WO2022160099A1 - 电解液及电化学装置和电子装置 - Google Patents

电解液及电化学装置和电子装置 Download PDF

Info

Publication number
WO2022160099A1
WO2022160099A1 PCT/CN2021/073828 CN2021073828W WO2022160099A1 WO 2022160099 A1 WO2022160099 A1 WO 2022160099A1 CN 2021073828 W CN2021073828 W CN 2021073828W WO 2022160099 A1 WO2022160099 A1 WO 2022160099A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
formula
substituted
unsubstituted
group
Prior art date
Application number
PCT/CN2021/073828
Other languages
English (en)
French (fr)
Inventor
吴大贝
邱亚明
崔辉
唐超
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202180004971.1A priority Critical patent/CN114258606A/zh
Priority to PCT/CN2021/073828 priority patent/WO2022160099A1/zh
Publication of WO2022160099A1 publication Critical patent/WO2022160099A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte

Definitions

  • the invention belongs to the field of electrochemical devices, and in particular relates to an electrolyte, an electrochemical device and an electronic device using the electrolyte.
  • the invention provides an electrolyte, which can effectively improve the cycle stability and high temperature storage performance of electrochemical devices such as batteries under high voltage.
  • the electrolyte of the present invention includes the salt compound shown in formula 1:
  • X is S or O;
  • M is selected from one of sodium, potassium or cesium.
  • R 4 is a sulfonate anion substituent or a borate anion substituent.
  • the salt compound represented by Formula 1 includes at least one of the sulfonate compound represented by Formula 1a and the borate compound represented by Formula 1b:
  • M is sodium or potassium; in formula 1a, R 1 , R 2 , R 3 are each independently selected from one of hydrogen, halogen and aldehyde group; in formula 1b, R 1 , R 2 , R 3 are each independently is selected from one of hydrogen and halogen.
  • the salt compound represented by formula 1 includes at least one of the sulfonate compounds represented by the following formulas 1a-1 to 1a-12, and the borate compounds represented by the following formulas 1b-1 to 1b-8 A sort of:
  • the mass fraction of the salt compound represented by Formula 1 in the electrolyte is 0.1% to 2%.
  • the above-mentioned electrolyte further includes a polynitrile-based compound, and the mass fraction of the polynitrile-based compound in the electrolyte is 0.1% to 20%.
  • the above-mentioned electrolyte further includes a first compound
  • the first compound includes vinylene carbonate, 1,3-propane sultone, fluoroethylene carbonate, fluoropropylene carbonate, ethylene carbonate At least one of ethylene ester, 1,4-butanesultone, tris(trimethyl)silane borate, vinyl sulfate, vinylene propanesulfonate, propylene sulfate, and propylene sulfite,
  • the mass fraction of the first compound in the electrolyte is less than or equal to 10%.
  • Another aspect of the present invention provides an electrochemical device comprising the above electrolyte.
  • an electronic device is provided, the energy storage device of which includes the above electrochemical device.
  • the electrolyte provided by the present invention contains the heterocyclic sulfonate compound and/or the heterocyclic borate compound represented by formula 1, which can improve the performance of the electrolyte, and improve the cycle stability and high temperature storage of the electrochemical device under high voltage. It has important practical significance in the industry.
  • a list of items linked by the term "at least one of” or other similar terms can mean any one or any combination of the listed items, eg, in one example, if List items A and B, then the phrase "at least one of A and B" means only A, or only B, or A and B; in another example, if items A, B, and C are listed, then The phrase "at least one of A, B, and C” means A only, or B only, or C only, or A and B (excluding C), or A and C (excluding B), or B and C (excluding A), or A, B, and C; item A may contain single or multiple elements, item B may contain single or multiple elements, and item C may contain single or multiple elements; indicated by the term “and/or” or other similar
  • the term list of linked items can mean any one or any combination of the listed items, eg, in one example, if items A and B are listed, the phrase "A and/or B" means A only, Or B only, or A and B.
  • alkyl is intended to be a straight chain saturated hydrocarbon structure having 1 to 20 carbon atoms, and “alkyl” is also intended to be a branched or cyclic hydrocarbon structure having 3 to 20 carbon atoms, eg,
  • the alkyl group can be an alkyl group of 1 to 20 carbon atoms, an alkyl group of 1 to 10 carbon atoms, an alkyl group of 1 to 5 carbon atoms, an alkyl group of 5 to 20 carbon atoms, an alkyl group of 5 to 15 carbon atoms , or an alkyl group of 5 to 10 carbon atoms, etc.
  • alkyl group having a specific carbon number when specifying an alkyl group having a specific carbon number, it is intended to encompass all geometric isomers having that carbon number, eg, "butyl” can be n-butyl, sec-butyl, isobutyl, tert-butyl, and cyclobutyl Or a mixture of any two or more thereof; propyl group can be n-propyl, isopropyl and cyclopropyl or a mixture of any two or more thereof.
  • alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclobutyl, n-pentyl, isobutyl Pentyl, neopentyl, cyclopentyl, methylcyclopentyl, ethylcyclopentyl, n-hexyl, isohexyl, cyclohexyl, n-heptyl, octyl, cyclopropyl, cyclobutyl, norbornyl Wait. Additionally, alkyl groups can be optionally substituted.
  • cycloalkyl encompasses cyclic alkyl groups.
  • the cycloalkyl group may be a cycloalkyl group of 3 to 20 carbon atoms, a cycloalkyl group of 6 to 20 carbon atoms, a cycloalkyl group of 3 to 12 carbon atoms, a cycloalkyl group of 3 to 6 carbon atoms, and the like,
  • the cycloalkyl group can be cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
  • cycloalkyl groups may be optionally substituted.
  • the electrolyte of the present invention includes a salt compound shown in formula 1:
  • X is S or O;
  • the electrolyte solution of the present invention is introduced into the salt compound shown in the above formula 1, which can cooperate with the steps in the preparation process such as the chemical formation of the electrochemical device, form a uniform and dense interface film on the positive and negative electrodes of the electrochemical device, and prevent electrolysis under high voltage.
  • the liquid is oxidized and decomposed at the positive electrode to improve the cycle performance of the electrochemical device under high voltage; and the metal cation (Mn + ) in the above salt compound will also participate in the film formation of the negative electrode, reduce the polarization of the negative electrode, and improve the cycle performance;
  • the interfacial film formed by the salt compound is more stable and can improve the high temperature storage performance of the electrochemical device.
  • the electrolyte solution of the present invention can improve both the cycle performance and the high-temperature storage performance of the battery.
  • halogens may be F, Cl, Br, I substituents, preferably F substituents.
  • Mn + is a metal cation
  • M can be selected from metal elements in Group IA, Group IIA, Group IIIA, Group IB, and Group IIB of the periodic table, for example, can be selected from sodium, potassium, cesium, magnesium, One of calcium, aluminum, copper, and zinc, preferably, M is selected from one of sodium, potassium or cesium, and the number of anionic groups (that is, the above-mentioned sulfonate anion substituents and borate anion substituents) is based on The valence state of the metal cation changes accordingly to obey the conservation of charge.
  • borate anion substituents generally mainly include non-fluoroborate anion substituents and fluoroborate anion substituents, the latter is generally preferred, and trifluoroborate anion substituents are further preferred
  • the sulfonate anion substituent Or the substitution position of the borate anion substituent has a great influence on the performance of the electrolyte.
  • R 4 be the above-mentioned sulfonate anion substituent or borate anion substituent.
  • the salt compound described in the above formula 1 may be a sulfonate compound containing only a sulfonate anion substituent, an anion group, or a borate compound, which only contains a borate anion substituent, an anion group.
  • R 1 , R 2 , R 3 , and R 4 is a sulfonate anion substituent (or a borate anion substituent), and the rest are independently selected from the above-mentioned hydrogen, halogen and other substituents.
  • the salt compound represented by the above formula 1 can also be a bis-acid anion-substituted salt compound containing both sulfonate anion substituents and borate anion substituents, for example, can be R 1 , R 2 , R 3.
  • R 4 is a sulfonate anion substituent
  • the other is a borate anion substituent
  • the rest are independently selected from the above-mentioned hydrogen, halogen and other substituents.
  • the electrolyte of the present invention contains a salt compound represented by formula 1, and the salt compound may include at least one of the above-mentioned sulfonate compounds, borate compounds and bis-acid substituted salt compounds, preferably including R 4 as At least one of a sulfonate compound having a sulfonate anion substituent and a borate compound wherein R 4 is a borate anion substituent.
  • the salt compound represented by formula 1 may specifically include at least one of the sulfonate compound represented by formula 1a and the borate compound represented by formula 1b:
  • M is sodium or potassium (that is, M + is sodium ion (Na + ) or potassium ion (K + )); in the above formula 1a, R 1 , R 2 , R 3 are each independently selected from hydrogen, halogen and aldehyde One of the groups, for example, R 1 is an aldehyde group, and R 2 and R 3 are each independently selected from one of hydrogen and halogen; in the above formula 1b, R 1 , R 2 , and R 3 are each independently selected from hydrogen and one of the halogens.
  • the salt compound represented by Formula 1 includes at least one of sulfonate compounds represented by Formulas 1a-1 to 1a-12 below, and borate compounds represented by Formulas 1b-1 to 1b-8 :
  • the mass fraction of the salt compound represented by Formula 1 in the electrolyte is 0.1% to 3%, that is, based on the total weight of the electrolyte, the weight percentage of the salt compound represented by Formula 1 is 0.1% % to 3%, preferably 0.1% to 2%, for example, can be 0.1%, 0.3%, 0.5%, 1%, 1.5%, 2%, or a range of any two of these values.
  • the above-mentioned electrolyte also includes a lithium salt and an organic solvent
  • the concentration of the lithium salt in the electrolyte can generally be 0.5mol/L to 2mol/L, such as 0.8mol/L, 0.9mol/L, 1mol/L L, 1.1 mol/L, 1.2 mol/L, 1.4 mol/L, 1.6 mol/L, 1.8 mol/L, 2 mol/L, or a range of any two of these values.
  • the lithium salts can be conventional lithium salt electrolytes in the art, specifically inorganic lithium salts.
  • the lithium salts include but are not limited to LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiSbF 6 , LiSO 3 F , LiN(FSO 2 ) 2 , LiCF 3 SO 3 , LiN(FSO 2 )(CF 3 SO 2 ), LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , Cyclic 1,3 -Lithium hexafluoropropanedisulfonimide, Lithium cyclic 1,2-tetrafluoroethanedisulfonimide, LiN(CF 3 SO 2 )(C 4 F 9 SO 2 ), LiC(CF 3 SO 2 ) ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (CF 3 ) 2 , Li
  • organic solvents can also be conventional organic solvents in the art.
  • these organic solvents include but are not limited to ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), dicarbonate Ethyl acetate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate, ⁇ -butyrolactone, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, butyl propionate At least one of ester, tetrahydrofuran, 1,3-dioxolane, dimethoxymethane, 1,2-dimethoxyethane and tetraethylene glycol dimethyl ether.
  • the above-mentioned electrolyte can also include a polynitrile compound, and the mass fraction of the polynitrile compound in the electrolyte can be 0.1% to 25%.
  • adding a polycyano compound Nitrile additives
  • adding a polycyano compound can further improve the cycle performance and storage performance of electrochemical devices, but too high content of polycyano compounds will increase the viscosity of the electrolyte, make the kinetic performance of the electrochemical device worse, and affect the electrochemical device.
