WO2017160044A2 - 알킬렌 카보네이트의 제조방법 및 그를 위한 촉매 조성물 - Google Patents

알킬렌 카보네이트의 제조방법 및 그를 위한 촉매 조성물 Download PDF

Info

Publication number
WO2017160044A2
WO2017160044A2 PCT/KR2017/002712 KR2017002712W WO2017160044A2 WO 2017160044 A2 WO2017160044 A2 WO 2017160044A2 KR 2017002712 W KR2017002712 W KR 2017002712W WO 2017160044 A2 WO2017160044 A2 WO 2017160044A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
formula
catalyst composition
group
alkylene carbonate
Prior art date
Application number
PCT/KR2017/002712
Other languages
English (en)
French (fr)
Other versions
WO2017160044A3 (ko
Inventor
김훈식
김영진
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Publication of WO2017160044A2 publication Critical patent/WO2017160044A2/ko
Publication of WO2017160044A3 publication Critical patent/WO2017160044A3/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/04Preparation of esters of carbonic or haloformic acids from carbon dioxide or inorganic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids

Definitions

  • the present invention relates to a method for preparing alkylene carbonate and a catalyst composition therefor. More specifically, the present invention relates to a process for producing alkylene carbonates from alkylene oxides and carbon dioxide in high yield and high purity, and catalyst compositions therefor.
  • Alkylene carbonate is not only used as a raw material of polycarbonate, intermediate of pharmaceutical process, oxyalkylation agent of dyestuff synthesis process, process equipment protection agent, solvent of fiber production process, but also polymer electrolyte solvent of secondary battery.
  • the range of use is expanding day by day.
  • interest in the production of alkylene carbonate has been further increased, such as the development of new processes using ethylene carbonate as an intermediate for producing ethylene glycol in high yield.
  • Japanese Patent Application Laid-Open No. 9-67365 Japanese Patent Application Laid-Open No. 59-13776, Japanese Patent Application Laid-Open No. 9-235252, US Patent No. 2,773,070, etc., compounds of inorganic salts, phosphonium halides and ammonium halide systems Discloses a process for using as a catalyst.
  • Japanese Patent Laid-Open No. 9-67365 Kl as a catalyst
  • Japanese Patent Laid-Open No. 9-Open No. 9-67365 Kl as a catalyst
  • 59-13776 refer to a tetraalkyl phosphonium halide such as tributyl methyl phosphonium iodide. It discloses a method using.
  • Japanese Patent Application Laid-open No. Hei 9-235252 discloses a method of using a polystyrene copolymer having a quaternary phosphonium halide at its end group.
  • Japanese Patent Application Laid-Open No. H7-206846 discloses a method using a catalyst in which CsOH, RbOH, and ammonium halide are substituted in an ion exchange resin
  • US Patent No. 4,233,221 discloses a method of using an ion exchange resin.
  • Amberlite-based ion exchange resins are disclosed, but the yield of alkylene carbonate is only about 30-80%.
  • U. S. Patent No. 5,283, 356 discloses a method of using a phthalocyanin-based compound containing a metal such as Co, Cr, Fe, Mn, Ni, Ti, V, Zr as a catalyst.
  • Patent No. 7-206547 discloses a method using a catalyst substituted with rubidium (Rb) or cesium (Cs) ions instead of hydrogen ions of heteropoly acid, both of which require an expensive catalyst and react. Not only is the temperature high at 120-180 ° C, the yield is low at 30-90%.
  • Korean Patent Nos. 10-0531131 and 10-0531132 catalyze a dialkylimidazolium zinc tetrahalide or tetraalkylammonium zinc tetrahalide obtained by reacting an imidazolium or ammonium halide with zinc halide.
  • the alkylene carbonate was obtained in high yield under mild conditions.
  • the zinc tetrahalide-based catalyst is usually produced in a two-step reaction using an organic solvent, that is, in a one-step reaction in which an alkyl halide and 1-alkylimidazole are reacted on an organic solvent such as acetonitrile to synthesize an ionic liquid.
