WO2022160440A1 - 显示装置、显示面板及其制造方法、驱动电路及驱动方法 - Google Patents

显示装置、显示面板及其制造方法、驱动电路及驱动方法 Download PDF

Info

Publication number
WO2022160440A1
WO2022160440A1 PCT/CN2021/082837 CN2021082837W WO2022160440A1 WO 2022160440 A1 WO2022160440 A1 WO 2022160440A1 CN 2021082837 W CN2021082837 W CN 2021082837W WO 2022160440 A1 WO2022160440 A1 WO 2022160440A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting device
emitting
layer
driving
Prior art date
Application number
PCT/CN2021/082837
Other languages
English (en)
French (fr)
Inventor
闫华杰
李晓虎
焦志强
王路
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180000572.8A priority Critical patent/CN115485849A/zh
Priority to US17/629,739 priority patent/US20230165051A1/en
Publication of WO2022160440A1 publication Critical patent/WO2022160440A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/18Tiled displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/19Segment displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display device, a display panel and a manufacturing method thereof, a driving circuit and a driving method.
  • OLED Organic Light Emitting Diode
  • Organic Light Emitting Diode OLED (Organic Light Emitting Diode, Organic Light Emitting Diode) display panels are widely used in display technology due to their advantages of thinness, high contrast, flexibility, and short response time.
  • existing display panels achieve full color by tiling RGB pixels, resulting in lower pixel density and lower image resolution.
  • the purpose of the present disclosure is to overcome the above-mentioned deficiencies of the prior art, and to provide a display device, a display panel and a manufacturing method thereof, a driving circuit and a driving method, which can improve the image resolution.
  • a display panel comprising:
  • a driving backplane including a plurality of pixel driving circuits
  • the light-emitting device layer includes a plurality of light-emitting units distributed in an array, and the light-emitting unit includes a plurality of light-emitting devices stacked in a direction away from the driving backplane; in the direction perpendicular to the driving backplane, the distance from the The light-emitting device other than the light-emitting device closest to the driving backplane is a transparent device;
  • At least some of the light-emitting devices are connected to the pixel driving circuit for emitting light under the driving of the pixel driving circuit, and at least two of the light-emitting devices in the same light-emitting unit have different light-emitting materials .
  • the light emitting device includes:
  • a first electrode layer formed on one side of the driving backplane, and connected to a pixel driving circuit
  • a light-emitting functional layer formed on the surface of the first electrode layer facing away from the driving backplane
  • a second electrode layer formed on the surface of the light-emitting functional layer away from the driving backplane
  • the second electrode layer of the light emitting device close to the driving backplane and the first electrode layer of the light emitting device facing away from the driving backplane for the same electrode layer.
  • the number of light-emitting devices in the same light-emitting unit is three, and includes a first light-emitting device, a second light-emitting device, and a third light-emitting device distributed in a direction away from the driving backplane Three light-emitting devices, and the first light-emitting device, the second light-emitting device and the third light-emitting device have different light-emitting materials for emitting light of different colors.
  • the first light-emitting device is a blue light-emitting device
  • the second light-emitting device is a green light-emitting device
  • the third light-emitting device is a red light-emitting device.
  • the first electrode layer of the first light-emitting device is disposed on one side of the driving backplane, and the display panel further includes:
  • the pixel definition layer and the first electrode layer of the first light-emitting device are arranged on the same side of the driving backplane, and the pixel definition layer is provided with a plurality of layers exposing the first electrode layers of the first light-emitting devices. open;
  • the light-emitting functional layer of the first light-emitting device is at least partially disposed in the opening;
  • the second electrode layer of the first light-emitting device is disposed on the surface of the pixel definition layer away from the driving backplane, and its orthographic projection in the opening is in the same position as the light-emitting functional layer of the first light-emitting device.
  • the orthographic projections in the opening at least partially overlap; the second electrode layer of the first light-emitting device is connected to the pixel driving circuit through a via hole passing through the pixel definition layer;
  • the light-emitting functional layer of the second light-emitting device covers the surface of the second electrode layer of the first light-emitting device facing away from the driving backplane, and its orthographic projection on the driving backplane covers the first light-emitting device the orthographic projection of the second electrode layer of the device on the driving backplane;
  • the second electrode layer of the second light-emitting device covers the surface of the light-emitting functional layer and the pixel definition layer of the second light-emitting device, and its orthographic projection in the opening corresponds to the light emission of the first light-emitting device
  • the orthographic projection of the functional layer in the opening at least partially overlaps, and is connected to the pixel driving circuit through a via hole passing through the pixel definition layer;
  • the light-emitting functional layer of the third light-emitting device includes a hole transport layer, a light-emitting material layer and an electron transport layer stacked in sequence, and the hole transport layer is located on the first electrode layer of the third light-emitting device away from the driving back one side of the plate, and its orthographic projection on the driving backplane covers the orthographic projection of the second electrode layer of the second light-emitting device on the driving backplane; the light-emitting material layer is located in the hole a side of the transmission layer facing away from the driving backplane, and its orthographic projection in the opening at least partially overlaps the orthographic projection of the second electrode layer of the second light emitting device in the opening; the electron The transport layer covers the surface of the structure formed by the light-emitting material layer and the hole transport layer;
  • the second electrode layer of the third light-emitting device is located on the side of the electron transport layer away from the driving backplane, and its orthographic projection in the opening is the same as the positive projection of the light-emitting material layer in the opening.
  • the projections overlap at least partially.
  • the third light-emitting devices of each of the light-emitting units share the hole transport layer and the electron transport layer.
  • the driving backplane includes a pixel area and an edge area located outside the pixel area, each of the pixel driving circuits is located in the pixel area, and the edge area is provided with a plurality of a peripheral circuit;
  • the first light-emitting device, the second light-emitting device and the third light-emitting device are all located in the pixel region, and the first electrode layer of the first light-emitting device is connected to a pixel driving circuit;
  • the second electrode layer of the first light-emitting device extends from the pixel region to the edge region, and is connected to a peripheral circuit;
  • the second electrode layer of the second light-emitting device is connected to another of the pixel driving circuits;
  • the second electrode layer of the third light emitting device extends from the pixel region to the edge region, and is connected to another of the peripheral circuits.
  • the display panel further includes:
  • a pixel definition layer covering at least the pixel region, and the first electrode layer of the first light-emitting device and the first electrode layer of the first light-emitting device are arranged on the same side of the driving backplane, and the pixel definition layer is provided with a plurality of layers respectively exposing each of the first electrode layers. an opening of the first electrode layer of the light-emitting device;
  • the light-emitting functional layer of the first light-emitting device is disposed on the surface of the pixel definition layer away from the driving backplane, and the orthographic projection of the first electrode layer of the first light-emitting device on the driving backplane is on the driving backplane.
  • the light-emitting functional layer of the first light-emitting device is within the orthographic projection of the driving backplane;
  • the second electrode layer of the first light-emitting device is disposed on the surface of the light-emitting functional layer of the first light-emitting device facing away from the driving backplane, and the light-emitting functional layer of the first light-emitting device is on the driving backplane. orthographic projection on the orthographic projection of the second electrode layer of the first light-emitting device on the driving backplane;
  • the light-emitting functional layer of the second light-emitting device is disposed on the surface of the second electrode layer of the first light-emitting device facing away from the driving backplane, and extends at least into the opening;
  • the second electrode layer of the second light-emitting device is disposed on the surface of the light-emitting functional layer of the second light-emitting device facing away from the driving backplane, and its orthographic projection in the opening is the same as that of the second light-emitting device. Orthographic projections of the light-emitting functional layer in the opening at least partially overlap;
  • the light-emitting functional layer of the third light-emitting device is disposed on the surface of the second electrode layer of the second light-emitting device away from the driving backplane, and the second electrode layer of the second light-emitting device is on the driving backplane
  • the orthographic projection of the above is within the orthographic projection of the light-emitting functional layer of the third light-emitting device on the driving backplane;
  • the second electrode layer of the third light-emitting device is disposed on the surface of the light-emitting functional layer of the third light-emitting device facing away from the driving backplane, and its orthographic projection in the opening is the same as that of the second light-emitting device. Orthographic projections of the second electrode layer within the opening at least partially overlap.
  • the light-emitting functional layers of the first light-emitting devices of each light-emitting unit are disposed and connected in the same layer.
  • the second electrode layers of the first light emitting devices of each of the light emitting units are disposed and connected in the same layer.
  • the light-emitting functional layers of the second light-emitting devices of each light-emitting unit are disposed and connected in the same layer.
  • the light-emitting functional layers of the third light-emitting devices of each light-emitting unit are disposed and connected in the same layer;
  • the second electrode layers of the third light-emitting devices of each of the light-emitting units are disposed in the same layer and connected.
  • the display panel further includes:
  • the light-shielding layer is disposed on the side of the light-emitting device layer away from the driving backplane, and has a plurality of light-transmitting holes.
  • the orthographic projection of the light hole on the driving backplane and the orthographic projection of each light-emitting device in the corresponding opening on the driving backplane at least partially overlap.
  • the display panel further includes:
  • the encapsulation layer is located on the side of the light emitting device layer away from the driving backplane.
  • a display device including the display panel described in any one of the above.
  • a method for manufacturing a display panel including:
  • the driving backplane including a plurality of pixel driving circuits
  • a light-emitting device layer is formed on one side of the driving backplane, the light-emitting device layer includes a plurality of light-emitting units distributed in an array, and the light-emitting unit includes a plurality of light-emitting devices stacked in a direction away from the driving backplane ; In the direction perpendicular to the driving backplane, the light-emitting devices other than the light-emitting device closest to the driving backplane are transparent devices;
  • At least some of the light-emitting devices are connected to the pixel driving circuit for emitting light under the driving of the pixel driving circuit, and at least two of the light-emitting devices in the same light-emitting unit have different light-emitting materials .
  • the number of light-emitting devices in the same light-emitting unit is three, and includes a first light-emitting device, a second light-emitting device, and a third light-emitting device distributed in a direction away from the driving backplane
  • the driving backplane includes a pixel area and an edge area located outside the pixel area, each of the pixel driving circuits is located in the pixel area, and the edge area is provided with a plurality of peripheral circuits;
  • the forming a light-emitting device layer on one side of the driving backplane includes:
  • a pixel definition layer is formed on the surface of the driving backplane, the pixel definition layer covers at least the pixel region, and is disposed on the same side of the driving backplane as the first electrode layer of the first light-emitting device, so The pixel definition layer is provided with a plurality of openings respectively exposing the first electrode layers of the first light emitting devices;
  • a light-emitting functional layer of a first light-emitting device is formed on the surface of the pixel definition layer away from the driving backplane, and the orthographic projection of the first electrode layer of the first light-emitting device on the driving backplane is on the first light-emitting device.
  • the light-emitting functional layer of the light-emitting device is within the orthographic projection of the driving backplane;
  • a second electrode layer of the first light-emitting device is formed on the surface of the light-emitting functional layer of the first light-emitting device facing away from the driving backplane, and an orthographic projection of the light-emitting functional layer of the first light-emitting device on the driving backplane within the orthographic projection of the second electrode layer of the first light emitting device on the driving backplane, and the second electrode layer of the first light emitting device extends from the pixel region to the edge region, and connected with one of the peripheral circuits;
  • a light-emitting functional layer of the second light-emitting device is formed on a surface of the second electrode layer of the first light-emitting device facing away from the driving backplane, and the light-emitting functional layer of the second light-emitting device extends at least into the opening;
  • the surface of the light-emitting functional layer of the second light-emitting device facing away from the driving backplane forms the second electrode layer of the second light-emitting device, and the orthographic projection of the second electrode layer of the second light-emitting device in the opening is the same as the The orthographic projection of the light-emitting functional layer of the second light-emitting device in the opening at least partially overlaps, and the second electrode layer of the second light-emitting device is connected to a pixel driving circuit;
  • a light-emitting functional layer of the third light-emitting device is formed on the surface of the second electrode layer of the second light-emitting device facing away from the driving backplane, and the second electrode layer of the second light-emitting device is on the positive side of the driving backplane. Projecting the light-emitting functional layer of the third light-emitting device within the orthographic projection of the driving backplane;
  • a second electrode layer of the third light-emitting device is formed on the surface of the light-emitting functional layer of the third light-emitting device facing away from the driving backplane, and the positive electrode layer of the second electrode layer of the third light-emitting device is in the opening.
  • the projection at least partially overlaps the orthographic projection of the second electrode layer of the second light emitting device in the opening, and the second electrode layer of the third light emitting device extends from the pixel region to the edge region, and connected with another peripheral circuit.
  • a pixel driving circuit for driving a plurality of light-emitting devices connected in series between a first power supply terminal and a second power supply terminal; the pixel driving circuit includes:
  • a driving transistor which has a control terminal, a first terminal and a second terminal, and the second terminal of the driving transistor is used for connecting with the first terminal of the light emitting device;
  • a data writing unit which is turned on in response to the writing control signal, so as to transmit the data signal to the first end of the driving transistor
  • the first end of the energy storage unit is connected to the first power supply end, and the second end of the energy storage unit is connected to the control end of the driving transistor;
  • Signal input terminals are connected between two adjacent light-emitting devices.
  • the plurality of light emitting devices includes a first light emitting device, a second light emitting device, and a third light emitting device;
  • the second end of the driving transistor is connected to the first light emitting device
  • the second light emitting device is connected between the first light emitting device and the third light emitting device;
  • the second end of the third light-emitting device is connected to the second power supply end;
  • the signal input end connected between the first light-emitting device and the second light-emitting device is the first signal input end
  • the signal input end connected between the second light-emitting device and the third light-emitting device is The second signal input terminal.
  • a driving method of a pixel driving circuit which is used in the pixel driving circuit described in any one of the above;
  • the driving method includes:
  • the data writing unit is turned on, so that the data signal is transmitted to the control terminal of the driving transistor through the data writing unit and the driving transistor, and sent to the energy storage unit Charge;
  • the energy storage unit inputs an electrical signal to the driving transistor to turn on the driving transistor, and inputs a first power supply signal to the first end of the first light-emitting device through the first power supply terminal , and input the first signal through the first signal input terminal to control the first light-emitting device to emit light; input the second signal to the second signal input terminal, and input the third signal to the first signal input terminal signal to control the second light-emitting device to emit light; input a fourth signal to the second signal input terminal, and input a second power supply signal to the second power supply terminal to control the third light-emitting device to emit light.
  • the display device, the display panel and the manufacturing method thereof, the driving circuit and the driving method of the present disclosure can increase the number of light-emitting devices in each light-emitting unit by stacking a plurality of light-emitting devices, thereby increasing the number of light-emitting devices in the display area, Improve the utilization rate of the display area; at the same time, since at least two light-emitting devices in the same light-emitting unit have different light-emitting materials, they can emit light of multiple colors, and the light of multiple colors can be superimposed to achieve full color, thereby multiplying the improvement.
  • each light-emitting device can be driven separately by each pixel driving circuit, so that each light-emitting device emits light independently and does not interfere with each other;
  • the light-emitting devices other than the light-emitting device closest to the driving backplane are all transparent devices, so that the light emitted by each light-emitting device can be emitted in the direction away from the driving backplane, so as to prevent the light from irradiating the pixel driving circuit and ensure the pixel driving circuit stability.
  • FIG. 1 is a schematic tiling diagram of a display panel in the related art.
  • FIG. 2 is a schematic diagram of a display panel in the first embodiment of the disclosure.
  • FIG. 3 is a schematic diagram of a display panel in a second embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of the driving backplane in the first embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of the planarization layer in the first embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of a spectrum in the first embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of the color gamut of the display panel in the first embodiment of the disclosure.
  • FIG. 8 is a schematic structural diagram of a second electrode layer in an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of a pixel definition layer in the first embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of the driving backplane in the second embodiment of the disclosure.
  • FIG. 11 is a schematic diagram of a light-emitting functional layer in the first embodiment of the disclosure.
  • FIG. 12 is a schematic diagram of the second electrode layer in the first embodiment of the disclosure.
  • FIG. 13 is a schematic diagram of a light-emitting functional layer of the second light-emitting device in the first embodiment of the disclosure.
  • FIG. 14 is a schematic diagram of the second electrode layer of the second light emitting device in the first embodiment of the disclosure.
  • FIG. 15 is a schematic diagram of a light-emitting functional layer of the third light-emitting device in the first embodiment of the disclosure.
  • FIG. 16 is a schematic diagram of the second electrode layer of the third light emitting device in the first embodiment of the disclosure.
  • FIG. 17 is a schematic diagram of the light-emitting functional layer and the second electrode layer of the first light-emitting device in the second embodiment of the disclosure.
  • FIG. 18 is a schematic diagram of a light-emitting functional layer of a second light-emitting device in the second embodiment of the disclosure.
  • 19 is a schematic diagram of the second electrode layer of the second light emitting device in the second embodiment of the disclosure.
  • FIG. 20 is a schematic diagram of the first electrode layer of the first light emitting device in the first embodiment of the disclosure.
  • FIG. 21 is a schematic diagram of the first contact hole in the second embodiment of the disclosure.
  • FIG. 22 is a schematic diagram of the distribution of the second leads in the second embodiment of the disclosure.
  • FIG. 23 is a schematic diagram of the light-emitting functional layer of the second light-emitting device in the second embodiment of the present disclosure before punching holes.
  • FIG. 24 is a schematic diagram of the atomic structure of the organic lattice in the second embodiment of the disclosure.
  • 25 is a schematic diagram of an encapsulation layer in an embodiment of the disclosure.
  • FIG. 26 is a flowchart of a method for manufacturing a display panel in an embodiment of the disclosure.
  • FIG. 27 is a flowchart of step S120 in an embodiment of the present disclosure.
  • FIG. 28 is a top view of a display panel according to an embodiment of the disclosure.
  • FIG. 29 is a schematic diagram of a pixel driving circuit in an embodiment of the disclosure.
  • FIG. 30 is a timing diagram illustrating an operation principle of a pixel driving circuit in an embodiment of the disclosure.
  • Figure 31 is a spectrum of a first light emitting device (R) in one embodiment of the disclosure.
  • Figure 32 is the spectrum of the first light emitting device (G) in one embodiment of the disclosure.
  • FIG. 34 is the RGB spectrum of the pixel driving circuit in the first embodiment of the disclosure.
  • FIG. 35 is a flowchart of a driving method of a pixel driving circuit in an embodiment of the disclosure.
  • 100 display panel; 101, pixel; 1, substrate; 12, first light shielding layer; 13, buffer layer; 2, driving backplane; A, pixel area; B, edge area; 2021, first peripheral circuit; 2022 21, pixel drive circuit; 211, active layer; 212, gate insulating layer; 2121, first gate insulating layer; 2122, second gate insulating layer; 213, first source and drain layer; 214, 2141, the first lead; 2142, the second lead; 215, the gate; 22, the protective layer; 3, the planarization layer; 4, the light emitting device layer; 41, the light emitting device; 411, the first electrode layer; 412, light-emitting functional layer; 413, the second electrode layer; 413a, the first electrode modification layer; 413b, the electrode layer; 413c, the second electrode modification layer; 42, the light-emitting functional layer of the second light-emitting device; 43, the first 2.
  • the second electrode layer of the light-emitting device 44, the light-emitting functional layer of the third light-emitting device; 441, the light-emitting material layer; 45, the second electrode layer of the third light-emitting device; 5, the pixel definition layer; 410, the first contact hole ; 420, the second contact hole; 51, the opening; 6, the second shading layer;
  • 61 light-transmitting hole; 7, packaging layer; 300, driving unit; 301, data writing unit; DT1, first driving transistor; DT2, second driving transistor; Data, data writing unit; C, energy storage unit.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the same reference numerals in the drawings denote the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • the display panel 100 mainly includes a driving backplane and a plurality of light-emitting units arranged in an array arranged on one side of the driving backplane.
  • three tiled sub-pixels are usually used to form a pixel 101 , the display area utilization rate is small, as shown in FIG. 1 , a is the length of the display panel 100 , b is the width of the display panel 100 , c is the diagonal length of the display panel 100 , and the resolution of the pixel 101
  • the PPi of the common display panel 100 is about 600, and the display resolution is low.
  • Embodiments of the present disclosure provide a display panel, which may be an AMOLED display panel. As shown in FIGS. 2-3 , the display panel may include a driving backplane 2 and a light-emitting device layer 4, wherein:
  • the driving backplane 2 includes a plurality of pixel driving circuits 21;
  • the light-emitting device layer 4 includes a plurality of light-emitting units distributed in an array, and the light-emitting units include a plurality of light-emitting devices 41 stacked in a direction away from the driving backplane 2 ;
  • the light-emitting devices 41 other than the nearest light-emitting device 41 are transparent devices;
  • At least some of the light-emitting devices 41 are connected to the pixel driving circuit 21 for emitting light under the driving of the pixel driving circuit 21, and at least two of the light-emitting devices 41 in the same light-emitting unit have different light-emitting materials.
  • the number of light-emitting devices 41 in each light-emitting unit can be increased, thereby increasing the number of light-emitting devices 41 in the display area and improving the utilization rate of the display area; , because at least two light-emitting devices 41 in the same light-emitting unit have different light-emitting materials, they can emit light of multiple colors, and the light of multiple colors can be superimposed to achieve full color, thereby multiplying the display resolution; during this process Among them, since the pixel driving circuit 21 is connected with the light-emitting device 41, each light-emitting device 41 can be driven by each pixel driving circuit 21, so that each light-emitting device 41 emits light independently and does not interfere with each other; In the direction, the light-emitting devices 41 other than the light-emitting device 41 closest to the driving backplane 2 are all transparent devices, so that the light emitted by each light-emitting device 41 can be
  • FIGS. 2-3 are schematic structural diagrams of the display panel according to the embodiment of the present disclosure.
  • the light-emitting principle of the display panel in the embodiment of the present disclosure will be described below with reference to FIGS. 2-3 .
  • the display panel mainly includes a driving backplane 2 and a light-emitting device.
  • Layer 4 wherein the driving backplane 2 can be provided on one side of the substrate 1, the driving backplane 2 can include a pixel area A and an edge area B located outside the pixel area A, and the edge area B can be around the periphery of the pixel area A
  • the annular area may also be an open area located on both sides of the pixel area A, which is not particularly limited here.
  • the driving backplane 2 may include a pixel driving layer, which includes a plurality of pixel driving circuits 21 arranged side by side, and each pixel driving circuit 21 may be located in the pixel area A, as shown in FIG. 3 , the wavy lines in the blank area in the figure It means that a plurality of light-emitting units are omitted here, and the structure of each omitted light-emitting unit is the same as that of the light-emitting unit shown between the wavy lines on both sides. Meanwhile, the edge region 201 can be provided with a plurality of peripheral circuits, and each peripheral circuit can work independently without interfering with each other.
  • the light-emitting device layer 4 is disposed on the side of the pixel driving layer away from the substrate 1 , and includes a plurality of light-emitting units distributed in an array, each light-emitting unit may be located in the pixel area A, and each light-emitting unit
  • the light-emitting unit includes a plurality of light-emitting devices 41 stacked in a direction away from the driving backplane 2.
  • the light-emitting devices 41 have different light-emitting materials and can emit light of different colors.
  • each pixel driving circuit 21 can be energized to each light-emitting device 41, and each light-emitting device 41 can be controlled to emit light independently through a time sequence, thereby displaying an image.
  • multiple light-emitting devices 41 in the same light-emitting unit can be powered on at the same time, and multiple light-emitting devices 41 can be controlled to emit light at the same time, so that light of multiple colors can be superimposed, which can improve the utilization rate of the display area and the resolution of the display area.
  • the substrate 1 may be a flat plate structure, which may be a rigid material such as glass, or a flexible material such as PI (polyimide).
  • the substrate 1 may have a single-layer or multi-layer structure, which is not particularly limited here.
  • the pixel driving circuit 21 may include transistors, and the transistors may be electrically connected to the light-emitting devices 41, so as to control the light-emitting devices 41 through the respective transistors, and then display images. During this process, the light-emitting devices 41 are independent of each other. Glow without interfering with each other.
  • the transistor can be a low temperature polysilicon (LTPS) or a low temperature polycrystalline oxide transistor (LTPO), which is not particularly limited here.
  • the transistor may include an active layer 211 , a gate insulating layer 212 , a gate electrode 215 and a first source-drain layer 213 , and the gate insulating layer 212 may include a first gate insulating layer 2121 and a second gate insulating layer 2122 .
  • the active layer 211 can be located on the side of the substrate 1 close to the light-emitting device layer 4; the first gate insulating layer 2121 covers the active layer 211; the gate 215 is arranged on the first gate The insulating layer 2121 is on the side away from the substrate 1; the second gate insulating layer 2122 covers the gate electrode 215 and the first gate insulating layer 2121, and the first gate insulating layer 2121 and the second gate insulating layer 2122 can be opened to form A via hole connecting the active region, the orthographic projection of the via hole on the substrate 1 and the orthographic projection of the gate 215 on the substrate 1 do not overlap each other; the first source and drain layers 213 are formed on the second gate insulating layer 2122
