WO2022158713A1 - 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법 - Google Patents

3,5-다이아미노-1,2,4-트라이아졸의 제조 방법 Download PDF

Info

Publication number
WO2022158713A1
WO2022158713A1 PCT/KR2021/018747 KR2021018747W WO2022158713A1 WO 2022158713 A1 WO2022158713 A1 WO 2022158713A1 KR 2021018747 W KR2021018747 W KR 2021018747W WO 2022158713 A1 WO2022158713 A1 WO 2022158713A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamino
triazole
solid
reaction
producing
Prior art date
Application number
PCT/KR2021/018747
Other languages
English (en)
French (fr)
Inventor
허남회
박희선
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Publication of WO2022158713A1 publication Critical patent/WO2022158713A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/14Nitrogen atoms

Definitions

  • the present application relates to a method for obtaining 3,5-diamino-1,2,4-triazole by solid reacting solid hydrazine and dicyandiamide under solvent-free conditions.
  • DAT 3,5-diamino-1,2,4-triazole rich in nitrogen with a nitrogen content of about 70% (3,5-diamino-1,2,4-triazole, C 2 H 5 N 5 ; hereinafter “ DAT”) is widely used as a kinase inhibitor, a cathode catalyst, and a pharmaceutical intermediate. It is also widely used as a precursor for the synthesis of chemical intermediates of many organic materials and high energy density materials.
  • the above two manufacturing methods have disadvantages in that the purity of the product, DAT, is low because DAT salt may be produced as a by-product, and the manufacturing cost is high due to the cost of wastewater treatment because a solvent is used. In addition, an additional recrystallization process is required to remove the salt from the DAT salt.
  • anhydrous hydrazine (anhydrous hydrazine, H 2 NNH 2 ) is very toxic, so it cannot be used directly in a laboratory or production site, and an aqueous solution of hydrazine or a hydrazine salt diluted in water must be used instead.
  • the aqueous hydrazine solution is relatively convenient to handle like the aqueous ammonia solution, but has a problem in that it contains a lot of water.
  • the current DAT manufacturing process has high environmental pollution factors such as wastewater generation due to the introduction of an acid or base additive in addition to hydrazine and dicyandiamide, and there is a cost burden for separation and recovery due to the use of a solvent.
  • Solid hydrazine is safer and more convenient to use than liquid hydrazine aqueous solution, and it is a solid from which moisture is completely removed. It is a stable solid, but solid hydrazine shows high reactivity and selectivity comparable to anhydrous hydrazine. It has been reported (Org. Lett., 13, 6386 (2011); Adv. Syn. Catal., 2013, 355, 389.; Korean Patent No. 10-1305053;).
  • An object of the present application is to provide a method for obtaining 3,5-diamino 1,2,4-triazole by solid reacting solid hydrazine and dicyandiamide under solvent-free conditions.
  • the present application provides a solid reaction of solid hydrazine and dicyandiamide to obtain 3,5-diamino-1,2,4-triazole, 3,5-diamino 1,2,4-triazole It provides a manufacturing method of
  • the method for obtaining 3,5-diamino-1,2,4-triazole is a solid reaction of solid hydrazine and dicyandiamide under solvent-free conditions to 3,5-diamino-
  • 1) high yield can be achieved without additional additives, and 2) it is carried out under solvent-free conditions, so that wastewater and waste are not generated and the size of the reaction vessel can be reduced.
  • FIG. 1A is a photograph of DAT synthesized according to Example 1 of the present application
  • FIG. 1B is a photograph of DAT synthesized according to Comparative Example 1 of the present application.
  • Example 5 is a powder X-ray diffraction (XRD) data of DAT synthesized according to Example 1 of the present application.
  • step to or “step for” does not mean “step for”.
  • the solid hydrazine may be represented by the following Chemical Formula 1:
  • the 3,5-diamino-1,2,4-triazole may be represented by the following Chemical Formula 2 or Chemical Formula 3, and possible resonance structures thereof:
  • the solid reaction may be performed under solvent-free conditions.
  • the purity of the solid hydrazine and the dicyandiamide may be 99% by mass or more. If the purity is less than 99% by mass, there may be a problem in that the yield of the product is lowered or impurities are generated.
  • the solid reaction may be carried out in a temperature range of about 80 °C to about 120 °C, but may not be limited thereto.
  • the solid reaction may be from about 80°C to about 120°C, from about 80°C to about 115°C, from about 80°C to about 110°C, from about 80°C to about 105°C, from about 80°C to about 100°C, about 80 °C to about 95 °C, about 80 °C to about 90 °C, about 80 °C to about 85 °C, about 85 °C to about 120 °C, about 85 °C to about 115 °C, about 85 °C to about 110 °C, about 85 °C to about 105 °C, about 85 °C to about 100 °C, about 85 °C to about 95 °C, about 85 °C to about 90 °C, about 90 °C to about 120 °C, about 90 °C to about 115 °C, about 90
  • the solid reaction When the solid reaction is carried out in a temperature range of less than about 80 ° C., a problem that the reaction proceeds slowly may occur, and when the solid reaction is carried out in a temperature range greater than about 120 ° C., 3, which is a product of the solid reaction; There may be a problem in that impurities are generated other than 5-diamino-1,2,4-triazole.
  • the solid reaction when the solid reaction is not carried out in a temperature range of about 80° C. to about 120° C., there may be a problem in that 3,5-diamino-1,2,4-triazole with low purity is produced.
  • the reaction rate may vary depending on the temperature at which the solid reaction is performed, and if the mixed powder is put in a closed container and the temperature is raised, the reaction may proceed rapidly.
  • the solid reaction may be carried out by continuously mixing for the reaction time, but may not be limited thereto.
  • the mixing may be performed by at least one selected from a mortar, a ball mill, a bead mill, and a kneader, but may not be limited thereto. have.
  • the mixing may be performed by mixing the reactants in a mortar and continuously grinding, or using a dispersion mixer device such as a ball mill, bead mill, and/or kneader, If the temperature is increased in the ball mill and bead mill apparatus, the reaction may proceed very quickly.
  • the size of the balls and beads used in the ball mill and the bead mill may be about 0.05 mm to about 3 mm, but may not be limited thereto.
  • the sizes of the balls and beads are, each independently, about 0.05 mm to about 3 mm, about 0.05 mm to about 2.5 mm, about 0.05 mm to about 2 mm, about 0.05 mm to about 1.5 mm, about 0.05 mm to about 1 mm, about 0.1 mm to about 3 mm, about 0.1 mm to about 2.5 mm, about 0.1 mm to about 2 mm, about 0.1 mm to about 1.5 mm, or about 0.1 mm to about 1 mm,
  • the size of the ball and the bead, each independently may be about 0.1 mm to about 1 mm. The smaller the size of the balls and beads, the faster the reaction rate may be.
  • the balls and beads are, each independently, a metal material such as SUS and carbon steel; and/or a metal oxide material such as alumina, zirconia, and zirconia-yttria may be used, but may not be limited thereto.
  • the molar ratio of the reactants of the solid reaction may be from about 0.5 mol to about 5 mol of the solid hydrazine with respect to 1 mol of the dicyandiamide, but may not be limited thereto.
