WO2022160075A1 - 一种中高温陶瓷的器柄与器体的粘接工艺 - Google Patents

一种中高温陶瓷的器柄与器体的粘接工艺 Download PDF

Info

Publication number
WO2022160075A1
WO2022160075A1 PCT/CN2021/000194 CN2021000194W WO2022160075A1 WO 2022160075 A1 WO2022160075 A1 WO 2022160075A1 CN 2021000194 W CN2021000194 W CN 2021000194W WO 2022160075 A1 WO2022160075 A1 WO 2022160075A1
Authority
WO
WIPO (PCT)
Prior art keywords
handle
mud
asbestos fibers
ceramic
bonding process
Prior art date
Application number
PCT/CN2021/000194
Other languages
English (en)
French (fr)
Inventor
许名传
林伟河
Original Assignee
广东顺祥陶瓷有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东顺祥陶瓷有限公司 filed Critical 广东顺祥陶瓷有限公司
Publication of WO2022160075A1 publication Critical patent/WO2022160075A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/24Manufacture of porcelain or white ware
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/36Reinforced clay-wares
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/82Asbestos; Glass; Fused silica

Definitions

  • the invention relates to the technical field of ceramic firing, in particular to a bonding process of a handle and a body of a medium-high temperature ceramic.
  • ceramics In addition to the body itself, ceramics usually have handles of various shapes, which are generally arranged on the mouth or neck of the body to play a decorative or functional role (such as the handle of a ceramic cup, a ceramic teapot, etc.). spout, etc.).
  • the bonding between the body and the handle should have the characteristics of uniform sintering stress, mutual penetration between the handle and the body, smooth, flat, and no cracks at the joint.
  • the bonding of the ceramic body and the handle is to use the same composition of mud to directly bond the handle to the body, and directly enter the kiln for firing.
  • the body and handle have been formed into a green body and dried, and the water content is low, while the mud used for bonding has not been dried and still maintains the original high water content.
  • the firing temperature of the kiln is basically 1000-1300 °C or even above 1300 °C.
  • the joint is relatively weak, and it is easy to collapse or break under the action of internal stress during cooling and cooling. Therefore, cracks and uneven agglomerations are easily formed at the connection, which makes the bond between the handle and the body weak. It is easy to break and fall off from the body.
  • the problem to be solved by the present invention is to provide a bonding process between the handle and the body of the medium and high temperature ceramics, which can improve the bonding strength between the handle and the body of the medium and high temperature ceramics, so that the handle
  • the connection with the body is smoother, smoother and free from cracks.
  • a bonding process of a medium-high temperature ceramic ware handle and a ware body comprising the following steps:
  • Step S1 apply joint mud to the corresponding positions on the dried handle blank and the vessel body blank respectively, and bond the handle blank to the vessel body blank to form a complete ceramic blank;
  • Step S2 sending the ceramic body formed in step S1 into the kiln for firing, so that the handle and the body are completely bonded;
  • the joint mud in the step S1 is prepared by the following steps:
  • Step (1) grinding the asbestos fibers for 16 to 18 hours, until the mesh number of the asbestos fibers is 300 to 350 meshes;
  • Step (2) take 5-10% of asbestos fibers ground in step (1), 0.1-0.5% of thickener, and 89.5-94.9% of mud material by weight and evenly mix and grind to form joint mud, wherein, the mud The water content is 35 to 45%.
  • the mud used in the above joint mud is the same as the mud used in the ceramic body, so that the technological performance of the joint mud is basically the same as that of the ceramic body.
  • the handle blank is bonded to the vessel body blank generally by dry bonding, wherein the interface between the vessel body and the handle is gentle in shape, and the action is fast, the position is accurate, and the force is appropriate during bonding.
  • the firing of the high-temperature ceramics in the above-mentioned step S2 adopts a general conventional technique, and the firing can be carried out in a firing environment of 1000-1350° C. with reference to the firing method of the existing medium-high temperature ceramics.
  • the firing time varies according to the different mud materials, and the general firing time is 2 to 6 hours.
  • the asbestos fiber itself is composed of fiber bundles, and the fiber bundles are composed of slender fibers that can be separated from each other, it has good flexibility and strength.
  • the asbestos fibers are ground for a long time of 16-18 hours until the mesh number of the asbestos fibers is 300-350 meshes, so that the asbestos fibers can be fully mixed with the mud material.
  • the ceramic blank In the firing environment of medium and high temperature ceramics (the firing temperature is usually 1000-1350°C), the ceramic blank is in a semi-molten state, while the asbestos fiber is in a molten state, and the asbestos fiber penetrates into the handle and body from the joint. When the ceramic is cooled out of the kiln, there are asbestos fibers at the connection between the handle and the body and on the adjacent handle and body.
  • it can reduce the drying shrinkage rate of the joint mud and prevent the joint mud from drying and cracking.
  • it can form a bridge with a structure similar to reinforced concrete, so that the handle and the body can be bonded more firmly, and the bending and tensile strength of the connection between the handle and the body can be improved. Cracks appear at the junction between the handle and the body.
  • a thickener is also added to the joint mud. After the asbestos fibers are evenly mixed with the mud, the thickener can increase the viscosity of the asbestos fibers in the mud, which is beneficial to make the asbestos fibers and the mud tightly combined and integrated. Improve the adhesiveness of the joint mud, so that the bonding between the handle and the body is more stable.
  • the thickener is cellulose ether.
  • Cellulose ether is one of the water-soluble polymers commonly used in industry, and its thickening is mainly achieved by hydration swelling.
  • Using cellulose ether as a thickener can absorb the moisture in the mud during the mixing process with the mud, improve the permeability of asbestos fibers, and ensure the viscosity of the joint mud.
  • the cellulose ether is at least one of carboxymethyl cellulose and its inorganic salts.
  • Carboxymethyl cellulose (CMC) has good hygroscopicity. Generally, when the water content exceeds 20%, the tendency of carboxymethyl cellulose particles to adhere to each other increases, the viscosity is more obvious, and the thickening performance is higher.
  • the cellulose ether is at least one of methyl cellulose and its mixed ether.
  • methyl cellulose MC
  • Mixed ethers of the aforementioned methyl cellulose include, but are not limited to, ethyl methyl cellulose (EMC), hydroxyethyl methyl cellulose (HEMC), hydroxypropyl methyl cellulose (HPMC), hydroxybutyl methyl cellulose ( HBMC), carboxymethyl methyl cellulose (CMMC), etc.
  • the maximum firing temperature in the step S2 is greater than 1300°C.
  • the firing temperature is higher than 1300°C, the shank blank, the ware body blank, and the porcelain clay in the joint mud are all in a semi-melted state, and the asbestos fibers in the joint mud penetrate into the shank blank and the utensil body blank.