  • the side facing away from the substrate 1 includes a source electrode and a drain electrode, and the source electrode and the drain electrode can be connected to both sides of the active layer 211 through vias penetrating the second gate insulating layer 2122 and/or the first gate
  • the driving backplane 2 may further include a protective layer 22 covering the first source-drain layer 213 , and the protective layer 22 may cover the first source-drain layer
  • the surface of 213 facing away from the substrate 1 can be used to prevent the hydrogen plasma generated in the subsequent process from diffusing to each transistor.
  • the driving backplane 2 may further include a second source/drain layer 214, and the second source/drain layer 214 may be formed on the side of the protection layer 22 away from the substrate 1, and may provide protection for the protection
  • the layer 22 is opened to form via holes connecting the first source and drain layers 213 , and the second source and drain layers 214 can be connected to the first source and drain layers 213 of the transistor through the via holes passing through the protective layer 22 .
  • the display panel of the present disclosure may further include a planarization layer 3, and the planarization layer 3 may be disposed on the side of the protective layer 22 away from the substrate 1, so as to provide a relatively flat reference for subsequent processes;
  • the planarization layer 3 can cover the protective layer 22 and the second source-drain layer 214 , so as to eliminate the device disconnection of the second source-drain layer 214 .
  • the driving backplane 2 may further include a first light shielding layer 12 and a buffer layer 13, wherein:
  • the first light shielding layer 12 can be located between the driving backplane 2 and the substrate 1 , as shown in FIG.
  • the external ambient light is incident on the active layer 31 of the transistor to protect the stability of the transistor.
  • the first light shielding layer 12 can be formed on the side of the substrate 1 close to the driving backplane 2 by means of vacuum evaporation, magnetron sputtering, chemical vapor deposition or physical vapor deposition.
  • the first light-shielding layer 12 is formed by an etching process, and a light-shielding film layer can be deposited on the side of the substrate 1 close to the driving backplane 2, and a photoresist is formed on the side of the light-shielding film layer away from the substrate 1, and a mask is used for photolithography.
  • the glue is exposed and developed to form a developing area.
  • the pattern of the developing area can be the same as the pattern required by the first light shielding layer 12, and its size can be equal to the size of the pattern required by the first light shielding layer 12.
  • the film layer is anisotropically etched to form the first light shielding layer 12 , and finally the remaining photoresist on the surface of the first light shielding layer can be peeled off to expose the first light shielding layer 12 formed by photolithography.
  • the buffer layer 13 can be located on the side of the first light shielding layer 12 away from the substrate 1, and a process such as chemical vapor deposition, physical vapor deposition or atomic layer deposition can be used to form the buffer layer 13 on the surface of the first light shielding layer 12 away from the substrate 1,
  • the impurity in the substrate 1 can be blocked from diffusing into the driving backplane 2 by the buffer layer 13 , so as to protect the stability of the driving backplane 2 .
  • the pixel driving layer may be formed on the surface of the buffer layer 13 away from the substrate 1 .
  • each light-emitting device 41 in the same light-emitting unit may be stacked in a direction perpendicular to the driving backplane 2, and each light-emitting device 41 may emit light of one color, and the same light-emitting unit
  • Each light-emitting device 41 in the 2 can emit light of a variety of different colors, and the light emitted by each light-emitting device 41 can be superimposed together in the direction perpendicular to the driving backplane 2, and each light-emitting device 41 can be controlled to emit light independently by timing, and then Realize the control of luminous color.
  • the number of light-emitting devices 41 may be two or three.
  • the number of light-emitting devices 41 in the same light-emitting unit is three, which are the first light-emitting device, the second light-emitting device A light-emitting device and a third light-emitting device, wherein the first light-emitting device is located on the side of the pixel driving layer away from the substrate 1, the second light-emitting device is located on the surface of the first light-emitting device away from the substrate 1, and the third light-emitting device is located at the second light-emitting device The device is away from the surface of the substrate 1 , and the first light-emitting device, the second light-emitting device and the third light-emitting device are respectively connected to different pixel driving circuits 21 in the driving backplane 2 in a one-to-one correspondence.
  • the light-emitting materials of the three light-emitting devices 41 may be different from each other, and different light-emitting materials may be used to emit light of different colors, which may be any combination of RGB.
  • the light intensity of the light emitted by the light emitting device 41 on the side close to the driving back plate 2 in the direction perpendicular to the driving back plate 2 may be greater than that far from the driving back plate 2.
  • the light intensity of the light emitted by the light emitting device 41 on the side of the board 2 will not affect the overall display effect even if the light from the light emitting device 41 located below is weakened by the transmittance during use.
  • the light intensity of the light emitted by the first light-emitting device may be greater than that of the light emitted by the second light-emitting device, and the light intensity of the light emitted by the second light-emitting device may be greater than that of the third light-emitting device.
  • the intensity of the light emitted by the light-emitting device may be greater than that of the third light-emitting device.
  • the light emitted by the three light-emitting devices 41 may also be the same, which may help prolong the service life of the light-emitting devices.
  • Figure 6 is a spectrum diagram of three colors of red, green and blue, the abscissa in the figure is the wavelength range, the ordinate is the light intensity, and the position of the peak in the curve is the light intensity of the light of each color. It can be seen from the figure that the light intensity of blue light (B) is stronger than that of green light (G), and the light intensity of green light (G) is stronger than that of red light (R).
  • FIG. 7 is a color gamut diagram of a display panel in an embodiment of the present disclosure. In the figure, the abscissa and the ordinate are chromaticity. After testing, the color gamut of the display panel in this embodiment is 96.8%.
  • the light emitting device 41 may include a first electrode layer 411, a light emitting functional layer 412 and a second electrode layer 413, wherein:
  • the first electrode layer 411 can be provided on one side of the driving backplane 2, for example, it can be provided on the side of the pixel driving layer away from the substrate 1, and can be connected to the pixel driving circuit 21, and the first electrode layer 411 can be used as a light-emitting
  • the material of the anode layer of the device 41 can be either a transparent conductive material or a light-shielding material, which is not particularly limited here. For example, it can be ITO or AZO.
  • the light-emitting functional layer 412 can be disposed on the surface of the first electrode layer 411 away from the driving backplane 2, and can provide a recombination site for excitons to emit light.
  • the light-emitting functional layer 412 can be a single-layer film layer or a multi-layer film layer. This is not particularly limited; taking the multilayer film layer as an example, it may include a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer and an electron injection layer, wherein:
  • the hole injection layer covers the surface of the first electrode layer 411 away from the driving backplane 2, which helps to enhance the electron injection capability of the device;
  • the hole transport layer covers the surface of the hole injection layer away from the first electrode layer 411, which can be Holes provide a transport channel, improve hole mobility, and help improve luminous efficiency;
  • the electron blocking layer covers the surface of the hole transport layer away from the first electrode layer 411, which can be used to block electrons from passing through the light-emitting layer and transporting holes to holes layer movement, to avoid the recombination of excitons in the hole transport layer, and to ensure that the light-emitting center is always located in the light-emitting layer;
  • the light-emitting layer covers the surface of the electron blocking layer away from the first electrode layer 411, and the light-emitting layer can provide a recombination site for electrons and holes.
  • the hole blocking layer covers the surface of the light emitting layer away from the first electrode layer 411, which can be used to block holes from passing through the light emitting layer and moving to the electron transport layer, avoiding the recombination of excitons in the electron transport layer, and further ensuring that the light emitting center is always located in the electron transport layer.
  • the light emitting layer; the electron transport layer covers the surface of the hole blocking layer away from the first electrode layer 411, which can provide a transport channel for electrons and improve electron mobility;
  • the electron injection layer covers the surface of the electron transport layer away from the first electrode layer 411, It can provide a transmission channel for electrons, improve the electron mobility, and further improve the luminous efficiency.
  • Each film layer in the light-emitting functional layer 412 can be made of transparent materials, so as to improve the light transmittance and thus the light extraction rate.
  • the second electrode layer 413 can be disposed on the surface of the light-emitting functional layer 412 away from the driving backplane 2 , and it can be a metal oxide electrode, a metal electrode, a metal alloy electrode or a composite electrode formed by a combination of metal and metal oxide. Special restrictions.
  • the second electrode layer 413 can be used as a cathode layer of the light emitting device 41, and a voltage can be applied to the first electrode layer 411 and the second electrode layer 413, so that the light emitting functional layer 412 emits light.
  • the material of the second electrode layer 413 may be IZO with higher light transmittance, and the second electrode may be formed on the surface of the light-emitting functional layer 412 away from the first electrode layer 411 by a sputtering process layer 413; in another embodiment of the present disclosure, as shown in FIG. 8 , the second electrode layer 413 includes a first electrode modification layer 413a, an electrode layer 413b, and a second electrode modification layer 413c distributed in layers.
  • the modification layer 413a is located on the surface of the light-emitting functional layer 412 away from the driving backplane 2
  • the second electrode modification layer 413c is located on the side of the first electrode modification layer 413a away from the driving backplane 2
  • the electrode layer 413b is located on the first electrode modification layer 413a and the second electrode modification layer 413a.
  • the conductivity of the electrode layer 413b is greater than the conductivity of the first electrode modification layer 413a and the second electrode modification layer 413c, and the first electrode modification layer 413a, the electrode layer 413b and the second electrode modification layer 413c may be
  • the DMD structure is formed, which can improve the light transmittance.
  • the first electrode modification layer 413a, the electrode layer 413b and the second electrode modification layer 413c can all be made of light-transmitting materials.
  • the material of the first electrode modification layer 413a can be molybdenum oxide
  • the material of the electrode layer 413b can be Aluminum-silver alloy
  • the material of the second electrode modification layer can be molybdenum oxide, of course, can also be other light-transmitting materials, which will not be listed here.
  • an electrode layer 411 can be the same electrode layer, thereby reducing the number of electrodes in the light-emitting unit and reducing device efficiency due to the transmittance of the electrodes.
  • the light emitting devices 41 other than the light emitting device 41 closest to the driving backplane 2 may be all transparent light emitting devices, and the light emitting device 41 closest to the driving backplane 2 is close to the driving backplane 2
  • One side can have a shading design, so as to ensure that the light emitted by all the light-emitting devices 41 can be emitted in the direction away from the driving backplane 2, so as to prevent the light from being irradiated to the driving backplane 2, and ensure the stability of the pixel driving circuit 21 in the driving backplane 2. sex.
  • the light emitting device 41 closest to the driving backplane 2 can also be a transparent device, which is not particularly limited here.
  • the display panel of the present disclosure further includes a pixel definition layer 5, as shown in FIGS. Covers pixel area A.
  • pixel area A it can be located on the side of the pixel driving layer away from the substrate 1 , and can be formed on the surface of the planarization layer 3 away from the substrate 1 .
  • the first electrode layer 411 of the first light-emitting device and the pixel definition layer 5 can be disposed on the same side of the driving backplane 2 and connected to a pixel driving circuit 21 .
  • the display panel may further include Connecting leads, the connecting leads may include spaced first leads 2141 and second leads 2142, the first leads 2141 and the second leads 2142 can be driven with different pixels through vias penetrating the planarization layer 3 and the protective layer 22 respectively Circuit 21 is connected.
  • the first electrode layer 411 of the first light emitting device can be connected to the first lead 2141 , and then the first electrode layer 411 of the first light emitting device can be connected to the pixel driving circuit 21 through the first lead 2141 .
  • the second lead 2142 can be used to connect with electrodes of other light-emitting devices in the same light-emitting unit, so as to control the other light-emitting devices to emit light.
  • At least one first lead 2141 and one second lead 2142 may be correspondingly provided in one light-emitting unit; the second leads 2142 in adjacent light-emitting units may be arranged adjacently or oppositely, which is not limited herein.
  • the pixel definition layer 5 can cover the second lead 2142 and also cover part of the first lead 2041.
  • the pixel definition layer 5 can be provided with a plurality of openings 51.
  • An electrode layer 411 is an electrodes of other light-emitting devices in the same light-emitting unit, so as to control the other light-emitting devices to emit light.
  • At least one first lead 2141 and one second lead 2142 may be correspondingly provided in one light-emitting unit; the second leads 2142 in adjacent light-emitting units may be arranged adjacently or oppositely, which is
  • the light-emitting functional layer 412 of the first light-emitting device may be formed on the surface of the first electrode layer 411 of the first light-emitting device facing away from the driving backplane 2 , and may at least A part is located in the opening 51; as shown in FIG. 12, the second electrode layer 413 of the first light-emitting device can be disposed on the surface of the pixel definition layer 5 away from the driving backplane 2, and communicate with the pixel through the via 52 passing through the pixel definition layer 5.
  • the driving circuit 21 is connected so as to energize the second electrode layer 413 of the first light emitting device through the pixel driving circuit 21 .
  • the orthographic projection of the second electrode layer 413 of the first light-emitting device in the opening 51 at least partially overlaps with the orthographic projection of the light-emitting functional layer 412 of the first light-emitting device in the opening 51, and overlaps with the light-emitting functional layer 412 of the first light-emitting device Contact, the light-emitting functional layer 412 of the first light-emitting device and the second electrode layer 413 of the first light-emitting device within the range of the opening 51 and the first electrode layer 411 of the first light-emitting device exposed by the opening 51 can jointly constitute the first light-emitting device device.
  • the second light-emitting device may share an electrode with the first light-emitting device.
  • the first electrode layer of the second light-emitting device may be the second electrode layer 413 of the first light-emitting device.
  • the functional layer 42 covers the surface of the second electrode layer 413 of the first light-emitting device facing away from the driving backplane 2 , and its orthographic projection on the driving backplane 2 covers the second electrode layer 413 of the first light-emitting device on the driving backplane 2 .
  • the orthographic projection on the board 2 can cover at least the opening 51 area, and its two ends can extend outward from the opening 51 area, and respectively cover the two ends of the second electrode layer 413 of the first light-emitting device , so as to prevent the second electrode layer 43 of the second light emitting device formed subsequently and the second electrode layer 413 of the first light emitting device from contacting and short circuiting.
  • the second electrode layer 43 of the second light-emitting device can cover the surface of the light-emitting functional layer 42 and the pixel definition layer 5 of the second light-emitting device, and its orthographic projection in the opening 51 is the same as that of the first light-emitting device.
  • the orthographic projection of the light-emitting functional layer 412 in the opening 51 at least partially overlaps, for example, it extends at least into the region of the opening 51, and can be connected to the pixel driving circuit 21 through the via hole 52 passing through the pixel definition layer 5, and the first light-emitting device
  • the second electrode layer 413 of the second light-emitting device, the light-emitting functional layer 42 of the second light-emitting device, and the second electrode layer 43 of the second light-emitting device can jointly constitute the second light-emitting device.
  • the third light-emitting device may share an electrode with the second light-emitting device.
  • the first electrode layer of the third light-emitting device is the second electrode layer 43 of the second light-emitting device.
  • the light-emitting function of the third light-emitting device The layer 44 covers the surface of the second electrode layer 43 of the second light emitting device facing away from the driving backplane 2 , and its orthographic projection on the driving backplane 2 covers the second electrode layer 43 of the second light emitting device on the driving backplane 2 For example, it can cover at least the area of the opening 51, and its two ends can respectively cover the two ends of the second electrode layer 43 of the second light-emitting device, so as to prevent the third light-emitting device from being formed later.
  • the second electrode layer 45 is short-circuited in contact with the second electrode layer 43 of the second light emitting device.
  • the second electrode layer 45 of the third light-emitting device may cover the surface of the light-emitting functional layer 44 of the third light-emitting device, which may extend at least to the area of the opening 51 , or may cover the light-emitting area of the third light-emitting device.
  • the surface of the functional layer 44 is not particularly limited here.
  • the second electrode layer 45 of the third light emitting device may be connected to the peripheral circuit of the edge region B so as to be energized.
  • the second electrode layer 43 of the second light emitting device, the light emitting functional layer 44 of the third light emitting device, and the second electrode layer 45 of the third light emitting device may collectively constitute the third light emitting device.
  • the light-emitting functional layer 44 of the third light-emitting device may include a hole transport layer, a light-emitting material layer 441 and an electron transport layer stacked in sequence, wherein the hole transport layer may be located at the second electrode of the second light-emitting device.
  • the side of the layer 43 facing away from the driving backplane 2, and its orthographic projection on the driving backplane 2 covers the orthographic projection of the second electrode layer 43 of the second light-emitting device on the driving backplane 2, for example, the hole transport layer can be It covers at least the opening 51 area, and both ends of the opening 51 can extend outward from the opening 51 area and cover the two ends of the second electrode layer 43 of the second light-emitting device respectively.
  • the second light-emitting device can cover the second light-emitting device.
  • the entire surface of the second electrode layer 43 of the device simultaneously covers the surfaces of the light emitting functional layer 42 and the pixel definition layer 5 of the second light emitting device that are not covered by the second electrode layer 43 of the second light emitting device.
  • the light-emitting material layer 441 is located on the side of the hole transport layer away from the driving backplane 2, and its orthographic projection in the opening 51 at least partially overlaps with the orthographic projection of the second electrode layer 43 of the second light-emitting device in the opening 51,
  • the light-emitting material layer 441 may be disposed at least in the area of the opening 51 so as to emit light in the area of the opening 51 .
  • the electron transport layer can cover the surface of the structure formed by the light-emitting material layer 441 and the hole transport layer. For example, it can at least completely cover the light-emitting material layer 441 located in the opening 51, and of course, can also completely cover the third light-emitting device.
  • the second electrode layer 45 of the third light emitting device may be located on the side of the electron transport layer away from the driving backplane 2, and its orthographic projection in the opening 51 and the orthographic projection of the light-emitting material layer 441 in the opening 51 at least partially overlap, In order to ensure that the light-emitting material layer 441 located in the opening 51 emits light normally.
  • the light-emitting functional layer 44 of the third light-emitting device may further include a hole injection layer and an electron injection layer, and the hole injection layer may be located between the second electrode layer 43 and the hole transport layer of the second light-emitting device, It can be used to improve the hole injection capability of the third light-emitting device, thereby improving the hole mobility; the electron injection layer can be located between the second electrode layer 45 and the electron transport layer of the third light-emitting device, and can be used to improve the efficiency of the third light-emitting device. Electron injection capability, thereby increasing electron mobility.
  • the third light-emitting device of each light-emitting unit may share the hole transport layer and the electron transport layer, and the hole transport layer of the third light-emitting device of each light-emitting unit may be simultaneously formed by one process, or may be formed by one process. At the same time, the electron transport layer of the third light emitting device of each light emitting unit is formed.
  • the third light-emitting device includes an electron injection layer and a hole injection layer
  • the third light-emitting device of each light-emitting unit can share the electron injection layer and the hole injection layer, and the third light-emitting device of each light-emitting unit can be simultaneously formed through one process.
  • the hole injection layer of the third light-emitting device of each light-emitting unit can be simultaneously formed in one process, thereby simplifying the process and reducing the manufacturing cost.
  • the number of pixel driving circuits 21 may be two, the two pixel driving circuits 21 may be distributed at intervals, and the two pixel driving circuits 21 may be respectively defined as a first pixel driving circuit and a second pixel Driving circuit
  • the edge region B can be provided with at least two peripheral circuits, which can be defined as the first peripheral circuit 2021 and the second peripheral circuit 2022 respectively
  • the first electrode layer 411 of the first light-emitting device can be connected with the first pixel driving circuit connection
  • the second electrode layer 43 of the second light-emitting device can be connected to the second pixel driving circuit
  • the second electrode layer 413 of the first light-emitting device can extend from the pixel area A to the edge area B, and connect with the first
  • the peripheral circuit 2021 is connected
  • the second electrode layer 45 of the third light-emitting device extends from the pixel region A to the edge region B, and is connected to the second peripheral circuit 2022 in the edge region B, and can pass through the first pixel driving circuit and the second peripheral circuit
  • a peripheral circuit 2021 controls the first light emitting device to emit light, controls the second light emitting device to emit light through the first peripheral circuit 2021 and the second pixel driving circuit, and controls the third light emitting device to emit light through the second pixel driving circuit and the second peripheral circuit 2022.
  • the light-emitting functional layer 412 of the first light-emitting device may be formed on the surface of the pixel definition layer 5 away from the driving backplane 2 , and the first electrode of the first light-emitting device
  • the orthographic projection of the layer 411 on the driving backplane 2 is within the orthographic projection of the light-emitting functional layer 412 of the first light-emitting device on the driving backplane 2, that is, the light-emitting function 412 of the first light-emitting device can completely cover the first light-emitting device the first electrode layer 411.
  • the light-emitting functional layer 412 of the first light-emitting device of each light-emitting unit may be disposed in the same layer and connected to each other.
  • each light-emitting unit may share the light-emitting functional layer 412 of the first light-emitting device, which may be formed simultaneously in one process.
  • the light-emitting functional layer 412 of the first light-emitting device of each light-emitting unit further simplifies the process and reduces the manufacturing cost.
  • the second electrode layer 413 of the first light-emitting device can be disposed on the surface of the light-emitting functional layer 412 of the first light-emitting device facing away from the driving backplane 2, and the orthographic projection of the light-emitting functional layer 412 of the first light-emitting device on the driving backplane 2 is
  • the second electrode layer 413 of the first light emitting device is within the orthographic projection on the driving backplane 2 , that is, the second electrode layer 413 of the first light emitting device can completely cover the light emitting functional layer 412 of the first light emitting device.
  • the second electrode layer 413 of the first light emitting device may cover the pixel area A, may extend from the pixel area A to the edge area B, and be in contact with the first peripheral circuit 2021 in the edge area B.
  • the second electrode layer 413 of the first light-emitting device of each light-emitting unit can be disposed in the same layer and connected to each other.
  • each light-emitting unit can share the second electrode layer 413 of the first light-emitting device, and one process can be performed.
  • the second electrode layer 413 of the first light-emitting device of each light-emitting unit is formed, which further simplifies the process and reduces the manufacturing cost.
  • the light emitting functional layer 412 of the first light emitting device and the second electrode layer 413 of the first light emitting device within the range of the opening 51 and the first electrode layer 411 of the first light emitting device exposed by the opening 51 may together constitute the first light emitting device.
  • the second light-emitting device may share an electrode with the first light-emitting device.
  • the first electrode layer of the second light-emitting device may be the second electrode layer 413 of the first light-emitting device.
  • the functional layer 42 is disposed on the surface of the second electrode layer 413 of the first light emitting device facing away from the driving backplane 2 , and can extend at least into the opening 51 , and can be connected with the second electrode layer 413 of the first light emitting device located in the opening 51 . Contact connection.
  • the light-emitting functional layer 42 of the second light-emitting device can at least cover the surface of the second electrode layer 413 of the first light-emitting device located in the pixel area A, so as to prevent other layers formed subsequently from interacting with the second electrode layer 413 of the first light-emitting device.
  • the two electrode layers 413 are contacted and short-circuited.
  • the light-emitting functional layer 42 of the second light-emitting device of each light-emitting unit may be disposed in the same layer and connected to each other.
  • each light-emitting unit may share the light-emitting functional layer 42 of the second light-emitting device, which may be formed simultaneously in one process.
  • the light-emitting functional layer 42 of the second light-emitting device of each light-emitting unit further simplifies the process and reduces the manufacturing cost.
  • the second electrode layer 43 of the second light-emitting device is disposed on the surface of the light-emitting functional layer 42 of the second light-emitting device facing away from the driving backplane 2 , and its orthographic projection in the opening 51 is the same as that of the second light-emitting device.
  • the orthographic projection of the light-emitting functional layer 42 in the opening at least partially overlaps, which can cover the entire area corresponding to the opening 51, and has an extension extending from the area where the opening 51 is located to the periphery of the opening 51, and the extension can pass through the second opening 51.
  • the light-emitting functional layer 42 of the light-emitting device, the second electrode layer 413 of the first light-emitting device, the light-emitting functional layer 412 of the first light-emitting device, and the via holes of the pixel definition layer 5 are connected to the second pixel circuit so as to pass the second pixel driving circuit
  • the second electrode layer 43 of the second light emitting device is energized.
  • the second electrode layer 413 of the first light-emitting device, the light-emitting functional layer 42 of the second light-emitting device, and the second electrode layer 43 of the second light-emitting device may together constitute the second light-emitting device.
  • the third light-emitting device may share an electrode with the second light-emitting device.
  • the first electrode layer of the third light-emitting device is the second electrode layer 43 of the second light-emitting device, and the light-emitting functional layer 44 of the third light-emitting device is provided on the second light-emitting device.
  • the second electrode layer 43 of the light-emitting device faces away from the surface of the driving backplane 2, and the orthographic projection of the second electrode layer 43 of the second light-emitting device on the driving backplane 2 is on the light-emitting functional layer 44 of the third light-emitting device on the driving backplane.
  • the light-emitting functional layer 44 of the third light-emitting device can completely cover the surface of the second electrode layer 43 of the second light-emitting device facing away from the driving backplane 2, and can cover the surface of the second light-emitting device.
  • the end of the second electrode layer 43 prevents other film layers formed subsequently from contacting the second electrode layer 43 of the second light-emitting device and short-circuiting.
  • the light-emitting functional layer 44 of the third light-emitting device of each light-emitting unit can be arranged in the same layer and connected to each other.