  • the molar ratio of the reactants of the solid reaction is less than about 0.5 mol of the solid hydrazine with respect to 1 mol of the dicyandiamide, the reaction does not proceed well and the unreacted dicyandiamide and the solid hydrazine may remain.
  • the solid hydrazine exceeds about 5 mol, unreacted solid hydrazine may remain.
  • the solid reaction may be carried out in a pressure range of about 0.1 MPa to about 5 MPa, but may not be limited thereto.
  • the solid reaction is about 0.1 MPa to about 5 MPa, about 0.1 MPa to about 4.5 MPa, about 0.1 MPa to about 4 MPa, about 0.1 MPa to about 3.5 MPa, about 0.1 MPa to about 3 MPa, about 0.1 MPa to about 2.5 MPa, about 0.1 MPa to about 2 MPa, or about 0.1 MPa to about 1.5 MPa may be carried out in a pressure range, but may not be limited thereto.
  • the solid reaction may be performed in a pressure range of about 0.1 MPa to about 1.5 MPa.
  • the yield of 3,5-diamino-1,2,4-triazole obtained by the solid reaction is about 80% or more, about 85% based on the reactant dicyandiamide % or greater, about 90% or greater, or about 95% or greater. In one embodiment of the present application, the yield of 3,5-diamino-1,2,4-triazole obtained by the solid reaction is about 95% or more or about 98 based on the reactant dicyandiamide % or more.
  • the solid reaction is, (a) mixing the solid hydrazine and the dicyandiamide in a solid state to obtain a mixed powder; and (b) putting the mixed powder in a reaction vessel and reacting the solid to obtain the 3,5-diamino 1,2,4-triazole, but may not be limited thereto.
  • an additive may be further included during the solid reaction, but may not be limited thereto.
  • the additive may be one or more selected from water, hydrochloric acid, and nitric acid, but may not be limited thereto.
  • the reaction is promoted, so there may be an advantage in that the efficiency of the 3,5-diamino-1,2,4-triazole manufacturing process is increased.
  • DAT salts or other impurities are generated in addition to the product DAT.
  • about 0.1 mol to about 1 mol of the additive may be additionally included with respect to 1 mol of the dicyandiamide, but may not be limited thereto. .
  • the solid reaction may further include a lubricating solvent, but may not be limited thereto.
  • a lubricating solvent is further included in the solid reaction, a process of separating the product and the lubricating solvent may be additionally required.
  • the lubricating solvent may include an alcohol having 1 to 15 carbon atoms, but may not be limited thereto.
  • the alcohol may include one or more selected from methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, and possible isomers thereof. may not be limited.
  • the lubricating solvent may include an ether having 2 to 16 carbon atoms, but may not be limited thereto.
  • the ether may include one or more selected from dimethyl ether, diethyl ether, THF and dioxin, but may not be limited thereto.
  • the lubricating solvent may include an aliphatic hydrocarbon having 5 to 15 carbon atoms, but may not be limited thereto.
  • the aliphatic hydrocarbon may include one or more selected from pentane, hexane, heptane, and possible isomers thereof, but may not be limited thereto.
  • the lubricating solvent may include an aromatic hydrocarbon having 6 to 15 carbon atoms, but may not be limited thereto.
  • the aromatic hydrocarbon is benzene; toluene; xylene; and one or more selected from aromatic carbon compounds in which hetero atoms such as oxygen and nitrogen are substituted, may not be limited thereto.
  • the lubricating solvent may include a polyol, but may not be limited thereto.
  • the polyol may include one or more selected from ethylene glycol, glycerol, erythritol, xylitol, and mannitol, but may not be limited thereto.
  • Example 1A is a photograph of DAT synthesized according to Example 1 of the present application, showing that it is a white powder.
  • XRD 5 is a powder X-ray diffraction (XRD) data of DAT synthesized according to Example 1 of the present application.
  • the X-ray diffraction peak of the synthesized DAT and the peak of the JCPDS data of DAT coincide, and peaks corresponding to solid hydrazine and dicyandiamide used as reactants; and a peak of a substance other than DAT as a product was not observed.
  • Example 1 the reaction temperature was adjusted to less than 80 °C and greater than 120 °C, and the reaction was carried out under the same conditions other than that.
  • the reaction temperature was less than 80° C.
  • the reactants remained and the yield of DAT product was less than 20%.
  • the reaction temperature was higher than 120 DEG C, the mass and yield of the obtained DAT product were almost the same as those of Example 1, but trace impurities were observed.
  • Example 1 the reaction time was adjusted to 5 hours and 40 hours, and the other conditions were the same to perform the reaction.
  • the reaction time was 5 hours the reactants remained and the yield of DAT product was less than 50%.
  • the reaction time was 40 hours the mass and yield of the obtained DAT product were almost the same as in Example 1.
  • Example 1 the molar ratio of the dicyandiamide and the solid hydrazine reactant was adjusted differently, and the reaction was performed under the same conditions other than that.
  • the molar ratio of dicyandiamide and solid hydrazine was about 1:0.5 or less, the DAT yield was less than 10%, so the reaction did not proceed well, and unreacted dicyandiamide and solid hydrazine remained.
  • the molar ratio of dicyandiamide to solid hydrazine was about 1:5 or more, a large amount of unreacted hydrazine remained and other hydrazine derivatives were produced.
  • Example 1 the pressure of the solid reaction was adjusted differently, and the other conditions were the same to perform the reaction.
  • the reaction pressure was less than about 0.1 MPa
  • the production rate of DAT was slowed and the yield was less than 10%
  • the reaction pressure was 1 MPa, the obtained product and yield were almost the same as in Example 1.
  • Example 2 Under the same conditions as in Example 1, water was added in a ratio of 1 mol to 1 mol of dicyandiamide. The obtained product and yield were almost the same as in Example 1, but an additional process of drying water in the product was required.
  • hydrochloric acid was added to carry out the reaction.
  • hydrochloric acid was added in a ratio of 0.2 mol to 1 mol of dicyandiamide
  • the yield of the DAT product was about 95%.
  • hydrochloric acid was added in a ratio of more than 1 mol to 1 mol of dicyandiamide, the yield of the DAT product was less than about 10%, and the content of chlorine compounds including hydrazine chloride was 90% or more.
  • Example 1 50 ⁇ L of hydrazine monohydrate (64-65%) of the same molar number was added instead of solid hydrazine, and the other conditions were the same to perform the reaction. After the reaction, the solid compound was separated and dried, and the yield of the obtained product was about 30%.
  • the generated DAT had a color such as yellow or pink, and the color changed according to the reaction conditions (FIG. 1b).
  • Example 1 0.07 g of hydrazine hydrochloride having the same number of moles was added instead of solid hydrazine, and the other conditions were the same to perform the reaction. After the reaction, the solid compound was separated and dried, and the yield of the obtained product was about 30%, and the resulting solid contained impurities such as ammonium chloride (NH 4 Cl).
  • impurities such as ammonium chloride (NH 4 Cl).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본원은, 고체 히드라진 및 다이시안다이아미드를 무용매 조건에서 고체 반응시켜 3,5-다이아미노-1,2,4-트라이아졸을 수득하는 방법에 관한 것이다.