  • a bridge with a structure similar to reinforced concrete is formed, and the bonding between the handle and the body is stronger after the ceramic is fired and cooled.
  • the present invention has the following advantages:
  • the bonding process between the handle and the body of the medium and high temperature ceramics of the present invention adds asbestos fibers and thickeners to the joint mud.
  • the ceramic blanks Under the firing environment of the medium and high temperature ceramics, the ceramic blanks are in a semi-melted state, while the asbestos fibers are in a molten state. state, asbestos fibers penetrated into the handle and body respectively from the joint.
  • the ceramics When the ceramics are cooled out of the kiln, there are asbestos fibers at the connection between the handle and the body and on the adjacent handle and body. , form a bridge with a structure similar to reinforced concrete, so that the handle and the body can be bonded more firmly, improve the bending and tensile strength of the connection between the handle and the body, and avoid the handle and the body.
  • the thickener can increase the viscosity of the asbestos fibers in the mud, so that the asbestos fibers and the mud are closely combined and integrated. , so that the bond between the handle and the body is more stable.
  • a bonding process of a medium-high temperature ceramic ware handle and a ware body comprising the following steps:
  • Step S1 grinding the asbestos fibers for 16 hours to a mesh number of 300 asbestos fibers
  • Step S2 Take 8% of the asbestos fibers ground in step S1, 0.5% thickener, and 91.5% mud material by weight and evenly mix and grind to form joint mud, wherein the mud material has a water content of 40%.
  • Step S3 apply joint mud on the corresponding positions of the dried handle blank and the vessel body blank respectively, and bond the handle blank to the vessel body blank to form a complete ceramic blank;
  • Step S4 The ceramic body formed in Step S3 is sent to the kiln for firing, and the maximum firing temperature is 1320°C, so that the handle and the body are completely bonded.
  • the thickener is at least one of carboxymethyl cellulose and its inorganic salt, or at least one of methyl cellulose and its mixed ether.
  • the firing of the high-temperature ceramics in the above-mentioned step S4 adopts general conventional techniques, and can be fired in a firing environment of 1000-1350° C. with reference to the existing firing methods of medium-high temperature ceramics; the firing time varies according to the mud material. The difference, the general firing time is 2 to 6 hours.
  • step S1 the asbestos fibers are ground for 18 hours until the mesh number of the asbestos fibers is 320 meshes.
  • step S1 the asbestos fibers are ground for 18 hours until the mesh number of the asbestos fibers is 350 meshes.
  • the difference between the second embodiment and the third embodiment is only that the grinding mesh number of the asbestos fiber is different.
  • the larger the grinding mesh number of the asbestos fiber the higher the grinding technology and equipment requirements.
  • the grinding mesh of asbestos fiber can be 320 mesh.
  • step S4 the maximum firing temperature is 1250°C.
  • Example 2 is only the difference in the maximum firing temperature.
  • the shank blank, the vessel body blank, and the porcelain clay in the joint mud were all in a semi-melted state, and the asbestos fibers in the joint mud penetrated into the In the handle blank and the vessel body blank, a bridge with a structure similar to reinforced cement is formed, and the bonding between the handle and the vessel after the ceramic is fired and cooled is stronger than the firing effect of the fourth embodiment.
  • step S2 the water content of the mud is 45%.
  • step S2 the water content of the mud material is 35%.
  • Example 2 is only the difference in the water content of the mud.
  • the thickener uses at least one of carboxymethyl cellulose and its inorganic salts with good hygroscopic properties, or uses methyl cellulose and its inorganic salts that also have good hygroscopic properties.
  • At least one of the mixed ethers when the asbestos fibers are evenly mixed with the mud, the thickener can increase the viscosity of the asbestos fibers in the mud, so that the asbestos fibers and the mud are closely combined and integrated, so that the handle and the device are integrated. The bonding between the bodies is more stable.
  • the higher the water content of the mud the more obvious the viscosity of the asbestos fiber and the mud after mixing, and the higher the thickening performance.
  • the mud used in the joint mud is the same as the mud used in the ceramic body, generally the mud with a water content of 40% can satisfy the aforementioned thickening effect.
  • step S2 5% of ground asbestos fibers, 0.5% of thickener, and 94.5% of mud are uniformly mixed and ground by weight to form joint mud.
  • step S2 5% of ground asbestos fibers, 0.3% of thickener, and 94.7% of mud are uniformly mixed and ground by weight to form joint mud.
  • step S2 5% of ground asbestos fibers, 0.1% of thickener, and 94.9% of mud are uniformly mixed and ground by weight to form joint mud.
  • step S2 10% of ground asbestos fibers, 0.5% of thickener, and 89.5% of mud are uniformly mixed and ground by weight to form joint mud.
  • step S2 10% of ground asbestos fibers, 0.3% of thickener, and 89.7% of mud are uniformly mixed and ground by weight to form joint mud.
  • step S2 10% of ground asbestos fibers, 0.1% of thickener, and 89.9% of mud are uniformly mixed and ground by weight to form joint mud.
  • Example 7 to Example 12 lies in the weight parts of asbestos fiber, thickener and mud.
  • the parts by weight of asbestos fibers in the joint mud of Examples 7 to 9 are smaller than those of Example 2, and the connection strength of the final fired ceramic ware handle and body is slightly smaller than that of Example 2, and the flexural and tensile strengths are the same. Smaller than the finished ceramic of Example 2.
  • the parts by weight of asbestos fibers in the joint muds of Example 10 to Example 12 are larger than those in Example 2, and the thickener contained in each part by weight of asbestos fibers is smaller than that in Example 2, which makes the joint mud thicker.
  • the thickening effect of the agent is slightly worse than that of Example 2.
  • the second embodiment can be selected as the preferred embodiment of the present invention.
  • the bonding strength and flexural and tensile strengths between the final fired ceramic ware handle and the ware body are also within acceptable ranges, the smoothness of the joint between the shank and the body is not satisfactory. Both the degree and flatness are slightly worse than the second embodiment.
  • test methods for the bonding strength between the handle and the body of the finished ceramics of each embodiment, as well as the flexural and tensile strengths can refer to the document “Daily Ceramics” published in the 11th issue of "Chinese Ceramics” in 2019. "Research on the Firmness Test of Cup Handle”, the test device described therein can be used to apply static loading and vertical impact to the body while the handle is fixed, and the gap between the handle and the body of the ceramic can be measured. The connection is similarly tested accordingly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种中高温陶瓷的器柄与器体的粘接工艺,这种粘接工艺在接头泥中添加了石棉纤维和增稠剂,在中高温陶瓷的烧制环境下,陶瓷坯料处于半融态,而石棉纤维处于熔化状态,石棉纤维从连接处分别渗透到器柄与器体上,当陶瓷出窑冷却后,在器柄与器体之间的连接处及其临近的器柄和器体上均存在有石棉纤维,形成具有类似钢筋水泥结构的桥接,使器柄与器体之间能够粘接得更加牢固,提高器柄与器体之间的连接处的抗弯和抗拉强度,避免器柄与器体之间的连接处出现裂痕,连接处更加光滑、平整;而石棉纤维均匀地与泥料混合后,增稠剂能够提高石棉纤维在泥料中粘度,使石棉纤维与泥料紧密结合、浑然一体,从而使器柄与器体之间的粘接更加稳定。