  • the general mass fraction of polynitrile compounds in the electrolyte is preferably 0.1% to 20%, for example, it can be 0.1% , 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12 %, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, or a range of any two of these values.
  • the number of nitrile groups is 2 to 4; preferably, the above polynitrile compounds include polynitrile alkane compounds, polynitrile cycloalkane compounds, polynitrile olefin compounds, ether compounds.
  • the above-mentioned polynitrile compound may specifically include at least one of the compounds represented by the following formulas 2-1 to 2-9:
  • the electrolyte solution may further include a first compound, and the first compound includes vinylene carbonate (VC), 1,3-propane sultone, fluoroethylene carbonate (FEC), and fluoropropylene carbonate , At least one of ethylene ethylene carbonate, 1,4-butane sultone, tris(trimethyl) silane borate, vinyl sulfate, vinylene propanesulfonate, propylene sulfate, and propylene sulfite A sort of.
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • FEC fluoropropylene carbonate
  • At least one of ethylene ethylene carbonate, 1,4-butane sultone, tris(trimethyl) silane borate, vinyl sulfate, vinylene propanesulfonate, propylene sulfate, and propylene sulfite A sort of.
  • the addition of the first compound can further improve the cycle performance of the electrochemical device, mainly because the first compound forms a negative electrode film, which can protect the structural stability of the negative electrode active material (such as graphite) during the cycle process. It can improve the cycle performance, but its film-forming product is unstable at high temperature, which will affect the high-temperature storage performance of the electrochemical device to a certain extent. Considering factors such as cycle performance and high-temperature storage performance, generally the first compound is in the electrolyte.
  • the mass fraction is less than or equal to 10%, for example, it can be 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10% or these values A range consisting of any two of the .
  • the electrochemical device of the present invention includes the above-mentioned electrolytic solution, that is, an electrolytic solution including any one of the above-mentioned embodiments or embodiments, or an electrolytic solution including other embodiments within the scope of the gist of the present invention.
  • the electrochemical device of the present invention may be any device in which an electrochemical reaction occurs, and in particular, it may include a positive electrode having a positive electrode active material capable of occluding and releasing metal ions, and a negative electrode having a negative electrode active material capable of absorbing and releasing metal ions
  • An electrochemical device specific examples of which may include all kinds of primary batteries, secondary batteries, fuel cells, solar cells, or capacitors, in particular, the electrochemical device may be a lithium secondary battery, specifically, may include a lithium metal secondary battery , lithium ion secondary battery, lithium polymer secondary battery or lithium ion polymer secondary battery, etc.
  • the above electrochemical device further includes a positive electrode, a negative electrode, and a separator between the positive electrode and the negative electrode.
  • the positive electrode used in the electrochemical device of the present invention can be a positive electrode sheet with a conventional structure prepared by using materials and preparation methods known in the art.
  • the positive electrode described in US Patent Application US9812739B can be used, which is cited in its entirety. manner is incorporated into the present invention.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer on the positive electrode current collector, and the positive electrode active material in the positive electrode active material layer includes at least one capable of reversibly intercalating and deintercalating lithium ions.
  • a lithiated intercalation compound for example, can include a lithium-containing composite oxide, and the lithium-containing composite oxide also contains at least one element selected from cobalt, manganese and nickel, that is, the lithium-containing composite oxide can be a lithium transition metal compounds.
  • the positive electrode active material can be selected from lithium cobalt oxide (LiCoO 2 ) (abbreviation: LCO), lithium nickel cobalt manganese (NCM523: Ni, Co, Mn elements in a stoichiometric ratio of 5:2:3) ternary materials , at least one of doped or undoped materials of lithium iron phosphate (LiFePO 4 ) and lithium manganate (LiMn 2 O 4 ).
  • LCO lithium cobalt oxide
  • NCM523 Ni, Co, Mn elements in a stoichiometric ratio of 5:2:3
  • ternary materials at least one of doped or undoped materials of lithium iron phosphate (LiFePO 4 ) and lithium manganate (LiMn 2 O 4 ).
  • the positive active material includes lithium cobalt oxide (such as the above-mentioned lithium cobalt oxide, etc.), the lithium cobalt oxide includes M' element, and M' element is selected from Mg, Ti, Al, Zr, Sn, Zn, One or more of Ca.
  • the weight percentage of M' element may be 0.005% to 1%, such as 0.005%, 0.007%, 0.009%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4 %, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, or a range of any two of these values.
  • the positive electrode active material may include, for example, lithium cobalt oxide with a Ti content of 0.05% (denoted as Ti 0.05 -LiCoO 2 ), lithium cobalt oxide with a Ti content of 1 wt% (denoted as Ti 1 -LiCoO 2 ), and the like.
  • the above-mentioned positive active material may be an agglomerate, and the primary particle size of which may be 200 nm to 3000 nm, such as 200 nm, 300 nm, 500 nm, 600 nm, 800 nm, 1000 nm, 1500 nm, 2000 nm, 2200 nm, 2500 nm, 3000 nm or these The range composed of any two of the numerical values; the secondary particle size of the positive electrode active material may be 5 ⁇ m to 15 ⁇ m, such as 5 ⁇ m, 6 ⁇ m, 8 ⁇ m, 10 ⁇ m, 12 ⁇ m, 14 ⁇ m, 15 ⁇ m or the range of any two of these values.
  • the specific surface area of the positive electrode active material may be 0.9m 2 /g to 1.5m 2 /g, such as 0.9m 2 /g, 1.2m 2 /g, 1.3m 2 /g, 1.4m 2 /g, 1.5 m 2 /g or a range of any two of these values.
  • the positive active material is in particulate form with a coating on the surface of the particles, or may be a mixture comprising a positive active material without a coating and another positive active material with a coating
  • the coating may include At least one compound selected from oxides of coating elements, hydroxides of coating elements, oxyhydroxides of coating elements, oxycarbonates of coating elements, and hydroxycarbonates of coating elements, the compound Can be amorphous or crystalline.
  • the above-mentioned coating elements may include at least one of Mg, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr, and F.
  • the present invention can apply the above-mentioned coating by any method as long as it does not adversely affect the performance of the positive electrode active material, for example, the method can include any coating method known in the art, such as spraying, dipping, and the like.
  • the positive electrode active material layer further includes a binder (or binder), and optionally a conductive material, wherein the binder can improve the bonding of the positive electrode active material particles to each other, and also improve the Combination of positive active material and current collector.
  • a binder or binder
  • a conductive material wherein the binder can improve the bonding of the positive electrode active material particles to each other, and also improve the Combination of positive active material and current collector.
  • such binders include, but are not limited to, polyvinylidene fluoride (PVDF), polyvinyl alcohol, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride , ethylene oxide-containing polymers, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene butadiene rubber (SBR), acrylic (ester) At least one of styrene-butadiene rubber, epoxy resin, nylon, etc.; the above-mentioned conductive materials include but are not limited to at least one of carbon-based materials, metal-based materials, and conductive polymers, wherein, carbon-based materials can be selected At least one of natural graphite, artificial graphite, carbon black (SP), acetylene black, Ketjen black, carbon fiber
  • PVDF
  • the above-mentioned positive electrode current collector may be a conventional positive electrode current collector in the art, such as aluminum foil, which is not particularly limited in the present invention.
  • the positive electrode of the present invention can be prepared by a known preparation method in the art.
  • the positive electrode can be prepared by forming a positive electrode active material layer on the positive electrode current collector using raw materials including lithium transition metal compound powder and a binder.
  • raw materials such as the positive electrode active material (such as the above-mentioned lithium transition metal compound powder) and the binder can be dry mixed to form a sheet, and the obtained sheet can be crimped on the positive current collector to obtain a positive electrode
  • the above-mentioned raw materials can be dissolved or dispersed in a liquid medium (solvent) to form a slurry, and the formed slurry can be coated on the positive electrode current collector and dried to obtain a positive electrode; among them, it can also be used as required.
  • Materials such as conductive materials and thickeners.
  • the positive electrode can be prepared by the following method: the active material, the conductive material and the binder are mixed in a solvent to form a slurry (or active material composition), and the slurry is mixed It is coated on the positive electrode current collector, and then processed by drying, rolling, etc., to obtain a positive electrode (or a positive electrode sheet); wherein, the above-mentioned solvent may include N-methylpyrrolidone (NMP) and other conventional solvents in the field.
  • NMP N-methylpyrrolidone
  • the negative electrode used in the electrochemical device of the present invention can be a negative electrode sheet of conventional structure prepared by using negative electrode materials and manufacturing methods known in the art.
  • the negative electrodes described in US Patent Application US9812739B, which is incorporated by reference in its entirety, are employed.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer on the negative electrode current collector, the negative electrode active material in the negative electrode active material layer includes a material that reversibly intercalates/deintercalates lithium ions, the Materials that reversibly intercalate/deintercalate lithium ions include carbon materials, which can be any carbon-based negative active material commonly used in lithium-ion rechargeable batteries, including but not limited to crystalline carbon, amorphous carbon, or their combination.
  • the crystalline carbon can be amorphous, flake, platelet, spherical or fibrous natural graphite or artificial graphite, and the amorphous carbon can be soft carbon, hard carbon, mesophase pitch carbide, calcined Jiao et al.
  • the present invention is not limited to this, and other negative electrode active materials can also be used.
  • the negative electrode active materials can include but are not limited to lithium metal, natural graphite, artificial graphite, mesophase microcarbon balls (MCMB).
  • lithium metal may specifically include structured lithium metal and unstructured lithium metal
  • alloy material may include at least one of Li-Sn alloy, Li-Sn-O alloy, and Li-Al alloy .
  • the negative electrode active material includes a silicon carbon compound
  • the negative electrode active material layer may be formed on the negative electrode current collector using methods such as vapor deposition, sputtering, plating, and the like.