  • the ionic liquid is reacted with zinc halide compounds in an organic solvent such as tetrahydrofuran to synthesize zinc tetrahalide compounds.
  • dialkylimidazolium zinc tetrahalide compound is too high in activity to generate alkylene carbonate from alkylene oxide and carbon dioxide, as well as during the vacuum distillation and purification of the product, i.e., in the absence of CO 2 pressure.
  • a type of ethylene carbonate in the alkylene carbonate is there is purified through the distillation process under reduced pressure of usually less than 130 O C temperature and 50 mmHg, wherein zinc tetra halide is a catalyst for the reaction of decomposition of ethylene carbonate to ethylene oxide and carbon dioxide,
  • zinc tetra halide is a catalyst for the reaction of decomposition of ethylene carbonate to ethylene oxide and carbon dioxide
  • Another object of the present invention is to provide a method for economically preparing the above catalyst composition.
  • Still another object of the present invention is to provide a method for producing alkylene carbonate in high yield and high purity from alkylene oxide and carbon dioxide using the catalyst composition described above.
  • One embodiment of the present invention relates to a catalyst composition
  • a catalyst composition comprising an imidazolium halide represented by the following formula (2) and a zinc halide represented by the following formula (3) in an alkylene carbonate solvent represented by the following formula (1).
  • R 1 and R 2 are each independently hydrogen, an alkyl group of 1 to 6 carbon atoms, a haloalkyl group or an aryl group of 1 to 6 carbon atoms, or together with the carbon atoms to which they are attached form a hexagonal ring,
  • R 3 is an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group,
  • R 4 is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, a hydroxyalkyl group having 1 to 6 carbon atoms, or an aryl group,
  • R 5 , R 6 and R 7 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms or an aryl group,
  • X and Y are each independently a halogen atom, specifically Cl, Br or I.
  • an alkyl group refers to a straight or branched hydrocarbon, and examples include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, nonyl, decyl, dodecyl, and the like.
  • the aryl group includes both aromatic groups and heteroaromatic groups and their partially reduced derivatives.
  • the aromatic group is a simple or fused cyclic consisting of 5 to 15 pentagons
  • heteroaromatic group refers to an aromatic group containing one or more oxygen, sulfur or nitrogen.
  • Examples of representative aryl groups are phenyl, benzyl, naphthyl, pyridinyl, furanyl, thiophenyl, indolyl, quinolinyl, imidazolinyl ), Oxazolyl, thiazolyl, tetrahydronaphthyl, and the like, but are not limited thereto.
  • One or more of the aryl groups may be substituted with an alkyl group, a haloalkyl group, an alkoxy group, hydroxy, halogen, amino and the like.
  • a haloalkyl group refers to an alkyl group in which one or more hydrogens are substituted with halogen, including but not limited to trifluoromethyl, chloroethyl, and the like.
  • a hydroxyalkyl group refers to an alkyl group in which one or more hydrogens are substituted with a hydroxy group, and includes, but is not limited to, hydroxymethyl, hydroxyethyl, and the like.
  • Cycloalkyl group herein means simple or fused cyclic hydrocarbons, including but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
  • the content of the zinc halide may be 0.05 to 0.5 moles, in particular 0.1 to 0.3 moles with respect to 1 mole of the imidazolium halide.
  • the content is less than 0.05 mole, since the zinc halide concentration is significantly lower than that of imidazolium halide contained in the alkylene carbonate solution, the Lewis acidity required for catalysis cannot be satisfied.
  • the content of the alkylene carbonate solvent may be 1 to 10 moles with respect to 1 mole of imidazolium halide.
  • the content is less than 1 mole, the viscosity of the reactant becomes high, so that it is difficult to transfer the catalyst to the reactor.
  • the content is more than 10 moles, the amount of the catalyst composition to be added is unnecessarily increased. have.