Description

一种中高温陶瓷的器柄与器体的粘接工艺 技术领域
本发明涉及陶瓷烧制技术领域,尤其涉及一种中高温陶瓷的器柄与器体的粘接工艺。
背景技术
陶瓷除了器体本身之外,通常还具有各种形状的器柄,器柄一般设置在器体的口部或者颈部,以起到装饰或者功能性作用(比如陶瓷杯的杯柄、陶瓷茶壶的壶嘴等等)。对于一件成品陶瓷,器体与器柄之间的粘接应该具备烧结应力均匀、器柄与器体相互渗透、连接处光滑、平整、无裂痕等特点。
目前,陶瓷的器体和器柄的粘接是采用相同成分的泥料将器柄直接粘接在器体上,直接进窑进行烧制。但是,烧制前器体和器柄已经形成坯体并进行干燥,含水量较低,而粘接用的泥料未经过干燥,依旧保持原有较高的含水量,进入窑炉烧制后,特别是在烧制中高温陶瓷的时候,窑炉的烧制温度基本是在1000~1300℃甚至在1300℃以上,粘接用的泥料在烧结时水分快速蒸发而发生收缩,导致粘接处比较薄弱,降温冷却时在内部应力的作用下容易发生塌陷或断裂,因此,在连接处易形成裂痕以及凹凸不平的结块,使得器柄与器体之间的粘接不牢固,器柄容易从器体上断裂脱落。
发明内容
本发明所要解决的问题是提供一种中高温陶瓷的器柄与器体的粘接工艺,这种粘接工艺能够提高中高温陶瓷的器柄与器体之间的粘接强度,使器柄与器体之间的连接处更加光滑、平整、没有裂痕。采用的技术方案如下:
一种中高温陶瓷的器柄与器体的粘接工艺,包括以下步骤:
步骤S1:在已经完成干燥的器柄坯体与器体坯体上的对应位置分别涂抹接头泥,将器柄坯体粘接到器体坯体上,形成完整的陶瓷坯体;
步骤S2:将步骤S1形成的陶瓷坯体送入窑炉进行烧制,使器柄与器体完全粘接;
其特征在于:所述步骤S1中的接头泥由以下步骤制得:
步骤(1):将石棉纤维研磨16~18小时,至石棉纤维的目数为300~350目;
步骤(2):按重量份取步骤(1)研磨后的石棉纤维5~10%、增稠剂0.1~0.5%、泥料89.5~94.9%均匀混合研磨,形成接头泥,其中,泥料的含水量为35~45%。
上述接头泥中所用的泥料,与陶瓷坯体所用的泥料相同,使接头泥的工艺性能与陶瓷坯体基本一致。
上述步骤S1中将器柄坯体粘接到器体坯体上一般采用干接的方式,其中器体与器柄的接口形状温和,粘接时动作迅速、位置准确、用力适宜。
上述步骤S2中高温陶瓷的烧制采用一般的常规技术,可参照现有中高温陶瓷的烧制方法,在1000~1350℃的烧制环境中进行烧制。烧制时间根据泥料的不同有所区别,一般的烧制时间为2~6小时。
由于石棉纤维本身是由纤维束组成,而纤维束又是由细长的可相互分离的纤维组成,因此具有良好的柔韧性和强度。将石棉纤维进行16~18小时的长时间研磨,至石棉纤维的目数为300~350目,使石棉纤维能够与泥料进行充分混合。在中高温陶瓷的烧制环境(烧制温度通常为1000~1350℃)下,陶瓷坯料处于半融态,而石棉纤维处于熔化状态,石棉纤维从连接处分别渗透到器柄与器体上,当陶瓷出窑冷却后,在器柄与器体之间的连接处及其临近的器柄和器体上均存在有石棉纤维,一方面能够降低接头泥的干燥收缩率,避免接头泥干燥开裂,另一方面能够形成具有类似钢筋水泥结构的桥接,使器柄与器体之间能够粘接得更加牢固,提高器柄与器体之间的连接处的抗弯和抗拉强度,避免器柄与器体之间的连接处出现裂痕。
另外,在接头泥中还添加有增稠剂,石棉纤维均匀地与泥料混合后,增稠剂能够提高石棉纤维在泥料中粘度,有利于使石棉纤维与泥料紧密结合、浑然一体,提高接头泥的粘着性,从而使器柄与器体之间的粘接更加稳定。
作为本发明的优选方案,所述增稠剂为纤维素醚。纤维素醚是工业上常用的水溶性聚合物之一,主要通过水合膨胀实现增稠。使用纤维素醚作为增稠剂,能够在与泥料的混合过程中吸收泥料中的水分,提高石棉纤维的渗透性,从而确保接头泥的粘性。
作为本发明进一步的优选方案,所述纤维素醚为羧甲基纤维素及其无机盐中的至少一种。羧甲基纤维素(CMC)具有良好的吸湿性,一般当含水量超过20%时,羧甲基纤维素的粒子间相互粘附的趋势增大,粘度更加明显,增稠性能更高。