  • the negative electrode active material layer is formed with a conductive skeleton having a spherically twisted shape, which may have a porosity of 5% to 85%, and metal particles dispersed in the conductive skeleton.
  • a protective layer may also be provided on the lithium metal anode active material layer.
  • the negative active material layer may further include a binder, and optionally a conductive material, wherein the binder may improve the bonding of the negative active material particles to each other and the bonding of the negative active material to the negative current collector .
  • binders can include, but are not limited to, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl Ethylene oxide polymers, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, ring At least one of oxygen resin, nylon, etc.
  • the conductive material can include but is not limited to at least one of carbon-based materials, metal-based materials, conductive polymers, wherein the carbon-
  • materials such as thickeners (eg, sodium carboxymethyl cellulose (CMC)) may also be added to the above-mentioned negative electrode active material layer as required.
  • thickeners eg, sodium carboxymethyl cellulose (CMC)
  • the above-mentioned negative electrode current collector may include, but is not limited to, at least one of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, and conductive metal-coated polymer substrate.
  • the negative electrode of the present invention can be prepared by a preparation method known in the art, for example, can be obtained by the following method: mixing the negative electrode active material, the conductive material and the binder to make a negative electrode slurry, and coating the negative electrode slurry On the negative electrode current collector, after drying, rolling, etc., the negative electrode is prepared; wherein, the above-mentioned solvent may include water and other conventional solvents in the art.
  • the electrochemical device of the present invention is provided with a separator between the positive electrode and the negative electrode to prevent short circuit.
  • the separator used can be any existing separator, and its material and shape are not particularly limited.
  • the separator A polymer separator, an inorganic separator, or the like formed of a material stable to the electrolyte solution of the present invention may be included.
  • the separator may include a substrate layer and a surface treatment layer, the substrate layer is at least one of a non-woven fabric with a porous structure, a single-layer film and a composite film, and the material of the substrate layer may be selected from At least one of polyethylene, polypropylene, polyethylene terephthalate, and polyimide.
  • polypropylene porous membranes, polyethylene porous membranes, polypropylene non-woven fabrics, polyethylene non-woven fabrics, or polypropylene-polyethylene-polypropylene porous composite membranes (PP/PE/PP composite membranes) can be selected. film) as the above-mentioned base material layer, or it can also be used directly as a separator.
  • At least one surface of the substrate layer is provided with a surface treatment layer.
  • the surface treatment layer can be a polymer layer or an inorganic layer, or a mixed layer formed by mixing a polymer and an inorganic substance.
  • the thickness of the substrate layer is related to the surface treatment.
  • the thickness ratio of the layers may be 1:1 to 20:1, the thickness of the base material layer may be 4 ⁇ m to 14 ⁇ m, and the thickness of the surface treatment layer may be 1 ⁇ m to 5 ⁇ m.
  • the inorganic layer includes inorganic particles and a binder
  • the inorganic particles can be selected from aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium dioxide, tin oxide, ceria, nickel oxide, zinc oxide , calcium oxide, zirconium oxide, yttrium oxide, silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide and barium sulfate at least one
  • the binder can be selected from polyvinylidene fluoride, vinylidene fluoride - Copolymers of hexafluoropropylene, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene and poly At least one of hexafluoropropylene;
  • the polymer material in the polymer layer may include polyamide, polyacrylonitrile, acrylate polymer
  • the energy storage device includes the above electrochemical device, that is, the electrochemical device in any of the above embodiments or embodiments, or the electrochemical device in other embodiments that do not deviate from the spirit and scope of the present invention. device.
  • additive in basic electrolyte, obtain electrolyte;
  • additive is one or more in salt compound, polycyano compound and first compound shown in formula 1, the additive kind in each embodiment and comparative example And content is shown in table 1, table 2 and table 3, and described content is calculated based on the gross weight of electrolyte;
  • the positive electrode and the negative electrode are separated by a separator, and a bare cell is formed by winding, and the bare cell is placed in an outer package and injected with the above-mentioned electrolyte, and then undergoes processes such as formation and aging to make a lithium ion battery;
  • the positive electrode includes a positive electrode current collector (aluminum foil) and a positive electrode active material layer located on the positive electrode current collector.
  • the raw material of the positive electrode active material layer is composed of 96.7 wt% positive electrode active material, 1.7 wt% PVDF, and 1.6 wt% SP;
  • the negative electrode includes The negative electrode current collector (copper foil) and the negative electrode active material layer on the negative electrode current collector, the raw material of the negative electrode active material layer is composed of 98wt% artificial graphite, 1.0wt% SBR, 1.0wt% CMC;
  • the separator is PP/PE/PP composite membrane.
  • the electrolyte solutions of Examples 1 to 17 are composed of a salt compound (additive) shown in Formula 1, a lithium salt LiPF 6 , and an organic solvent.
  • concentration of the lithium salt LiPF 6 in the electrolyte solution is 1 mol/L
  • the organic solvent is composed of
  • the composition of EC, PC, DEC, the mass ratio of EC, PC, DEC is 20:20:60
  • the type and content of the compound shown in Formula 1 in the electrolyte are shown in Table 1, except for the type and content of the compound shown in Formula 1 shown in Table 1 Except for the difference, the remaining conditions of Examples 1 to 17 are the same; the positive active materials in Examples 1 to 17 are all LiCoO 2 ;
  • the electrolyte components of Examples 18 to 23 also contain compounds represented by formula 2-2, and the other conditions are the same as those of Example 2; the electrolyte components of Examples 24 to 29 also contain The compound represented by formula 2-2, except that the conditions are the same as in Example 10; the electrolyte components of Examples 30 to 35 also contain the compound represented by formula 2-2, and the other conditions are the same as Example 17 is the same; the mass content of formula 2-2 in the electrolyte of Example 18 to Example 35 is shown in Table 2;
  • the cycle performance of the batteries of each example and comparative example was determined according to the following procedure: at an ambient temperature of 25°C, the following same charging process was carried out for each example and comparative example: charge at a rate of 3C (the capacity of the soft pack battery is 2000mAh) to 4.6V, constant voltage at 4.6V until the current is 0.05C; after the battery is fully charged, let it stand for 5 minutes, and then discharge it to 3.0V at 1C, and cycle for 100 cycles.
  • the measured capacity retention rates of the batteries of each embodiment and comparative example after 100 cycles are shown in Tables 1 to 5.
  • Examples 4, 8, 12, and 16 show that the addition amount of formula 1a-1/formula 1a-10/formula 1b-1/formula 1b-4 is further increased, and the capacity retention rate of the battery is further increased. showed a decreasing trend, while the thickness expansion ratio showed an increasing trend, indicating that the excessive addition of the compound shown in Formula 1 will affect the cycle performance and storage performance of the battery, which is due to the limited solubility of the above additives in the electrolyte, exceeding 2% wt will be precipitated in the electrolyte and affect the cycle performance and storage performance of the battery.
  • Example 2 and Example 18 In Table 2, by comparing Example 2 and Example 18 to Example 22, Example 10 and Example 24 to Example 28, and Example 17 and Example 30 to Example 34, a certain amount of Nitrile additives (Equation 2-2 ) can improve the cycle performance and storage performance of batteries, because nitrile additives can stabilize the lattice cobalt in LiCoO through chemisorption and stabilize the structure of LiCoO at high voltage, thereby improving the battery.
  • Equation 2-2 Nitrile additives
  • the capacity retention rate of the battery increased first. The trend of decreasing after the large amount of nitrile additives indicates that the addition of nitrile additives can further improve the cycle performance and storage performance of the battery.
  • the film formation of the salt compound shown in formula 1 at the cathode can organize the further decomposition of the electrolyte, and the nitrile additives can be combined with high price.
  • Cobalt forms chemical adsorption, and the two work together to further stabilize the structure of lithium cobaltate at high voltage, reduce the decomposition of the electrolyte, and then jointly improve its cycle stability at high voltage, but the excessive addition of nitrile additives will lead to electrolyte.
  • the viscosity increases and the kinetics deteriorate, which in turn affects the cycle performance of the battery.
  • Example 17 and Example 36 adding a certain amount of FEC to the electrolyte can further improve the cycle performance of the battery, mainly because the salt compound shown in Formula 1 is mainly negative during the formation process.
  • Film formation FEC formation can continue to form negative electrode film during the cycle process, the two can work together to protect the structural stability of graphite during the cycle process, but its film formation product is unstable at high temperature, which will affect high temperature storage to a certain extent. Therefore, it needs to be added in an appropriate amount.
  • Example 17 and Example 40 if too much FEC is added, it will affect the electrolyte kinetics on the one hand, and cycle performance on the other hand.
  • Example 17 and Example 41 changing the concentration and type of lithium salt in the electrolyte can affect the cycle performance and storage performance of the battery. It is necessary to select a suitable lithium salt, otherwise it will affect the battery's performance. Cycling performance and storage performance, the anion of LiFSI (LiN(FSO 2 ) 2 ) molecule is easier to dissociate in the electrolyte than LiPF 6 , and it is easier to form positive and negative films, which can cooperate with the salt compound shown in formula 1 to protect the positive and negative electrodes. Anode interface to improve cycling performance. At the same time, it is necessary to select a suitable lithium salt concentration. Too high lithium salt concentration will deteriorate the electrolyte kinetics. For example, the lithium salt concentration of Example 44 and Example 49 is too high, and the cycle performance and storage performance of the battery are both poor.
  • LiFSI LiN(FSO 2 ) 2
  • Example 50 to Example 52 the positive electrode active material can affect the cycle performance and storage performance of the battery.
  • Ti-doped LiCoO 2 Co position can stabilize the structural stability of LiCoO 2 under high voltage
  • the salt compound shown in formula 1 forms a film at the cathode interface, and the two synergistically improve the stability of the cathode interface, thereby improving the cycle performance of the battery; Comparative Example 17 and Example 52.
  • the salt compound shown in formula 1 forms a positive electrode film, Whether the contact between the electrolyte and high-valent Ni can be reduced, the side reactions can be reduced, and the cycle stability of high voltage can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

