WO2022160673A1 - 一种苯硼酸接枝改性磷酸锆基阻燃剂及其制备方法 - Google Patents

一种苯硼酸接枝改性磷酸锆基阻燃剂及其制备方法 Download PDF

Info

Publication number
WO2022160673A1
WO2022160673A1 PCT/CN2021/113326 CN2021113326W WO2022160673A1 WO 2022160673 A1 WO2022160673 A1 WO 2022160673A1 CN 2021113326 W CN2021113326 W CN 2021113326W WO 2022160673 A1 WO2022160673 A1 WO 2022160673A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium phosphate
flame retardant
preparation
acid
reaction
Prior art date
Application number
PCT/CN2021/113326
Other languages
English (en)
French (fr)
Inventor
刘治田
石遒
霍思奇
王成
Original Assignee
武汉工程大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉工程大学 filed Critical 武汉工程大学
Publication of WO2022160673A1 publication Critical patent/WO2022160673A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • C09D5/185Intumescent paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates

Definitions

  • the invention belongs to the technical field of flame-retardant and smoke-suppressing materials, and particularly relates to a phenylboronic acid graft-modified zirconium phosphate-based flame retardant and a preparation method thereof.
  • Layered nanomaterials have the characteristics of small size effect and macroscopic tunnel effect due to their special structure (such as layered tunable structure). It will be stretched to form a monolithic layered material with a large aspect ratio, which is beneficial to improve the thermal stability, fire resistance and mechanical properties of the obtained composite material. Therefore, in recent years, layered nanocomposites have become one of the research hotspots in the field of nanocomposites.
  • Zirconium phosphate is a layered nanomaterial with solid acid properties. It has excellent chemical and thermal stability.
  • the layers of ZrP are superimposed through hydrogen bonding and van der Waals force. There is enough movement space in the microscopic space. Compared with other interlayer substances, the interlayer peeling is simpler, and some substances can be inserted to form composite materials.
  • ZrP also has the characteristics of large ion exchange capacity, controllable aspect ratio, narrow particle size distribution, easy intercalation and exfoliation, adjustable interlayer spacing, and solid acid properties. It is an excellent raw material for the preparation of layered nanocomposites.
  • zirconium phosphate sheet When a single zirconium phosphate sheet is produced by combustion, it can be used as a solid acid to catalyze the formation of carbon, which can significantly improve the flame retardant effect. This defect limits the application of zirconium phosphate in flame retardant systems (IFRs), resulting in poor thermal stability and poor flame retardant effect.
  • IFRs flame retardant systems
  • patent CN110982122A introduces melamine urate into zirconium phosphate, and uses the principle of phosphorus and nitrogen compounding to play a certain flame retardant effect, but only the Zirconium phosphate is used as a reactive flame retardant in polyurethane, but there are problems such as large compounding amount, limited application field and insufficient flame retardant efficiency.
  • the catalytic effect of zirconium nanosheets improves the carbon-forming effect of the polymer, thereby improving the flame retardant efficiency.
  • it does not solve the agglomeration phenomenon that zirconium phosphate nanosheets are prone to, nor does it consider the compatibility with resins, resulting in its flame retardant efficiency. Not ideal either.
  • the main purpose of the present invention is to solve the problems of the existing zirconium phosphate flame retardants, such as poor quality of carbon formation, low carbon layer density, short carbon layer protection time, easy to be broken by flame and the like, to provide a phenylboronic acid-silane-based flame retardant.
  • MSDS 4-chlorophenylboronic acid
  • the flame retardant synergistic effect is obtained, the obtained flame retardant integrates flame retardant, smoke suppression, and enhancement, and has good char-forming effect, no halogen, and is environmentally friendly; and the preparation method involved is simple and easy to popularize and apply.
  • the technical scheme adopted in the present invention is:
  • a preparation method of a phenylboronic acid-modified zirconium phosphate-based flame retardant comprising the following steps:
  • the zirconium phosphate is ⁇ -zirconium phosphate.
  • the silane coupling agent is a silane coupling agent with an amino group, and one or more of KH-550, KH-570, KH-792 and Sj-42 can be selected.
  • the solvent is one or more of absolute ethanol, dioxane, tetrahydrofuran, anhydrous methanol, and chloroform.
  • the ultrasonic treatment temperature in step 1) is 0-20° C., and the time is 0.5-1 h.
  • reaction time in step 1) is 1 ⁇ 3h.
  • the heating reaction temperature in step 2) is 60-150° C., and the time is 16-24 h.
  • reaction conditions in step 3) include: heating under reflux for 6-18 hours, and then reacting at room temperature for 12-36 hours.
  • the molar ratio of the zirconium phosphate to TBA is 100:1 to 1:50; preferably, the molar ratio of the zirconium phosphate to TBA is 10:1 to 1:10.
  • the molar ratio of the zirconium phosphate to the silane coupling agent is 1:3 to 3:1.
  • the molar ratio of the zirconium phosphate to 4-chlorobenzeneboronic acid is 2:1 to 1:20.
  • the molar ratio of the zirconium phosphate to triethylamine (acid binding agent) is 1:(0.5 ⁇ 2).
  • the drying temperature is 60-80° C.
  • the drying time is 12-24 h.