  • each light-emitting unit can share the light-emitting functional layer 44 of the third light-emitting device, and the third light-emitting unit of each light-emitting unit can be formed simultaneously by one process.
  • the light-emitting functional layer 44 of the light-emitting device further simplifies the process and reduces the manufacturing cost.
  • the second electrode layer 45 of the third light-emitting device is disposed on the surface of the light-emitting functional layer 44 of the third light-emitting device facing away from the driving backplane 2 , and its orthographic projection in the opening 51 is at the surface of the second electrode layer 43 of the second light-emitting device.
  • the orthographic projections within the opening 51 at least partially overlap. That is, it may extend at least to the area of the opening 51, or may cover the surface of the light-emitting functional layer 44 of the third light-emitting device, which is not limited herein.
  • the second electrode layer 45 of the third light emitting device may be connected with the second peripheral circuit 2022 of the edge region B so as to be energized.
  • the second electrode layer 43 of the second light emitting device, the light emitting functional layer 44 of the third light emitting device, and the second electrode layer 45 of the third light emitting device may collectively constitute the third light emitting device.
  • the second electrode layer 45 of the third light-emitting device of each light-emitting unit can be arranged in the same layer and connected to each other.
  • each light-emitting unit can share the second electrode layer 45 of the third light-emitting device, and the second electrode layer 45 of each light-emitting unit can be formed simultaneously by one process.
  • the second electrode layer 45 of the third light-emitting device further simplifies the process and reduces the manufacturing cost.
  • a plurality of first arrays can be formed on the surface of the driving backplane 2 by chemical vapor deposition, physical vapor deposition, vacuum evaporation, magnetron sputtering or atomic layer deposition.
  • a first electrode layer 411 of a light-emitting device as shown in FIG. 20 ; then chemical vapor deposition, physical vapor deposition or atomic layer deposition can be used to drive the backplane 2 and the first electrode layer 411 of each first light-emitting device.
  • a pixel definition layer 5 is formed on the surface. At the same time, photolithography is performed on the pixel definition layer 5 to form openings 51 exposing the first electrode layers 411 of the first light-emitting devices, as shown in FIG.
  • a mask with a first mask pattern can be used for Mask, the first mask pattern can be the same as the pattern of each opening 51 of the pixel definition layer 5, and then the light emitting functional layer 412 of the first light emitting device can be formed in each opening 51, as shown in FIG. 11 .
  • the pixel definition layer 5 and the planarization layer 3 can be photolithographically formed to form a via hole 52 through the pixel definition layer 5 and the planarization layer 3.
  • the via hole 52 can be connected to a pixel driving circuit 21, and a second mask can be used.
  • the mask of the pattern is masked, the opening of the second mask pattern can be larger than the opening of the first mask pattern, and then the light-emitting functional layer 412 and part of the pixel definition layer covering the first light-emitting device can be formed according to the second mask pattern
  • the second electrode layer 413 of the first light-emitting device of connected as shown in Figure 12.
  • a mask with a third mask pattern can be used for masking, and the opening of the third mask pattern can be larger than the opening of the second mask pattern, and then the light-emitting functional layer of the second light-emitting device can be formed according to the third mask pattern 42, as shown in Figure 13.
  • a mask with a fourth mask pattern can be used for masking, and the opening of the fourth mask pattern can be larger than the opening of the third mask pattern, and then the second electrode of the second light-emitting device can be formed according to the fourth mask pattern Layer 43.
  • the second electrode layer 43 of the second light emitting device can communicate with a pixel driving circuit 21 through vias 52 penetrating the pixel definition layer 5 and the planarization layer 3, as shown in FIG. 14 .
  • an open mask can be used for masking, and then the light-emitting functional layer 44 of the third light-emitting device and the second electrode of the third light-emitting device are sequentially formed on the surface of the second electrode layer 43 of the second light-emitting device Layer 45, as shown in Figures 15-16.
  • a mask with a fifth mask pattern can be used to form the light-emitting material layer 441 of the third light-emitting device, and an open mask can be used to form other layers and the first layer of the light-emitting functional layer 44 of the third light-emitting device.
  • the second electrode layer 45 of the three light-emitting devices can be used for masking, and then the light-emitting functional layer 44 of the third light-emitting device and the second electrode of the third light-emitting device are sequentially formed on the surface of the second electrode layer 43 of the second light-emitting device Layer 45, as shown in Figures 15-16.
  • a mask with a fifth mask pattern can be used to form the light
  • first electrode layers 411 of each light emitting device are respectively connected to different pixel driving circuits 21 in the driving backplane 2 , so as to control the corresponding light emitting devices 41 to emit light through the different pixel driving circuits 21 respectively.
  • an open mask in order to reduce the manufacturing cost, an open mask can be used for masking, and then chemical vapor deposition, physical vapor deposition, vacuum evaporation, magnetron sputtering or atomic layer deposition, etc.
  • the process forms the light-emitting functional layer 412 of the first light-emitting device and the second electrode layer 413 of the first light-emitting device in sequence on the surface of the structure formed by the pixel definition layer 5 and the first electrode layer 411 of the first light-emitting device, as shown in FIG. 17 . Show.
  • a laser drilling technique can be used to drill holes in the light-emitting functional layer 412 of the first light-emitting device, the second electrode layer 413 of the first light-emitting device, and the region corresponding to the second lead 2142 in the pixel definition layer 5 until the second lead 2142 is exposed.
  • lead 2142 and then form the first contact hole 410, as shown in FIG. 21 .
  • the aperture of the first contact hole 410 should not be too large or too small.
  • the resistance of the second lead 2142 can be reduced and the spacing between the light-emitting units can be reduced.
  • the diameter of the first contact hole 410 may be 1 ⁇ m ⁇ 10 ⁇ m.
  • a plurality of first contact holes 410 can be formed simultaneously through the same laser drilling process, and each of the first contact holes 410 can expose the second leads 2142 of each light-emitting unit in a one-to-one correspondence.
  • the second leads 2142 in adjacent light-emitting units can be arranged adjacent to each other, as shown in the area a and area b in the figure; of course, the second leads 2142 in adjacent light-emitting units can be arranged opposite to each other , the arrangement shown in the area c and the area d in the figure, in addition, the second lead 2142 in the adjacent light-emitting unit can also be arranged in other ways, as long as the first electrode layer 411 of the first light-emitting device and the first lead 2141 are spaced apart so that no short circuit occurs.
  • an open mask can be used for masking, and then the light-emitting functional layer 42 of the second light-emitting device is deposited on the surface of the second electrode layer 413 of the first light-emitting device by magnetron sputtering.
  • the light emitting functional layer 42 can cover the first contact hole 410 , and the side wall of the first contact hole 410 can be isolated from other layers formed later by the light emitting functional layer 42 of the second light emitting device to prevent short circuit.
  • the light-emitting functional layer 42 of the second light-emitting device covering the first contact hole 410 may be punched by a laser drilling process, thereby forming the second contact hole 420.
  • the second contact hole 420 may be The second leads 2142 are exposed.
  • the second contact hole 420 can be sleeved in the first contact hole 410 , and the light emitting functional layer 42 of the second light emitting device can be filled between the hole wall and the hole wall of the first contact hole 410 .
  • the diameter of the second contact hole 420 may be smaller than that of the first contact hole 410 , for example, the diameter of the second contact hole 420 may be 0.2 ⁇ m ⁇ 5 ⁇ m.
  • the second electrode layer 43 of the second light-emitting device can be formed on the surface of the light-emitting functional layer 42 of the second light-emitting device facing away from the driving backplane 2 . As shown in FIG. 19 , the second electrode layer 43 of the second light-emitting device is in the opening 51 The orthographic projection of the second light-emitting device at least partially overlaps with the orthographic projection of the light-emitting functional layer 42 of the second light-emitting device in the opening 51, and the second electrode layer 43 of the second light-emitting device can fill the second contact hole 420, and can pass through the second contact hole 420.
  • the contact hole 420 is connected to the pixel driving circuit 21 .
  • the second electrode layer 43 of the second light emitting device can completely cover the region corresponding to the opening 51 , and can extend to the periphery of the opening 51 from the region corresponding to the opening 51 , and can extend at least to the region corresponding to the second contact hole 420 .
  • a fine mask can be used for masking, and the fine mask has openings exposing the region where the opening 51 is located and the second contact hole 420, and then deposition can be performed on the openings of the fine mask by an evaporation process.
  • transparent conductive material to form the second electrode layer 43 of the second light emitting device.
  • an open mask may be used to form a transparent conductive material on the surface of the light-emitting functional layer 42 of the second light-emitting device facing away from the driving backplane 2 , and then a laser cutting process may be used to pattern the transparent conductive material to The transparent conductive material covering the area where the opening 51 is located and the area other than the second contact hole 420 is removed. It should be noted that the transparent conductive material between the region where the opening 51 is located and the second contact hole 420 is continuous and uninterrupted.
  • the organic topological insulating film can be made of organic metal topological
  • the insulator is composed of MgAg-DCA (dicyanoanthracene), and the atomic structure of the organic lattice of the material is shown in Figure 24.
  • the inset in the upper left corner is a schematic diagram of the molecular structure of DCA.
  • the organic topological insulating film layer can be formed by a thermal evaporation process, and the organic topological insulating film layer can cover the area outside the area corresponding to the opening 51, and can be formed on the organic topological insulating layer, the light-emitting functional layer 42 of the second light-emitting device, and the first light-emitting device.
  • the second electrode layer 413 of the device, the light-emitting functional layer 412 of the first light-emitting device, and the region corresponding to the second lead 2142 in the pixel definition layer 5 are punched to form a second contact hole 420 , and the second contact hole 420 can be exposed The second lead 2142 .
  • Metal electrodes may then be deposited on the regions not covered by the organic topological insulating material to form the second electrode layer 43 of the second light emitting device.
  • the second light emitting device will not be formed on the organic topological insulating layer during the process of forming the second electrode layer 43 of the second light emitting device.
  • the second electrode layer 43, and then the second electrode layer 43 of the second light emitting device is automatically patterned during the formation process.
  • the metal electrode can fill the second contact hole 420, and then the second contact hole 420 can pass through the second contact hole.
  • the hole 420 is connected to the second pixel driving circuit.
  • an open mask can be used for masking, and then the light-emitting functional layer 44 of the third light-emitting device and the second electrode of the third light-emitting device are sequentially formed on the surface of the second electrode layer 43 of the second light-emitting device layer 45, as shown in FIG. 3, the second electrode layer 45 of the third light-emitting device can extend from the pixel area A to the edge area B, and is connected to the second peripheral circuit 2022 in the edge area B, so as to pass the second pixel driving circuit And the second peripheral circuit 2022 drives the third light emitting device to emit light.
  • the display panel may further include a second light shielding layer 6 , as shown in FIG. 2 , the second light shielding layer 6 may be disposed on the side of the light emitting device layer 4 away from the driving backplane 2 , and has a plurality of light-transmitting holes 61 distributed in an array, each light-transmitting hole 61 can be a through hole, and its shape can be a rectangle, a circle, an ellipse or other shapes, which will not be exemplified here.
  • the light-transmitting holes 61 may be arranged in a one-to-one correspondence with each opening in the pixel definition layer 5 , and each light-transmitting hole 61 at least partially overlaps with each opening in the pixel definition layer 5 , and the overlapping area may be the one in each light-emitting unit. In the region where all the film layers overlap, the light emitted from the light-emitting unit can be emitted from the light-transmitting hole 61 , and the light-emitting area of each light-emitting unit can be defined by the light-transmitting hole 61 .
  • the material of the second light shielding layer 6 may be metal or organic material, which is not particularly limited herein.
  • Vacuum evaporation, magnetron sputtering, chemical vapor deposition or physical vapor deposition can be used to form a light-shielding film layer on the side of the light-emitting device layer 4 away from the driving backplane 2, and a photolithography process is used to form a light-transmitting film in the light-shielding film layer.
  • Holes 61 are formed, thereby forming the second light shielding layer 6 .
  • a light-shielding film layer can be deposited on the side of the light-emitting device layer 4 away from the driving backplane 2
  • a photoresist can be formed on the side of the light-shielding film layer away from the driving backplane 2
  • a mask is used to expose the photoresist and developing to form a developing area
  • the pattern of the developing area can be the same as the pattern required by the second light shielding layer 6, and its size can be equal to the size of the light transmission hole 61
  • the light shielding film layer can be anisotropically etched in the developing area , to form the second light shielding layer 6
  • the remaining photoresist on the surface of the second light shielding layer 6 can be peeled off to expose the second light shielding layer 6 formed by photolithography.
  • the display panel may further include an encapsulation layer 7 , as shown in FIG. 25 , the encapsulation layer 7 may be located on the side of the light-emitting device layer 4 away from the driving backplane 2 .
  • the encapsulation layer 7 may be located between the light emitting device layer 4 and the second light shielding layer 6 , or may be located on the side of the second light shielding layer 6 away from the light emitting device layer 4 , which is not limited herein.
  • the encapsulation layer 7 can be composed of an organic material, an inorganic material, or a composite film layer with alternating organic layers and inorganic layers.
  • the material of the encapsulation layer 7 can be acrylic material, or silicon nitride, oxide
  • the composite film layer composed of materials such as silicon or silicon oxynitride is not particularly limited here.
  • the encapsulation layer 7 may be a composite film structure in which organic layers and inorganic layers are alternated, for example, it may include a first inorganic layer, an organic layer and a second inorganic layer, and the first inorganic layer may be formed on the light emitting device.
  • the second inorganic layer is formed on the side of the first inorganic layer away from the light-emitting device layer 4, and the organic layer is located between the first inorganic layer and the second inorganic layer, which can block water and oxygen through the inorganic layer, and pass through the organic layer.
  • the layer releases the stress of the inorganic layer, preventing peeling between the light-emitting device layer 4 and the first inorganic layer due to the pulling caused by the stress.
  • Embodiments of the present disclosure further provide a method for manufacturing a display panel.
  • the display panel may be the display panel of any of the above-mentioned embodiments, and its structure will not be described in detail here.
  • the manufacturing method may include steps S110- Step S120, wherein:
  • Step S110 forming a driving backplane 2, and the driving backplane 2 includes a plurality of pixel driving circuits 21;
  • Step S120 a light-emitting device layer is formed on one side of the driving backplane, the light-emitting device layer includes a plurality of light-emitting units distributed in an array, and the light-emitting units include a plurality of light-emitting units stacked in a direction away from the driving backplane.
  • the light-emitting devices in the direction perpendicular to the driving backplane, the light-emitting devices other than the light-emitting devices closest to the driving backplane are transparent devices; in the same light-emitting unit, at least some of the light-emitting devices and the The pixel driving circuit is connected to emit light under the driving of the pixel driving circuit, and at least two of the light-emitting devices in the same light-emitting unit have different light-emitting materials.
  • a light-emitting device layer is formed on one side of the driving backplane, and step S120 includes:
  • Step S1210 forming a pixel definition layer on the surface of the driving backplane, the pixel definition layer covering at least the pixel area, and the first electrode layer of the first light-emitting device is disposed on the same side of the driving backplane as the first electrode layer of the first light-emitting device.
  • the pixel definition layer is provided with a plurality of openings respectively exposing the first electrode layers of the first light emitting devices;
  • Step S1220 forming a light-emitting functional layer of the first light-emitting device on the surface of the pixel definition layer away from the driving backplane, and the orthographic projection of the first electrode layer of the first light-emitting device on the driving backplane is on the driving backplane.
  • the light-emitting functional layer of the first light-emitting device is within the orthographic projection of the driving backplane;
  • Step S1230 forming a second electrode layer of the first light-emitting device on the surface of the light-emitting functional layer of the first light-emitting device away from the driving backplane, where the light-emitting functional layer of the first light-emitting device is on the driving backplane
  • the orthographic projection of the second electrode layer of the first light-emitting device is within the orthographic projection of the second electrode layer of the first light-emitting device on the driving backplane, and the second electrode layer of the first light-emitting device extends from the pixel area to the edge area, and is connected with a described peripheral circuit;
  • Step S1240 forming a light-emitting functional layer of the second light-emitting device on the surface of the second electrode layer of the first light-emitting device away from the driving backplane, the light-emitting functional layer of the second light-emitting device extending at least to the inside the opening;
  • Step S1250 the surface of the light-emitting functional layer of the second light-emitting device facing away from the driving backplane forms a second electrode layer of the second light-emitting device, and the second electrode layer of the second light-emitting device is in the opening.
  • the projection at least partially overlaps with the orthographic projection of the light-emitting functional layer of the second light-emitting device in the opening, and the second electrode layer of the second light-emitting device is connected to a pixel driving circuit;
  • Step S1260 a light-emitting functional layer of a third light-emitting device is formed on the surface of the second electrode layer of the second light-emitting device away from the driving backplane, and the second electrode layer of the second light-emitting device is on the driving backplane
  • the orthographic projection of the above is within the orthographic projection of the light-emitting functional layer of the third light-emitting device on the driving backplane;
  • Step S1270 forming a second electrode layer of the third light-emitting device on the surface of the light-emitting functional layer of the third light-emitting device away from the driving backplane, where the second electrode layer of the third light-emitting device is located in the opening
  • the orthographic projection within the opening at least partially overlaps with the orthographic projection of the second electrode layer of the second light emitting device within the opening, and the second electrode layer of the third light emitting device extends from the pixel region to the edge area, and is connected with another said peripheral circuit.
  • steps of the manufacturing method of the display panel in the present disclosure are described in a specific order in the drawings, this does not require or imply that the steps must be performed in the specific order, or that all the steps must be performed. steps shown to achieve the desired result. Additionally or alternatively, certain steps may be omitted, multiple steps may be combined into one step for execution, and/or one step may be decomposed into multiple steps for execution, and the like.
  • Embodiments of the present disclosure further provide a display device
  • the display device may include the display panel of any of the above-mentioned embodiments, the structure and beneficial effects of which can refer to the above-mentioned embodiments of the display panel, which will not be described in detail here.
  • the display device in the embodiment of the present disclosure may be a device for displaying images, such as a mobile phone, a display screen, a tablet computer, a TV, and a micro-display device, which will not be listed here.
  • the present disclosure also provides a pixel driving circuit for the display panel in any of the above-mentioned embodiments.
  • the display panel may be an AMOLED display panel, and the display panel may include a driving backplane and an array distributed in the driving A plurality of light-emitting units on one side of the backplane, each light-emitting unit may include a plurality of light-emitting devices connected in series between the first power supply terminal VDD and the second power supply terminal VSS to emit light.
  • the display panel can be divided into a pixel area A and an edge area outside the pixel area B.
  • the driving backplane may include a substrate and a driving circuit disposed on the substrate.
  • the driving circuit may include a pixel driving circuit located in the pixel area A and a peripheral circuit located in the edge area B.
  • the peripheral circuit may include a light-emitting control circuit 2023, a gate A pole drive circuit 2024, a source drive circuit 2025, and the like.
  • the light emission control circuit 2023 can be used to output the light emission control signal to the pixel driving circuit
  • the gate driving circuit 2024 can be used to output the writing control signal to the pixel driving circuit
  • the source driving circuit 2025 can be used to output the data signal to the pixel driving circuit
  • the driving circuit can also be used for outputting the first power supply signal to the first power supply terminal VDD of the pixel driving circuit, and outputting the second power supply signal to the second power supply terminal VSS.
  • Each light emitting device can be an OLED light emitting element, namely an organic light emitting diode, which can have a first end and a second end, the first end can be an anode, and the second end can be a cathode.
  • the first end of the light emitting device can be connected to the pixel driving circuit, and the second end is used for inputting the second power signal.
  • the light-emitting device By controlling the peripheral circuit to input the light-emitting control signal, write control signal, data signal, first power supply signal and second power supply signal to the pixel driving circuit and the light-emitting device, the light-emitting device can emit light to display an image.
  • the pixel driving circuit includes a driving unit, and the driving unit may include a driving transistor, a data writing unit 301, and an energy storage unit C, wherein:
  • the driving transistor has a control terminal, a first terminal and a second terminal, and the second terminal of the driving transistor is used for connecting with the first terminal of the light emitting device;
  • the data writing unit 301 is turned on in response to the writing control signal, so as to transmit the data signal to the first end of the driving transistor;
  • the first end of the energy storage unit C is connected to the first power supply terminal VDD, and the second end of the energy storage unit C is connected to the control end of the driving transistor;
  • Signal input terminals are connected between two adjacent light-emitting devices.
  • the light emitted by the first light emitting device may be red (R)
  • the light emitted by the second light emitting device may be green (G)
  • the light emitted by the third light emitting device may be blue (B).
  • the second end of the driving transistor is connected to the first light emitting device (R);
  • the second light emitting device (G) is connected between the first light emitting device (R) and the third light emitting device (B);
  • the second end of the third light-emitting device (B) is connected to the second power supply end VSS;
  • the signal input end connected between the first light-emitting device (R) and the second light-emitting device (G) is the first signal input end
  • the signal input terminal is the second signal input terminal. It should be noted that the second ends of the first light-emitting devices of two adjacent light-emitting units are connected to the same first signal input end, so as to control the first light-emitting devices (R) of multiple light-emitting units simultaneously through the same signal input end Or the second light emitting device (G) emits light.
  • the signal input terminal may be a driving unit or other types of signal input ports, which are not particularly limited here.
  • at least one of the first signal input terminal and the second signal input terminal is a driving unit.
  • the second signal input terminal is a driving unit.
  • the driving transistor of the driving unit connected to the first light emitting device (R) may be defined as the first driving transistor DT1
  • the driving transistor of the driving unit serving as the second signal input terminal may be defined as the second driving transistor DT2.
  • the working process of the pixel driving circuit according to the embodiment of the present disclosure is as follows:
  • the data writing unit 301 of each driving unit is turned on, so as to transmit the data signal to the control terminal of the driving transistor through the data writing unit 301 and the driving transistor, and charge the energy storage unit C;
  • the energy storage unit C inputs an electrical signal to the driving transistor to turn on the driving transistor, inputs the first power supply signal to the first terminal of the first light-emitting device (R) through the first power supply terminal VDD, and passes the first power supply terminal VDD to the first terminal of the first light-emitting device (R)
  • the first signal is input to the signal input terminal V0 to control the first light-emitting device (R) to emit light
  • the second signal is input to the second signal input terminal
  • the third signal is input to the first signal input terminal V0 to control the second light-emitting device.
  • the data signal Gate is at a high level
  • the first power supply signal Data1 input by the first driving transistor DT1 is negative voltage
  • the first power supply input by the second driving transistor DT2 The signal Data2 is a positive voltage
  • the fourth signal input from the first signal input terminal V0 is at a low level
  • the first power signal Data2 input from the second driving transistor DT2 is transmitted to the first terminal of the third light-emitting device (B), and further connected with the first terminal of the third light-emitting device (B).
  • the signals are all low level, and all light-emitting devices do not emit light; in the T3 stage, the data signal Gate is high level, the first power supply signal Data1 input by the first driving transistor DT1 is negative voltage, and the second driving transistor DT2 The input of the first power supply signal is negative.
  • a power supply signal Data2 is a positive voltage
  • the third signal input from the first signal input terminal V0 is a high level
  • the third signal input from the first signal input terminal V0 and the first power supply signal Data2 input from the second driving transistor are at the second
  • a voltage difference is formed across the light-emitting device (G) to make the second light-emitting device (G) emit light.
  • the data signal Gate is a high level
  • the first power supply signal Data1 input by the first driving transistor DT1 is a positive voltage
  • the first power supply signal Data2 input by the second driving transistor DT2 is a negative voltage
  • the first signal input by V0 is low level
  • the first power signal Data1 input by the first driving transistor DT1 and the first signal input by the first signal input terminal V0 form a voltage difference, so that the first light emitting device (R) emits light. Therefore, B display in T1 stage, G display in T3 stage, R display in T5 stage, and then realize RGB time-sharing display.
  • the spectrum of the first light-emitting device (R) is shown in FIG. 31
  • the spectrum of the second light-emitting device (G) is shown in FIG. 32
  • the spectrum of the third light-emitting device (B) is shown in FIG. 32 .
  • the abscissas are wavelengths
  • the ordinates are light intensity.
  • multiple light-emitting devices can also be controlled to emit light at the same time, that is, when three RGB light-emitting devices emit light at the same time, the spectrum of any color can be adjusted by adjusting the voltage value at both ends of each light-emitting device.
  • the adjusted spectrum is shown in Figure 34 As shown in the figure, the abscissa is the wavelength, and the ordinate is the light intensity.
  • the present disclosure also provides a driving method for a pixel driving circuit, where the pixel driving circuit is the pixel driving circuit of any of the above embodiments, and its structure will not be described in detail here.
  • the driving method of the present disclosure may include steps S210 to S220, as shown in FIG. 35 , wherein:
  • Step S210 in the data writing stage, turn on the data writing unit, so as to transmit the data signal to the control terminal of the driving transistor through the data writing unit and the driving transistor, and send the data to the control terminal of the driving transistor.
  • Energy storage unit charging
  • Step S220 in the light-emitting stage, the energy storage unit inputs an electrical signal to the driving transistor to turn on the driving transistor, and inputs the first power supply terminal to the first terminal of the first light-emitting device through the first power supply terminal.
  • a power supply signal and input a first signal through the first signal input terminal to control the first light-emitting device to emit light
  • input a second signal to the second signal input terminal and input a second signal to the first signal input terminal inputting a third signal to control the second light-emitting device to emit light
  • the device emits light.