一种电解液、电化学装置和电子装置,该电解液包括如下式1所示盐化合物:其中,X为S或者O;R 1、R 2、R 3、R 4各自独立地选自氢、卤素、硝基、硫基、磺酰基、醛基、取代或未取代的C1-C10的烷基、取代或未取代的C3-C10的环烷基、取代或未取代的C2-C10的烯基、取代或未取代的C2-C10的炔基、取代或未取代的C1-C10的烷氧基、取代或未取代的C6-C10的芳基、取代或未取代的C3-C10的杂芳基中的一种或者由其中的两种以上的基团键合而成的取代基;R 1、R 2、R 3、R 4至少一者选自磺酸根阴离子取代基或硼酸根阴离子取代基;M选自元素周期表第IA族、第IIA族、第IIIA族、第IB族、第IIB族中的金属元素。本发明能够提高电化学装置的循环稳定性和高温存储性等性能。

Description

电解液及电化学装置和电子装置 技术领域
本发明属于电化学装置领域,具体涉及一种电解液及采用该电解液的电化学装置和电子装置。
背景技术
提高电池等电化学装置的工作电压是提高其能量密度的有效途径,然而,随着工作电压的提高,通常会影响电化学装置的循环性能、高温存储性等性能。因此,如何提高电池等电化学装置在高电压下的循环稳定性和高温存储性能等特性为需要解决的技术难题。
发明内容
本发明提供一种电解液,能够有效提高电池等电化学装置在高电压下的循环稳定性和高温存储性等性能。
本发明的电解液,包括如式1所示盐化合物:
Figure PCTCN2021073828-appb-000001
其中,
X为S或者O;R 1、R 2、R 3、R 4各自独立地选自氢、卤素、硝基、硫基、磺酰基、醛基、取代或未取代的C1-C10的烷基、取代或未取代的C3-C10的环烷基、取代或未取代的C2-C10的烯基、取代或未取代的C2-C10的炔基、取代或未取代的C1-C10的烷氧基、取代或未取代的C6-C10的芳基、取代或未取代的C3-C10的杂芳基中的一种或者由其中的两种以上的基团键合而成的取代基;R 1、R 2、R 3、R 4至少一者选自磺酸根阴离子取代基或硼酸根阴离 子取代基;M选自元素周期表第IA族、第IIA族、第IIIA族、第IB族、第IIB族中的金属元素。
根据本发明的一实施方式,M选自钠、钾或铯中的一种。
根据本发明的一实施方式,R 4为磺酸根阴离子取代基或硼酸根阴离子取代基。
根据本发明的一实施方式,式1所示盐化合物包括式1a所示的磺酸盐化合物和式1b所示的硼酸盐化合物中的至少一种:
Figure PCTCN2021073828-appb-000002
其中,M为钠或钾;式1a中,R 1、R 2、R 3各自独立地选自氢、卤素和醛基中的一种;式1b中,R 1、R 2、R 3各自独立地选自氢和卤素中的一种。
根据本发明的一实施方式,式1所示盐化合物包括如下式1a-1至1a-12所示的磺酸盐化合物、式1b-1至1b-8所示的硼酸盐化合物中的至少一种:
Figure PCTCN2021073828-appb-000003
Figure PCTCN2021073828-appb-000004
Figure PCTCN2021073828-appb-000005
根据本发明的一实施方式,式1所示盐化合物在电解液中的质量分数为0.1%至2%。
根据本发明的一实施方式,上述电解液还包括多腈基化合物,所述多腈基化合物在电解液中的质量分数为0.1%至20%。
根据本发明的一实施方式,上述电解液还包括第一化合物,第一化合物包括碳酸亚乙烯酯、1,3-丙磺酸内酯、氟代碳酸乙烯酯、氟代碳酸丙烯酯、碳酸乙烯亚乙酯、1,4-丁磺酸内酯、三(三甲基)硅烷硼酸酯、硫酸乙烯酯、丙磺酸亚乙烯酯、硫酸丙烯酯、亚硫酸丙烯酯中的至少一种,第一化合物在电解液中的质量分数小于或等于10%。
本发明的另一方面,提供一种电化学装置,包括上述电解液。
本发明的再一方面,提供一种电子装置,其储能装置包括上述电化学装置。
本发明提供的电解液,含有式1所示的杂环磺酸盐化合物和/或杂环硼酸盐化合物,能够改善电解液性能,提高电化学装置在高电压下的循环稳定性和高温存储性等性能,在产业上具有重要的实用意义。
具体实施方式
本发明的实施例将会被详细的描示在下文中,以下实施例不应该被解释为对本发明的限制。
在具体实施方式及权利要求中,由术语“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何一个或其任何组合,例如,在一示例中,如果列出项目A和B,那么短语“A和B中的至少一种”意味着仅A,或仅B,或A和B;在另一示例中,如果列出项目A、B和C,那么短语“A、B和C中的至少一种”意味着仅A,或仅B,或仅C,或A和B(排除C),或A和C(排除B),或B和C(排除A),或A、B和C;项目A可包含单个或多个元件,项目B可包含单个或多个元件,项目C可包含单个或多个元件;由术语“和/或”或其他相似术语所连接的项目的列表可意味着所列项目的任何一个或其任何组合,例如,在一示例中,如果列出项目A和B,那么短语“A和/或B”意味着仅A,或仅B,或A和B。
如本文所用,术语“烷基”预期是具有1至20个碳原子的直链饱和烃结构,“烷基”还预期是具有3至20个碳原子的支链或环状烃结构,例如,烷基可为1至20个碳原子的烷基、1至10个碳原子的烷基、1至5个碳原子的烷基、5至20个碳原子的烷基、5至15个碳原子的烷基或5至10个碳原子的烷基等。当指定具有具体碳数的烷基时,预期涵盖具有该碳数的所有几何异构体,例如,“丁基”可以是正丁基、仲丁基、异丁基、叔丁基和环丁基或其中的任意两种及以上的混合;丙基可以是正丙基、异丙基和环丙基或其中的任意两种及以上的混合。烷基实例包括但不限于甲基、乙基、正丙基、异丙基、环丙基、正丁基、异丁基、仲丁基、叔丁基、环丁基、正戊基、异戊基、新戊基、环戊基、甲基环戊基、乙基环戊基、正己基、异己基、环己基、正庚基、辛基、环丙基、环丁基、降冰片基等。另外,烷基可以是任选地被取代的。
如本文所用,术语“环烷基”涵盖环状烷基。环烷基可为3至20个碳原子的环烷基、6至20个碳原子的环烷基、3至12个碳原子的环烷基、3至6个碳原子的环烷基等,例如,环烷基可为环丙基、环丁基、环戊基、环己基等。另外,环烷基可以是任选地被取代的。
1、电解液
本发明的电解液包括如式1所示盐化合物:
Figure PCTCN2021073828-appb-000006
其中,
X为S或者O;R 1、R 2、R 3、R 4各自独立地选自氢(-H)、卤素、硝基(-NO 2)、硫基(-SH)、磺酰基(-S(=O) 2)、醛基(-CHO)、取代或未取代的C1-C10的烷基、取代或未取代的C3-C10的环烷基、取代或未取代的C2-C10的烯基、取代或未取代的C2-C10的炔基、取代或未取代的C1-C10的烷氧基、取代或未取代的C6-C10的芳基、取代或未取代的C3-C10的杂芳基中的一种或者由其中的两种以上的基团键合而成的取代基;R 1、R 2、R 3、R 4至少一者选自磺酸根阴离子取代基或硼酸根阴离子取代基;M选自元素周期表第IA族、第IIA族、第IIIA族、第IB族、第IIB族中的金属元素。
本发明的电解液引入上述式1所示的盐化合物,可以配合电化学装置的化成等制备过程中的工序,在电化学装置的正负极形成均匀致密的界面膜,在高电压下阻止电解液在正极氧化分解,改善电化学装置在高电压下的循环性能;并且上述盐化合物中的金属阳离子(M n+)也会参与负极成膜,减少负极的极化,改善循环性能;同时,上述盐化合物形成的界面膜更加稳定,能够改善电化学装置的高温存储性能。由此,本发明的电解液能够兼顾提高电池的循环性能和高温存储性能等特性。
具体地,上述卤素可以是F、Cl、Br、I取代基,优选F取代基。
M n+为金属阳离子,M具体可以选自元素周期表第IA族、第IIA族、第IIIA族、第IB族、第IIB族中的金属元素,例如可以选自钠、钾、铯、镁、钙、铝、铜、锌中的一种,优选地,M选自钠、钾或铯中的一种,阴离子基团(即上述磺酸根阴离子取代基和硼酸根阴离子取代基)的个数根据金属阳离子的价态相应变化以遵循电荷守恒。
具体地,上述硼酸根阴离子取代基一般主要有非氟代硼酸根阴离子取代基
Figure PCTCN2021073828-appb-000007
和氟代硼酸根阴离子取代基,一般优选后者,进一步优选三 氟硼酸根阴离子取代基
Figure PCTCN2021073828-appb-000008
根据本发明的研究,磺酸根阴离子取代基
Figure PCTCN2021073828-appb-000009
或硼酸根阴离子取代基的取代位置对于电解液性能具有较大影响,一般优选R 4为上述磺酸根阴离子取代基或硼酸根阴离子取代基。
上述式1所述盐化合物可以是只含有磺酸根阴离子取代基这一阴离子基团的磺酸盐化合物,也可以是只含有硼酸根阴离子取代基这一阴离子基团的硼酸盐化合物,一般情况下,R 1、R 2、R 3、R 4中的一个为磺酸根阴离子取代基(或硼酸根阴离子取代基),其余各自独立地选自上述氢、卤素等取代基。当然,本发明不局限于此,上述式1所示盐化合物也可以是同时含有磺酸根阴离子取代基和硼酸根阴离子取代基的双酸根取代盐化合物,例如,可以是R 1、R 2、R 3、R 4的其中之一为磺酸根阴离子取代基,其中之另一为硼酸根阴离子取代基,其余各自独立地选自上述氢、卤素等其他取代基。由此,本发明的电解液包含式1所示盐化合物,该盐化合物可以是包括上述磺酸盐化合物、硼酸盐化合物和双酸根取代盐化合物中的至少一种,优选为包括R 4为磺酸根阴离子取代基的磺酸盐化合物和R 4为硼酸根阴离子取代基的硼酸盐化合物中的至少一种。
在本发明的一优选实施方式中,式1所示盐化合物具体可以包括式1a所示的磺酸盐化合物和式1b所示的硼酸盐化合物中的至少一种:
Figure PCTCN2021073828-appb-000010
其中,M为钠或钾(即M +为钠离子(Na +)或钾离子(K +));上述式1a中,R 1、R 2、R 3各自独立地选自氢、卤素和醛基中的一种,例如R 1为醛基,R 2、R 3各自独立地选自氢和卤素中的一种;上述式1b中,R 1、R 2、R 3各自独立地选自氢和卤素中的一种。
在一些实施例中,式1所示盐化合物包括如下式1a-1至1a-12所示的磺酸盐化合物、式1b-1至1b-8所示的硼酸盐化合物中的至少一种:
Figure PCTCN2021073828-appb-000011
Figure PCTCN2021073828-appb-000012
在一些实施例中,上述式1所示盐化合物在电解液中的质量分数为0.1%至3%,意即,基于所述电解液的总重量,式1所示盐化合物的重量百分比为0.1%至3%,优选0.1%至2%,例如可以为0.1%、0.3%、0.5%、1%、1.5%、2%,或者这些数值中任意两者组成的范围。
本发明中,上述电解液还包括锂盐和有机溶剂,锂盐在电解液中的浓度一般可以为0.5mol/L至2mol/L,例如可以是0.8mol/L、0.9mol/L、1mol/L、 1.1mol/L、1.2mol/L、1.4mol/L、1.6mol/L、1.8mol/L、2mol/L或者这些数值中任意两者组成的范围。