  • the dispersion treatment step described in step 4) is about 10 min of ultrasonic treatment.
  • the washing step in step 3) is to use acetone for 2 to 3 times, ethanol for 2 to 3 times, and water for 2 to 3 times.
  • the concentration of the concentrated phosphoric acid is 75-90 wt%.
  • a flame retardant based on grafted phenylboronic acid silane intercalation modified zirconium phosphate prepared according to the above scheme.
  • the principle of the present invention is:
  • the ⁇ -zirconium phosphate is pretreated by TBA, the interlayer distance of the zirconium phosphate is increased, and the interlayer modification is carried out by using an aminosilane coupling agent, so that the interlayer surface of the ⁇ -zirconium phosphate is grafted with amino groups, and then introduced 4-Chlorophenylboronic acid reacts to graft the phenylboronic acid group to the interlayer of zirconium phosphate;
  • the silane modification of ⁇ -zirconium phosphate can improve the compatibility between zirconium phosphate and the matrix resin at the same time, and improve the Based on the synergistic effect of phosphorus and boron elements, the flame retardant efficiency of the system is significantly improved:
  • phenylboric acid can act in the condensed phase and reduce the thermal radiation absorption of the substrate during the combustion process and the influence of thermal feedback from the flame;
  • the synergistic effect of phenylboric acid and zirconium phosphate can show the characteristics of synergistic flame retardant.
  • phenylboric acid and zirconium phosphate in the zirconium phosphate-based flame retardant after grafting phenylboronic acid, which exerts P-B synergistic effect in the process of fire prevention, and at the same time
  • the introduction of phenylboronic acid and zirconium phosphate can catalyze the combustion of high polymers such as substrates by double acid, accelerate the formation of carbon layers, and effectively improve the flame retardant properties of polymer materials;
  • TBA to peel off the zirconium phosphate can expose the interlayer hydroxyl groups of TBA, with more active sites, and improve the grafting rate of the phenylboronic acid-modified silane coupling agent
  • the zirconium phosphate is chemically modified by aminosilane coupling agent and 4-chlorophenylboronic acid in turn.
  • the introduction of organic functional groups can improve the compatibility of the flame retardant and the substrate, and help to improve the water resistance and water resistance of the substrate .
  • the present invention firstly utilizes TBA to perform intercalation pretreatment on ⁇ -zirconium phosphate, and then introduces a silane coupling agent chemically modified by phenylboronic acid between the layers of the zirconium phosphate to obtain a phenylboronic acid-silane graft-modified silane coupling agent.
  • Zirconium phosphate-based flame retardant can simultaneously improve the flame retardant performance of the obtained flame retardant and its compatibility with polymer materials, and the preparation method involved is simple, the reaction conditions are mild, and it is suitable for popularization and application;
  • the flame retardant obtained by the invention can effectively exert the flame retardant synergistic effect of phosphorus-nitrogen-boron-carbon, integrates flame retardant, smoke suppression, and enhancement, has good carbon-forming effect, excellent comprehensive performance, environmental friendliness and no pollution, and is environmentally friendly and pollution-free.
  • the polymer materials have good compatibility, and can take into account other properties of the material (chemical stability of the material, non-toxicity, no corrosiveness to the substrate, etc.), and wide applicability.
  • Fig. 1 is in order to utilize the flame retardant obtained in Example 1 of the present invention to prepare the combustion back temperature curve graph of the intumescent fire retardant coating
  • the zirconium phosphates used are all ⁇ -zirconium phosphates, and the preparation method includes the following steps: preparing 100 mL of concentrated phosphoric acid with a molar concentration of 3mol/L, adding 250 mL three-necked flasks; then adding 10.00 g of zirconium oxychloride ( ZrOCl 2 -8H 2 O), heat up to 95°C and mechanically stir for 20min to fully disperse the zirconium oxychloride, then stop stirring, react at reflux temperature for 24h, let stand for natural cooling to room temperature, remove the milky white precipitate from the lower layer and carry out centrifugation (10000r /min, 10min) separation, the obtained solid product was washed with an appropriate amount of deionized water, and then centrifuged, and the above steps were repeated until the centrifugation liquid satisfies pH>5, and the washed solid product was dried in an oven at 80 °C for 12h.
  • the preparation method
  • a phenylboric acid-modified zirconium phosphate-based flame retardant comprising the following steps:
  • TBA stripping zirconium phosphate in a 500ml four-neck flask, 3.00g of zirconium phosphate and 300ml of deionized water were fully dispersed for 30min by mechanical stirring and ultrasonic action at a temperature of 5°C, and then 10ml of TBA (four Aqueous solution of butylammonium hydroxide, 25wt%) was added dropwise into the four-necked flask at a constant speed within 30min, continued ultrasonic reaction for 2h after the dripping, and then 15ml of 4mol/L concentrated phosphoric acid was added dropwise into the flask at a constant speed within 30min, the reaction ended After (2h), the mixed solution was centrifuged for solid-liquid separation to obtain a translucent gel precipitate and washed with dioxane;