作为本发明另一种进一步的优选方案,所述纤维素醚为甲基纤维素及其混合醚中的至少一种。甲基纤维素(MC)除了同样具有良好的吸湿性能之外,在温度升高的情况下会呈现出特有的热凝胶化性质,在窑炉升温的过程中,能够进一步增强接头泥的粘性。前述甲基纤维素的混合醚包括但不限于乙基甲基纤维素(EMC)、羟乙基甲基纤维素(HEMC)、羟丙基甲基纤维素(HPMC)、羟丁基甲基纤维素(HBMC)、羧甲基甲基纤维素(CMMC)等。
作为本发明的优选方案,所述步骤S2中的最高烧制温度大于1300℃。当烧制温度大于1300℃时,器柄坯体、器体坯体、接头泥中的瓷泥均处于半融态,接头泥中的石棉纤维渗透到器柄坯体、器体坯体中,形成具有类似钢筋水泥结构的桥接,陶瓷烧制完成冷却后器柄 与器体之间的粘接更加牢固。
本发明与现有技术相比,具有如下优点:
本发明中高温陶瓷的器柄与器体的粘接工艺在接头泥中添加了石棉纤维和增稠剂,在中高温陶瓷的烧制环境下,陶瓷坯料处于半融态,而石棉纤维处于熔化状态,石棉纤维从连接处分别渗透到器柄与器体上,当陶瓷出窑冷却后,在器柄与器体之间的连接处及其临近的器柄和器体上均存在有石棉纤维,形成具有类似钢筋水泥结构的桥接,使器柄与器体之间能够粘接得更加牢固,提高器柄与器体之间的连接处的抗弯和抗拉强度,避免器柄与器体之间的连接处出现裂痕,连接处更加光滑、平整;而石棉纤维均匀地与泥料混合后,增稠剂能够提高石棉纤维在泥料中粘度,使石棉纤维与泥料紧密结合、浑然一体,从而使器柄与器体之间的粘接更加稳定。
具体实施方式
实施例一
一种中高温陶瓷的器柄与器体的粘接工艺,包括以下步骤:
步骤S1:将石棉纤维研磨16小时,至石棉纤维的目数为300目;
步骤S2:按重量份取步骤S1研磨后的石棉纤维8%、增稠剂0.5%、泥料91.5%均匀混合研磨,形成接头泥,其中泥料的含水量为40%。
步骤S3:在已经完成干燥的器柄坯体与器体坯体上的对应位置分别涂抹接头泥,将器柄坯体粘接到器体坯体上,形成完整的陶瓷坯体;
步骤S4:将步骤S3形成的陶瓷坯体送入窑炉进行烧制,最高烧制温度为1320℃,使器柄与器体完全粘接。
上述步骤S2中,增稠剂采用羧甲基纤维素及其无机盐中的至少一种,或者采用甲基纤维素及其混合醚中的至少一种。
上述步骤S4中高温陶瓷的烧制采用一般的常规技术,可参照现有中高温陶瓷的烧制方法,在1000~1350℃的烧制环境中进行烧制;烧制时间根据泥料的不同有所区别,一般的烧制时间为2~6小时。
实施例二
在其他部分均与实施例一相同的情况下,其区别在于步骤S1中,将石棉纤维研磨18小时,至石棉纤维的目数为320目。
实施例三
在其他部分均与实施例一相同的情况下,其区别在于步骤S1中,将石棉纤维研磨18小时,至石棉纤维的目数为350目。
Figure PCTCN2021000194-appb-000001
由上表对比可见,在实施例一至实施例三中,接头泥的组分、组分的重量份、泥料的含水量、以及最高烧制温度均相同,区别在于石棉纤维的研磨时间和研磨目数。由于实施例二和实施例三的石棉纤维的研磨时间比实施例一要长,石棉纤维的研磨目数更大,石棉纤维与泥料的混合更加均匀,当陶瓷烧制完成出窑后,石棉纤维在器柄与器体之间的连接处及其临近的器柄和器体上也分布地更加均匀,形成具有类似钢筋水泥结构的桥接,使器柄与器体之间能够粘接得更加牢固,提高器柄与器体之间的连接处的抗弯和抗拉强度。实施例二和实施例三的区别仅在于石棉纤维的研磨目数不同,在实际的生产过程中,石棉纤维的研磨目数越大,其研磨技术和设备要求更高,为了降低技术要求和设备成本,石棉纤维的研磨目数在320目即可。
实施例四
在其他部分均与实施例二相同的情况下,其区别在于步骤S4中,最高烧制温度为1250℃。
Figure PCTCN2021000194-appb-000002