Description

3,5-다이아미노-1,2,4-트라이아졸의 제조 방법
본원은, 고체 히드라진 및 다이시안다이아미드를 무용매 조건에서 고체 반응시켜 3,5-다이아미노-1,2,4-트라이아졸을 수득하는 방법에 관한 것이다.
질소의 함량이 약 70% 정도로 질소가 풍부한 3,5-다이아미노-1,2,4-트라이아졸(3,5-diamino-1,2,4-triazole, C2H5N5; 이하 "DAT"라고도 함)은 키나제 방지제(kinase inhibitor), 음극 촉매(cathode catalyst), 및 의약품 중간체(pharmaceutical intermediate)로 널리 사용되고 있다. 또한, 많은 유기 재료의 화학 중간체(chemical intermediates)와 에너지 밀도가 높은 재료(high energy density materials) 합성의 전구체로도 널리 사용되고 있다.
종래의 DAT 합성은 다이시안다이아미드(dicyandiamide, C2H4N4)와 히드라진 수용액 또는 히드라진 염과의 반응을 통해서 이루어졌다. 미국등록특허 US2648671A는 하이드라진 염을 히드라진의 전구체로 사용해서 다이시안다이아미드와 반응시켜 DAT를 제조하는 방법을 개시하고 있다. 한편, 러시아등록특허 RU2152389C1은 히드라진 : 질산 : 다이시안다이아미드의 몰비를 1 : 2 : 1로 맞추고 물을 용매로 사용해서 제조하는 방법을 개시하고 있다. 상기 두 제조 방법은 DAT 염이 부산물로 생성될 수 있기 때문에 생성물인 DAT의 순도가 낮으며, 용매를 사용하기 때문에 폐수 처리 비용으로 제조원가가 비싼 단점이 있다. 또한, DAT 염으로부터 염을 제거하기 위한 추가적인 재결정화 공정이 필요하다.
한편, 무수 히드라진(anhydrous hydrazine, H2NNH2)은 매우 유독해서 실험실이나 생산 현장에서는 직접 사용할 수는 없고, 반드시 물에 희석한 히드라진 수용액이나 히드라진 염을 대신 사용한다. 히드라진 수용액은 암모니아 수용액처럼 상대적으로 다루기가 편리하지만 물을 많이 포함하고 있는 문제점을 가지고 있다. 상술한 바와 같이 현재의 DAT 제조 공정은 히드라진과 다이시안다이아미드 이외에도 산 또는 염기의 첨가제 도입에 따른 폐수 발생 등 환경오염의 요소가 높고, 용매 사용에 따른 분리 및 회수를 위한 비용 부담이 있다.
고체 히드라진은 액체 히드라진 수용액에 비해서 사용이 보다 안전하고 편리하며 수분이 완전히 제거된 고체로서, 안정한 고체이지만 고체 히드라진은 무수 히드라진에 비견할 정도의 높은 반응성 및 선택성을 보여주는 것을 본 발명자의 특허와 논문으로 보고한 바 있다 (Org. Lett., 13, 6386 (2011); Adv. Syn. Catal., 2013, 355, 389.; 대한민국 등록 특허 10-1305053;).
본원은 고체 히드라진 및 다이시안다이아미드를 무용매 조건에서 고체 반응시켜 3,5-다이아미노 1,2,4-트라이아졸을 수득하는 방법을 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본원은, 고체 히드라진 및 다이시안다이아미드를 고체 반응시켜 3,5-다이아미노-1,2,4-트라이아졸을 수득하는 것을 포함하는, 3,5-다이아미노 1,2,4-트라이아졸의 제조 방법을 제공한다.
본원의 구현예들에 따른 3,5-다이아미노-1,2,4-트라이아졸을 수득하는 방법은, 무용매 조건에서 고체 히드라진 및 다이시안다이아미드를 고체 반응시켜 3,5-다이아미노-1,2,4-트라이아졸을 수득하는 것으로서, 1) 별도의 첨가제 없이 높은 수득률을 달성할 수 있고, 2) 무용매 조건에서 수행되므로 폐수 및 폐기물이 발생하지 않고 반응 용기의 크기를 줄일 수 있으며, 3) 분리 과정이 필요 없으므로 시간과 에너지를 절감할 수 있고, 4) 상온에서 안정한 고체 히드라진을 사용함에 따라 보관 및 사용이 간편하고 위험하지 않으며, 5) 물이 없는 무수 환경에서 사용할 수 있고, 6) 고체 히드라진의 사용량을 정확히 조절할 수 있으므로 가격 경쟁력 및 친환경성을 확보할 수 있으며, 7) 이산화탄소를 이용하여 제조되는 고체 히드라진을 활용하기 때문에, 본 발명에 의한 3,5-다이아미노-1,2,4-트라이아졸의 제조가 상용화 된다면 온실가스인 이산화탄소의 감소 효과를 기대할 수 있다.
도 1a는, 본원의 실시예 1에 따라서 합성된 DAT의 사진이고, 도 1b는, 본원의 비교예 1에 따라서 합성된 DAT의 사진이다.
도 2는, 본원의 실시예 1에 따라서 합성된 DAT의 1H-NMR 스펙트럼이다.
도 3은, 본원의 실시예 1에 따라서 합성된 DAT의 13C-NMR 스펙트럼이다.
도 4는, 본원의 실시예 1에 따라서 합성된 DAT의 GC-MS 데이터이다.
도 5는, 본원의 실시예 1에 따라서 합성된 DAT의 분말 X-선 회절(X-ray diffraction, XRD) 데이터이다.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서 사용되는 정도의 용어 “~ 하는 단계” 또는 “~의 단계”는 “~를 위한 단계”를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.
본원은, 고체 히드라진 및 다이시안다이아미드를 고체 반응시켜 3,5-다이아미노-1,2,4-트라이아졸(3,5-diamino-1,2,4-triazole; DAT)을 수득하는 것을 포함하는, 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법을 제공한다.
본원의 일 구현예에 있어서, 상기 고체 히드라진은 하기 화학식 1로서 표시될 수 있다:
[화학식 1]