Abstract

一种显示装置、显示面板及其制造方法、驱动电路及驱动方法,显示面板包括驱动背板(2)及发光器件层(4),其中:驱动背板(2)包括多个像素驱动电路(21);发光器件层(4)包括多个呈阵列分布的发光单元,发光单元包括向背离驱动背板(2)的方向层叠设置的多个发光器件(41);在垂直于驱动背板(2)的方向上,距离驱动背板(2)最近的发光器件(41)以外的发光器件(41)为透明器件;同一发光单元中,至少部分发光器件(41)与像素驱动电路(21)连接,用于在像素驱动电路(21)的驱动下发光,同一发光单元中至少有两个发光器件(41)的发光材料不同,可提高显示面板的显示分辨率。

Description

显示装置、显示面板及其制造方法、驱动电路及驱动方法
交叉引用
本公开要求于2021年1月26日提交的申请号为202110101413.9,名称为“显示装置、显示面板及其制造方法”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及显示技术领域,具体而言,涉及一种显示装置、显示面板及其制造方法、驱动电路及驱动方法。
背景技术
随着显示技术的发展,OLED(Organic Light Emitting Diode,有机发光二极管)显示面板因具有轻薄、高对比度、可弯曲、响应时间短等优点,被广泛应用于显示技术中。然而,现有显示面板通过将RGB像素进行平铺以实现全彩,像素密度较低,形成的图像分辨率较低。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
公开内容
本公开的目的在于克服上述现有技术的不足,提供一种显示装置、显示面板及其制造方法、驱动电路及驱动方法,可提高图像分辨率。
根据本公开的一个方面,提供一种显示面板,包括:
驱动背板,包括多个像素驱动电路;
发光器件层,包括多个呈阵列分布的发光单元,所述发光单元包括向背离所述驱动背板的方向层叠设置的多个发光器件;在垂直于所述驱动背板的方向上,距离所述驱动背板最近的所述发光器件以外的发光器件为透明器件;
同一发光单元中,至少部分所述发光器件与所述像素驱动电路连接,用于在所述像素驱动电路的驱动下发光,同一所述发光单元中至少有两个所述发光器件的发光材料不同。
在本公开的一种示例性实施例中,所述发光器件包括:
第一电极层,形成于所述驱动背板的一侧,并与一所述像素驱动电路连接;
发光功能层,形成于所述第一电极层背离所述驱动背板的表面;
第二电极层,形成于所述发光功能层背离所述驱动背板的表面;
在垂直于所述驱动背板的方向上相邻两个所述发光器件中,靠近所述驱动背板的发光器件的第二电极层与背离所述驱动背板的发光器件的第一电极层为同一电极层。
在本公开的一种示例性实施例中,同一所述发光单元的发光器件的数量为三个,且包括向背离所述驱动背板的方向分布的第一发光器件、第二发光器件及第三发光器件,且所述第一发光器件、所述第二发光器件及所述第三发光器件发光材料各不相同,用于发出不同颜色的光。
在本公开的一种示例性实施例中,所述第一发光器件为蓝色发光器件,所述第二 发光器件为绿色发光器件,所述第三发光器件为红色发光器件。
在本公开的一种示例性实施例中,所述第一发光器件的所述第一电极层设于所述驱动背板的一侧,所述显示面板还包括:
像素定义层,与所述第一发光器件的第一电极层设于所述驱动背板的同一侧面,所述像素定义层设有多个露出各所述第一发光器件的第一电极层的开口;
所述第一发光器件的发光功能层至少部分设于所述开口内;
所述第一发光器件的第二电极层设于所述像素定义层背离所述驱动背板的表面,且其在所述开口内的正投影与所述第一发光器件的发光功能层在所述开口内的正投影至少部分交叠;所述第一发光器件的第二电极层通过贯穿所述像素定义层的过孔与所述像素驱动电路连接;
所述第二发光器件的发光功能层覆盖于所述第一发光器件的第二电极层背离所述驱动背板的表面,且其在所述驱动背板上的正投影覆盖所述第一发光器件的第二电极层在所述驱动背板上的正投影;
所述第二发光器件的第二电极层覆盖所述第二发光器件的发光功能层及所述像素定义层的表面,且其在所述开口内的正投影与所述第一发光器件的发光功能层在所述开口内的正投影至少部分交叠,并通过贯穿所述像素定义层的过孔与所述像素驱动电路连接;
所述第三发光器件的发光功能层包括依次层叠的空穴传输层、发光材料层及电子传输层,所述空穴传输层位于所述第三发光器件的第一电极层背离所述驱动背板的一侧,且其在所述驱动背板上的正投影覆盖所述第二发光器件的第二电极层在所述驱动背板上的正投影;所述发光材料层位于所述空穴传输层背离所述驱动背板的一侧,且其在所述开口内的正投影与所述第二发光器件的第二电极层在所述开口内的正投影至少部分交叠;所述电子传输层覆盖所述发光材料层及所述空穴传输层共同构成的结构的表面;
所述第三发光器件的第二电极层位于所述电子传输层背离所述驱动背板的一侧,且其在所述开口内的正投影与所述发光材料层在所述开口内的正投影至少部分交叠。
在本公开的一种示例性实施例中,各所述发光单元的第三发光器件共用所述空穴传输层及所述电子传输层。
在本公开的一种示例性实施例中,所述驱动背板包括像素区和位于所述像素区以外的边缘区,各所述像素驱动电路位于所述像素区,所述边缘区设有多个外围电路;
所述第一发光器件、所述第二发光器件及所述第三发光器件均位于所述像素区,所述第一发光器件的第一电极层与一所述像素驱动电路连接;
所述第一发光器件的第二电极层由所述像素区延伸至所述边缘区,并与一所述外围电路连接;
所述第二发光器件的第二电极层与另一所述像素驱动电路连接;
所述第三发光器件的第二电极层由所述像素区延伸至所述边缘区,并与另一所述外围电路连接。
在本公开的一种示例性实施例中,所述显示面板还包括:
像素定义层,至少覆盖所述像素区,并与所述第一发光器件的第一电极层设于所述驱动背板的同一侧面,所述像素定义层设有多个分别露出各所述第一发光器件的第一电极层的开口;
所述第一发光器件的发光功能层设于所述像素定义层背离所述驱动背板的表面,所述第一发光器件的第一电极层在所述驱动背板上的正投影在所述第一发光器件的发光功能层在所述驱动背板上的正投影之内;
所述第一发光器件的第二电极层设于所述第一发光器件的发光功能层背离所述驱 动背板的表面,所述第一发光器件的发光功能层在所述驱动背板上的正投影在所述第一发光器件的第二电极层在所述驱动背板上的正投影之内;
所述第二发光器件的发光功能层设于所述第一发光器件的第二电极层背离所述驱动背板的表面,并至少延伸至所述开口内;
所述第二发光器件的第二电极层设于所述第二发光器件的发光功能层背离所述驱动背板的表面,且其在所述开口内的正投影与所述第二发光器件的发光功能层在所述开口内的正投影至少部分交叠;
所述第三发光器件的发光功能层设于所述第二发光器件的第二电极层背离所述驱动背板的表面,且所述第二发光器件的第二电极层在所述驱动背板上的正投影在所述第三发光器件的发光功能层在所述驱动背板上的正投影之内;
所述第三发光器件的第二电极层设于所述第三发光器件的发光功能层背离所述驱动背板的表面,且其在所述开口内的正投影与所述第二发光器件的第二电极层在所述开口内的正投影至少部分交叠。
在本公开的一种示例性实施例中,各所述发光单元的第一发光器件的发光功能层同层设置且连接。
在本公开的一种示例性实施例中,各所述发光单元的第一发光器件的第二电极层同层设置且连接。
在本公开的一种示例性实施例中,各所述发光单元的第二发光器件的发光功能层同层设置且连接。
在本公开的一种示例性实施例中,各所述发光单元的第三发光器件的发光功能层同层设置且连接;
各所述发光单元的第三发光器件的第二电极层同层设置且连接。
在本公开的一种示例性实施例中,所述显示面板还包括:
遮光层,设于所述发光器件层背离所述驱动背板的一侧,且具有多个透光孔,各所述透光孔与各所述开口一一对应设置,且每个所述透光孔在所述驱动背板上的正投影和与之对应的开口中的各发光器件在所述驱动背板上的正投影至少部分交叠。
在本公开的一种示例性实施例中,所述显示面板还包括:
封装层,位于所述发光器件层背离所述驱动背板的一侧。
根据本公开的一个方面,提供一种显示装置,包括上述任意一项所述的显示面板。
根据本公开的一个方面,提供一种显示面板的制造方法,包括:
形成驱动背板,所述驱动背板包括多个像素驱动电路;
在所述驱动背板的一侧形成发光器件层,所述发光器件层包括多个呈阵列分布的发光单元,所述发光单元包括向背离所述驱动背板的方向层叠设置的多个发光器件;在垂直于所述驱动背板的方向上,距离所述驱动背板最近的所述发光器件以外的发光器件为透明器件;
同一发光单元中,至少部分所述发光器件与所述像素驱动电路连接,用于在所述像素驱动电路的驱动下发光,同一所述发光单元中至少有两个所述发光器件的发光材料不同。
在本公开的一种示例性实施例中,同一所述发光单元的发光器件的数量为三个,且包括向背离所述驱动背板的方向分布的第一发光器件、第二发光器件及第三发光器件,所述驱动背板包括像素区和位于像素区以外的边缘区,各所述像素驱动电路位于所述像素区,所述边缘区设有多个外围电路;
所述在所述驱动背板的一侧形成发光器件层包括:
在所述驱动背板的表面形成像素定义层,所述像素定义层至少覆盖所述像素区, 并与所述第一发光器件的第一电极层设于所述驱动背板的同一侧面,所述像素定义层设有多个分别露出各所述第一发光器件的第一电极层的开口;
在所述像素定义层背离所述驱动背板的表面形成第一发光器件的发光功能层,所述第一发光器件的第一电极层在所述驱动背板上的正投影在所述第一发光器件的发光功能层在所述驱动背板上的正投影之内;
在所述第一发光器件的发光功能层背离所述驱动背板的表面形成第一发光器件的第二电极层,所述第一发光器件的发光功能层在所述驱动背板上的正投影在所述第一发光器件的第二电极层在所述驱动背板上的正投影之内,且所述第一发光器件的第二电极层由所述像素区延伸至所述边缘区,并与一所述外围电路连接;
在所述第一发光器件的第二电极层背离所述驱动背板的表面形成所述第二发光器件的发光功能层,所述第二发光器件的发光功能层至少延伸至所述开口内;
所述第二发光器件的发光功能层背离所述驱动背板的表面形成第二发光器件的第二电极层,所述第二发光器件的第二电极层在所述开口内的正投影与所述第二发光器件的发光功能层在所述开口内的正投影至少部分交叠,且所述第二发光器件的第二电极层与一所述像素驱动电路连接;
在所述第二发光器件的第二电极层背离所述驱动背板的表面形成第三发光器件的发光功能层,所述第二发光器件的第二电极层在所述驱动背板上的正投影在所述第三发光器件的发光功能层在所述驱动背板上的正投影之内;
在所述第三发光器件的发光功能层背离所述驱动背板的表面形成所述第三发光器件的第二电极层,所述第三发光器件的第二电极层在所述开口内的正投影与所述第二发光器件的第二电极层在所述开口内的正投影至少部分交叠,且所述第三发光器件的第二电极层由所述像素区延伸至所述边缘区,并与另一所述外围电路连接。
根据本公开的一个方面,提供一种像素驱动电路,用于驱动串联于第一电源端和第二电源端之间的多个发光器件;所述像素驱动电路包括:
驱动晶体管,具有控制端、第一端和第二端,所述驱动晶体管的第二端用于与所述发光器件的第一端连接;
数据写入单元,用于响应写入控制信号而导通,以将数据信号传输至所述驱动晶体管的第一端;
储能单元,所述储能单元的第一端与所述第一电源端连接,所述储能单元的第二端与所述驱动晶体管的控制端连接;
相邻两个所述发光器件之间均连接有信号输入端。
在本公开的一种示例性实施例中,多个所述发光器件包括第一发光器件、第二发光器件和第三发光器件;
所述驱动晶体管的第二端与所述第一发光器件连接;
所述第二发光器件连接于所述第一发光器件和所述第三发光器件之间;
所述第三发光器件的第二端与所述第二电源端连接;
连接于所述第一发光器件和所述第二发光器件之间的信号输入端为第一信号输入端,连接于所述第二发光器件和所述第三发光器件之间的信号输入端为第二信号输入端。
根据本公开的一个方面,提供一种像素驱动电路的驱动方法,用于上述任意一项所述的像素驱动电路;
所述驱动方法包括:
在数据写入阶段,导通所述数据写入单元,以将所述数据信号经过所述数据写入单元和所述驱动晶体管传输至所述驱动晶体管的控制端,并向所述储能单元充电;
在发光阶段,所述储能单元向所述驱动晶体管输入电信号,以将所述驱动晶体管 导通,通过所述第一电源端向所述第一发光器件的第一端输入第一电源信号,并通过所述第一信号输入端输入第一信号,以控制所述第一发光器件发光;向所述第二信号输入端输入第二信号,并向所述第一信号输入端输入第三信号,以控制所述第二发光器件发光;向所述第二信号输入端输入第四信号,并向所述第二电源端输入第二电源信号,以控制所述第三发光器件发光。
本公开的显示装置、显示面板及其制造方法、驱动电路及驱动方法,通过将多个发光器件叠层设置,可增加各发光单元中发光器件的数量,进而增加显示区域中的发光器件数量,提高显示区域的利用率;同时,由于同一发光单元中至少有两个发光器件的发光材料不同,能发出多种颜色的光线,可使多种颜色的光线叠加实现全彩,进而成倍的提升显示分辨率;在此过程中,由于像素驱动电路与发光器件连接,可通过各像素驱动电路分别驱动各发光器件,使得各发光器件独立发光,互不干扰;此外,由于在垂直于驱动背板的方向上,距离驱动背板最近的发光器件以外的发光器件均为透明器件,可使各发光器件发出的光线均向背离驱动背板的方向出射,避免光线照射至像素驱动电路,保证像素驱动电路的稳定性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中显示面板的平铺示意图。
图2为本公开第一种实施方式中显示面板的示意图。
图3为本公开第二种实施方式中显示面板的示意图。
图4为本公开第一种实施方式中驱动背板的示意图。
图5为本公开第一种实施方式中平坦化层的示意图。
图6为本公开第一种实施方式中的光谱示意图。
图7为本公开第一种实施方式中显示面板的色域示意图。
图8为本公开实施方式中第二电极层的结构示意图。
图9为本公开第一种实施方式中像素定义层的示意图。
图10为本公开第二种实施方式中驱动背板的示意图。
图11为本公开第一种实施方式中发光功能层的示意图。
图12为本公开第一种实施方式中第二电极层的示意图。
图13为本公开第一种实施方式中第二发光器件的发光功能层的示意图。
图14为本公开第一种实施方式中第二发光器件的第二电极层的示意图。
图15为本公开第一种实施方式中第三发光器件的发光功能层的示意图。
图16为本公开第一种实施方式中第三发光器件的第二电极层的示意图。
图17为本公开第二种实施方式中第一发光器件发光功能层及第二电极层的示意图。
图18为本公开第二种实施方式中第二发光器件的发光功能层的示意图。
图19为本公开第二种实施方式中第二发光器件的第二电极层的示意图。
图20为本公开第一种实施方式中第一发光器件的第一电极层的示意图。
图21为本公开第二种实施方式中第一接触孔的示意图。
图22为本公开第二种实施方式中第二引线的分布示意图。
图23为本公开第二种实施方式中第二发光器件的发光功能层打孔前的示意图。
图24为本公开第二种实施方式中有机晶格的原子结构示意图。
图25为本公开实施方式中封装层的示意图。
图26为本公开实施方式中显示面板的制造方法的流程图。
图27为本公开实施方式中步骤S120的流程图。
图28为本公开实施方式中显示面板俯视图。
图29为本公开实施方式中像素驱动电路的示意图。
图30为本公开实施方式中像素驱动电路的工作原理的时序图。
图31为本公开一种实施方式中第一发光器件(R)的光谱。
图32为本公开一种实施方式中第一发光器件(G)的光谱。
图33为本公开一种实施方式中第一发光器件(B)的光谱。
图34为本公开第一种实施方式中像素驱动电路的RGB光谱。
图35为本公开实施方式中像素驱动电路的驱动方法的流程图。
附图标记说明:
100、显示面板;101、像素;1、衬底;12、第一遮光层;13、缓冲层;2、驱动背板;A、像素区;B、边缘区;2021、第一外围电路;2022、第二外围电路;21、像素驱动电路;211、有源层;212、栅绝缘层;2121、第一栅绝缘层;2122、第二栅绝缘层;213、第一源漏层;214、第二源漏层;2141、第一引线;2142、第二引线;215、栅极;22、保护层;3、平坦化层;4、发光器件层;41、发光器件;411、第一电极层;412、发光功能层;413、第二电极层;413a、第一电极修饰层;413b、电极层;413c、第二电极修饰层;42、第二发光器件的发光功能层;43、第二发光器件的第二电极层;44、第三发光器件的发光功能层;441、发光材料层;45、第三发光器件的第二电极层;5、像素定义层;410、第一接触孔;420、第二接触孔;51、开口;6、第二遮光层;
61、透光孔;7、封装层;300、驱动单元;301、数据写入单元;DT1、第一驱动晶体管;DT2、第二驱动晶体管;Data、数据写入单元;C、储能单元。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”、“第三”和“第四”等仅作为标记使用,不是对其对象的数量限制。
在相关技术中,显示面板100主要包括驱动背板和平铺于驱动背板一侧的多个呈阵 列分布的发光单元,为了实现全彩显示,通常采用三个平铺的亚像素组成一个像素101,显示面积利用率较小,如图1所示,a为显示面板100的长度,b为显示面板100的宽度,c为显示面板100的对角线长度,该像素101的分辨率
Figure PCTCN2021082837-appb-000001
且在制造过程中,受蒸镀用精细掩膜版工艺极限的限制,常见显示面板100的PPi在600左右,显示分辨率较低。
本公开实施方式提供了一种显示面板,该显示面板可以是AMOLED显示面板,如图2-图3所示,显示面板可包括驱动背板2和发光器件层4,其中:
驱动背板2包括多个像素驱动电路21;
发光器件层4包括多个呈阵列分布的发光单元,发光单元包括向背离驱动背板2的方向层叠设置的多个发光器件41;在垂直于驱动背板2的方向上,距离驱动背板2最近的发光器件41以外的发光器件41为透明器件;
同一发光单元中,至少部分发光器件41与像素驱动电路21连接,用于在像素驱动电路21的驱动下发光,同一发光单元中至少有两个所述发光器件41的发光材料不同。
在本公开的显示面板中,通过将多个发光器件41叠层设置,可增加各发光单元中发光器件41的数量,进而增加显示区域中的发光器件41数量,提高显示区域的利用率;同时,由于同一发光单元中至少有两个发光器件41的发光材料不同,能发出多种颜色的光线,可使多种颜色的光线叠加实现全彩,进而成倍的提升显示分辨率;在此过程中,由于像素驱动电路21与发光器件41连接,可通过各像素驱动电路21分别驱动各发光器件41,使得各发光器件41独立发光,互不干扰;此外,由于在垂直于驱动背板2的方向上,距离驱动背板2最近的发光器件41以外的发光器件41均为透明器件,可使各发光器件41发出的光线均向背离驱动背板2的方向出射,避免光线照射至像素驱动电路21,保证像素驱动电路21的稳定性。
图2-图3示出了本公开实施方式显示面板的结构示意图,下面结合图2-图3对本公开实施方式中的显示面板的发光原理进行说明,显示面板主要包括驱动背板2和发光器件层4,其中,驱动背板2可设于衬底1的一侧,驱动背板2可包括像素区A和位于像素区A以外的边缘区B,边缘区B可以是围绕于像素区A外周的环形区域,也可以是位于像素区A两侧的开放区域,在此不做特殊限定。驱动背板2可包括像素驱动层,该像素驱动层包括多个并排设置的像素驱动电路21,各像素驱动电路21均可位于像素区A,如图3所示,图中空白区域的波浪线表示该处省略了多个发光单元,且省略的各发光单元的结构与位于两侧的波浪线之间示出的发光单元的结构相同。同时,边缘区201可设有多个外围电路,且各外围电路可分别独立工作,互不干扰。
如图2及图3所示,发光器件层4设于像素驱动层背离衬底1的一侧,且包括多个呈阵列分布的发光单元,各发光单元均可位于像素区A,且每个发光单元包括均多个向背离驱动背板2的方向层叠设置的发光器件41,各发光器件41的发光材料不同,可分别发出不同颜色的光线,同一发光单元中,至少部分发光器件41与像素驱动电路21连接,可通过各像素驱动电路21向各发光器件41通电,通过时序方式控制各发光器件41独立发光,进而显示图像。例如,可对同一发光单元中的多个发光器件41同时通电,控制多个发光器件41同时发光,使多种颜色的光线叠加,可提高显示区域的利用率,提高显示区域的分辨率。
在本公开的一种示例性实施方式中,衬底1可为平板结构,其可采用玻璃等硬质材料,也可采用PI(聚酰亚胺)等柔性材料。衬底1可以是单层或多层结构,在此不做特殊限定。
如图2-图3所示,像素驱动电路21可包括晶体管,晶体管可与发光器件41电连接,以便通过各晶体管控制各发光器件41,进而显示图像,在此过程中,各发光器件41独立发光,互不干扰。晶体管可为低温多晶硅(LTPS),也可为低温多晶氧化物晶体管 (LTPO),在此不做特殊限定。