由上表对比可见,实施例二和实施例四的区别仅在于最高烧制温度的不同,实施例二的最高烧制温度超过1300℃,而实施例四的最高烧制温度低于1300℃。在实施例二的实际烧制过程中,当烧制温度大于1300℃时,器柄坯体、器体坯体、接头泥中的瓷泥均处于半融态,接头泥中的石棉纤维渗透到器柄坯体、器体坯体中,形成具有类似钢筋水泥结构的桥接,陶瓷烧制完成冷却后器柄与器体之间的粘接比实施例四的烧制效果要更加牢固。
实施例五
在其他部分均与实施例二相同的情况下,其区别在于步骤S2中,泥料的含水量为45%。
实施例六
在其他部分均与实施例二相同的情况下,其区别在于步骤S2中,泥料的含水量为35%。
Figure PCTCN2021000194-appb-000003
由上表对比可见,实施例二、实施例五和实施例六的区别仅在于泥料含水量的不同。由于接头泥中还添加有增稠剂,增稠剂使用了具有良好吸湿性能的羧甲基纤维素及其无机盐中的至少一种,或者采用同样具有良好吸湿性能的甲基纤维素及其混合醚中的至少一种,当石棉纤维均匀地与泥料混合后,增稠剂能够提高石棉纤维在泥料中粘度,使石棉纤维与泥料紧密结合、浑然一体,从而使器柄与器体之间的粘接更加稳定。因此,泥料含水量越高,石棉纤维与泥料混合后粘度更加明显,增稠性能更高。在实际的烧制过程中,由于接头泥中所用的泥料与陶瓷坯体所用的泥料相同,一般采用含水量40%的泥料即可满足前述增稠效果。
实施例七
在其他部分均与实施例二相同的情况下,其区别在于步骤S2中,按重量份取研磨后的石棉纤维5%、增稠剂0.5%、泥料94.5%均匀混合研磨,形成接头泥。
实施例八
在其他部分均与实施例七相同的情况下,其区别在于步骤S2中,按重量份取研磨后的石棉纤维5%、增稠剂0.3%、泥料94.7%均匀混合研磨,形成接头泥。
实施例九
在其他部分均与实施例七相同的情况下,其区别在于步骤S2中,按重量份取研磨后的石棉纤维5%、增稠剂0.1%、泥料94.9%均匀混合研磨,形成接头泥。
实施例十
在其他部分均与实施例二相同的情况下,其区别在于步骤S2中,按重量份取研磨后的石棉纤维10%、增稠剂0.5%、泥料89.5%均匀混合研磨,形成接头泥。
实施例十一
在其他部分均与实施例十相同的情况下,其区别在于步骤S2中,按重量份取研磨后的石棉纤维10%、增稠剂0.3%、泥料89.7%均匀混合研磨,形成接头泥。
实施例十二
在其他部分均与实施例十相同的情况下,其区别在于步骤S2中,按重量份取研磨后的石棉纤维10%、增稠剂0.1%、泥料89.9%均匀混合研磨,形成接头泥。
Figure PCTCN2021000194-appb-000004
由上表对比可见,实施例七至实施例十二与实施例二的区别在于石棉纤维、增稠剂和泥料的重量份的不同。实施例七至实施例九的接头泥中石棉纤维的重量份比实施例二小,最终烧制的成品陶瓷器柄与器体的连接强度比实施例二略小,抗弯和抗拉强度均小于实施例二的成品陶瓷。而实施例十至实施例十二的接头泥中石棉纤维的重量份比实施例二大,每重量份的石棉纤维中所含的增稠剂比实施例二要小,使得接头泥中增稠剂的增稠效果比实施例二的增稠效果略差。
综合上述各实施例的对比,可选用实施例二作为本发明的优选实施方式。其他实施例虽然最终烧制的成品陶瓷器柄与器体之间的粘接强度以及抗弯和抗拉强度也在可接受的范围之内,但是器柄与器体之间的连接处的光滑度和平整度均略差于实施例二。
上述对各实施例的成品陶瓷的器柄与器体之间的粘接强度以及抗弯和抗拉强度的测试方法,可参考《中国陶瓷》2019年第11期所刊登的文献《日用陶瓷杯把手牢固度测试的研究》,可利用其中所记载的测试装置,在固定住器柄的情况下对器体采用静置加载荷和垂直冲击的方法,对陶瓷的器柄与器体之间的连接进行类似相应的测试。
此外,需要说明的是,本说明书中所描述的具体实施例,其各部分名称等可以不同,凡依本发明专利构思所述的构造、特征及原理所做的等效或简单变化,均包括于本发明专利的保护范围内。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (5)