上述锂盐可以是本领域常规锂盐类电解质,具体可以是无机锂盐,在一些实施例中,锂盐包括但不限于LiClO 4、LiAsF 6、LiPF 6、LiBF 4、LiSbF 6、LiSO 3F、LiN(FSO 2) 2、LiCF 3SO 3、LiN(FSO 2)(CF 3SO 2)、LiN(CF 3SO 2) 2、LiN(C 2F 5SO 2) 2、环状1,3-六氟丙烷二磺酰亚胺锂、环状1,2-四氟乙烷二磺酰亚胺锂、LiN(CF 3SO 2)(C 4F 9SO 2)、LiC(CF 3SO 2) 3、LiPF 4(CF 3) 2、LiPF 4(C 2F 5) 2、LiPF 4(CF 3SO 2) 2、LiPF 4(C 2F 5SO 2) 2、LiBF 2(CF 3) 2、LiBF 2(C 2F 5) 2、LiBF 2(CF 3SO 2) 2、LiBF 2(C 2F 5SO 2) 2、(草酸根合)硼酸锂、二氟草酸根合硼酸锂、三(草酸根合)磷酸锂、二氟双(草酸根合)磷酸锂、四氟(草酸根合)磷酸锂中至少一种。
上述有机溶剂亦可以是本领域常规有机溶剂,在一些实施例中,该些有机溶剂包括但不限于碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸甲丙酯、γ-丁内酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丁酯、四氢呋喃、1,3-二氧环戊烷、二甲氧基甲烷、1,2-二甲氧基乙烷和四乙二醇二甲醚中的至少一种。
本发明中,上述电解液还可以包括多腈基化合物,多腈基化合物在电解液中的质量分数可以为0.1%至25%,根据本发明的研究,在电解液中加入多氰基化合物(腈类添加剂)能够进一步改善电化学装置的循环性能和存储性能,但多氰基化合物含量过高,会导致电解液的粘度增大,使得电化学装置的动力学性能变差,影响电化学装置的循环性能,综合考虑对电化学装置循环性能和高温存现性能的改善效果以及成本等因素,一般多腈基化合物在电解液中的质量分数优选为0.1%至20%,例如可以是0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%或者这些数值中任意两者组成的范围。
优选地,上述多腈基化合物中,腈基的数量为2至4;优选地,上述多腈基化合物包括多腈基烷烃化合物、多腈基环烷烃化合物、多腈基烯烃化合物、多腈基醚化合物。
例如,在一些优选实施例中,上述多腈基化合物具体可以包括如下式2-1 至式2-9所示化合物中的至少一种:
Figure PCTCN2021073828-appb-000013
本发明中,上述电解液还可以包括第一化合物,第一化合物包括碳酸亚乙烯酯(VC)、1,3-丙磺酸内酯、氟代碳酸乙烯酯(FEC)、氟代碳酸丙烯酯、碳酸乙烯亚乙酯、1,4-丁磺酸内酯、三(三甲基)硅烷硼酸酯、硫酸乙烯酯、丙磺酸亚乙烯酯、硫酸丙烯酯、亚硫酸丙烯酯中的至少一种。根据本发明的研究,第一化合物的加入能够进一步改善电化学装置的循环性能,主要是因为第一化合物负极成膜,能够保护循环过程中负极活性材料(如石墨)的结构稳定性,由此可提高循环性能,但其成膜产物在高温下不稳定,会在一定程度上影响电化学装置的高温存储性能,综合考虑循环性能和高温存储性能等因素,一般第一化合物在电解液中的质量分数为小于或等于10%,例如可以是0.1%、0.5%、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%或这些数值中的任意两者组成的范围。
2、电化学装置
本发明的电化学装置包括上述电解液,即可以是包括上述任一实施例或 实施方式的电解液,也可以是包括不脱离本发明主旨范围内的其他实施方式的电解液。
本发明的电化学装置可以是发生电化学反应的任何装置,尤其可以是具备具有能够吸留、放出金属离子的正极活性物质的正极以及具有能够吸留、放出金属离子的负极活性物质的负极的电化学装置,其具体实例可以是包括所有种类的一次电池、二次电池、燃料电池、太阳能电池或电容器,特别地,该电化学装置可以是锂二次电池,具体可以包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池等。
具体地,上述电化学装置还包括正极、负极和位于正极与负极之间的隔离膜。
[正极]
本发明的电化学装置使用的正极可以是采用本领域公知材料和制备方法制得的常规结构的正极片,在一些实施例中,可以采用美国专利申请US9812739B中记载的正极,其以全文引用的方式并入本发明中。
具体地,在一些实施例中,正极包括正极集流体和位于该正极集流体上的正极活性材料层,该正极活性材料层中的正极活性材料包括能够可逆地嵌入和脱嵌锂离子的至少一种锂化插层化合物,例如可以包括含锂复合氧化物,该含锂复合氧化物中还含有从钴、锰和镍中选择的至少一种元素,即该含锂复合氧化物可以为锂过渡金属系化合物。
举例来说,正极活性材料可以选自钴酸锂(LiCoO 2)(简写:LCO)、锂镍钴锰(NCM523:Ni,Co,Mn元素的化学计量比为5:2:3)三元材料、磷酸亚铁锂(LiFePO 4)、锰酸锂(LiMn 2O 4)的掺杂或未掺杂材料中的至少一种。
在一些实施例中,正极活性材料包括锂钴氧化物(如上述钴酸锂等),该锂钴氧化物包括M’元素,M’元素选自Mg、Ti、Al、Zr、Sn、Zn、Ca中的一种或几种。其中,基于正极活性材料的总重量,M’元素的重量百分比可以为0.005%至1%,例如0.005%、0.007%、0.009%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%或这些数值中任意两者组成的范围。上述正极活性材料例如可以包括Ti含量为0.05%的锂钴氧化物(记为Ti 0.05-LiCoO 2)、Ti含量为1wt%的锂钴氧化物(记为 Ti 1-LiCoO 2)等。
在一些实施例中,上述正极活性材料可以为团聚体,其一次粒径可以为200nm至3000nm,例如为200nm、300nm、500nm、600nm、800nm、1000nm、1500nm、2000nm、2200nm、2500nm、3000nm或这些数值中任意两者组成的范围;正极活性材料的二次粒径可以为5μm至15μm,例如为5μm、6μm、8μm、10μm、12μm、14μm、15μm或这些数值中任意两者组成的范围。
进一步地,上述正极活性材料的比表面积可以为0.9m 2/g至1.5m 2/g,例如为0.9m 2/g、1.2m 2/g、1.3m 2/g、1.4m 2/g、1.5m 2/g或这些数值中任意两者组成的范围。
在一些实施例中,正极活性材料是颗粒状,在颗粒表面具有涂层,或者可以是包含不具有涂层的正极活性材料与具有涂层的另一正极活性材料的混合物,该涂层可以包括从涂覆元素的氧化物、涂覆元素的氢氧化物、涂覆元素的羟基氧化物、涂覆元素的碳酸氧盐和涂覆元素的羟基碳酸盐中选择的至少一种化合物,该化合物可以是非晶的或结晶的。具体地,上述涂覆元素可以包括Mg、Co、K、Na、Ca、Si、Ti、V、Sn、Ge、Ga、B、As、Zr、F中的至少一种。本发明可以通过任何方法来施加上述涂层,只要不对正极活性材料的性能产生不利影响即可,例如,该方法可以包括喷涂、浸渍等本领域公知的任何涂覆方法。
在一些实施例中,正极活性材料层还包括粘合剂(或称粘结剂),并且可选地包括导电材料,其中,粘合剂可以提高正极活性材料颗粒彼此间的结合,并且还提高正极活性材料与集流体的结合。举例来说,上述粘合剂包括但不限于聚偏氟乙烯(PVDF)、聚乙烯醇、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶(SBR)、丙烯酸(酯)化的丁苯橡胶、环氧树脂、尼龙等中的至少一种;上述导电材料包括但不限于基于碳的材料、基于金属的材料、导电聚合物中的至少一种,其中,基于碳的材料可以选自天然石墨、人造石墨、碳黑(SP)、乙炔黑、科琴黑、碳纤维等中的至少一种;基于金属的材料可以选自铜、镍、铝、银等金属的金属粉或者金属纤维中的至少一种;导电聚合物可以为聚亚苯基衍生物等。
上述正极集流体可以是铝箔等本领域常规正极集流体,本发明对此不做特别限制。
本发明的正极可以通过本领域公知的制备方法制得,在一些实施例中,可以采用包括锂过渡金属系化合物粉体和粘结剂等原料在正极集流体上形成正极活性材料层制得正极,例如,可以将正极活性材料(如上述锂过渡金属系化合物粉体)和粘结剂等原料进行干式混合而制成片状,将得到的片压接于正极集流体上制得正极,或者,可以使上述原料溶解或分散于液体介质(溶剂)中而制成浆料状,将形成的浆料涂布在正极集流体上并进行干燥,制得正极;其中,还可以根据需要使用导电材料和增稠剂等材料。
例如,在一具体实施例中,可以通过如下方法制得正极:将活性材料、导电材料和粘合剂置于溶剂中混合,形成浆料(或称活性材料组合物),并将该浆料涂覆在正极集流体上,然后经干燥、辊压等处理,制得正极(或称正极片);其中,上述溶剂可以包括N-甲基吡咯烷酮(NMP)等本领域常规溶剂。
[负极]
本发明的电化学装置中使用的负极可以是采用本领域公知的负极材料、和制造方法制得的常规结构的负极片。在一些实施例中,采用美国专利申请US9812739B中记载的负极,其以全文引用的方式并入本发明中。
具体地,在一些实施例中,负极包括负极集流体和位于该负极集流体上的负极活性材料层,该负极活性材料层中的负极活性材料包括可逆地嵌入/脱嵌锂离子的材料,该可逆地嵌入/脱嵌锂离子的材料包括碳材料,该碳材料可以是在锂离子可充电电池中常用的任何基于碳的负极活性材料,可以包括但不限于结晶碳、非晶碳或它们的混合物,其中,结晶碳可以是无定形的、片形的、小片形的、球形的或纤维状的天然石墨或人造石墨,非晶碳可以是软碳、硬碳、中间相沥青碳化物、煅烧焦等。当然,本发明不以此为限,也可以采用其他负极活性材料,例如,在一些实施例中,负极活性材料可以包括但不限于锂金属、天然石墨、人造石墨、中间相微碳球(MCMB)、硬碳、软碳、硅、硅-碳复合物(或称硅碳化合物)、合金材料、Sn、SnO、SnO 2、尖晶石结构的锂化TiO 2-Li 4Ti 5O 12中的至少一种,其中,锂金属具体可以包括结构化的锂金属和未结构化的锂金属,合金材料可以包括Li-Sn合金、Li-Sn-O 合金、Li-Al合金中的至少一种。
其中,当负极活性材料包括硅碳化合物时,基于负极活性材料总重量,以质量计,硅:碳=1:10至10:1,硅碳化合物的中值粒径Dv50为0.1μm至100μm。当负极活性材料包括合金材料时,可使用蒸镀法、溅射法、镀敷法等方法在负极集流体上形成负极活性物质层。当负极活性材料包括锂金属时,例如用具有球形绞状的导电骨架和分散在导电骨架中的金属颗粒形成负极活性材料层,该球形绞状的导电骨架可具有5%至85%的孔隙率,在一些实施例中,锂金属负极活性材料层上还可设置保护层。