晶体管可包括有源层211、栅绝缘层212、栅极215和第一源漏层213,栅绝缘层212可包括第一栅绝缘层2121和第二栅绝缘层2122,可对有源区进行多次掺杂以形成有源层211,有源层211可位于衬底1靠近发光器件层4的一侧;第一栅绝缘层2121覆盖于有源层211;栅极215设于第一栅绝缘层2121背离衬底1的一侧;第二栅绝缘层2122覆盖于栅极215和第一栅绝缘层2121,可对第一栅绝缘层2121和第二栅绝缘层2122进行开孔以形成连接有源区的过孔,该过孔在衬底1上的正投影与栅极215在衬底1上的正投影互不交叠;第一源漏层213形成于第二栅绝缘层2122背离衬底1的一侧,且包括源极和漏极,源极和漏极可通过贯穿第二栅绝缘层2122和/或第一栅绝缘层2121的过孔连接于有源层211的两端。
此外,在本公开的一种示例性实施方式中,如图4所示,驱动背板2还可包括覆盖第一源漏层213的保护层22,保护层22可覆盖于第一源漏层213背离衬底1的表面,可用于阻挡后续工艺中产生的氢等离子体向各晶体管扩散。
在本公开的一种示例性实施方式中,驱动背板2还可包括第二源漏层214,该第二源漏层214可形成于保护层22背离衬底1的一侧,可对保护层22进行开孔以形成连接第一源漏层213的过孔,第二源漏层214可通过贯穿保护层22的过孔与晶体管的第一源漏层213连接。
如图5所示,本公开的显示面板还可包括平坦化层3,该平坦化层3可设于保护层22背离衬底1的一侧,以便为后续工艺提供较为平整的基准;在驱动背板2包括第二源漏层214时,平坦化层3可覆盖保护层22及第二源漏层214,以消除第二源漏层214的器件断差。
在本公开的一种示例性实施方式中,驱动背板2还可包括第一遮光层12及缓冲层13,其中:
第一遮光层12可位于驱动背板2与衬底1之间,如图3所示,第一遮光层12可位于衬底1靠近驱动背板2的表面,可通过第一遮光层12阻挡外界环境光入射到晶体管的有源层31,保护晶体管的稳定性。
举例而言,可采用真空蒸镀、磁控溅射、化学气相沉积或物理气相沉积等方式在衬底1靠近驱动背板2的一侧形成第一遮光层12,举例而言,可采用光刻工艺形成第一遮光层12,可在衬底1靠近驱动背板2的一侧沉积遮光膜层,在遮光膜层背离衬底1的一侧形成光刻胶,采用掩膜版对光刻胶进行曝光并显影,以形成显影区,显影区的图案可与第一遮光层12所需的图案相同,其尺寸可与第一遮光层12所需图案的尺寸相等,可在显影区对遮光膜层进行非等向蚀刻,以形成第一遮光层12,最后可剥离第一遮光层表面剩余的光刻胶,以将光刻形成的第一遮光层12暴露出来。
缓冲层13可位于第一遮光层12背离衬底1的一侧,可采用化学气相沉积、物理气相沉积或原子层沉积等工艺在第一遮光层12背离衬底1的表面形成缓冲层13,可通过缓冲层13阻挡衬底1中的杂质扩散至驱动背板2中,保护驱动背板2的稳定性。举例而言,像素驱动层可形成于缓冲层13背离衬底1的表面。
在本公开的一种示例性实施方式中,同一发光单元中的各发光器件41可沿垂直于驱动背板2的方向层叠设置,每一个发光器件41可以发出一种颜色的光线,同一发光单元中的各发光器件41可发出多种不同颜色的光,在垂直于驱动背板2的方向上各发光器件41发出的光线可叠加在一起,可通过时序方式控制各发光器件41独立发光,进而实现发光颜色调控。
举例而言,同一发光单元中,发光器件41的数量可为两个或三个,在一实施方式中,同一发光单元中发光器件41的数量为三个,分别为第一发光器件、第二发光器件和第三发光器件,其中,第一发光器件位于像素驱动层背离衬底1的一侧,第二发光器 件位于第一发光器件背离衬底1的表面,第三发光器件位于第二发光器件背离衬底1的表面,且第一发光器件、第二发光器件及第三发光器件分别与驱动背板2中的不同的像素驱动电路21一一对应连接。
三个发光器件41的发光材料可各不相同,不同的发光材料可用于发出不同颜色的光,其可以是RGB的任意组合。为了提高分辨率,并均衡各发光器件41发出的光线的光强,在垂直于驱动背板2的方向上靠近驱动背板2一侧的发光器件41发出的光线的光强可大于远离驱动背板2一侧的发光器件41发出的光线的光强,在使用时,即便位于下方的发光器件41的光线受透过率影响有所减弱,也不会影响整体显示效果。例如,在垂直于驱动背板2的方向上,第一发光器件发出的光线的光强可大于第二发光器件发出的光线的光强,第二发光器件发出的光线的光强可大于第三发光器件发出的光线的光强。
需要说明的是,三个发光器件41发出的光线也可均相同,可有助于延长发光器件的使用寿命。
图6为红、绿、蓝三种颜色的光谱图,图中横坐标为波长范围,纵坐标为光强,曲线中波峰位置为各颜色的光的光强。由图可知,蓝光(B)的光强大于绿光(G)的光强,绿光(G)的光强大于红光(R)的光强,由此可知,优选的方案为:第一发光器件发出的光线颜色为蓝色(B),第二发光器件发出的光线为绿色(G),第三发光器件发出的光线颜色为红色(R),可使第一发光器件、第二发光器件及第三发光器件同时发光,进而可以将显示分辨率提高三倍。如图7为本公开一种实施方式中显示面板的色域图,图中,横坐标和纵坐标均为色度,经测试,该实施方式中的显示面板的色域为96.8%。
在本公开的一种示例性实施方式中,发光器件41可包括第一电极层411、发光功能层412和第二电极层413,其中:
第一电极层411可设于驱动背板2的一侧,例如,其可设于像素驱动层背离衬底1的一侧,并可与像素驱动电路21连接,第一电极层411可作为发光器件41的阳极层,其材料可为透明导电材料,也可为遮光材料,在此不做特殊限定。举例而言,其可为ITO或AZO。
发光功能层412可设于第一电极层411背离驱动背板2的表面,可为激子提供复合场所而发光,发光功能层412可为单层膜层,也可为多层膜层,在此不做特殊限定;以多层膜层为例,其可包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层和电子注入层,其中:
空穴注入层覆盖于第一电极层411背离驱动背板2的表面,有助于增强器件的电子注入能力;空穴传输层覆盖于空穴注入层背离第一电极层411的表面,可为空穴提供传输通道,提高空穴迁移率,有助于提高发光效率;电子阻挡层覆盖于空穴传输层背离第一电极层411的表面,可用于阻挡电子穿过发光层而向空穴传输层移动,避免激子在空穴传输层复合,保证发光中心始终位于发光层;发光层覆盖于电子阻挡层背离第一电极层411的表面,可通过发光层为电子和空穴提供复合场所而发光;空穴阻挡层覆盖于发光层背离第一电极层411的表面,可用于阻挡空穴穿过发光层而向电子传输层移动,避免激子在电子传输层复合,进一步保证发光中心始终位于发光层;电子传输层覆盖于空穴阻挡层背离第一电极层411的表面,可为电子提供传输通道,提高电子迁移率;电子注入层覆盖于电子传输层背离第一电极层411的表面,可为电子提供传输通道,提高电子迁移率,进一步提高发光效率。发光功能层412中的各膜层均可为透明材料,以便提高透光率,进而提高出光率。
第二电极层413可设于发光功能层412背离驱动背板2的表面,其可为金属氧化物电极、金属电极、金属合金电极或金属与金属氧化物组合形成的复合电极,在此不做 特殊限定。第二电极层413可作为发光器件41的阴极层,可向第一电极层411和第二电极层413施加电压,从而使发光功能层412发光。
在本公开的一种实施方式中,第二电极层413的材料可为具有较高光透过率的IZO,可通过溅射工艺在发光功能层412背离第一电极层411的表面形成第二电极层413;在本公开的另一种实施方式中,如图8所示,第二电极层413包括层叠分布的第一电极修饰层413a、电极层413b及第二电极修饰层413c,第一电极修饰层413a位于发光功能层412背离驱动背板2的表面,第二电极修饰层413c位于第一电极修饰层413a背离驱动背板2的一侧,电极层413b位于第一电极修饰层413a和第二电极修饰层413c之间,电极层413b的导电率大于第一电极修饰层413a及第二电极修饰层413c的导电率,第一电极修饰层413a、电极层413b及第二电极修饰层413c可构成DMD结构,可提高光透过率。举例而言,第一电极修饰层413a、电极层413b及第二电极修饰层413c均可为透光材料,例如,第一电极修饰层413a的材料可为氧化钼,电极层413b的材料可为铝银合金,第二电极修饰层的材料可为氧化钼,当然,也可以是其他透光材料,在此不再一一列举。
同一发光单元中,在垂直于驱动背板2的方向上相邻两个发光器件41中,靠近驱动背板2的发光器件的第二电极层413与背离驱动背板2的发光器件41的第一电极层411可为同一电极层,由此可减少发光单元中的电极数量,减少由于电极透过率的原因造成的器件效率降低。
在本公开的一种示例性实施例中,距离驱动背板2最近的发光器件41以外的发光器件41可均为透明发光器件,距离驱动背板2最近的发光器件41靠近驱动背板2的一侧可具有遮光设计,进而保证所有发光器件41发出的光线均可向背向驱动背板2的方向出射,避免光线照射至驱动背板2,保证驱动背板2中的像素驱动电路21的稳定性。需要说明的是,距离驱动背板2最近的发光器件41也可为透明器件,在此不做特殊限定。
为了在发光功能层412中限定出各个发光单元的范围,本公开的显示面板还包括像素定义层5,如图9-图10所示,其可设于驱动背板2的一侧面,并至少覆盖像素区A。例如,其可位于像素驱动层背离衬底1的一侧,并可形成于平坦化层3背离衬底1的表面。
第一发光器件的第一电极层411可与像素定义层5设于驱动背板2的同一侧面,并与一像素驱动电路21连接,举例而言,如图10所示,显示面板还可包括连接引线,该连接引线可包括间隔分布的第一引线2141和第二引线2142,第一引线2141和第二引线2142可分别通过贯穿平坦化层3及保护层22的过孔与不同的像素驱动电路21连接。第一发光器件的第一电极层411可与第一引线2141连接,进而可通过第一引线2141将第一发光器件的第一电极层411与像素驱动电路21连接。第二引线2142可用于与同一发光单元中其他发光器件的电极连接,以便控制其他发光器件发光。一个发光单元可对应设置至少一个第一引线2141及一个第二引线2142;相邻的发光单元中的第二引线2142可以相邻设置,也可以相对设置,在此不做特殊限定。像素定义层5可覆盖第二引线2142,还可覆盖部分第一引线2041,像素定义层5可设有多个开口51,每个开口51均可一一对应的露出一个第一发光器件的第一电极层411。
下面通过多种实施方式对各发光单元的结构及具体细节进行详细说明:
在本公开的第一种实施方式中,如图11所示,第一发光器件的发光功能层412可形成于第一发光器件的第一电极层411背离驱动背板2的表面,并可至少部分位于开口51内;如图12所示,第一发光器件的第二电极层413可设于像素定义层5背离驱动背板2的表面,并通过贯穿像素定义层5的过孔52与像素驱动电路21连接,以便通过像素驱动电路21向第一发光器件的第二电极层413通电。第一发光器件的第二电极层413 在开口51内的正投影与第一发光器件的发光功能层412在开口51内的正投影至少部分交叠,并与第一发光器件的发光功能层412接触,在开口51范围内的第一发光器件的发光功能层412和第一发光器件的第二电极层413与被开口51露出的第一发光器件的第一电极层411可共同构成第一发光器件。
第二发光器件可与第一发光器件共用一个电极,例如,第二发光器件的第一电极层可为第一发光器件的第二电极层413,如图13所示,第二发光器件的发光功能层42覆盖于第一发光器件的第二电极层413背离驱动背板2的表面,且其在驱动背板2上的正投影覆盖第一发光器件的第二电极层413在所述驱动背板2上的正投影,例如,其可至少覆盖于开口51区域,且其两端可由开口51区域向外延伸,并分别包覆于第一发光器件的第二电极层413的两个端部,以防止后续形成的第二发光器件的第二电极层43与第一发光器件的第二电极层413接触短路。如图14所示,第二发光器件的第二电极层43可覆盖第二发光器件的发光功能层42及像素定义层5的表面,且其在开口51内的正投影与第一发光器件的发光功能层412在开口51内的正投影至少部分交叠,例如,其至少延伸至开口51区域内,并能通过贯穿像素定义层5的过孔52与像素驱动电路21连接,第一发光器件的第二电极层413、第二发光器件的发光功能层42、第二发光器件的第二电极层43可共同构成第二发光器件。
第三发光器件可与第二发光器件共用一个电极,例如,第三发光器件的第一电极层为第二发光器件的第二电极层43,如图15所示,第三发光器件的发光功能层44覆盖于第二发光器件的第二电极层43背离驱动背板2的表面,且其在驱动背板2上的正投影覆盖第二发光器件的第二电极层43在驱动背板2上的正投影,例如,其可至少覆盖于开口51区域,其两端可分别包覆于第二发光器件的第二电极层43的两个端部,以防止后续形成的第三发光器件的第二电极层45与第二发光器件的第二电极层43接触短路。
如图16所示,第三发光器件的第二电极层45可覆盖第三发光器件的发光功能层44的表面,其可至少延伸至开口51区域内,也可铺满第三发光器件的发光功能层44的表面,在此不做特殊限定。第三发光器件的第二电极层45可与边缘区B的外围电路连接,以便通电。第二发光器件的第二电极层43、第三发光器件的发光功能层44及第三发光器件的第二电极层45可共同构成第三发光器件。
在一实施方式中,第三发光器件的发光功能层44可包括依次层叠的空穴传输层、发光材料层441及电子传输层,其中,空穴传输层可位于第二发光器件的第二电极层43背离驱动背板2的一侧,且其在驱动背板2上的正投影覆盖第二发光器件的第二电极层43在驱动背板2上的正投影,例如,空穴传输层可至少覆盖于开口51区域,其两端可由开口51区域向外延伸,并分别包覆于第二发光器件的第二电极层43的两个端部,举例而言,其可铺满第二发光器件的第二电极层43的整个表面,同时覆盖未被第二发光器件的第二电极层43覆盖的第二发光器件的发光功能层42及像素定义层5的表面。发光材料层441位于空穴传输层背离驱动背板2的一侧,且其在开口51内的正投影与第二发光器件的第二电极层43在开口51内的正投影至少部分交叠,例如,发光材料层441可至少设于开口51区域内,以便在开口51区域内发光。电子传输层可覆盖发光材料层441及空穴传输层共同构成的结构的表面,举例而言,其可至少完全覆盖位于开口51内的发光材料层441,当然,也可完全覆盖第三发光器件的发光材料层441及空穴传输层共同的结构。第三发光器件的第二电极层45可位于电子传输层背离驱动背板2的一侧,且其在开口51内的正投影与发光材料层441在开口51内的正投影至少部分交叠,以保证位于开口51内的发光材料层441正常发光。
需要说明的是,第三发光器件的发光功能层44还可包括空穴注入层和电子注入层,空穴注入层可位于第二发光器件的第二电极层43和空穴传输层之间,可用于提高第三 发光器件的空穴注入能力,从而提高空穴迁移率;电子注入层可位于第三发光器件的第二电极层45和电子传输层之间,可用于提高第三发光器件的电子注入能力,从而提高电子迁移率。
在一实施方式中,各发光单元的第三发光器件可共用空穴传输层及电子传输层,可通过一次工艺同时形成各发光单元的第三发光器件的空穴传输层,也可通过一次工艺同时形成各发光单元的第三发光器件的电子传输层。此外,当第三发光器件均包括电子注入层和空穴注入层时,各发光单元的第三发光器件可共用电子注入层和空穴注入层,可通过一次工艺同时形成各发光单元的第三发光器件的电子注入层,也可通过一次工艺同时形成各发光单元的第三发光器件的空穴注入层,从而简化工艺,降低制造成本。
在本公开的第二种实施方式中,像素驱动电路21可以为两个,两个像素驱动电路21可间隔分布,可将两个像素驱动电路21分别定义为第一像素驱动电路和第二像素驱动电路,边缘区B可至少设有两个外围电路,可将其分别定义为第一外围电路2021和第二外围电路2022,第一发光器件的第一电极层411可与第一像素驱动电路连接;第二发光器件的第二电极层43可与第二像素驱动电路连接;第一发光器件的第二电极层413可由像素区A延伸至边缘区B,并与边缘区B内的第一外围电路2021连接;第三发光器件的第二电极层45由可像素区A延伸至边缘区B,并与边缘区B内的第二外围电路2022连接,进而可通过第一像素驱动电路和第一外围电路2021控制第一发光器件发光,通过第一外围电路2021和第二像素驱动电路控制第二发光器件发光,通过第二像素驱动电路和第二外围电路2022控制第三发光器件发光。
在本公开的第二种实施方式中,如图17所示,第一发光器件的发光功能层412可形成于像素定义层5背离驱动背板2的表面,且第一发光器件的第一电极层411在驱动背板2上的正投影在第一发光器件的发光功能层412在驱动背板2上的正投影之内,即:第一发光器件的发光功能412可完全覆盖第一发光器件的第一电极层411。
在一实施方式中,各发光单元的第一发光器件的发光功能层412可同层设置且相互连接,例如,各发光单元可共用第一发光器件的发光功能层412,可通过一次工艺同时形成各发光单元的第一发光器件的发光功能层412,进而简化工艺,降低制造成本。
第一发光器件的第二电极层413可设于第一发光器件的发光功能层412背离驱动背板2的表面,且第一发光器件的发光功能层412在驱动背板2上的正投影在第一发光器件的第二电极层413在驱动背板2上的正投影之内,即:第一发光器件的第二电极层413可完全覆盖第一发光器件的发光功能层412。举例而言,第一发光器件的第二电极层413可覆盖像素区A,还可由像素区A延伸至边缘区B,并与边缘区B内的第一外围电路2021接触连接。
在一实施方式中,各发光单元的第一发光器件的第二电极层413可同层设置且相互连接,例如,各发光单元可共用第一发光器件的第二电极层413,可通过一次工艺同时形成各发光单元的第一发光器件的第二电极层413,进一步简化工艺,降低制造成本。
在开口51范围内的第一发光器件的发光功能层412和第一发光器件的第二电极层413与被开口51露出的第一发光器件的第一电极层411可共同构成第一发光器件。
第二发光器件可与第一发光器件共用一个电极,例如,第二发光器件的第一电极层可为第一发光器件的第二电极层413,如图18所示,第二发光器件的发光功能层42设于第一发光器件的第二电极层413背离驱动背板2的表面,并可至少延伸至开口51内,其可与位于开口51内的第一发光器件的第二电极层413接触连接。举例而言,第二发光器件的发光功能层42可至少铺满位于像素区A的第一发光器件的第二电极层413的表面,以防止后续形成的其他膜层与第一发光器件的第二电极层413接触短路。
在一实施方式中,各发光单元的第二发光器件的发光功能层42可同层设置且相互 连接,例如,各发光单元可共用第二发光器件的发光功能层42,可通过一次工艺同时形成各发光单元的第二发光器件的发光功能层42,进一步简化工艺,降低制造成本。
如图19所示,第二发光器件的第二电极层43设于第二发光器件的发光功能层42背离驱动背板2的表面,且其在开口51内的正投影与第二发光器件的发光功能层42在开口内的正投影至少部分交叠,其可以铺满整个开口51对应的区域,并具有由开口51所在区域向开口51周边延伸的延伸部,该延伸部可通过贯穿第二发光器件的发光功能层42、第一发光器件的第二电极层413、第一发光器件的发光功能层412及像素定义层5的过孔与第二像素电路连接,以便通过第二像素驱动电路向第二发光器件的第二电极层43通电。第一发光器件的第二电极层413、第二发光器件的发光功能层42、第二发光器件的第二电极层43可共同构成第二发光器件。
第三发光器件可与第二发光器件共用一个电极,例如,第三发光器件的第一电极层为第二发光器件的第二电极层43,第三发光器件的发光功能层44设于第二发光器件的第二电极层43背离驱动背板2的表面,且第二发光器件的第二电极层43在驱动背板2上的正投影在第三发光器件的发光功能层44在驱动背板2上的正投影之内,即:第三发光器件的发光功能层44可完全覆盖第二发光器件的第二电极层43背离驱动背板2的表面,并可包覆于第二发光器件的第二电极层43的端部,防止后续形成的其他膜层与第二发光器件的第二电极层43接触短路。各发光单元的第三发光器件的发光功能层44可同层设置且相互连接,例如,各发光单元可共用第三发光器件的发光功能层44,可通过一次工艺同时形成各发光单元的第三发光器件的发光功能层44,进一步简化工艺,降低制造成本。
第三发光器件的第二电极层45设于第三发光器件的发光功能层44背离驱动背板2的表面,且其在开口51内的正投影与第二发光器件的第二电极层43在开口51内的正投影至少部分交叠。即:其可至少延伸至开口51区域内,也可铺满第三发光器件的发光功能层44的表面,在此不做特殊限定。第三发光器件的第二电极层45可与边缘区B的第二外围电路2022连接,以便通电。第二发光器件的第二电极层43、第三发光器件的发光功能层44及第三发光器件的第二电极层45可共同构成第三发光器件。各发光单元的第三发光器件的第二电极层45可同层设置且相互连接,例如,各发光单元可共用第三发光器件的第二电极层45,可通过一次工艺同时形成各发光单元的第三发光器件的第二电极层45,进一步简化工艺,降低制造成本。