  1. 一种中高温陶瓷的器柄与器体的粘接工艺,包括以下步骤:
    步骤S1:在已经完成干燥的器柄坯体与器体坯体上的对应位置分别涂抹接头泥,将器柄坯体粘接到器体坯体上,形成完整的陶瓷坯体;
    步骤S2:将步骤S1形成的陶瓷坯体送入窑炉进行烧制,使器柄与器体完全粘接;
    其特征在于:所述步骤S1中的接头泥由以下步骤制得:
    步骤(1):将石棉纤维研磨16~18小时,至石棉纤维的目数为300~350目;
    步骤(2):按重量份取步骤(1)研磨后的石棉纤维5~10%、增稠剂0.1~0.5%、泥料89.5~94.9%均匀混合研磨,形成接头泥,其中,泥料的含水量为35~45%。
  2. 根据权利要求1所述的粘接工艺,其特征在于:所述增稠剂为纤维素醚。
  3. 根据权利要求2所述的粘接工艺,其特征在于:所述纤维素醚为羧甲基纤维素及其无机盐中的至少一种。
  4. 根据权利要求2所述的粘接工艺,其特征在于:所述纤维素醚为甲基纤维素及其混合醚中的至少一种。
  5. 根据权利要求1或2所述的粘接工艺,其特征在于:所述步骤S2中的最高烧制温度大于1300℃。
PCT/CN2021/000194 2021-01-30 2021-09-24 一种中高温陶瓷的器柄与器体的粘接工艺 WO2022160075A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110131769.7 2021-01-30
CN202110131769.7A CN112679196A (zh) 2021-01-30 2021-01-30 一种中高温陶瓷的器柄与器体的粘接工艺