  • the catalyst composition according to one embodiment of the present invention is an imide represented by the following Chemical Formula 2 by reacting an alkyl halide represented by the following Chemical Formula 4 with an imidazole represented by the following Chemical Formula 5 in an alkylene carbonate solvent represented by the following Chemical Formula 1 It can be prepared by obtaining a zoleum halide and adding a zinc halide represented by the following formula (3) to the resulting reaction solution.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 , X and Y are as defined above.
  • the amount of the alkyl halide represented by the formula (4) may be 1 to 2 mol per mole of imidazole represented by the formula (5). If the amount of the alkyl halide is less than 1 mole, unreacted imidazole is present in the alkylene carbonate solution, which causes bisimidazole zinc halides that are less active when zinc halide is added. The rate of formation of zoleum halides no longer increases, but there is no economic benefit as the amount of alkyl halides to be removed after the reaction increases.
  • One embodiment of the present invention relates to a method for producing an alkylene carbonate represented by the following Chemical Formula 1, wherein the alkylene oxide represented by the following Chemical Formula 6 is reacted with carbon dioxide in the above-described catalyst composition.
  • R 1 and R 2 are as defined above.
  • the alkylene oxide represented by the formula (6) includes, but is not limited to, for example, ethylene oxide, propylene oxide, epichlorohydrin, butylene oxide, styrene oxide, cyclohexylene oxide, etc. It is not.
  • the amount of the catalyst composition may be an amount such that the amount of imidazolium halides contained in the catalyst composition is 0.0001 to 0.1 mole with respect to 1 mole of the alkylene oxide.
  • the amount of imidazolium halide is less than 0.0001 mole, the reaction rate becomes slow.
  • the amount of imidazolium halide is less than 0.1 mole, the reaction rate and the alkylene carbonate yield are not improved any more. There is.
  • carbon dioxide and alkylene oxide used as a reaction raw material does not significantly affect the reaction even if the nitrogen, hydrogen, carbon monoxide, low concentration of hydrocarbons, water, etc., and industrially produced carbon dioxide and Alkylene oxide can be used without further purification.
  • the reaction pressure does not significantly affect the reaction rate and yield, but it is advantageous to proceed at 10 to 150 atm, preferably 20 to 100 atm, in consideration of the safety of the reaction and the equipment cost.
  • the reaction pressure is less than 10 atm, the reaction rate tends to be somewhat slow. If the reaction pressure is higher than 150 atm, there is a problem in that the equipment cost is excessively increased while there is no effect of improving the reaction rate and yield.
  • the reaction temperature may be 60 to 200 ° C, preferably 100 to 180 ° C. If the reaction temperature is less than 60 °C reaction rate is slow, if the reaction temperature exceeds 200 °C alkylene oxide may cause a self-polymerization reaction (self-polymerization) may reduce the reaction selectivity.
  • the alkylene carbonate solvent contained in the catalyst composition is preferably used the same material as the alkylene carbonate prepared from the reaction raw material alkylene oxide.
  • the catalyst composition containing an ethylene carbonate solvent when producing propylene carbonate from propylene oxide, the catalyst composition containing a propylene carbonate solvent.
  • both a batch process using a reactor equipped with a stirrer and a continuous process using a bubble column or a loop reactor may be used.
  • the catalyst composition according to the present invention can prepare alkylene carbonate in high yield and purity in a short time under low temperature and pressure from alkylene oxide and carbon dioxide, and can solve the problem of by-product generation and discoloration of the product.
  • the catalyst composition according to the present invention is prepared in an alkylene carbonate solvent and can be used directly without further separation and purification, thereby being excellent in terms of economy.
  • the catalyst composition was prepared in the same manner as in Example 1 while varying the type and amount of imidazole, alkyl halide (RX), zinc halide (ZnY 2 ), and alkylene carbonate (AC), and the results are shown in Table 1 below. . Excess alkylhalide used in the reaction was removed in vacuo after the reaction.