Figure PCTKR2021018747-appb-img-000001
.
본원의 일 구현예에 있어서, 상기 3,5-다이아미노-1,2,4-트라이아졸은 하기 화학식 2 또는 화학식 3, 및 이들의 가능한 공명 구조체로서 표시될 수 있다:
[화학식 2]
Figure PCTKR2021018747-appb-img-000002
;
[화학식 3]
Figure PCTKR2021018747-appb-img-000003
.
본원의 일 구현예에 있어서, 상기 고체 반응은 무용매 조건에서 수행되는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 고체 히드라진 및 상기 다이시안다이아미드의 순도는 99 질량% 이상일 수 있다. 상기 순도가 99 질량% 미만일 경우, 생성물의 수득률이 저하되거나 불순물이 생성되는 문제점이 있을 수 있다.
본원의 일 구현예에 있어서, 상기 고체 반응은 약 80℃ 내지 약 120℃의 온도 범위에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 고체 반응은 약 80℃ 내지 약 120℃, 약 80℃ 내지 약 115℃, 약 80℃ 내지 약 110℃, 약 80℃ 내지 약 105℃, 약 80℃ 내지 약 100℃, 약 80℃ 내지 약 95℃, 약 80℃ 내지 약 90℃, 약 80℃ 내지 약 85℃, 약 85℃ 내지 약 120℃, 약 85℃ 내지 약 115℃, 약 85℃ 내지 약 110℃, 약 85℃ 내지 약 105℃, 약 85℃ 내지 약 100℃, 약 85℃ 내지 약 95℃, 약 85℃ 내지 약 90℃, 약 90℃ 내지 약 120℃, 약 90℃ 내지 약 115℃, 약 90℃ 내지 약 110℃, 약 90℃ 내지 약 105℃, 약 90℃ 내지 약 100℃, 약 90℃ 내지 약 95℃, 약 95℃ 내지 약 120℃, 약 95℃ 내지 약 115℃, 약 95℃ 내지 약 110℃, 약 95℃ 내지 약 105℃, 약 95℃ 내지 약 100℃, 약 100℃ 내지 약 120℃, 약 100℃ 내지 약 115℃, 약 100℃ 내지 약 110℃, 약 100℃ 내지 약 105℃, 약 105℃ 내지 약 120℃, 약 105℃ 내지 약 115℃, 약 105℃ 내지 약 110℃, 약 110℃ 내지 약 120℃, 약 110℃ 내지 약 115℃, 또는 약 115℃ 내지 약 120℃의 온도 범위에서 수행될 수 있으나, 이에 제한되지 않을 수 있다. 상기 고체 반응이 약 80℃ 미만의 온도 범위에서 수행되는 경우, 반응이 느리게 진행되는 문제가 발생할 수 있으며, 상기 고체 반응이 약 120℃ 초과 온도 범위에서 수행되는 경우, 상기 고체 반응의 생성물인 3,5-다이아미노-1,2,4-트라이아졸 외에 불순물이 생성되는 문제가 있을 수 있다. 또한, 상기 고체 반응이 약 80℃ 내지 약 120℃의 온도 범위에서 수행되지 않을 경우, 순도가 낮은 3,5-다이아미노-1,2,4-트라이아졸이 생성되는 문제가 있을 수 있다. 상기 고체 반응이 수행되는 온도에 따라 반응 속도가 달라질 수 있으며, 섞은 분말을 닫힌 용기 내에 넣고 온도를 올리면 반응이 빠르게 진행될 수 있다.
본원의 일 구현예에 있어서, 상기 고체 반응은 반응 시간 동안 계속 혼합하여 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 혼합은 막자 사발, 볼밀(ball mill), 비드밀(bead mill), 및 니더(kneader)에서 선택되는 하나 이상에 의해 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 혼합은, 막자사발에 반응물을 섞어 놓고 계속해서 갈아주거나, 볼밀, 비드밀, 및/또는 니더(kneader) 등의 분산 혼합기 장치를 사용하여 수행되는 것일 수 있으며, 상기 볼밀 및 비드밀 장치에서 온도를 높이면 반응이 매우 빠르게 진행될 수 있다.
본원의 일 구현예에 있어서, 상기 볼밀 및 비드밀에서 사용되는 볼 및 비드의 크기는, 각각 독립적으로, 약 0.05 mm 내지 약 3 mm일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 볼 및 비드의 크기는, 각각 독립적으로, 약 0.05 mm 내지 약 3 mm, 약 0.05 mm 내지 약 2.5 mm, 약 0.05 mm 내지 약 2 mm, 약 0.05 mm 내지 약 1.5 mm, 약 0.05 mm 내지 약 1 mm, 약 0.1 mm 내지 약 3 mm, 약 0.1 mm 내지 약 2.5 mm, 약 0.1 mm 내지 약 2 mm, 약 0.1 mm 내지 약 1.5 mm, 또는 약 0.1 mm 내지 약 1 mm일 수 있으나, 이에 제한되는 것은 아니다. 본원의 일 구현예에 있어서, 상기 볼 및 비드의 크기는, 각각 독립적으로, 약 0.1 mm 내지 약 1 mm일 수 있다. 상기 볼 및 비드의 크기가 작을수록 반응 속도는 촉진될 수 있다.
상기 볼 및 비드는, 각각 독립적으로, SUS 및 탄소강 등의 금속 재질; 및/또는 알루미나, 지르코니아, 및 지르코니아-이트리아 등의 금속 산화물 재질을 사용할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 고체 반응의 반응물의 몰 비는 상기 다이시안다이아미드 1 mol에 대하여 상기 고체 히드라진 약 0.5 mol 내지 약 5 mol인 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 고체 반응의 반응물의 몰 비는 상기 다이시안다이아미드 1 mol에 대하여 상기 고체 히드라진이 약 0.5 mol 미만인 경우, 반응이 잘 진행되지 않으며 반응하지 않은 상기 다이시안다이아미드와 상기 고체 히드라진이 남을 수 있으며, 상기 고체 히드라진이 약 5 mol을 초과하는 경우, 반응하지 않은 상기 고체 히드라진이 남을 수 있다.