  • a phenylboric acid-modified zirconium phosphate-based flame retardant comprising the following steps:
  • TBA stripping zirconium phosphate in a 500ml four-necked flask, 6.00g of zirconium phosphate and 300ml of deionized water were fully dispersed for 30min by mechanical stirring and ultrasonic action at a temperature of 5°C, and then 30ml of TBA (four Aqueous solution of butylammonium hydroxide, 25wt%) was added dropwise into the four-necked flask at a constant speed within 30min, continued ultrasonic reaction for 2h after the dripping, and then 15ml of 4mol/L concentrated phosphoric acid was added dropwise into the flask at a constant speed within 30min, the reaction ended After (2h), the mixed solution was centrifuged for solid-liquid separation to obtain a translucent gel precipitate and washed with dioxane;
  • a phenylboric acid-modified zirconium phosphate-based flame retardant comprising the following steps:
  • TBAH peels off zirconium phosphate in a 500ml four-necked flask, mix 1.00g of zirconium phosphate and 300ml of deionized water at a temperature of 5°C to fully disperse it by mechanical stirring and ultrasonication for 30min, and then mix 30ml of TBAH (four Aqueous solution of butylammonium hydroxide, 25wt%) was added dropwise into the four-necked flask at a constant speed within 30min, continued ultrasonic reaction for 2h after the dripping, and then 15ml of 4mol/L concentrated phosphoric acid was added dropwise into the flask at a constant speed within 30min, the reaction ended After (2h), the mixed solution was centrifuged for solid-liquid separation to obtain a translucent gel precipitate and washed with dioxane;
  • Example 1 The flame retardant obtained in Example 1 was applied to the preparation of an acrylate-based intumescent fire-retardant coating, and the specific steps included:
  • each component and its mass percentage include: acrylate emulsion 20%, ammonium polyphosphate 36%, pentaerythritol 12%, melamine 12%, titanium dioxide 3%, hydroxyethyl cellulose 0.5% %, dispersant 0.5%, defoamer 0.5%, n-octanol 0.5%, water 10%, flame retardant based on grafted phenylboronic acid silane intercalation modified zirconium phosphate 5%;
  • the preparation method of the fire-retardant coating described in Application Example 2 is roughly the same as that in Application Example 1, except that each component and its mass percentage include: 20% of acrylate emulsion, 36% of ammonium polyphosphate, 12% of pentaerythritol, and 12% of melamine. %, titanium dioxide 3%, hydroxyethyl cellulose 0.5%, dispersant 0.5%, defoamer 0.5%, n-octanol 0.5%, water 10%, flame retardant based on grafted phenylboronic acid silane intercalation modified zirconium phosphate agent 3%.
  • the preparation method of the fire-retardant coating described in Application Example 2 is roughly the same as Application Example 1, except that each component and its mass percentage include: acrylate emulsion 20%, ammonium polyphosphate 36%, pentaerythritol 12%, melamine 12% %, titanium dioxide 3%, hydroxyethyl cellulose 0.5%, dispersant 0.5%, defoamer 0.5%, n-octanol 0.5%, water 10%, flame retardant based on grafted phenylboronic acid silane intercalation modified zirconium phosphate agent 2%.
  • the preparation method of the fire-retardant coating described in Comparative Example 1 is roughly the same as that of Application Example 1, except that each component and its mass percentage are: 20% of acrylate emulsion, 36% of ammonium polyphosphate, 12% of pentaerythritol, and 12% of melamine. %, titanium dioxide 3%, hydroxyethyl cellulose 0.5%, dispersant 0.5%, defoamer 0.5%, n-octanol 0.5%, water 15%.
  • the preparation method of the fire-retardant coating described in Comparative Example 2 is roughly the same as that of Application Example 1, except that each component and its mass percentage are: 20% of acrylate emulsion, 36% of ammonium polyphosphate, 12% of pentaerythritol, and 12% of melamine. %, titanium dioxide 3%, hydroxyethyl cellulose 0.5%, dispersant 0.5%, defoamer 0.5%, n-octanol 0.5%, water 10%, zirconium phosphate 5%.
  • the preparation method of the fire-retardant coating described in Comparative Example 3 is roughly the same as that of Application Example 1, except that each component and its mass percentage are: 20% of acrylate emulsion, 36% of ammonium polyphosphate, 12% of pentaerythritol, and 12% of melamine. %, titanium dioxide 3%, hydroxyethyl cellulose 0.5%, dispersant 0.5%, defoamer 0.5%, n-octanol 0.5%, water 10%, 4-chlorophenylboronic acid (MSDS) 5%.
  • MSDS 4-chlorophenylboronic acid
  • the preparation method of the fire-retardant coating described in Comparative Example 4 is roughly the same as that of Application Example 1, except that each component and its mass percentage are: 20% of acrylate emulsion, 36% of ammonium polyphosphate, 12% of pentaerythritol, and 12% of melamine. %, titanium dioxide 3%, hydroxyethyl cellulose 0.5%, dispersant 0.5%, defoamer 0.5%, n-octanol 0.5%, water 10%, mixture of zirconium phosphate and 4-chlorophenylboronic acid (MSDS) 5wt% (3 wt % of zirconium phosphate, 2 wt % of 4-chlorobenzeneboronic acid (MSDS)).
  • the flame retardant of the present invention has high flame retardant efficiency, environmental protection and no pollution, good compatibility with resin substrates, etc., and can effectively take into account other properties of the material, and the preparation method involved in the present invention is simple, Wide range of applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