下面对本公开实施方式中显示面板的形成工艺做详细说明:
在本公开的第一种实施方式中,可通过化学气相沉积、物理气相沉积、真空蒸镀、磁控溅射或原子层沉积等工艺在驱动背板2的表面形成多个呈阵列分布的第一发光器件的第一电极层411,如图20所示;随后可采用化学气相沉积、物理气相沉积或原子层沉积等工艺在驱动背板2及各第一发光器件的第一电极层411的表面形成像素定义层5。同时采用光刻工艺在像素定义层5上进行光刻形成露出各第一发光器件的第一电极层411的开口51,如图9所示;可采用具有第一掩膜图案的掩膜版进行掩膜,第一掩膜图案可与像素定义层5的各开口51的图案相同,进而可在各开口51内分别形成第一发光器件的发光功能层412,如图11所示。
可对像素定义层5及平坦化层3进行光刻形成贯穿像素定义层5及平坦化层3的过孔52,该过孔52可与一像素驱动电路21连接,可采用具有第二掩膜图案的掩膜版进行掩膜,第二掩膜图案的开口可大于第一掩膜图案的开口,进而可根据第二掩膜图案形成覆盖第一发光器件的发光功能层412及部分像素定义层5的第一发光器件的第二电极层413,在此过程中,第一发光器件的第二电极层413可通过贯穿像素定义层5及平坦化层3的过孔52与一像素驱动电路21连通,如图12所示。
可采用具有第三掩膜图案的掩膜版进行掩膜,第三掩膜图案的开口可大于第二掩 膜图案的开口,进而可根据第三掩膜图案形成第二发光器件的发光功能层42,如图13所示。
可采用具有第四掩膜图案的掩膜版进行掩膜,第四掩膜图案的开口可大于第三掩膜图案的开口,进而可根据第四掩膜图案形成第二发光器件的第二电极层43,在此过程中,第二发光器件的第二电极层43可通过贯穿像素定义层5及平坦化层3的过孔52与一像素驱动电路21连通,如图14所示。
为了降低制造成本,可采用开放式掩膜版进行掩膜,进而在第二发光器件的第二电极层43的表面依次形成第三发光器件的发光功能层44及第三发光器件的第二电极层45,如图15-图16所示。在此过程中,可采用具有第五掩膜图案的掩膜版形成第三发光器件的发光材料层441,采用开放式掩膜版形成第三发光器件的发光功能层44的其他膜层及第三发光器件的第二电极层45。
需要说明的是,各发光器件的第一电极层411分别与驱动背板2中的不同像素驱动电路21连接,以便通过不同的像素驱动电路21分别控制与之对应的发光器件41发光。
在本公开的第二种实施方式中,为了降低制造成本,可采用开放式掩膜版进行掩膜,进而通过化学气相沉积、物理气相沉积、真空蒸镀、磁控溅射或原子层沉积等工艺在像素定义层5与第一发光器件的第一电极层411共同构成的结构的表面依次形成第一发光器件的发光功能层412及第一发光器件的第二电极层413,如图17所示。
可采用激光打孔技术在第一发光器件的发光功能层412、第一发光器件的第二电极层413及像素定义层5中与第二引线2142对应的区域进行打孔操作,直至露出第二引线2142,进而形成第一接触孔410,如图21所示。第一接触孔410的孔径不宜过大,也不宜过小,可通过控制第一接触孔410的孔径大小,在减小第二引线2142电阻的同时减小各发光单元之间的间距。举例而言,第一接触孔410的孔径可为1um~10um。
可通过同一次激光打孔工艺同时形成多个第一接触孔410,各第一接触孔410可一一对应的露出各发光单元的第二引线2142。如图22所示,相邻发光单元中的第二引线2142可相邻设置,如图中区域a和区域b所示的排列方式;当然,相邻发光单元中的第二引线2142可相对设置,如图中区域c和区域d所示的排列方式,此外,相邻发光单元中的第二引线2142也可为其他排列方式,只要与第一发光器件的第一电极层411及第一引线2141间隔开,不会发生短路即可。
如图23所示,可采用开放式掩膜版进行掩膜,进而通过磁控溅射的方式在第一发光器件的第二电极层413的表面沉积第二发光器件的发光功能层42,在溅射过程中发光功能层42可覆盖第一接触孔410,进而可通过第二发光器件的发光功能层42将第一接触孔410的侧壁与后续形成的其他膜层隔离,防止短路。
可采用激光打孔工艺对覆盖在第一接触孔410内的第二发光器件的发光功能层42进行打孔操作,进而形成第二接触孔420,如图18所示,第二接触孔420可露出第二引线2142。第二接触孔420可套设于第一接触孔410内,其孔壁与第一接触孔410的孔壁之间可填满第二发光器件的发光功能层42。举例而言,第二接触孔420的孔径可小于第一接触孔410的孔径,例如其孔径可为0.2um~5um。
可在第二发光器件的发光功能层42背离驱动背板2的表面形成第二发光器件的第二电极层43,如图19所示,第二发光器件的第二电极层43在开口51内的正投影与第二发光器件的发光功能层42在开口51内的正投影至少部分交叠,且第二发光器件的第二电极层43可填满第二接触孔420,进而可通过第二接触孔420与像素驱动电路21连接。
第二发光器件的第二电极层43可完全覆盖开口51对应的区域,并可由开口51对应的区域向开口51周边延伸,其可至少延伸至第二接触孔420对应的区域。在一实施方式中,可采用精细掩膜版进行掩膜,精细掩膜版具有露出开口51所在区域及第二接 触孔420的开口,进而可通过蒸镀工艺在精细掩膜板的开口处沉积透明导电材料,以形成第二发光器件的第二电极层43。在另一实施方式中,可采用开放式掩膜版在第二发光器件的发光功能层42背离驱动背板2的表面形成透明导电材料,随后采用激光切割工艺对透明导电材料进行图案化,以去除覆盖于开口51所在区域及第二接触孔420以外的区域的透明导电材料。需要说明的是,开口51所在区域与第二接触孔420之间的透明导电材料相互连续不间断。
在一实施方式中,在形成第二发光器件的发光功能层42后,可不对其进行打孔操作,而是在其表面形成一层有机拓扑绝缘膜层,机拓扑绝缘膜层可由有机金属拓扑绝缘体MgAg-DCA(dicyanoanthracene)组成,其材料的有机晶格原子结构如图24所示,图中,左上角插图是DCA分子结构示意图。
可通过热蒸发工艺形成该有机拓扑绝缘膜层,有机拓扑绝缘膜层可覆盖于开口51对应的区域以外的区域,可在有机拓扑绝缘层、第二发光器件的发光功能层42、第一发光器件的第二电极层413、第一发光器件的发光功能层412及像素定义层5中与第二引线2142对应的区域进行打孔操作以形成第二接触孔420,第二接触孔420可露出第二引线2142。随后可在未被有机拓扑绝缘材料覆盖的区域沉积金属电极,形成第二发光器件的第二电极层43。在此过程中,由于金属电极与有机拓扑绝缘材料具有不成膜的原理,进而在形成第二发光器件的第二电极层43的过程中不会在有机拓扑绝缘层上形成第二发光器件的第二电极层43,进而在形成过程中对第二发光器件的第二电极层43自动进行图案化,此外,在沉积过程中金属电极可填满第二接触孔420,进而可通过第二接触孔420与第二像素驱动电路连接。
为了降低制造成本,可采用开放式掩膜版进行掩膜,进而在第二发光器件的第二电极层43的表面依次形成第三发光器件的发光功能层44及第三发光器件的第二电极层45,如图3所示,第三发光器件的第二电极层45可由像素区A延伸至边缘区B,并与边缘区B内的第二外围电路2022连接,以便通过第二像素驱动电路及第二外围电路2022驱动第三发光器件发光。
在本公开的一种示例性实施方式中,显示面板还可包括第二遮光层6,如图2所示,该第二遮光层6可设于发光器件层4背离驱动背板2的一侧,且具有多个呈阵列分布的透光孔61,各透光孔61均可为通孔,其形状可为矩形、圆形、椭圆形或其他形状,在此不再一一例举。透光孔61可与像素定义层5中的各开口一一对应设置,且各透光孔61与像素定义层5中的各开口至少部分交叠,其交叠区域可为各发光单元中的所有膜层均重叠的区域,发光单元中出射的光线可从透光孔61中射出,进而可通过透光孔61定义出各发光单元的发光面积。
在一实施方式中,第二遮光层6的材料可为金属或有机材料,在此不做特殊限定。可采用真空蒸镀、磁控溅射、化学气相沉积或物理气相沉积等方式在发光器件层4背离驱动背板2的一侧形成遮光膜层,采用光刻工艺在遮光膜层内形成透光孔61,进而形成第二遮光层6。举例而言,可在发光器件层4背离驱动背板2的一侧沉积遮光膜层,在遮光膜层背离驱动背板2的一侧形成光刻胶,采用掩膜版对光刻胶进行曝光并显影,以形成显影区,显影区的图案可与第二遮光层6所需的图案相同,其尺寸可与透光孔61的尺寸相等,可在显影区对遮光膜层进行非等向蚀刻,以形成第二遮光层6,最后可剥离第二遮光层6表面剩余的光刻胶,以将光刻形成的第二遮光层6暴露出来。
在本公开的一种示例性实施方式中,显示面板还可包括封装层7,如图25所示,封装层7可位于所述发光器件层4背离所述驱动背板2的一侧,可用于阻隔外界水、氧,避免发光器件层4被外界水氧侵蚀,可延长器件使用寿命。举例而言,封装层7可位于发光器件层4与第二遮光层6之间,也可位于第二遮光层6背离发光器件层4的一侧,在此不做特殊限定。
封装层7可由有机材料构成,也可由无机材料构成,还可以是有机层、无机层交替的复合膜层,举例而言,封装层7的材料可为亚克力材料,也可以是氮化硅、氧化硅或氮氧化硅等材料构成的复合膜层,在此不做特殊限定。
在一实施方式中,封装层7可以是有机层和无机层交替的复合膜层结构,例如,其可包括第一无机层、有机层和第二无机层,第一无机层可形成于发光器件层4的表面,第二无机层形成于第一无机层背离发光器件层4的一侧,有机层位于第一无机层和第二无机层之间,可通过无机层阻挡水、氧,通过有机层释放无机层的应力,防止发光器件层4和第一无机层间因应力产生的拉扯而剥离。
本公开实施方式还提供一种显示面板的制造方法,该显示面板可以是上述任意实施方式的显示面板,其结构在此不再详述,如图26所示,该制造方法可包括步骤S110-步骤S120,其中:
步骤S110,形成驱动背板2,所述驱动背板2包括多个像素驱动电路21;
步骤S120,在所述驱动背板的一侧形成发光器件层,所述发光器件层包括多个呈阵列分布的发光单元,所述发光单元包括向背离所述驱动背板的方向层叠设置的多个发光器件;在垂直于所述驱动背板的方向上,距离所述驱动背板最近的所述发光器件以外的发光器件为透明器件;同一发光单元中,至少部分所述发光器件与所述像素驱动电路连接,用于在所述像素驱动电路的驱动下发光,同一发光单元中至少有两个所述发光器件的发光材料不同。
在本公开的一实施方式中,如图27所示,在所述驱动背板的一侧形成发光器件层,及步骤S120包括:
步骤S1210,在所述驱动背板的表面形成像素定义层,所述像素定义层至少覆盖所述像素区,并与所述第一发光器件的第一电极层设于所述驱动背板的同一侧面,所述像素定义层设有多个分别露出各所述第一发光器件的第一电极层的开口;
步骤S1220,在所述像素定义层背离所述驱动背板的表面形成第一发光器件的发光功能层,所述第一发光器件的第一电极层在所述驱动背板上的正投影在所述第一发光器件的发光功能层在所述驱动背板上的正投影之内;
步骤S1230,在所述第一发光器件的发光功能层背离所述驱动背板的表面形成第一发光器件的第二电极层,所述第一发光器件的发光功能层在所述驱动背板上的正投影在所述第一发光器件的第二电极层在所述驱动背板上的正投影之内,且所述第一发光器件的第二电极层由所述像素区延伸至所述边缘区,并与一所述外围电路连接;
步骤S1240,在所述第一发光器件的第二电极层背离所述驱动背板的表面形成所述第二发光器件的发光功能层,所述第二发光器件的发光功能层至少延伸至所述开口内;
步骤S1250,所述第二发光器件的发光功能层背离所述驱动背板的表面形成第二发光器件的第二电极层,所述第二发光器件的第二电极层在所述开口内的正投影与所述第二发光器件的发光功能层在所述开口内的正投影至少部分交叠,且所述第二发光器件的第二电极层与一所述像素驱动电路连接;
步骤S1260,在所述第二发光器件的第二电极层背离所述驱动背板的表面形成第三发光器件的发光功能层,所述第二发光器件的第二电极层在所述驱动背板上的正投影在所述第三发光器件的发光功能层在所述驱动背板上的正投影之内;
步骤S1270,在所述第三发光器件的发光功能层背离所述驱动背板的表面形成所述第三发光器件的第二电极层,所述第三发光器件的第二电极层在所述开口内的正投影与所述第二发光器件的第二电极层在所述开口内的正投影至少部分交叠,且所述第三发光器件的第二电极层由所述像素区延伸至所述边缘区,并与另一所述外围电路连接。
本公开实施方式的制造方法的具体细节和有益效果已在上文显示面板的实施方式中进行了说明,因此,此处不再赘述。
需要说明的是,尽管在附图中以特定顺序描述了本公开中显示面板的制造方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
本公开实施方式还提供一种显示装置,该显示装置可包括上述任意实施方式的显示面板,其结构和有益效果可参考上述显示面板的实施方式,在此不再详述。本公开实施方式的显示装置可以是手机、显示屏、平板电脑、电视、微显示设备等用于显示图像的装置,在此不再列举。
本公开还提供一种像素驱动电路,用于上述任一实施方式中的显示面板,如图28所示,该显示面板可以是AMOLED显示面板,该显示面板可包括驱动背板以及阵列分布于驱动背板一侧的多个发光单元,每个发光单元均可包括串联于第一电源端VDD和第二电源端VSS之间的多个发光器件发光。显示面板可划分为像素区A和位于像素区B外的边缘区。
驱动背板可包括衬底和设于衬底上的驱动电路,该驱动电路可包括位于像素区A内的像素驱动电路和位于边缘区B的外围电路,外围电路可包括发光控制电路2023、栅极驱动电路2024和源极驱动电路2025等。其中,发光控制电路2023可用于向像素驱动电路输出发光控制信号,栅极驱动电路2024可用于向像素驱动电路输出写入控制信号,源极驱动电路2025可用于向像素驱动电路输出数据信号,此外,驱动电路还可用于向像素驱动电路的第一电源端VDD输出第一电源信号,并向第二电源端VSS输出第二电源信号。
各发光器件均可为OLED发光元件,即有机发光二极管,其可具有第一端和第二端,第一端可为阳极,第二端可为阴极。发光器件的第一端可与像素驱动电路连接,第二端用于输入第二电源信号。
通过控制外围电路向像素驱动电路和发光器件输入发光控制信号、写入控制信号、数据信号、第一电源信号和第二电源信号,可使发光器件发光,以显示图像。
如图29所示,在本公开的第一种实施方式中,像素驱动电路包括驱动单元,驱动单元可以包括驱动晶体管、数据写入单元301及储能单元C,其中:
驱动晶体管具有控制端、第一端和第二端,驱动晶体管的第二端用于与发光器件的第一端连接;
数据写入单元301用于响应写入控制信号而导通,以将数据信号传输至驱动晶体管的第一端;
储能单元C的第一端与第一电源端VDD连接,储能单元C的第二端与驱动晶体管的控制端连接;
相邻两个发光器件之间均连接有信号输入端。
发光器件可为3个,分别为第一发光器件、第二发光器件和第三发光器件。在本公开实施方式中,第一发光器件发出的光线可为红色(R),第二发光器件发出的光线可为绿色(G),第三发光器件发出的光线可为蓝色(B)。
驱动晶体管的第二端与第一发光器件(R)连接;
第二发光器件(G)连接于第一发光器件(R)和第三发光器件(B)之间;
第三发光器件(B)的第二端与第二电源端VSS连接;
连接于第一发光器件(R)和第二发光器件(G)之间的信号输入端为第一信号输入端,连接于第二发光器件(G)和第三发光器件(B)之间的信号输入端为第二信号输入端。需要说明的是,相邻两个发光单元的第一发光器件的第二端均连接至同一第 一信号输入端,以便通过同一信号输入端同时控制多个发光单元的第一发光器件(R)或第二发光器件(G)发光。
信号输入端可为驱动单元,也可为其他类型的信号输入端口,在此不做特殊限定。在一实施方式中,第一信号输入端和第二信号输入端中至少一个为驱动单元,举例而言,第二信号输入端为驱动单元。为了便于区分,可将与第一发光器件(R)连接的驱动单元的驱动晶体管定义为第一驱动晶体管DT1,将作为第二信号输入端的驱动单元的驱动晶体管定义为第二驱动晶体管DT2。
如图29和图30所示,本公开实施方式的像素驱动电路的工作过程如下:
在数据写入阶段,导通各驱动单元的数据写入单元301,以将数据信号经过数据写入单元301和驱动晶体管传输至驱动晶体管的控制端,并向储能单元C充电;
在发光阶段,储能单元C向驱动晶体管输入电信号,以将驱动晶体管导通,通过第一电源端VDD向第一发光器件(R)的第一端输入第一电源信号,并通过第一信号输入端V0输入第一信号,以控制第一发光器件(R)发光;向第二信号输入端输入第二信号,并向第一信号输入端V0输入第三信号,以控制第二发光器件(G)发光;向第二信号输入端输入第四信号,并向第二电源端VSS输入第二电源信号,以控制第三发光器件(B)发光。
在上述过程中,如图30所示,第一电源信号Data为正压时控制第一发光器件(R)和第三发光器件(B)显示,第一电源信号Data为负压时控制第二发光器件(G)显示。具体而言,T1~T5为连续的阶段,在T1阶段,数据信号Gate为高电平,第一驱动晶体管DT1输入的第一电源信号Data1为负压,第二驱动晶体管DT2输入的第一电源信号Data2为正压,第一信号输入端V0输入的第四信号为低电平,第二驱动晶体管DT2输入的第一电源信号Data2传输至第三发光器件(B)的第一端,进而与第三发光器件(B)的第二端中输入的第二电源信号形成压差,以使第三发光器件(B)发光;此时,第三发光器件(B)两端的电压V(B)=Data2-第二电源信号;在T2阶段,数据信号Gate、第一驱动晶体管输入的第一电源信号Data1、第二驱动晶体管输入的第一电源信号Data2及第一信号输入端V0输入的第一信号均为低电平,所有发光器件均不发光;在T3阶段,数据信号Gate为高电平,第一驱动晶体管DT1输入的第一电源信号Data1为负压,第二驱动晶体管DT2输入的第一电源信号Data2为正压,第一信号输入端V0输入的第三信号为高电平,第一信号输入端V0输入的第三信号与第二驱动晶体管输入的第一电源信号Data2在第二发光器件(G)的两端形成压差,以使第二发光器件(G)发光,此时,第二发光器件(G)两端的电压V(G)=V0-Data2;在T4阶段,数据信号Gate、第一驱动晶体管输入的第一电源信号Data1、第二驱动晶体管输入的第一电源信号Data2及第一信号输入端V0输入的第一信号均为低电平,所有发光器件均不发光;在T5阶段,数据信号Gate为高电平,第一驱动晶体管DT1输入的第一电源信号Data1为正压,第二驱动晶体管DT2输入的第一电源信号Data2为负压,第一信号输入端V0输入的第一信号为低电平,第一驱动晶体管DT1输入的第一电源信号Data1与第一信号输入端V0输入的第一信号形成压差,以使第一发光器件(R)发光。因此,在T1阶段B显示、T3阶段G显示、T5阶段R显示,进而实现RGB分时显示。
当RGB三个发光器件分时发光时,第一发光器件(R)的光谱如图31所示,第二发光器件(G)的光谱如图32所示,第三发光器件(B)的光谱如图33所示,且在图31-图33图中,横坐标均为波长,纵坐标均为光强。经过计算,当RGB分时发光时,色域大于NTSC 117%。
当然,也可控制多个发光器件同时发光,即:当RGB三个发光器件同时发光时,可通过调节各发光器件两端的电压值,进而调出任意颜色的光谱,调出的光谱如图34所示,图中,横坐标为波长,纵坐标为光强。
本公开还提供一种像素驱动电路的驱动方法,像素驱动电路为上文任一实施方式的像素驱动电路,其结构在此不再详述。
针对于本开实施方式中的像素驱动电路,本公开的驱动方法可包括步骤S210-步骤S220,如图35所示,其中:
步骤S210,在数据写入阶段,导通所述数据写入单元,以将所述数据信号经过所述数据写入单元和所述驱动晶体管传输至所述驱动晶体管的控制端,并向所述储能单元充电;
步骤S220,在发光阶段,所述储能单元向所述驱动晶体管输入电信号,以将所述驱动晶体管导通,通过所述第一电源端向所述第一发光器件的第一端输入第一电源信号,并通过所述第一信号输入端输入第一信号,以控制所述第一发光器件发光;向所述第二信号输入端输入第二信号,并向所述第一信号输入端输入第三信号,以控制所述第二发光器件发光;向所述第二信号输入端输入第四信号,并向所述第二电源输入端输入第二电源信号,以控制所述第三发光器件发光。
上述驱动方法的细节和有益效果已在上文中像素驱动电路的实施方式进行了详细说明,具体可参考像素驱动电路的结构和工作过程,在此不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (20)