  • Example Imidazole (moles) RX (moles) ZnY 2 (confiscation) AC (moles) Total catalyst composition (g) Imidazolium halide weight (g) 2 1-methylimidazole (0.2) 1-BuBr (0.3) ZnBr 2 (0.01) EC (0.2) 64 43.8 3 1-methylimidazole (0.2) EtBr (0.4) ZnBr 2 (0.05) EC (0.4) 86 38.2 4 1-butylimidazole (0.2) EtBr (0.3) ZnCl 2 (0.1) EC (0.6) 113 46.6 5 1-hexylimidazole (0.2) 1 - BuCl (0.2) ZnBr 2 (0.05) EC (0.8) 132 48.9 6 1- (2-hydroxyethyl) imidazole (0.2) BzCl (0.24) ZnI 2 (0.02) EC (1.0) 156 47.7 7 1-phenylimidazole (0.2) BzBr (0.2) Z
  • Example 1 catalyst composition 200 mL of ethylene oxide reactant to the high-pressure reactor (EO, 66 g, 1.5 mol ) and (the 0.2 g, 1- methyl imidazole 3.04 x 10 - 4 mol) of ethylene carbonate in Example 1 catalyst composition obtained from a catalyst which filled Thereafter, the temperature was raised to 120 ° C. under a pressure of 10 atm of carbon dioxide (CO 2 ), and carbon dioxide was added again to bring the pressure of the reactor to 30 atm. As the amount of carbon dioxide consumed during the reaction was continuously supplied from the outside, the pressure of the reactor was maintained at 30 atm. After reacting at 120 ° C.
  • CO 2 carbon dioxide
  • ethylene carbonate (EC) was 99.2%
  • TOF-1 (h- 1 ) and TOF-2 (h- 1 ) were 4,931 and 9,862, respectively, and it was confirmed that no impurities were produced.
  • TOF-1 (h -1 ) number of moles of alkylene carbonate / (moles of imidazolium halide in catalyst composition x reaction time (h))
  • TOF-2 (h -1 ) number of moles of alkylene carbonate / (number of moles of zinc halide in catalyst composition x reaction time (h))
  • Example 2 94.8 2,275 45,500 14
  • Example 3 99.6 3,213 12,582 15
  • Example 4 98.5 4,282 8,564 16
  • Example 5 99.3 4,916 19,664 17
  • Example 6 96.7 5,850 58,502 18
  • Example 7 91.5 9,917 19,834 19
  • Example 8 95.9 4,500 18,000 20
  • Example 10 92.7 5,840 14,600 22
  • Example 11 97.7 2,046 20,460
  • Example 12 In the same conditions as in Example 12, the amount of ethylene oxide was fixed to 66 g (1.5 mol), and the results of the catalytic reaction while varying the amount of the ethylene carbonate catalyst composition prepared in Example 3 are shown in Table 5 below. .
  • Example Amount of catalyst composition (g) Imidazolium bromide / EO (molar ratio) EC yield (%) TOF-1 (h -1 ) TOF-2 (h -1 ) 37 0.0645 0.0001 67.1 6,712 26,848 38 0.3225 0.0005 99.7 1,995 7,980 39 0.645 0.001 99.9 999 3,996 40 1.29 0.002 100 500 2,000 41 6.45 0.01 100 150 600 42 64.5 0.1 98.2 9.8 39
  • Example 2 Ethylene in the same manner as in Example 1 while varying the type and amount of zinc halide while fixing the amount of 1-methylimidazole (0.2 mol), 1-bromobutane (0.2 mol) and ethylene carbonate (0.4 mol)
  • a carbonate catalyst composition was prepared, part of which was used as a catalyst for the reaction of producing ethylene carbonate from ethylene oxide and carbon dioxide.
  • Ethylene carbonate catalyst in the same manner as in Example 1 while varying the amount of ethylene carbonate while fixing the amounts of 1-methylimidazole (0.2 mol), 1-bromobutane (0.2 mol) and ZnBr 2 (0.004 mol)
  • a composition was prepared and part of it was used as a catalyst for the reaction to produce ethylene carbonate from ethylene oxide and carbon dioxide.