本发明公开了一种基于苯硼酸-硅烷接枝改性磷酸锆基新型纳米阻燃剂,首先利用TBA对α-磷酸锆进行预处理,再采用4-氯苯硼酸(MSDS)对剥离后并硅烷改性的磷酸锆纳米片进行化学修饰而成。本发明所得磷酸锆基阻燃剂可有效发挥磷-氮-硼-碳的阻燃协同效应,集阻燃、抑烟、增强于一身,成炭效果好,不含卤素,环境友好,可同步提升所得阻燃剂的阻燃性能及其与高分子材料的相容性;且涉及的制备方法简便,适合推广应用。

Description

一种苯硼酸接枝改性磷酸锆基阻燃剂及其制备方法 技术领域
本发明属于阻燃抑烟材料技术领域,具体涉及一种苯硼酸接枝改性磷酸锆基阻燃剂及其制备方法。
背景技术
层状纳米材料因其特殊结构(如层状可调控结构)拥有小尺寸效应、宏观隧道效应等特性;对这类层状纳米材料进行插层改性形成插层型纳米复合材料,其无机夹层会被撑开形成大长径比的单片层状材料,有利于提高所得复合材料的热稳定性、防火阻燃以及机械性能。因此,近年来,层状纳米复合材料成为纳米复合材料领域的研究热点之一。
磷酸锆是一种具有固体酸性质的层状纳米材料,具有优异的化学及热学稳定性,ZrP的层间通过氢键作用及范德华力叠加在一起,但由于层中可电离出的氢离子在微观空间内有足够的运动空间,相较于其他层间物质,其层间剥离更为简单,同时又可插入一些物质形成复合材料。此外,ZrP还具有离子交换容量大、长径比可控、粒子尺寸分布窄、易于插层剥离、层间距可调、具有固体酸特性等特点,是制备层状纳米复合材料的优秀原料。单一的磷酸锆片层在燃烧产生时,能够作为固体酸催化成炭,显著提升阻燃效果,但单一的磷酸锆所产生的碳层不够致密,且成炭作用时间短,炭层不够多,无法起到持久保护炭层的作用,这种缺陷限制磷酸锆在阻燃体系(IFRs)的应用,导致阻燃剂存在热稳定性能差、阻燃效果差等问题。
为改善磷酸锆炭层致密度低、作用时间短、炭层强度差等问题,专利CN110982122A在磷酸锆中导入三聚氰胺尿酸盐,利用磷氮复配原理法发挥一定的阻燃效果,但仅将磷酸锆作为反应型阻燃剂应用于聚氨酯中,存在复配量大、应用领域受到限制和阻燃效率不够高等问题;专利CN109810545A中将磷酸错剥离成纳米片加入到阻燃体系中,利用磷酸锆纳米片的催化作用提高聚合物的成炭作用,进而提高阻燃效率,然而并未解决磷酸锆纳米片容易出现的团聚现象,也未考虑与树脂的相容性问题,导致其阻燃效率也并不理想。
发明内容
本发明的主要目的在于针对现有磷酸锆类阻燃剂存在的成炭质量不佳、炭层致密度低、炭层保护时间短、易被火焰冲破等问题,提供一种基于苯硼酸-硅烷接枝改性插层磷酸锆的新型纳米阻燃剂,采用4-氯苯硼酸(MSDS)对剥离后并硅烷改性的磷酸锆纳米片进行化学修饰,可有效发挥磷-氮-硼-碳的阻燃协同效应,所得阻燃剂集阻燃、抑烟、增强于一身,成炭效果好,不含卤素,环境友好;且涉及的制备方法简便,易于推广应用。
为实现上述目的,本发明采用的技术方案为:
一种苯硼酸改性磷酸锆基阻燃剂的制备方法,它包括如下步骤:
1)将磷酸锆分散于水中配制磷酸锆悬浮液,向其中匀速滴加TBA,搅拌均匀后进行超声处理,得TBA预插层磷酸锆悬浮液;然后向其中滴加浓磷酸,反应得到半透明状凝胶沉淀,再用溶剂洗涤;
2)向洗涤后的凝胶沉淀中加入硅烷偶联剂和溶剂,搅拌分散均匀,然后进行加热反应;
3)加入三乙胺进行超声分散处理,再缓慢加入4-氯苯硼酸(MSDS),进行反应,静置,离心,过滤,洗涤,干燥,即得所述苯硼酸改性磷酸锆基阻燃剂。
上述方案中,所述磷酸锆为α-磷酸锆。
上述方案中,所述硅烷偶联剂为带氨基的硅烷偶联剂,可选用KH-550、KH-570、KH-792、Sj-42中的一种或几种。
上述方案中,所述溶剂为无水乙醇、二氧六环、四氢呋喃、无水甲醇、三氯甲烷中的一种或几种。
上述方案中,步骤1)中所述超声处理温度为0~20℃,时间为0.5~1h。
上述方案中,步骤1)中所述反应时间为1~3h。
上述方案中,步骤2)中所述加热反应温度为60~150℃,时间为16~24h。
上述方案中,步骤3)中所述反应条件包括:加热回流反应6~18h,再室温反应12~36h。
上述方案中,所述磷酸锆与TBA的摩尔比为100:1~1:50;优选的,所述磷酸锆与TBA的摩尔比为10:1~1:10。
上述方案中,所述磷酸锆与硅烷偶联剂的摩尔比为1:3~3:1。
上述方案中,所述磷酸锆与4-氯苯硼酸的摩尔比为2:1~1:20。
上述方案中,所述磷酸锆与三乙胺(缚酸剂)的摩尔比为1:(0.5~2)。。
上述方案中,所述干燥温度为60~80℃,时间为12~24h。
上述方案中,步骤4)中所述分散处理步骤为超声处理10min左右。
上述方案中,步骤3)中所述洗涤步骤为采用丙酮洗涤2~3次,乙醇洗涤2~3次,水洗涤2~3次。
上述方案中,所述浓磷酸的浓度为75~90wt%。
根据上述方案制备的一种基于接枝苯硼酸硅烷插层改性磷酸锆的阻燃剂。
本发明的原理为:
