN114827873B (zh) 2023-07-14
CN114827873A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN111866669B (zh) 一种用于微型发声装置的振膜和微型发声装置
KR102636232B1 (ko) 음향 발생 장치의 진동판 및 음향 발생 장치
KR20210146990A (ko) 마이크로 음향 발생 장치용 진동판 및 마이크로 음향 발생 장치
WO2022160690A1 (zh) 振膜及发声装置
WO2022160942A1 (zh) 振膜及发声装置
KR102659011B1 (ko) 미니어처 사운드 발생 장치용 다이어프램 및 미니어처 사운드 발생 장치
KR102659012B1 (ko) 미니어처 사운드 발생 장치용 다이어프램 및 미니어처 사운드 발생 장치
WO2022160693A1 (zh) 振膜及发声装置
WO2022160943A1 (zh) 振膜及发声装置
KR102659014B1 (ko) 미니어처 사운드 발생 장치
WO2022160689A1 (zh) 振膜及发声装置
WO2022160947A1 (zh) 振膜和发声装置
CN111849110B (zh) 一种用于微型发声装置的振膜和微型发声装置
KR102666672B1 (ko) 미니어처 발성 장치를 위한 다이어프램 및 미니어처 발성 장치
KR102666675B1 (ko) 미니어처 발성 장치를 위한 다이어프램 및 미니어처 발성 장치
WO2022160683A1 (zh) 振膜和发声装置
CN111849109B (zh) 一种用于微型发声装置的振膜和微型发声装置
KR102666671B1 (ko) 미니어처 발성 장치를 위한 다이어프램 및 미니어처 발성 장치
WO2022160687A1 (zh) 振膜和发声装置
CN116074700A (zh) 发声装置的振膜及发声装置
CN116074701A (zh) 发声装置的振膜及发声装置
CN116074705A (zh) 发声装置的振膜及发声装置
CN116074708A (zh) 发声装置的振膜及发声装置
CN116074702A (zh) 发声装置的振膜及发声装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922532

Country of ref document: EP

Kind code of ref document: A1