Publications (1)

Publication Number Publication Date
WO2022160075A1 true WO2022160075A1 (zh) 2022-08-04

Family

ID=75459542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/000194 WO2022160075A1 (zh) 2021-01-30 2021-09-24 一种中高温陶瓷的器柄与器体的粘接工艺

Country Status (2)

Country Link
CN (1) CN112679196A (zh)
WO (1) WO2022160075A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679196A (zh) * 2021-01-30 2021-04-20 广东顺祥陶瓷有限公司 一种中高温陶瓷的器柄与器体的粘接工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118236A (en) * 1976-03-15 1978-10-03 Aci Technical Centre Pty Ltd. Clay compositions
CN101768007A (zh) * 2010-01-20 2010-07-07 刘磊 一种陶瓷刀的生产方法
CN102755789A (zh) * 2012-05-18 2012-10-31 中材高新材料股份有限公司 结构优化的高温陶瓷过滤元件及其制备方法
CN105503269A (zh) * 2015-12-15 2016-04-20 凯龙蓝烽新材料科技有限公司 一种用于颗粒捕集器的粘结材的制备方法
CN107698265A (zh) * 2017-09-09 2018-02-16 安徽青花坊瓷业股份有限公司 一种陶瓷坯料的粘合剂
CN108002808A (zh) * 2017-12-05 2018-05-08 西安理工大学 一种陶泥的干湿接头泥及其制作方法
CN112679196A (zh) * 2021-01-30 2021-04-20 广东顺祥陶瓷有限公司 一种中高温陶瓷的器柄与器体的粘接工艺