本发明利用TBA对α-磷酸锆进行预处理,增加磷酸锆的层间距离,利用氨基硅烷偶联剂进行层间改性,使α-磷酸锆的层间表面接枝氨基基团,再引入4-氯苯硼酸进行反应将苯硼酸 基团接枝改性到磷酸锆的层间;对α-磷酸锆这种硅烷改性,可同时提升磷酸锆与基体树脂之间的相容性,并基于磷元素与硼元素进行协效作用,显著提高体系的阻燃效率:
1)在磷酸锆中引入苯硼酸,苯硼酸作为一种硼系阻燃剂,可以在凝聚相产生作用,减少基材在燃烧过程中的热辐射吸收和来自火焰的热反馈的影响;
2)苯硼酸与磷酸锆配合作用可表现出协效阻燃的特性,接枝苯硼酸后的磷酸锆基阻燃剂中同时存在苯硼酸和磷酸锆,在防火过程中发挥P-B协同效应,同时引入苯硼酸与磷酸锆能对基材等高聚物的燃烧过程中发生双酸催化,加速炭层的产生,有效提高高分子材料等的阻燃性能;
3)利用TBA对磷酸锆进行剥离,可以使TBA的层间羟基暴露出来,活性位点更多,提高苯硼酸改性的硅烷偶连剂接枝率;
4)依次利用氨基硅烷偶联剂和4-氯苯硼酸对磷酸锆进行化学修饰,有机官能团的引入能够提升阻燃剂与基材的相容性,并有助于提高基材的耐水防水性。
与现有技术相比,本发明的有益效果为:
1)本发明首先利用TBA对α-磷酸锆进行插层预处理,再在磷酸锆的层间引入苯硼酸化学改性的硅烷偶联剂,得到一种基于苯硼酸-硅烷接枝改性的磷酸锆基阻燃剂;可同步提升所得阻燃剂的阻燃性能及其与高分子材料的相容性,且涉及的制备方法简单、反应条件温和,适合推广应用;
2)本发明所得阻燃剂可有效发挥磷-氮-硼-碳的阻燃协同效应,集阻燃、抑烟、增强于一身,成炭效果好,综合性能优异,环境友好无污染,与高分子材料等相容性好,并可有兼顾材料的其他性能(材料的化学稳定性、无毒、对基材不会产生腐蚀性,等),适用性广。
附图说明
图1为了利用本发明实施例1所得阻燃剂制备膨胀型防火涂料的燃烧背温曲线曲线图
具体实施方式
为了更好的理解本发明,下面结合实施例进行进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
以下实施例中,采用的磷酸锆均为α-磷酸锆,其制备方法包括如下步骤:配制100mL摩尔浓度为3mo1/L的浓磷酸,加入250ml三口烧瓶中;再加入10.00g氧氯化锆(ZrOCl 2-8H 2O),升温到95℃机械搅拌20min使氧氯化锆充分分散,然后停止搅拌,回流温度下反应24h,静置自然冷却至常温,取下层乳白色沉淀物进行离心处理(10000r/min,10min)分离,将所得固体产物用适量去离子水洗涤,然后再进行离心处理,重复以上步骤至离心清液满足pH>5,洗涤后的固体产物在80℃烘箱中干燥12h后,研磨即得所述磷酸锆白色粉末。
实施例1
一种苯硼酸改性磷酸锆基阻燃剂,其制备方法包括如下步骤:
1)TBA剥离磷酸锆:在500ml四口烧瓶中,将3.00g磷酸锆和300ml去离子水在5℃的温度条件下,通过机械搅拌和超声作用使其充分分散30min,然后将10ml TBA(四丁基氢氧化铵水溶液,25wt%),于30min内匀速滴加到四口烧瓶中,滴完后继续超声反应2h,再将15ml的4mol/L浓磷酸在30min内匀速滴加到烧瓶中,反应结束后(2h),将混合溶液通过离心进行固液分离,得到半透明凝胶沉淀并用二氧六环洗涤;
2)接枝硅烷偶联剂KH550:将经步骤1)洗涤后的半透明凝胶加入四口烧瓶中,并加入2.21g KH550和300ml二氧六环,机械搅拌和超声作用使其充分分散,然后转移至油锅中,设置反应温度为90℃,机械搅拌24h,得剥离ZrP;
3)接枝苯硼酸:向步骤2)所得混合溶液中加入1.06g三乙胺分散10min,缓慢加入1.56g4-氯苯硼酸(MSDS),加热至回流反应12h,室温反应24h,反应结束后,静置,离心,过滤,并用丙酮洗涤2-3次,再用无水乙醇洗涤2-3次,最后在真空烘箱中干燥,得到最终产品。
实施例2
一种苯硼酸改性磷酸锆基阻燃剂,其制备方法包括如下步骤:
1)TBA剥离磷酸锆:在500ml四口烧瓶中,将6.00g磷酸锆和300ml去离子水在5℃的温度条件下,通过机械搅拌和超声作用使其充分分散30min,然后将30ml TBA(四丁基氢氧化铵水溶液,25wt%),于30min内匀速滴加到四口烧瓶中,滴完后继续超声反应2h,再将15ml的4mol/L浓磷酸在30min内匀速滴加到烧瓶中,反应结束后(2h),将混合溶液通过离心进行固液分离,得到半透明凝胶沉淀并用二氧六环洗涤;
2)接枝硅烷偶联剂KH550:将经步骤1)洗涤后的半透明凝胶加入四口烧瓶中,并加入4.43g KH550和300ml二氧六环,机械搅拌和超声作用使其充分分散,然后转移至油锅中,设置反应温度为90℃,机械搅拌24h,得剥离ZrP;
3)接枝苯硼酸:在步骤2)的混合溶液中加入1.06g三乙胺分散10min,缓慢加入6.24g 4-氯苯硼酸(MSDS)到装置中,加热至回流反应12h,室温反应反应24h,反应结束后,静置,离心,过滤,并用丙酮洗涤2-3次,再用无水乙醇洗涤2-3次,最后在真空烘箱中干燥,得到最终产品。
实施例3