  1. 一种显示面板,其中,包括:
    驱动背板,包括多个像素驱动电路;
    发光器件层,包括多个呈阵列分布的发光单元,所述发光单元包括向背离所述驱动背板的方向层叠设置的多个发光器件;在垂直于所述驱动背板的方向上,距离所述驱动背板最近的所述发光器件以外的发光器件为透明器件;
    同一发光单元中,至少部分所述发光器件与所述像素驱动电路连接,用于在所述像素驱动电路的驱动下发光,同一所述发光单元中至少有两个所述发光器件的发光材料不同。
  2. 根据权利要求1所述的显示面板,其中,所述发光器件包括:
    第一电极层,形成于所述驱动背板的一侧,并与一所述像素驱动电路连接;
    发光功能层,形成于所述第一电极层背离所述驱动背板的表面;
    第二电极层,形成于所述发光功能层背离所述驱动背板的表面;
    在垂直于所述驱动背板的方向上相邻两个所述发光器件中,靠近所述驱动背板的发光器件的第二电极层与背离所述驱动背板的发光器件的第一电极层为同一电极层。
  3. 根据权利要求2所述的显示面板,其中,同一所述发光单元的发光器件的数量为三个,且包括向背离所述驱动背板的方向分布的第一发光器件、第二发光器件及第三发光器件,且所述第一发光器件、所述第二发光器件及所述第三发光器件发光材料各不相同,用于发出不同颜色的光。
  4. 根据权利要求3所述的显示面板,其中,所述第一发光器件为蓝色发光器件,所述第二发光器件为绿色发光器件,所述第三发光器件为红色发光器件。
  5. 根据权利要求3所述的显示面板,其中,所述第一发光器件的所述第一电极层设于所述驱动背板的一侧,所述显示面板还包括:
    像素定义层,与所述第一发光器件的第一电极层设于所述驱动背板的同一侧面,所述像素定义层设有多个露出各所述第一发光器件的第一电极层的开口;
    所述第一发光器件的发光功能层至少部分设于所述开口内;
    所述第一发光器件的第二电极层设于所述像素定义层背离所述驱动背板的表面,且其在所述开口内的正投影与所述第一发光器件的发光功能层在所述开口内的正投影至少部分交叠;所述第一发光器件的第二电极层通过贯穿所述像素定义层的过孔与所述像素驱动电路连接;
    所述第二发光器件的发光功能层覆盖于所述第一发光器件的第二电极层背离所述驱动背板的表面,且其在所述驱动背板上的正投影覆盖所述第一发光器件的第二电极层在所述驱动背板上的正投影;
    所述第二发光器件的第二电极层覆盖所述第二发光器件的发光功能层及所述像素定义层的表面,且其在所述开口内的正投影与所述第一发光器件的发光功能层在所述开口内的正投影至少部分交叠,并通过贯穿所述像素定义层的过孔与所述像素驱动电路连接;
    所述第三发光器件的发光功能层包括依次层叠的空穴传输层、发光材料层及电子传输层,所述空穴传输层位于所述第三发光器件的第一电极层背离所述驱动背板的一侧,且其在所述驱动背板上的正投影覆盖所述第二发光器件的第二电极层在所述驱动背板上的正投影;所述发光材料层位于所述空穴传输层背离所述驱动背板的一侧,且其在所述开口内的正投影与所述第二发光器件的第二电极层在所述开口内的正投影至少部分交叠;所述电子传输层覆盖所述发光材料层及所述空穴传输层共同构成的结构的表面;
    所述第三发光器件的第二电极层位于所述电子传输层背离所述驱动背板的一侧,且其在所述开口内的正投影与所述发光材料层在所述开口内的正投影至少部分交叠。
  6. 根据权利要求5所述的显示面板,其中,各所述发光单元的第三发光器件共用所述空穴传输层及所述电子传输层。
  7. 根据权利要求3所述的显示面板,其中,所述驱动背板包括像素区和位于所述像素区以外的边缘区,各所述像素驱动电路位于所述像素区,所述边缘区设有多个外围电路;
    所述第一发光器件、所述第二发光器件及所述第三发光器件均位于所述像素区,所述第一发光器件的第一电极层与一所述像素驱动电路连接;
    所述第一发光器件的第二电极层由所述像素区延伸至所述边缘区,并与一所述外围电路连接;
    所述第二发光器件的第二电极层与另一所述像素驱动电路连接;
    所述第三发光器件的第二电极层由所述像素区延伸至所述边缘区,并与另一所述外围电路连接。
  8. 根据权利要求7所述的显示面板,其中,所述显示面板还包括:
    像素定义层,至少覆盖所述像素区,并与所述第一发光器件的第一电极层设于所述驱动背板的同一侧面,所述像素定义层设有多个分别露出各所述第一发光器件的第一电极层的开口;
    所述第一发光器件的发光功能层设于所述像素定义层背离所述驱动背板的表面,所述第一发光器件的第一电极层在所述驱动背板上的正投影在所述第一发光器件的发光功能层在所述驱动背板上的正投影之内;
    所述第一发光器件的第二电极层设于所述第一发光器件的发光功能层背离所述驱动背板的表面,所述第一发光器件的发光功能层在所述驱动背板上的正投影在所述第一发光器件的第二电极层在所述驱动背板上的正投影之内;
    所述第二发光器件的发光功能层设于所述第一发光器件的第二电极层背离所述驱动背板的表面,并至少延伸至所述开口内;
    所述第二发光器件的第二电极层设于所述第二发光器件的发光功能层背离所述驱动背板的表面,且其在所述开口内的正投影与所述第二发光器件的发光功能层在所述开口内的正投影至少部分交叠;
    所述第三发光器件的发光功能层设于所述第二发光器件的第二电极层背离所述驱动背板的表面,且所述第二发光器件的第二电极层在所述驱动背板上的正投影在所述第三发光器件的发光功能层在所述驱动背板上的正投影之内;
    所述第三发光器件的第二电极层设于所述第三发光器件的发光功能层背离所述驱动背板的表面,且其在所述开口内的正投影与所述第二发光器件的第二电极层在所述开口内的正投影至少部分交叠。
  9. 根据权利要求7所述的显示面板,其中,各所述发光单元的第一发光器件的发光功能层同层设置且连接。
  10. 根据权利要求7所述的显示面板,其中,各所述发光单元的第一发光器件的第二电极层同层设置且连接。
  11. 根据权利要求7所述的显示面板,其中,各所述发光单元的第二发光器件的发光功能层同层设置且连接。
  12. 根据权利要求7所述的显示面板,其中,各所述发光单元的第三发光器件的发光功能层同层设置且连接;
    各所述发光单元的第三发光器件的第二电极层同层设置且连接。
  13. 根据权利要求5或8所述的显示面板,其中,所述显示面板还包括:
    遮光层,设于所述发光器件层背离所述驱动背板的一侧,且具有多个透光孔,各所述透光孔与各所述开口一一对应设置,且每个所述透光孔在所述驱动背板上的正投影和与之对应的开口中的各发光器件在所述驱动背板上的正投影至少部分交叠。
  14. 根据权利要求1-12任一项所述的显示面板,其中,所述显示面板还包括:
    封装层,位于所述发光器件层背离所述驱动背板的一侧。
  15. 一种显示装置,其中,包括权利要求1-14任一项所述的显示面板。
  16. 一种显示面板的制造方法,其中,包括:
    形成驱动背板,所述驱动背板包括多个像素驱动电路;
    在所述驱动背板的一侧形成发光器件层,所述发光器件层包括多个呈阵列分布的发光单元,所述发光单元包括向背离所述驱动背板的方向层叠设置的多个发光器件;在垂直于所述驱动背板的方向上,距离所述驱动背板最近的所述发光器件以外的发光器件为透明器件;
    同一发光单元中,至少部分所述发光器件与所述像素驱动电路连接,用于在所述像素驱动电路的驱动下发光,同一所述发光单元中至少有两个所述发光器件的发光材料不同。
  17. 根据权利要求16所述的制造方法,其中,同一所述发光单元的发光器件的数量为三个,且包括向背离所述驱动背板的方向分布的第一发光器件、第二发光器件及第三发光器件,所述驱动背板包括像素区和位于像素区以外的边缘区,各所述像素驱动电路位于所述像素区,所述边缘区设有多个外围电路;
    所述在所述驱动背板的一侧形成发光器件层包括:
    在所述驱动背板的表面形成像素定义层,所述像素定义层至少覆盖所述像素区,并与所述第一发光器件的第一电极层设于所述驱动背板的同一侧面,所述像素定义层设有多个分别露出各所述第一发光器件的第一电极层的开口;
    在所述像素定义层背离所述驱动背板的表面形成第一发光器件的发光功能层,所述第一发光器件的第一电极层在所述驱动背板上的正投影在所述第一发光器件的发光功能层在所述驱动背板上的正投影之内;
    在所述第一发光器件的发光功能层背离所述驱动背板的表面形成第一发光器件的第二电极层,所述第一发光器件的发光功能层在所述驱动背板上的正投影在所述第一发光器件的第二电极层在所述驱动背板上的正投影之内,且所述第一发光器件的第二电极层由所述像素区延伸至所述边缘区,并与一所述外围电路连接;
    在所述第一发光器件的第二电极层背离所述驱动背板的表面形成所述第二发光器件的发光功能层,所述第二发光器件的发光功能层至少延伸至所述开口内;
    所述第二发光器件的发光功能层背离所述驱动背板的表面形成第二发光器件的第二电极层,所述第二发光器件的第二电极层在所述开口内的正投影与所述第二发光器件的发光功能层在所述开口内的正投影至少部分交叠,且所述第二发光器件的第二电极层与一所述像素驱动电路连接;
    在所述第二发光器件的第二电极层背离所述驱动背板的表面形成第三发光器件的发光功能层,所述第二发光器件的第二电极层在所述驱动背板上的正投影在所述第三发光器件的发光功能层在所述驱动背板上的正投影之内;
    在所述第三发光器件的发光功能层背离所述驱动背板的表面形成所述第三发光器件的第二电极层,所述第三发光器件的第二电极层在所述开口内的正投影与所述第二发光器件的第二电极层在所述开口内的正投影至少部分交叠,且所述第三发光器件的第二电极层由所述像素区延伸至所述边缘区,并与另一所述外围电路连接。
  18. 一种像素驱动电路,其中,用于驱动串联于第一电源端和第二电源端之间的多个发光器件;所述像素驱动电路包括:
    驱动晶体管,具有控制端、第一端和第二端,所述驱动晶体管的第二端用于与所述发光器件的第一端连接;
    数据写入单元,用于响应写入控制信号而导通,以将数据信号传输至所述驱动晶体管的第一端;
    储能单元,所述储能单元的第一端与所述第一电源端连接,所述储能单元的第二端与所述驱动晶体管的控制端连接;
    相邻两个所述发光器件之间均连接有信号输入端。
  19. 根据权利要求18所述的像素驱动电路,其中,多个所述发光器件包括第一发光器件、第二发光器件和第三发光器件;
    所述驱动晶体管的第二端与所述第一发光器件连接;
    所述第二发光器件连接于所述第一发光器件和所述第三发光器件之间;
    所述第三发光器件的第二端与所述第二电源端连接;
    连接于所述第一发光器件和所述第二发光器件之间的信号输入端为第一信号输入端,连接于所述第二发光器件和所述第三发光器件之间的信号输入端为第二信号输入端。
  20. 一种像素驱动电路的驱动方法,其中,用于权利要求19所述的像素驱动电路;
    所述驱动方法包括:
    在数据写入阶段,导通所述数据写入单元,以将所述数据信号经过所述数据写入单元和所述驱动晶体管传输至所述驱动晶体管的控制端,并向所述储能单元充电;
    在发光阶段,所述储能单元向所述驱动晶体管输入电信号,以将所述驱动晶体管导通,通过所述第一电源端向所述第一发光器件的第一端输入第一电源信号,并通过所述第一信号输入端输入第一信号,以控制所述第一发光器件发光;向所述第二信号输入端输入第二信号,并向所述第一信号输入端输入第三信号,以控制所述第二发光器件发光;向所述第二信号输入端输入第四信号,并向所述第二电源端输入第二电源信号,以控制所述第三发光器件发光。
PCT/CN2021/082837 2021-01-26 2021-03-24 显示装置、显示面板及其制造方法、驱动电路及驱动方法 WO2022160440A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180000572.8A CN115485849A (zh) 2021-01-26 2021-03-24 显示装置、显示面板及其制造方法、驱动电路及驱动方法
US17/629,739 US20230165051A1 (en) 2021-01-26 2021-03-24 Display device, display panel and manufacturing method thereof, driving circuit and driving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110101413.9 2021-01-26
CN202110101413.9A CN112909053A (zh) 2021-01-26 2021-01-26 显示装置、显示面板及其制造方法