在一些实施例中,负极活性材料层还可以包括粘合剂,并且可选地包括导电材料,其中,粘合剂可以提高负极活性材料颗粒彼此间的结合和负极活性材料与负极集流体的结合。举例来说,粘合剂可以包括但不限于聚乙烯醇、羧甲基纤维素、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂、尼龙等中的至少一种,导电材料可以包括但不限于基于碳的材料、基于金属的材料、导电聚合物中的至少一种,其中,基于碳的材料可以选自天然石墨、人造石墨、碳黑、乙炔黑、科琴黑、碳纤维中的至少一种,基于金属的材料可以选自金属粉、金属纤维、铜、镍、铝、银中的至少一种,导电聚合物可以为聚亚苯基衍生物等。
此外,上述负极活性材料层中,还可以根据需要添加增稠剂(如羧甲基纤维素钠(CMC))等材料。
在一些实施例中,上述负极集流体可以包括但不限于铜箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜、覆有导电金属的聚合物基底中的至少一种。
本发明的负极可以通过本领域公知的制备方法制得,例如,可以通过如下方法获得:将负极活性材料、导电材料和粘合剂混合,制成负极浆料,并将该负极浆料涂覆在负极集流体上,经干燥、辊压等处理后,制得负极;其中,上述溶剂可以包括水等本领域常规溶剂。
[隔离膜]
本发明的电化学装置在正极与负极之间设有隔离膜以防止短路,所使用的隔离膜可为任何现有隔离膜,对其材料和形状没有特别限制,在一些实施 例中,隔离膜可以包括由对本发明的电解液稳定的材料形成的聚合物隔离膜或无机物隔离膜等。
在一些实施例中,隔离膜可包括基材层和表面处理层,基材层为具有多孔结构的无纺布、单层膜和复合膜中的至少一种,基材层的材料可以选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚酰亚胺中的至少一种。在一些具体实施例中,可选用聚丙烯多孔膜、聚乙烯多孔膜、聚丙烯无纺布、聚乙烯无纺布、或聚丙烯-聚乙烯-聚丙烯多孔复合膜(PP/PE/PP复合膜)中的至少一种作为上述基材层,或者也可直接作为隔离膜。
基材层的至少一个表面上设置有表面处理层,表面处理层可以是聚合物层或无机物层,也可以是聚合物与无机物混合所形成的混合层,基材层的厚度与表面处理层的厚度比可以为1:1至20:1,基材层的厚度可以为4μm至14μm,表面处理层的厚度可以为1μm至5μm。
在一些实施例中,无机物层包括无机颗粒和粘结剂,无机颗粒可以选自氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙和硫酸钡中的至少一,粘结剂可以选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯和聚六氟丙烯中的至少一种;聚合物层中的聚合物材料可以包括聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚偏氟乙烯或聚(偏氟乙烯-六氟丙烯)中的至少一种。
3、电子装置
本发明提供的电子装置,其储能装置包括上述电化学装置,即可以是上述任一实施例或实施方式的电化学装置,也可以是不脱离本发明主旨范围内的其他实施方式的电化学装置。
以下,举出实施例和对比例对本发明进一步具体地进行说明,但只要不脱离其主旨,则本发明并不限定于这些实施例。
实施例
(1)电解液的制备
在含水量<10ppm的氩气气氛手套箱中,将EC、PC、DEC按照重量比20:20:60混合均匀,得到混合溶剂;将锂盐LiPF 6溶解于上述混合溶剂中,得到基础电解液;在基础电解液中加入添加剂,得到电解液;其中,添加剂是式1所示盐化合物、多氰基化合物和第一化合物中的一种或几种,各实施例及对比例中的添加剂种类及含量见表1、表2和表3,所述的含量均是基于电解液的总重量计算得到;
(2)电池的制备
采用隔离膜间隔正极和负极,经卷绕形成裸电芯,将裸电芯置于外包装中并注入上述电解液,再经化成、陈化等工序,制成锂离子电池;
其中,正极包括正极集流体(铝箔)和位于正极集流体上的正极活性物质层,正极活性物质层的原料由96.7wt%的正极活性材料、1.7wt%PVDF、1.6wt%SP组成;负极包括负极集流体(铜箔)和位于负极集流体上的负极活性材料层,负极活性材料层的原料由98wt%人造石墨、1.0wt%SBR、1.0wt%CMC组成;隔离膜为PP/PE/PP复合膜。
按照上述制备过程,获得实施例1至实施例52和对比例1的电池,其中:
(1)实施例1至实施例17的电解液由式1所示盐化合物(添加剂)、锂盐LiPF 6、有机溶剂组成,电解液中锂盐LiPF 6的浓度为1mol/L,有机溶剂由EC、PC、DEC组成,EC、PC、DEC的质量比为20:20:60,电解液中式1所示化合物种类及含量见表1,除表1所示的式1所示化合物种类及含量的区别外,实施例1至实施例17的其余条件均相同;实施例1至实施例17中的正极活性材料均为LiCoO 2
(2)实施例18至实施例23电解液组分还含有式2-2所示化合物,除此之外的条件均与实施例2相同;实施例24至实施例29电解液组分还含有式2-2所示化合物,除此之外的条件均与实施例10相同;实施例30至实施例35电解液组分还含有式2-2所示化合物,除此之外的条件均与实施例17相同;实施例18至实施例35的电解液中式2-2的质量含量见表2;
(3)实施例36至实施例40的电解液中还含有FEC,除此之外的条件均与实施例17相同;实施例36至实施例40的电解液中FEC的质量含量 见表3;
(4)实施例41至实施例49的电解液中的锂盐种类浓度与实施例17不同,除此之外的条件均与实施例17相同;实施例41至实施例49的电解液中的锂盐种类浓度见表4;
(5)实施例50至实施例52中的正极活性材料与实施例17不同,除此之外的条件均与实施例17相同;实施例50至实施例52中的正极活性材料见表5。
表1中的式1a-1、式1a-10、、式1b-1和式1b-4以及表2中的式2-2化合物结构式如下所示:
Figure PCTCN2021073828-appb-000014
按照如下过程测定各实施例及对比例电池的循环性能:在25℃环境温度下,对各实施例和对比例分别进行如下同一充电流程:以3C(软包电池容量为2000mAh)的倍率充电到4.6V,在4.6V恒压至电流为0.05C;电池满充后静置5分钟,再1C放电至3.0V,如此循环100圈。测得各实施例及对比例的电池在循环100圈后的容量保持率见表1至表5。
按照如下过程测定各实施例及对比例电池的高温存储性能:在25℃下,将锂离子电池静置30分钟,然后以0.5C倍率恒流充电至4.45V,再在4.45V下恒压充电至0.05C,静置5分钟,然后在80℃下储存7h天后,测量电池的 厚度,通过下式计算电池厚度膨胀率:厚度膨胀率=[(存储后厚度-存储前厚度)/存储前厚度]×100%。测得各实施例及对比例的电池在80℃、7h高温存储后的厚度膨胀率见表1至表5。
表1
Figure PCTCN2021073828-appb-000015
注:“/”表示未添加,下同。
表1中,通过对比例1可以看出,在4.6V高电压下LiCoO 2的循环性能以及高温存储性能较差,相对于对比例1,实施例1至实施例17兼具优异的循环稳定性和高温存储性能;其中,通过实施例1至实施例3和实施例5至实施例7、以及实施例9至实施例11和实施例13至实施例15可以看到,随着式1a-1/式1a-10/式1b-1/式1b-4的添加量的增大,由于加强了正极保护,同时其中的阳离子参与负极成膜减小了电极极化,因此对电池循环性能及高温存储性能的改善效果也进一步增强,实施例4、8、12、16表明,式1a-1/式1a-10/式1b-1/式1b-4的添加量进一步增加,电池的容量保持率呈降低趋势,而厚度膨胀率呈增大趋势,表明式1所示化合物的添加量过多会影响电池的循环性能和存储性能,这是由于上述添加剂在电解液中的溶解度有限,超过2%wt会在电解液中析出,并影响电池的循环性能和存储性能。
表2
Figure PCTCN2021073828-appb-000016
表2中,通过对比实施例2与实施例18至实施例22,实施例10与实施例24至实施例28,实施例17与实施例30至实施例34,在电解液中加入一定量的腈类添加剂(式2-2)可以改善电池的循环性能与存储性能,这是由于腈类添加剂能够通过化学吸附稳定LiCoO 2中的晶格钴,稳定高电压下LiCoO 2的结构,从而改善电池的循环与存储性能;通过对比实施例2与实施例23,实施例10与实施例28,实施例17与实施例35,随着上述腈类添加剂含量的增加,电池的容量保持率呈现先增大后降低的趋势,表明腈类添加剂的加入能够进一步改善电池的循环性能和存储性能,原因是由于式1所示盐化合物在阴极成膜能够组织电解液的进一步分解,腈类添加剂能够与高价钴形成化学吸附,两者协同进一步稳定高电压下钴酸锂的结构,减少电解液的分解,进而能够共同改善其在高电压下的循环稳定性,但腈类添加剂的过量添加会导致电解液的粘度增大,动力学变差,进而影响电池的循环性能。
表3
Figure PCTCN2021073828-appb-000017
表3中,通过对比实施例17与实施例36至实施例39,在电解液中加入一定量的FEC能够进一步改善电池的循环性能,主要是因为式1所示盐化合物主要在化成过程中负极成膜,FEC化成后能够在循环过程中持续负极成膜,两者协同能够保护循环过程中的石墨的结构稳定性,然而其成膜产物在高温下不稳定,会在一定程度下影响高温存储性能,所以需要适量添加,通过对比实施例17与实施例40,如果加入太多的FEC,一方面会影响电解液动力学,另一方面也会影响循环性能。
表4
Figure PCTCN2021073828-appb-000018
表4中,通过对比实施例17与实施例41至实施例49,改变电解液中锂盐浓度与种类,能够影响电池的循环性能与存储性能,需要选取合适的锂盐,否则会影响电池的循环性能与存储性能,LiFSI(LiN(FSO 2) 2)分子的阴离子在电解液中相对于LiPF 6更容易解离,更加容易正负极成膜,能够与式1所示盐化合物协同保护正负极界面,改善循环性能。同时需要选取合适的锂盐浓度,太高锂盐浓度会恶化电解液动力学,例如,实施例44、实施例49的锂盐浓度过高,电池的循环性能与存储性能均较差。
表5
Figure PCTCN2021073828-appb-000019
表5中,通过实施例17、实施例50至实施例52表明,正极活性材料能够影响电池的循环性能和存储性能,通过对比实施例17与实施例50、51,Ti掺杂LiCoO 2的Co位,能够稳定LiCoO 2高电压下的结构稳定性,式1所示盐化合物正极界面成膜,两者协同能够改善正极界面的稳定性,进而改善电池的循环性能;对比实施例17和实施例52,改变正极活性材料为NCM(523),由于NCM(523)中Co能够稳定结构,高价Ni主要发挥容量贡献,然而高价Ni具有较强的氧化性,式1所示盐化合物正极成膜,能否减少电解液与高价Ni的接触,减少副反应,进而改善高电压的循环稳定性。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (10)