一种苯硼酸改性磷酸锆基阻燃剂,其制备方法包括如下步骤:
1)TBAH剥离磷酸锆:在500ml四口烧瓶中,将1.00g磷酸锆和300ml去离子水在5℃ 的温度条件下,通过机械搅拌和超声作用使其充分分散30min,然后将30ml TBAH(四丁基氢氧化铵水溶液,25wt%),于30min内匀速滴加到四口烧瓶中,滴完后继续超声反应2h,再将15ml的4mol/L浓磷酸在30min内匀速滴加到烧瓶中,反应结束后(2h),将混合溶液通过离心进行固液分离,得到半透明凝胶沉淀并用二氧六环洗涤;
2)接枝硅烷偶联剂KH550:将经步骤1)洗涤后的半透明凝胶加入四口烧瓶中,并加入0.74g KH550和300ml二氧六环,机械搅拌和超声作用使其充分分散,然后转移至油锅中,设置反应温度为90℃,机械搅拌24h,得剥离ZrP;
3)接枝苯硼酸:在步骤2)的混合溶液中加入0.18g三乙胺分散10min,缓慢加入1.04g4-氯苯硼酸(MSDS)到装置中,加热至回流反应12h,室温反应反应24h,反应结束后,静置,离心,过滤,并用丙酮洗涤2-3次,再用无水乙醇洗涤2-3次,最后在真空烘箱中干燥,得到最终产品。
应用例1
将实施例1所得阻燃剂应用于制备丙烯酸酯基膨胀型防火涂料,具体步骤包括:
1)按配比称取各原料,各组分及其所占质量百分比包括:丙烯酸酯乳液20%,聚磷酸铵36%,季戊四醇12%,三聚氰胺12%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水10%,基于接枝苯硼酸硅烷插层改性磷酸锆的阻燃剂5%;
2)将称取的聚磷酸铵、季戊四醇、三聚氰胺、二氧化钛、羟乙基纤维素研磨成粉状,然后加水充分研磨混合均匀;再加入消泡剂和分散剂,继续充分研磨;
3)最后加入基于接枝苯硼酸硅烷插层改性磷酸锆的阻燃剂,丙烯酸酯乳液和正辛醇充分研磨混合均匀,即得所述防火涂料。
应用例2
应用例2所述防火涂料的制备方法与应用例1大致相同,不同之处在于各组分及其所占质量百分比包括:丙烯酸酯乳液20%,聚磷酸铵36%,季戊四醇12%,三聚氰胺12%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水10%,基于接枝苯硼酸硅烷插层改性磷酸锆的阻燃剂3%。
应用例2
应用例2所述防火涂料的制备方法与应用例1大致相同,不同之处在于各组分及其所占质量百分比包括:丙烯酸酯乳液20%,聚磷酸铵36%,季戊四醇12%,三聚氰胺12%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水10%,基于接枝苯硼酸硅烷插层改性磷酸锆的阻燃剂2%。
对比例1
对比例1所述防火涂料的制备方法与应用例1大致相同,不同之处在于各组分及其所占质量百分比为:丙烯酸酯乳液20%,聚磷酸铵36%,季戊四醇12%,三聚氰胺12%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水15%。
对比例2
对比例2所述防火涂料的制备方法与应用例1大致相同,不同之处在于各组分及其所占质量百分比为:丙烯酸酯乳液20%,聚磷酸铵36%,季戊四醇12%,三聚氰胺12%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水10%,磷酸锆5%。
对比例3
对比例3所述防火涂料的制备方法与应用例1大致相同,不同之处在于各组分及其所占质量百分比为:丙烯酸酯乳液20%,聚磷酸铵36%,季戊四醇12%,三聚氰胺12%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水10%,4-氯苯硼酸(MSDS)5%。
对比例4
对比例4所述防火涂料的制备方法与应用例1大致相同,不同之处在于各组分及其所占质量百分比为:丙烯酸酯乳液20%,聚磷酸铵36%,季戊四醇12%,三聚氰胺12%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水10%,磷酸锆与4-氯苯硼酸(MSDS)的混合物5wt%(磷酸锆3wt%、4-氯苯硼酸(MSDS)2wt%)。
将应用例1~3和对比例1~4所得膨胀型防火涂料分别进行耐火性能测试,结果见表1。
表1应用例1~3和对比例1~4所得膨胀型防火涂料相关性能测试
Figure PCTCN2021113326-appb-000001
应用例1以及对比例1、对比例2所得膨胀型防火涂料的燃烧背温曲线图见图1,结果表明应用本发明所得阻燃剂制备的涂料可发挥优异的阻燃效果。
上述结果表明:本发明所述阻燃剂具有较高的阻燃效率,环保无污染,与树脂基材等相容性好,并可有效兼顾材料的其它性能,本发明涉及的制备方法简单,适用领域广泛。
以上所述仅为本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,做出若干改进和变换,这些都属于本发明的保护范围。