본원의 일 구현예에 있어서, 상기 고체 반응은 약 0.1 MPa 내지 약 5 MPa의 압력 범위에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어 상기 고체반응은 약 0.1 MPa 내지 약 5 MPa, 약 0.1 MPa 내지 약 4.5 MPa, 약 0.1 MPa 내지 약 4 MPa, 약 0.1 MPa 내지 약 3.5 MPa, 약 0.1 MPa 내지 약 3 MPa, 약 0.1 MPa 내지 약 2.5 MPa, 약 0.1 MPa 내지 약 2 MPa, 또는 약 0.1 MPa 내지 약 1.5 MPa의 압력 범위에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 고체 반응은 약 0.1 MPa 내지 약 1.5 MPa의 압력 범위에서 수행되는 것일 수 있다. 여기서, 상기 고체 반응이 약 0.1 MPa 미만의 압력 범위에서 수행되는 경우, 반응이 느리게 진행되는 문제점이 발생할 수 있으며, 상기 고체 반응이 약 5 MPa 초과 압력 범위에서 수행되는 경우, 히드라진 유도체가 생성되는 문제점이 발생할 수 있다.
본원의 일 구현예에 있어서, 상기 고체 반응으로 수득되는 3,5-다이아미노-1,2,4-트라이아졸의 수득률은, 상기 반응물인 다이시안다이아미드를 기준으로 약 80% 이상, 약 85% 이상, 약 90% 이상, 또는 약 95% 이상일 수 있다. 본원의 일 구현예에 있어서, 상기 고체 반응으로 수득된 3,5-다이아미노-1,2,4-트라이아졸의 수득률은, 상기 반응물인 다이시안다이아미드를 기준으로 약 95% 이상 또는 약 98% 이상일 수 있다.
본원의 일 구현예에 있어서, 상기 고체 반응은, (a) 상기 고체 히드라진 및 상기 다이시안다이아미드를 고체 상태에서 혼합하여 혼합 분말을 수득하는 것; 및 (b) 상기 혼합 분말을 반응 용기에 넣고 고체 반응시켜 상기 3,5-다이아미노 1,2,4-트라이아졸을 수득하는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 고체 반응 시 첨가제를 추가 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 첨가제는 물, 염산, 및 질산에서 선택되는 하나 이상인 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 고체 반응 시 첨가제를 추가하면, 반응이 촉진되므로, 상기 3,5-다이아미노-1,2,4-트라이아졸 제조 공정의 효율이 증가하는 장점이 있을 수 있다. 그러나, 생성물인 DAT 이외에 DAT 염이나 다른 불순물이 생성되는 문제점이 있을 수 있다.
본원의 일 구현예에 있어서, 상기 첨가제를 추가 포함하는 경우에, 상기 다이시안다이아미드 1 mol에 대하여 약 0.1 mol 내지 약 1 mol의 상기 첨가제를 추가 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 고체 반응 시 윤활 용제를 추가 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 고체 반응 시 윤활 용제를 추가 포함할 경우, 상기 생성물과 상기 윤활 용제를 분리하는 과정이 추가로 필요할 수 있다.
본원의 일 구현예에 있어서, 상기 윤활 용제는 탄소 수 1 내지 15의 알코올을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 구체적으로, 상기 알코올은 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올, 헥산올, 헵탄올, 옥탄올, 노난올, 데칸올, 및 이의 가능한 이성질체들에서 선택되는 하나 이상을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 윤활 용제는 탄소 수 2 내지 16의 에테르를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 구체적으로, 상기 에테르는 디메틸에테르, 디에틸에테르, THF 및 다이옥신에서 선택되는 하나 이상을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 윤활 용제는 탄소 수 5 내지 15의 지방족 탄화수소를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 구체적으로, 상기 지방족 탄화수소는 펜탄, 헥산, 헵탄 및 이의 가능한 이성질체들에서 선택되는 하나 이상을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 윤활 용제는 탄소 수 6 내지 15의 방향족 탄화수소를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 구체적으로, 상기 방향족 탄화수소는 벤젠; 톨루엔; 자일렌; 및 산소 및 질소 등의 헤테로 원자가 치환된 방향족 탄소화합물에서 선택되는 하나 이상을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 윤활 용제는 폴리올을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 구체적으로, 상기 폴리올은 에틸렌글리콜, 글리세롤, 에리스리톨, 자일리톨, 및 만니톨에서 선택되는 하나 이상을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.
[실시예]
<실시예 1: 고체 반응을 통한 3,5-다이아미노-1,2,4-트라이아졸(3,5-diamino 1,2,4-triazole, DAT)의 제조>