  1. 一种电解液,其特征在于,包括如式1所示盐化合物:
    Figure PCTCN2021073828-appb-100001
    其中,
    X为S或O;
    R 1、R 2、R 3、R 4各自独立地选自氢、卤素、硝基、硫基、磺酰基、醛基、取代或未取代的C1-C10的烷基、取代或未取代的C3-C10的环烷基、取代或未取代的C2-C10的烯基、取代或未取代的C2-C10的炔基、取代或未取代的C1-C10的烷氧基、取代或未取代的C6-C10的芳基、取代或未取代的C3-C10的杂芳基中的一种或者由其中的两种以上的基团键合而成的取代基;
    R 1、R 2、R 3、R 4至少一者选自磺酸根阴离子取代基或硼酸根阴离子取代基;
    M选自元素周期表第IA族、第IIA族、第IIIA族、第IB族、第IIB族中的金属元素。
  2. 根据权利要求1所述的电解液,其特征在于,所述M选自钠、钾或铯中的一种。
  3. 根据权利要求1所述的电解液,其特征在于,R 4为磺酸根阴离子取代基或硼酸根阴离子取代基。
  4. 根据权利要求1或3所述的电解液,其特征在于,式1所示盐化合物包括式1a所示的磺酸盐化合物和式1b所示的硼酸盐化合物中的至少一种:
    Figure PCTCN2021073828-appb-100002
    其中,M为钠或钾;
    式1a中,R 1、R 2、R 3各自独立地选自氢、卤素和醛基中的一种;
    式1b中,R 1、R 2、R 3各自独立地选自氢和卤素中的一种。
  5. 根据权利要求4所述的电解液,其特征在于,式1所示盐化合物包括如下式1a-1至1a-12所示的磺酸盐化合物、式1b-1至1b-8所示的硼酸盐化合物中的至少一种:
    Figure PCTCN2021073828-appb-100003
    Figure PCTCN2021073828-appb-100004
  6. 根据权利要求1所述的电解液,其特征在于,所述式1所示盐化合物在电解液中的质量分数为0.1%至2%。
  7. 根据权利要求1所述的电解液,其特征在于,还包括多腈基化合物,所述多腈基化合物在电解液中的质量分数为0.1%至20%。
  8. 根据权利要求1所述的电解液,其特征在于,还包括第一化合物,所 述第一化合物包括碳酸亚乙烯酯、1,3-丙磺酸内酯、氟代碳酸乙烯酯、氟代碳酸丙烯酯、碳酸乙烯亚乙酯、1,4-丁磺酸内酯、三(三甲基)硅烷硼酸酯、硫酸乙烯酯、丙磺酸亚乙烯酯、硫酸丙烯酯、亚硫酸丙烯酯中的至少一种;所述第一化合物在电解液中的质量分数小于或等于10%。
  9. 一种电化学装置,其特征在于,包括权利要求1至8任一项所述的电解液。
  10. 一种电子装置,其特征在于,其储能装置包括权利要求9所述的电化学装置。
PCT/CN2021/073828 2021-01-26 2021-01-26 电解液及电化学装置和电子装置 WO2022160099A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180004971.1A CN114258606A (zh) 2021-01-26 2021-01-26 电解液及电化学装置和电子装置
PCT/CN2021/073828 WO2022160099A1 (zh) 2021-01-26 2021-01-26 电解液及电化学装置和电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073828 WO2022160099A1 (zh) 2021-01-26 2021-01-26 电解液及电化学装置和电子装置