Claims (10)

  1. 一种苯硼酸接枝改性磷酸锆基阻燃剂的制备方法,其特征在于,它包括如下步骤:
    1)将磷酸锆分散于水中配制磷酸锆悬浮液,向其中匀速滴加TBA,搅拌均匀后进行超声处理,得TBA预插层磷酸锆悬浮液;然后向其中滴加浓磷酸,反应得到半透明状凝胶沉淀,再用溶剂洗涤;
    2)向洗涤后的凝胶沉淀中加入硅烷偶联剂和溶剂,搅拌分散均匀,然后进行加热反应;
    3)加入三乙胺进行分散处理,再缓慢加入4-氯苯硼酸,进行反应,静置,离心,过滤,洗涤,干燥,即得所述苯硼酸改性磷酸锆基阻燃剂。
  2. 根据权利要求1所述的制备方法,其特征在于,所述硅烷偶联剂为带氨基的硅烷偶联剂。
  3. 根据权利要求1所述的制备方法,其特征在于,所述溶剂为无水乙醇、二氧六环、四氢呋喃、无水甲醇、三氯甲烷中的一种或几种。
  4. 根据权利要求1所述的制备方法,其特征在于,所述超声处理温度为0~20℃,时间为0.5~3h。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤1)中所述反应时间为1~3h。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤2)中所述加热搅拌反应温度为60~150℃,时间为16~24h。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤3)中所述反应条件包括:加热回流反应6~18h,再室温反应12~36h。
  8. 根据权利要求1所述的制备方法,其特征在于,所述磷酸锆与TBA的摩尔比为100:1~1:50;磷酸锆与硅烷偶联剂的摩尔比为1:3~3:1;磷酸锆与4-氯苯硼酸的摩尔比为2:1~1:20;所述磷酸锆与三乙胺的摩尔比为1:(0.5~2)。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤4)中所述分散处理处理8~10min。
  10. 权利要求1~9任一项所述制备方法制备的苯硼酸改性磷酸锆基阻燃剂。
PCT/CN2021/113326 2021-01-29 2021-08-18 一种苯硼酸接枝改性磷酸锆基阻燃剂及其制备方法 WO2022160673A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110125747.X 2021-01-29
CN202110125747.XA CN112876740B (zh) 2021-01-29 2021-01-29 一种苯硼酸接枝改性磷酸锆基阻燃剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2022160673A1 true WO2022160673A1 (zh) 2022-08-04

Family

ID=76053713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113326 WO2022160673A1 (zh) 2021-01-29 2021-08-18 一种苯硼酸接枝改性磷酸锆基阻燃剂及其制备方法

Country Status (2)