Publications (1)

Publication Number Publication Date
WO2022160440A1 true WO2022160440A1 (zh) 2022-08-04

Family

ID=76119364

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/082838 WO2022160441A1 (zh) 2021-01-26 2021-03-24 显示装置、显示面板及其制造方法、驱动电路及驱动方法
PCT/CN2021/082837 WO2022160440A1 (zh) 2021-01-26 2021-03-24 显示装置、显示面板及其制造方法、驱动电路及驱动方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082838 WO2022160441A1 (zh) 2021-01-26 2021-03-24 显示装置、显示面板及其制造方法、驱动电路及驱动方法

Country Status (3)

Country Link
US (2) US20230165094A1 (zh)
CN (3) CN112909053A (zh)
WO (2) WO2022160441A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871610B2 (en) * 2021-05-13 2024-01-09 Sharp Kabushiki Kaisha Dual bank structure for improved extraction from an emissive layer
CN113644211B (zh) * 2021-08-12 2023-10-31 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127194A (zh) * 2007-09-26 2008-02-20 友达光电股份有限公司 主动式有机发光二极管显示器
KR20090039139A (ko) * 2007-10-17 2009-04-22 주식회사 엘지화학 적층형 액티브 매트릭스형 유기발광 소자, 이를 배열한적층형 액티브 매트릭스형 유기발광 소자 어레이 및 그구동방법
US9082735B1 (en) * 2014-08-14 2015-07-14 Srikanth Sundararajan 3-D silicon on glass based organic light emitting diode display
CN104813488A (zh) * 2013-01-05 2015-07-29 深圳云英谷科技有限公司 显示设备以及用于制造和驱动该显示设备的方法
CN106067473A (zh) * 2015-04-23 2016-11-02 株式会社日本显示器 显示装置
CN110428778A (zh) * 2019-08-14 2019-11-08 京东方科技集团股份有限公司 像素电路及其驱动方法以及显示面板
CN111370448A (zh) * 2018-12-26 2020-07-03 乐金显示有限公司 显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703436A (en) * 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
JP4276109B2 (ja) * 2004-03-01 2009-06-10 ローム株式会社 有機エレクトロルミネッセント素子
JP4507964B2 (ja) * 2005-04-15 2010-07-21 ソニー株式会社 表示装置および表示装置の製造方法
KR100845694B1 (ko) * 2006-01-18 2008-07-11 주식회사 엘지화학 적층형 유기발광소자
KR101351410B1 (ko) * 2009-09-29 2014-01-14 엘지디스플레이 주식회사 백색 유기 발광 소자
CN103021334A (zh) * 2012-12-13 2013-04-03 京东方科技集团股份有限公司 一种像素结构、像素单元结构、显示面板及显示装置
KR20140140861A (ko) * 2013-05-30 2014-12-10 영남대학교 산학협력단 유기발광표시장치
CN104716264B (zh) * 2013-12-11 2017-02-08 昆山工研院新型平板显示技术中心有限公司 一种有机电致发光器件及应用该发光器件的显示装置
GB2549734B (en) * 2016-04-26 2020-01-01 Facebook Tech Llc A display
CN105493307B (zh) * 2015-10-29 2017-07-28 京东方科技集团股份有限公司 一种有机发光二极管结构及其制造方法以及相关显示面板与显示设备
KR20180078641A (ko) * 2016-12-30 2018-07-10 엘지디스플레이 주식회사 유기 발광 소자 및 그를 이용한 유기 발광 표시 장치
CN107170900B (zh) * 2017-05-12 2019-11-22 京东方科技集团股份有限公司 Oled基板及其制备方法、显示装置
CN107946343A (zh) * 2017-11-15 2018-04-20 江苏集萃有机光电技术研究所有限公司 像素结构及oled面板
KR102408906B1 (ko) * 2017-11-30 2022-06-15 엘지디스플레이 주식회사 유기 발광 소자 및 이를 이용한 유기 발광 표시 장치
KR20200078242A (ko) * 2018-12-21 2020-07-01 엘지디스플레이 주식회사 표시장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127194A (zh) * 2007-09-26 2008-02-20 友达光电股份有限公司 主动式有机发光二极管显示器
KR20090039139A (ko) * 2007-10-17 2009-04-22 주식회사 엘지화학 적층형 액티브 매트릭스형 유기발광 소자, 이를 배열한적층형 액티브 매트릭스형 유기발광 소자 어레이 및 그구동방법
CN104813488A (zh) * 2013-01-05 2015-07-29 深圳云英谷科技有限公司 显示设备以及用于制造和驱动该显示设备的方法
US9082735B1 (en) * 2014-08-14 2015-07-14 Srikanth Sundararajan 3-D silicon on glass based organic light emitting diode display
CN106067473A (zh) * 2015-04-23 2016-11-02 株式会社日本显示器 显示装置
CN111370448A (zh) * 2018-12-26 2020-07-03 乐金显示有限公司 显示装置
CN110428778A (zh) * 2019-08-14 2019-11-08 京东方科技集团股份有限公司 像素电路及其驱动方法以及显示面板

Also Published As

Publication number Publication date
CN115428163A (zh) 2022-12-02
US20230165094A1 (en) 2023-05-25
WO2022160441A1 (zh) 2022-08-04
CN112909053A (zh) 2021-06-04
CN115485849A (zh) 2022-12-16
US20230165051A1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
US10734440B2 (en) Display panel and fabrication method, and display device thereof
JP6534697B2 (ja) 有機発光表示装置及びその製造方法
KR101920766B1 (ko) 유기 발광 표시 장치의 제조 방법
WO2020133738A1 (zh) Oled 显示面板及屏下光学指纹识别方法
WO2020140767A1 (zh) 透明显示基板及其制作方法和透明显示面板
CN105590953B (zh) 具有高孔径比的有机发光二极管显示器及其制造方法
JP2002202737A (ja) 発光素子の製造方法、発光素子
KR20180075056A (ko) 표시 장치
WO2022160440A1 (zh) 显示装置、显示面板及其制造方法、驱动电路及驱动方法
TW200421906A (en) Organic electroluminescence display panel
EP3840052B1 (en) Display device and manufacturing method of same
KR20090108931A (ko) 유기 발광 표시 장치 및 그 제조 방법
WO2021184235A1 (zh) 一种阵列基板及其制备方法和显示面板
WO2020154875A1 (zh) 像素单元及其制造方法和双面oled显示装置
KR20140146426A (ko) 표시 장치 및 표시 장치의 제조 방법
WO2021190161A1 (zh) 显示装置、显示面板及其制造方法
JP2014032817A (ja) 表示装置およびその製造方法、並びに電子機器の製造方法
KR20190024198A (ko) 전계발광 표시장치
WO2021035549A1 (zh) 显示基板及其制备方法,电子设备
KR20200076278A (ko) 유기 발광 표시 장치
WO2021179419A1 (zh) 一种显示面板及其制备方法、显示装置
WO2021203473A1 (zh) 一种显示面板及显示装置
WO2023019531A1 (zh) 显示装置、显示面板及其制造方法
WO2023092935A1 (zh) 显示装置、显示面板及其制造方法
WO2024000489A1 (zh) 显示面板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/11/2023)