고체 히드라진 0.076 g과 다이시안다이아미드 0.042 g을 막자사발에 넣고 고르게 갈아 혼합한 후, 반응 용기에 넣고 100℃에서 10 시간 내지 20 시간 동안 반응시켜 DAT 0.048 g을 수득하였다. 상기 DAT의 수득률은 반응물인 상기 다이시안다이아미드 기준으로 98%이었다. 상기 DAT에 대한 원소 정량 분석결과(측정장비: Thermo Flash 2000, Flash EA1112; 단위 %)를 하기의 표로 나타내었다.
C H N
계산치(%) 24.24 5.09 70.67
실험치(%) 23.98 4.90 71.05
도 1a는, 본원의 실시예 1에 따라서 합성된 DAT의 사진으로서, 흰색 분말임을 보여준다.
도 2는, 본원의 실시예 1에 따라서 합성된 DAT의 1H-NMR 스펙트럼이다. D6-DMSO 용매를 사용하였으며, 측정한 값은 다음과 같다. δ(ppm) = 10.23(s, 1H, NH), 5.08(s, 2H, NH2), 4.49(s, 2H, NH2)
도 3은, 본원의 실시예 1에 따라서 합성된 DAT의 13C-NMR 스펙트럼이다. D6-DMSO 용매를 사용하였으며, 159.3 ppm 하나의 피크만 관찰되었다.
도 4는, 본원의 실시예 1에 따라서 합성된 DAT의 GC-MS 데이터이다. 관찰된 m/z 피크는 43, 57, 99이다.
도 5는, 본원의 실시예 1에 따라서 합성된 DAT의 분말 X-선 회절(X-ray diffraction, XRD) 데이터이다. 상기 합성한 DAT의 X-선 회절 피크와 DAT의 JCPDS 데이터의 피크가 일치하며, 반응물로 사용한 고체 히드라진 및 다이시안다이아미드에 대응하는 피크; 및 생성물로서 DAT 이외의 물질의 피크는 관찰되지 않았다.
상기 분석 결과를 통하여, 본원의 실시예 1에 따라서 합성된 DAT 분말의 순도가 높은 것을 확인할 수 있었다.
<실시예 2: 반응 온도 조절을 통한 DAT의 제조>
상기 실시예 1에서 반응 온도를 80℃ 미만 및 120℃ 초과로 조정하고, 이외의 조건은 동일하게 하여 반응을 수행하였다. 반응 온도가 80℃ 미만인 경우, 반응물이 남아있었으며 DAT 생성물의 수율은 20% 미만이었다. 반면, 반응 온도가 120℃ 초과인 경우, 얻어진 DAT 생성물의 질량 및 수율은 실시예 1과 거의 같았지만 미량의 불순물이 관측되었다.
<실시예 3: 반응 시간 조절을 통한 DAT의 제조>
상기 실시예 1에서 반응 시간을 5 시간 및 40 시간으로 조정하고, 이외의 조건은 동일하게 하여 반응을 수행하였다. 반응 시간이 5 시간인 경우, 반응물이 남아있었으며 DAT 생성물의 수율은 50% 미만이었다. 반면 반응 시간이 40 시간인 경우, 얻어진 DAT 생성물의 질량 및 수율은 실시예 1과 거의 같았다.
<실시예 4: 반응물의 몰비 조절을 통한 DAT의 제조>
상기 실시예 1에서 상기 다이시안다이아미드 및 상기 고체 히드라진 반응물의 몰비를 다르게 조정하고, 이외의 조건은 동일하게 하여 반응을 수행하였다. 상기 다이시안다이아미드와 고체 히드라진의 몰비가 약 1:0.5 이하인 경우에는 DAT 수율이 10% 미만으로 반응이 잘 진행되지 않았으며 반응하지 않은 다이시안다이아미드와 고체 히드라진이 남아있었다. 상기 다이시안다이아미드와 고체 히드라진의 몰비가 약 1: 5 이상인 경우에는 반응하지 않은 히드라진이 많이 남았으며 다른 히드라진 유도체가 생성되었다.
<실시예 5: 반응 압력 조절을 통한 DAT의 제조>
상기 실시예 1에서 상기 고체 반응의 압력을 다르게 조정하고, 이외의 조건은 동일하게 하여 반응을 수행하였다. 상기 반응 압력이 약 0.1 MPa 미만인 경우, DAT의 생성 속도가 느려졌고 수율은 10% 미만이였으며, 반응 압력이 1 MPa인 경우, 얻어진 생성물 및 수율은 실시예 1과 거의 같았다.
<실시예 6: 첨가제로서 물을 포함시킨 DAT의 제조>
상기 실시예 1과 동일한 조건 하에서, 물을 다이시안다이아미드 1 몰 대비 1 몰의 비율로 첨가하였다. 얻어진 생성물 및 수율은 실시예 1과 거의 같았지만, 생성물에서 물을 건조시키는 추가의 과정이 필요하였다.
<실시예 7: 첨가제로서 염산을 포함시킨 DAT의 제조>
상기 실시예 1과 동일한 조건 하에서, 염산을 첨가하여 반응을 수행하였다. 염산을 다이시안다이아미드 1 몰 대비 0.2 몰의 비율로 첨가한 경우, DAT 생성물의 수율은 약 95% 이었다. 염산을 다이시안다이아미드 1 몰 대비 1 몰 초과의 비율로 첨가한 경우, DAT 생성물의 수율은 약 10% 미만이였으며, 염화 히드라진을 비롯한 염소화합물 함량이 90% 이상이었다.
<비교예 1: 액체 히드라진 수용액을 이용한 DAT의 제조>
상기 실시예 1에서 고체 히드라진 대신 동일 몰 수의 히드라진 수화물(hydrazine monohydrate, 64-65%) 50 μL을 첨가하고, 이외의 조건은 동일하게 하여 반응을 수행하였다. 반응 후 고체 화합물을 분리하여 건조 후, 얻어진 생성물의 수율은 약 30%이었다. 생성된 DAT는 노랑색 또는 분홍색 등의 색깔을 띄었으며, 반응 조건에 따라서 색깔이 달라졌다 (도 1b).
<비교예 2: 히드라진 하이드로클로라이드(NH2NH2·HCl)를 이용한 DAT의 제조>
상기 실시예 1에서 고체 히드라진 대신 동일 몰 수의 히드라진 하이드로클로라이드 0.07 g를 첨가하고, 이외의 조건은 동일하게 하여 반응을 수행하였다. 반응 후 고체 화합물을 분리하여 건조 후, 얻어진 생성물의 수율은 약 30%이었으며, 생성된 고체는 암모늄클로라이드(NH4Cl) 등의 불순물을 포함하였다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (14)