Publications (1)

Publication Number Publication Date
WO2022160099A1 true WO2022160099A1 (zh) 2022-08-04

Family

ID=80796666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073828 WO2022160099A1 (zh) 2021-01-26 2021-01-26 电解液及电化学装置和电子装置

Country Status (2)

Country Link
CN (1) CN114258606A (zh)
WO (1) WO2022160099A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042387A (ja) * 2005-08-02 2007-02-15 Sony Corp 電解液,電極および電池
JP2009245829A (ja) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd 非水電解質及び該非水電解質を含む非水電解質二次電池
JP2010212153A (ja) * 2009-03-11 2010-09-24 Sanyo Electric Co Ltd 非水電解質及び該非水電解質を含む非水電解質二次電池
JP2014194869A (ja) * 2013-03-28 2014-10-09 Sumitomo Seika Chem Co Ltd 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
CN105789701A (zh) * 2016-03-31 2016-07-20 宁德时代新能源科技股份有限公司 电解液以及包括该电解液的锂离子电池
CN105845982A (zh) * 2016-03-31 2016-08-10 宁德时代新能源科技股份有限公司 电解液以及包括该电解液的锂离子电池
CN108288728A (zh) * 2018-01-23 2018-07-17 广东卡达克汽车科技有限公司 一种适配硅碳材料的锂离子电池电解液及其应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072768A (ja) * 2013-10-02 2015-04-16 Tdk株式会社 非水電解液、及びリチウムイオン二次電池
JP2016001567A (ja) * 2014-06-12 2016-01-07 日本電気株式会社 電解液およびそれを用いた二次電池
CN105742709A (zh) * 2016-04-20 2016-07-06 东莞市杉杉电池材料有限公司 一种锂离子电池电解液及使用该电解液的锂离子电池
CN109256585B (zh) * 2017-07-14 2021-01-08 宁德时代新能源科技股份有限公司 一种电解液及电化学装置
US11569530B2 (en) * 2019-06-05 2023-01-31 Enevate Corporation Silicon-based energy storage devices with functional thiophene compounds or derivatives of thiophene containing electrolyte additives
CN111430793B (zh) * 2020-03-31 2021-12-10 宁德新能源科技有限公司 电解液及使用其的电化学装置和电子装置
CN111574545B (zh) * 2020-05-18 2022-07-08 天目湖先进储能技术研究院有限公司 一种硼酸酯化合物及其制备方法和含其的电解液

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042387A (ja) * 2005-08-02 2007-02-15 Sony Corp 電解液,電極および電池
JP2009245829A (ja) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd 非水電解質及び該非水電解質を含む非水電解質二次電池
JP2010212153A (ja) * 2009-03-11 2010-09-24 Sanyo Electric Co Ltd 非水電解質及び該非水電解質を含む非水電解質二次電池
JP2014194869A (ja) * 2013-03-28 2014-10-09 Sumitomo Seika Chem Co Ltd 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
CN105789701A (zh) * 2016-03-31 2016-07-20 宁德时代新能源科技股份有限公司 电解液以及包括该电解液的锂离子电池
CN105845982A (zh) * 2016-03-31 2016-08-10 宁德时代新能源科技股份有限公司 电解液以及包括该电解液的锂离子电池
CN108288728A (zh) * 2018-01-23 2018-07-17 广东卡达克汽车科技有限公司 一种适配硅碳材料的锂离子电池电解液及其应用

Also Published As

Publication number Publication date
CN114258606A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2021185014A1 (zh) 负极活性材料及使用其的电化学装置和电子装置
CN109860703A (zh) 一种电解液及电化学装置
WO2022000226A1 (zh) 电化学装置和电子装置
JP7311497B2 (ja) リチウムイオン電池および電子デバイス
WO2022174547A1 (zh) 电化学装置和包含该电化学装置的电子装置
KR102612376B1 (ko) 전해액, 전기화학장치 및 전자장치
CN112335090B (zh) 电解液和使用其的电化学装置
CN111628219A (zh) 电解液和包含电解液的电化学装置及电子装置
WO2021223181A1 (zh) 一种电解液及电化学装置
WO2021189255A1 (zh) 一种电解液及电化学装置
CN112119530B (zh) 电解液以及使用其的电化学装置和电子装置
CN109830749B (zh) 一种电解液及电化学装置
WO2021128206A1 (zh) 一种电解液及电化学装置
CN110518286A (zh) 电解液及包括电解液的电化学装置及电子装置
WO2022000271A1 (zh) 电解液和包含其的电化学装置和电子装置
CN112103561B (zh) 一种电解液及电化学装置
CN111477964B (zh) 一种电解液及电化学装置
WO2021128203A1 (zh) 一种电解液及电化学装置
WO2023078059A1 (zh) 电解液以及使用其的电化学装置和电子装置
WO2022087830A1 (zh) 电解液及包括其的电化学装置和电子装置
CN112055910B (zh) 一种电解液及电化学装置
WO2023122956A1 (zh) 一种电解液、包含该电解液的电化学装置和电子装置
WO2022198402A1 (zh) 电解液、电化学装置和电子装置
WO2022141215A1 (zh) 电解液、包含该电解液的电化学装置及电子装置
WO2022160099A1 (zh) 电解液及电化学装置和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921719

Country of ref document: EP

Kind code of ref document: A1