Country Link
CN (1) CN112876740B (zh)
WO (1) WO2022160673A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115838496A (zh) * 2022-12-23 2023-03-24 中国科学技术大学 一种聚磷腈改性碳化钛纳米片的有机无机杂化成炭剂的制备方法及其应用
CN115960424A (zh) * 2022-12-16 2023-04-14 卡尔德线缆(东莞)有限公司 一种柔性耐火的机器人电缆
CN116426035A (zh) * 2023-03-22 2023-07-14 中国安全生产科学研究院 一种层层包覆核壳结构阻燃剂的制备方法和应用
CN117089249A (zh) * 2023-08-23 2023-11-21 合肥市丽红塑胶材料有限公司 一种用于新能源汽车电池的防护改性材料及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112876740B (zh) * 2021-01-29 2022-03-15 武汉工程大学 一种苯硼酸接枝改性磷酸锆基阻燃剂及其制备方法
CN116063866A (zh) * 2023-01-10 2023-05-05 东莞希乐斯科技有限公司 一种基于蛭石的复合阻燃剂及其制备方法
CN116178833B (zh) * 2023-03-17 2023-08-25 广东安拓普聚合物科技有限公司 一种储能用低烟无卤阻燃交联聚烯烃
CN117844203B (zh) * 2024-03-07 2024-05-14 佛山市智标科技有限公司 一种增强型阻燃pet工程塑料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105061761A (zh) * 2015-08-14 2015-11-18 华南理工大学 一种纳米磷酸锆修饰三嗪大分子成炭剂及其制备方法与应用
CN106519736A (zh) * 2016-09-12 2017-03-22 华南理工大学 兼具催化成炭和自由基猝灭功能纳米磷酸锆及其制备方法与应用
CN109943099A (zh) * 2019-03-22 2019-06-28 武汉工程大学 一种基于改性α-磷酸锆的阻燃剂及其制备方法
CN110894369A (zh) * 2019-10-31 2020-03-20 武汉工程大学 一种基于磷杂菲基团修饰磷酸锆的阻燃剂及其制备方法
CN111234564A (zh) * 2020-03-10 2020-06-05 武汉工程大学 一种环境友好型阻燃剂及利用其制备的膨胀性防火涂料
CN111363380A (zh) * 2020-03-14 2020-07-03 武汉工程大学 一种纳米磷酸锆包覆改性聚磷酸铵及利用其制备的膨胀型防火涂料
CN112876740A (zh) * 2021-01-29 2021-06-01 武汉工程大学 一种苯硼酸接枝改性磷酸锆基阻燃剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105061761A (zh) * 2015-08-14 2015-11-18 华南理工大学 一种纳米磷酸锆修饰三嗪大分子成炭剂及其制备方法与应用
CN106519736A (zh) * 2016-09-12 2017-03-22 华南理工大学 兼具催化成炭和自由基猝灭功能纳米磷酸锆及其制备方法与应用
CN109943099A (zh) * 2019-03-22 2019-06-28 武汉工程大学 一种基于改性α-磷酸锆的阻燃剂及其制备方法
CN110894369A (zh) * 2019-10-31 2020-03-20 武汉工程大学 一种基于磷杂菲基团修饰磷酸锆的阻燃剂及其制备方法
CN111234564A (zh) * 2020-03-10 2020-06-05 武汉工程大学 一种环境友好型阻燃剂及利用其制备的膨胀性防火涂料
CN111363380A (zh) * 2020-03-14 2020-07-03 武汉工程大学 一种纳米磷酸锆包覆改性聚磷酸铵及利用其制备的膨胀型防火涂料
CN112876740A (zh) * 2021-01-29 2021-06-01 武汉工程大学 一种苯硼酸接枝改性磷酸锆基阻燃剂及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115960424A (zh) * 2022-12-16 2023-04-14 卡尔德线缆(东莞)有限公司 一种柔性耐火的机器人电缆
CN115960424B (zh) * 2022-12-16 2024-01-30 卡尔德线缆(东莞)有限公司 一种柔性耐火的机器人电缆
CN115838496A (zh) * 2022-12-23 2023-03-24 中国科学技术大学 一种聚磷腈改性碳化钛纳米片的有机无机杂化成炭剂的制备方法及其应用
CN115838496B (zh) * 2022-12-23 2024-05-17 中国科学技术大学 一种聚磷腈改性碳化钛纳米片的有机无机杂化成炭剂的制备方法及其应用
CN116426035A (zh) * 2023-03-22 2023-07-14 中国安全生产科学研究院 一种层层包覆核壳结构阻燃剂的制备方法和应用
CN117089249A (zh) * 2023-08-23 2023-11-21 合肥市丽红塑胶材料有限公司 一种用于新能源汽车电池的防护改性材料及其制备方法

Also Published As

Publication number Publication date
CN112876740A (zh) 2021-06-01
CN112876740B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2022160673A1 (zh) 一种苯硼酸接枝改性磷酸锆基阻燃剂及其制备方法
Xu et al. Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin
CN109943099B (zh) 一种基于改性α-磷酸锆的阻燃剂及其制备方法
CN113150390B (zh) 一种埃洛石纳米管改性聚磷酸铵基阻燃剂及其制备方法和应用
WO2023039939A1 (zh) 一种纳米磷酸锆基阻燃抑菌剂及其制备的膨胀型防火抑菌涂料
CN111234564B (zh) 一种环境友好型阻燃剂及利用其制备的膨胀性防火涂料
WO2023060571A1 (zh) 一种生物基大分子修饰纳米磷酸锆阻燃剂及利用其制备的防火涂料
CN103059567B (zh) 一种阻燃六方氮化硼/热固性树脂复合材料及其制备方法
Yang et al. Flame retarded rigid polyurethane foam composites based on gel-silica microencapsulated ammonium polyphosphate
CN105037811A (zh) 一种聚磷酸铵阻燃剂及其制备方法
Xu et al. A silica-coated metal-organic framework/graphite-carbon nitride hybrid for improved fire safety of epoxy resins
CN110894369A (zh) 一种基于磷杂菲基团修饰磷酸锆的阻燃剂及其制备方法
CN111349355B (zh) 一种用于提高防火涂料阻燃性能的改性聚磷酸铵及其制备方法
CN112341887A (zh) 一种水性阻燃涂料及其制备方法
Zhong et al. A novel dendritic polyaniline/phytate@ Cu organic-metal composite flame retardant for improving thermal protection of epoxy coatings
Chen et al. Flower-like Ni-Al/LDH synergistic polyaniline anchored to the carbon sphere surface to improve the fire performance of waterborne epoxy coatings
Wang et al. Synergistic enhancement of flame retardancy of epoxy resin by layered zirconium phenylphosphate modified layered double hydroxides
CN110938236B (zh) Dopo功能化二硫化钼阻燃剂及其制备方法
Wang et al. The synergistic effect of lamellar cobalt phosphate and sodium metaborate hydrate improves the flame retardancy of epoxy resin
CN103073924B (zh) 一种含磷腈结构的六方氮化硼及其制备方法
CN116454536A (zh) 一种含有改性蒙脱土的锂电池隔膜用涂覆浆料及其制备方法和应用
Li et al. Synergistic PN charring agents to enhance flame retardancy of ethylene-vinyl acetate (EVA): Insights from experimental and molecular dynamic simulations
CN113174057B (zh) 一种氮磷协效Al基MOFs阻燃剂及其制备方法与应用
CN114395167A (zh) 一种碳微球@水滑石@聚磷腈杂化阻燃剂及其制备方法
CN115368673A (zh) 一种石墨烯改性阻燃聚丙烯材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922268

Country of ref document: EP

Kind code of ref document: A1