  1. 고체 히드라진 및 다이시안다이아미드를 고체 반응시켜 3,5-다이아미노-1,2,4-트라이아졸을 수득하는 것
    을 포함하는, 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법.
  2. 제 1 항에 있어서,
    상기 고체 반응은 무용매 조건에서 수행되는 것인, 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법.
  3. 제 1 항에 있어서,
    상기 고체 반응은 80℃ 내지 120℃의 온도 범위에서 수행되는 것인, 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법.
  4. 제 1 항에 있어서,
    상기 고체 반응은 반응 시간 동안 계속 혼합하며 수행되는 것인, 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법.
  5. 제 4 항에 있어서,
    상기 혼합은 막자 사발, 볼밀, 비드밀, 및 니더에서 선택되는 하나 이상에 의해 수행되는 것인, 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법.
  6. 제 1 항에 있어서,
    상기 고체 반응의 반응물의 몰 비는 상기 다이시안다이아미드 1 mol에 대하여 상기 고체 히드라진 0.5 mol 내지 5 mol인 것인, 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법.
  7. 제 1 항에 있어서,
    상기 고체 반응은 0.1 MPa 내지 5 MPa의 압력 범위에서 수행되는 것인, 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법.
  8. 제 1 항에 있어서,
    상기 고체 반응으로 수득되는 3,5-다이아미노-1,2,4-트라이아졸의 수득률은 80% 이상인 것인, 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법.
  9. 제 1 항에 있어서,
    상기 고체 반응은,
    (a) 상기 고체 히드라진 및 상기 다이시안다이아미드를 고체 상태에서 혼합하여 혼합 분말을 수득하는 것; 및
    (b) 상기 혼합 분말을 반응 용기에 넣고 고체 반응시켜 상기 3,5-다이아미노-1,2,4-트라이아졸을 수득하는 것
    을 포함하는 것인, 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법.
  10. 제 1 항에 있어서,
    상기 고체 반응 시 첨가제를 추가 포함하는 것인, 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법.
  11. 제 10 항에 있어서,
    상기 첨가제는 물, 염산, 및 질산에서 선택되는 하나 이상인 것인, 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법.
  12. 제 10 항에 있어서,
    상기 다이시안다이아미드 1 mol에 대하여 0.1 mol 내지 1 mol의 상기 첨가제를 추가 포함하는 것인, 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법.
  13. 제 1 항에 있어서,
    상기 고체 반응 시 윤활 용제를 추가 포함하는 것인, 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법.
  14. 제 13 항에 있어서,
    상기 윤활 용제는 탄소 수 1 내지 15의 알코올, 탄소 수 2 내지 16의 에테르, 탄소 수 5 내지 15의 지방족 탄화수소, 탄소 수 6 내지 15의 방향족 탄화수소 및 폴리올에서 선택되는 하나 이상인 것인, 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법.
PCT/KR2021/018747 2021-01-22 2021-12-10 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법 WO2022158713A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0009298 2021-01-22
KR1020210009298A KR20220106414A (ko) 2021-01-22 2021-01-22 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법