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130317C (zh) * 2000-08-10 2003-12-10 湖南省工艺品进出口公司 一种用于粘接不同干燥陶瓷组件的粘结泥
JP4523045B2 (ja) * 2008-02-25 2010-08-11 株式会社ノリタケカンパニーリミテド 酸素分離膜エレメントならびに該エレメントのシール方法及びシール材
CN101693627A (zh) * 2009-09-19 2010-04-14 薛维 纳米陶瓷复合结合剂
CN102557588A (zh) * 2012-01-17 2012-07-11 陈启裕 一种卫生陶瓷坯体的粘接方法
CN104291849B (zh) * 2014-08-22 2016-09-21 李金盛 一种新型陶瓷平面干镶接用的粘结剂及其制备方法
CN104944913B (zh) * 2015-07-14 2017-01-04 钦州学院 坭兴陶干接接头泥的制作方法
CN107244894A (zh) * 2017-06-08 2017-10-13 钦州学院 坭兴陶坯体的连接方法
CN109485424B (zh) * 2018-11-30 2020-11-13 航天特种材料及工艺技术研究所 一种耐高温陶瓷基复合材料构件及其连接方法
CN109336619A (zh) * 2018-12-03 2019-02-15 安徽青花坊瓷业股份有限公司 一种用于陶瓷坯料的粘结剂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118236A (en) * 1976-03-15 1978-10-03 Aci Technical Centre Pty Ltd. Clay compositions
CN101768007A (zh) * 2010-01-20 2010-07-07 刘磊 一种陶瓷刀的生产方法
CN102755789A (zh) * 2012-05-18 2012-10-31 中材高新材料股份有限公司 结构优化的高温陶瓷过滤元件及其制备方法
CN105503269A (zh) * 2015-12-15 2016-04-20 凯龙蓝烽新材料科技有限公司 一种用于颗粒捕集器的粘结材的制备方法
CN107698265A (zh) * 2017-09-09 2018-02-16 安徽青花坊瓷业股份有限公司 一种陶瓷坯料的粘合剂
CN108002808A (zh) * 2017-12-05 2018-05-08 西安理工大学 一种陶泥的干湿接头泥及其制作方法
CN112679196A (zh) * 2021-01-30 2021-04-20 广东顺祥陶瓷有限公司 一种中高温陶瓷的器柄与器体的粘接工艺

Also Published As

Publication number Publication date
CN112679196A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN101717268B (zh) 一种陶瓷泥坯修补坯料、其制备方法及修补工艺
CN102153353B (zh) 水脱脂粘结剂体系及陶瓷构件的注射成型方法
CN107337409B (zh) 泡沫玻璃保温系统专用胶粘剂及其制备方法和使用方法
CN106986590B (zh) 一种瓷砖粘合砂浆、其制备方法及瓷砖粘合工艺
JP7317071B2 (ja) 高温耐摩耗セラミック釉薬、高温耐摩耗セラミック塗布層プリフォーム及びその製造方法、使用
CN112876181B (zh) 一种粘结砂浆干粉和粘结砂浆
CN105777009A (zh) 一种玻化砖背胶及其制备方法和施工方法
CN109320213A (zh) 一种高致密度耐火陶瓷制品及其制备工艺
WO2022160075A1 (zh) 一种中高温陶瓷的器柄与器体的粘接工艺
CN107500647A (zh) 一种陶瓷微球节能瓷砖胶及其制备方法
CN103030352A (zh) 一种陶瓷薄板用瓷砖胶
CN108409258A (zh) 一种防开裂水泥基瓷砖填缝剂
CN110317026B (zh) 一种瓷砖胶
CN109485346A (zh) 一种瓷砖大理石粘合剂及其制备方法
CN105524511A (zh) 可节能保温的外墙腻子及制备方法
CN108117359A (zh) 自保温蒸压加气混凝土砌块修补砂浆及其制备方法
CN104944913B (zh) 坭兴陶干接接头泥的制作方法
CN107902967A (zh) 一种黄河泥砂建筑应用抗裂、粘结、保温砂浆干材料及其制备方法
CN106630862A (zh) 一种3d基材干粉砂浆原料配比及生产工艺
CN108314379A (zh) 用于蒸压加气混凝土砌块和轻型砌块的超薄专用砌筑砂浆
CN108002808A (zh) 一种陶泥的干湿接头泥及其制作方法
CN113277804A (zh) 一种瓷砖胶及其制备方法
CN104628325A (zh) 瓷固板材粘合剂
CN107353873A (zh) 瓷砖粘接结构胶组合物及其制备方法
CN109592934A (zh) 一种用于机械化施工的界面剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921698

Country of ref document: EP

Kind code of ref document: A1