Publications (1)

Publication Number Publication Date
WO2022158713A1 true WO2022158713A1 (ko) 2022-07-28

Family

ID=82549768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018747 WO2022158713A1 (ko) 2021-01-22 2021-12-10 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법

Country Status (2)

Country Link
KR (2) KR20220106414A (ko)
WO (1) WO2022158713A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2648671A (en) * 1951-06-15 1953-08-11 American Cyanamid Co Preparation of guanazole
KR20130097981A (ko) * 2012-02-27 2013-09-04 서강대학교산학협력단 고체 히드라진을 이용한 아진 및 아진 고분자 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2648671A (en) * 1951-06-15 1953-08-11 American Cyanamid Co Preparation of guanazole
KR20130097981A (ko) * 2012-02-27 2013-09-04 서강대학교산학협력단 고체 히드라진을 이용한 아진 및 아진 고분자 제조 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BYEONGNO LEE, SEUNG HEE KANG, DONGHYEON KANG, KYU HYUNG LEE, JAEHEUNG CHO, WONWOO NAM, OC HEE, HAN CD, NAM HWI HUR: "Isolation and structural characterization of the elusive 1 : 1 adduct of hydrazine and carbon dioxide", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, vol. 47, no. 40, 1 January 2011 (2011-01-01), pages 11219 - 11221, XP055216976, ISSN: 13597345, DOI: 10.1039/c1cc14542h *
HAIGES R., BÉLANGER-CHABOT G., KAPLAN S. M., CHRISTE K. O.: "Preparation and characterization of 3,5-dinitro-1 H -1,2,4-triazole", DALTON TRANSACTIONS, RSC - ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, vol. 44, no. 16, 8 April 2015 (2015-04-08), Cambridge , pages 7586 - 7594, XP055952812, ISSN: 1477-9226, DOI: 10.1039/C5DT00888C *
KOLB V.M., DWORKIN J.P., MILLER S.L.: "Alternative bases in the RNA world: The prebiotic synthesis of urazole and its ribosides", JOURNAL OF MOLECULAR EVOLUTION., SPRINGER VERLAG, NEW YORK, NY., US, vol. 38, no. 6, 1 June 1994 (1994-06-01), US , XP055952814, ISSN: 0022-2844, DOI: 10.1007/BF00175873 *

Also Published As

Publication number Publication date
KR20220106414A (ko) 2022-07-29
KR20230133820A (ko) 2023-09-19
KR102644566B1 (ko) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2010114302A2 (ko) 유기 인계 난연제 및 이의 제조방법
WO2011013880A2 (en) Method for preparing dialkyl carbonate
EP2173718A2 (en) A method for isolation and purification of montelukast
WO2017023123A1 (ko) 크로마논 유도체의 신규한 제조방법
WO2014116012A4 (ko) 아미카르바존의 제조방법
WO2022158713A1 (ko) 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법
WO2014178684A1 (ko) 루테늄 전구체, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2018097529A2 (ko) 플루오린 함유 디알킬카보네이트 화합물의 제조방법
CN109651282A (zh) 一种合成四取代联烯的新方法
CN111704575B (zh) 一种在无催化剂和无添加剂的条件下喹啉-2-硫代甲酰胺类化合物的合成方法
CN112358454A (zh) 一种4,5-二氢异噁唑衍生物的制备方法
US20090111999A1 (en) Process for producing an aromatic unsaturated compound
WO2011037310A1 (ko) 알킬이소시아네이트의 제조 방법
WO2013015654A2 (ko) 아미노-트리아졸리논의 제조방법
WO2022092774A1 (ko) 포말리도마이드로부터 3,6&#39;-디티오포말리도마이드를 선택적으로 합성하는 방법
US9079829B2 (en) Method of preparing powder of a solid carbazic acid derivative
WO2019231166A1 (ko) 슈가마덱스 나트륨염의 제조방법
WO2011096729A2 (en) Novel method of preparing secondary amine compound using microflow reactor
CN112724003B (zh) 一种9-芴甲醛的制备方法
CN115845892A (zh) 一种n、s共掺杂碳材料负载锌单原子及其制备方法和应用
WO2013176325A1 (ko) 길만시약 화합물을 이용한 헤테로 융합고리 화합물의 신규한 제조방법
CN110590666B (zh) 一种二苯基并[c,e]吖庚因衍生物的制备方法
US7241888B2 (en) Process for preparing 10α-[4′-(S,S-dioxothiomorpholin-1′-yl)]-10-deoxo-10-dihydroartemisinin
WO2017160044A2 (ko) 알킬렌 카보네이트의 제조방법 및 그를 위한 촉매 조성물
US20060009644A1 (en) Novel crystalline forms of sodium 1,2-benzisoxazole-3-methanesulfonate, processes of preparing same and use thereof in the synthesis of zonisamide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921472

Country of ref document: EP

Kind code of ref document: A1