  • the catalytic reaction was carried out in the same manner as in Example 12, in which the number of moles of 1-butyl-3-methylimidazolium included in the ethylene carbonate composition used as the catalyst was fixed at 0.001 mol and the amount of ZnBr 2 at 0.0002 moles. Table 7 shows.
  • Example 8 Using 0.2 g of the catalyst composition prepared in Example 3, the amount of alkylene oxide was 66 g (1.5 mol) under the same conditions as in Example 12, and the molar ratio of alkylene oxide / 1-butyl-3-methylimidazolium was The result of performing the catalytic reaction while changing the type of alkylene oxide in the fixed state to 3,225 is shown in Table 8 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명은 알킬렌 카보네이트 용매 중에 이미다졸륨 할라이드와 아연할라이드를 포함하는 촉매 조성물, 이의 제조방법 및 이를 이용하여 알킬렌 옥사이드와 이산화탄소로부터 알킬렌 카보네이트를 제조하는 방법을 제공한다. 본 발명에 따른 촉매 조성물은 알킬렌 옥사이드와 이산화탄소로부터 고수율 및 고순도로 알킬렌 카보네이트를 제조할 수 있다. 또한, 본 발명에 따른 촉매 조성물은 알킬렌 카보네이트 용매 중에서 제조하여 추가적인 분리 정제 과정 없이 바로 사용할 수 있으므로 경제적인 관점에서도 우수하다.

Description

알킬렌 카보네이트의 제조방법 및 그를 위한 촉매 조성물
본 발명은 알킬렌 카보네이트의 제조방법 및 그를 위한 촉매 조성물에 관한 것이다. 보다 구체적으로 본 발명은 알킬렌 옥사이드와 이산화탄소로부터 알킬렌 카보네이트를 고수율 및 고순도로 제조하는 방법 및 그를 위한 촉매 조성물에 관한 것이다.
알킬렌 카보네이트는 폴리카보네이트의 원료, 제약공정의 중간체, 염료(dyestuff) 합성 과정의 옥시알킬화 시약(oxyalkylation agent), 공정설비 보호제, 섬유 생산 공정의 용매 등의 용도뿐 아니라 이차전지의 고분자 전해질 용매 등 그 사용 범위가 날로 확대되고 있다. 또한 최근 들어서는 에틸렌글리콜을 고수율로 생산하기 위한 중간체로 에틸렌 카보네이트(ethylene carbonate)를 사용하는 신 공정이 개발되는 등 알킬렌 카보네이트의 제조에 대한 관심이 더욱 증대되고 있다.
알킬렌 카보네이트의 제조에는 종래 에틸렌 글리콜(ethylene glycol)과 포스젠(COCl2)를 반응시키는 방법이 이용되었으나, 원료물질인 포스젠의 맹독성과 환경오염 물질인 염화수소의 부생문제 등으로 인해 최근에는 주로 알킬렌 옥사이드와 이산화탄소를 반응시키는 공정이 사용되고 있다. 그러나 상기 알킬렌 옥사이드와 CO2를 반응시켜 알킬렌 카보네이트를 제조하는 반응 공정은 상온에서 무촉매로 진행되는 포스젠 공정과는 달리 고온 고압하에서 반응을 진행시켜야 하기 때문에 촉매의 활성 및 열 안정성이 낮으면 촉매의 분해 및 원료인 알킬렌옥사이드의 중합에 의한 부산물 생성문제와 더불어 생성물이 색깔을 띠는 문제가 있다. 이러한 문제점들을 해결하기 위하여 다양한 종류의 촉매가 개발되었다. 일본공개특허 평9-67365호, 일본공개특허 소59-13776호, 일본공개특허 평9-235252호, 미국특허 제2,773,070호 등에서는 무기염, 포스포늄 할라이드(phosphonium halide) 및 암모늄 할라이드 계통의 화합물을 촉매로 사용하는 방법을 개시하고 있다. 상기 일본공개특허 평9-67365호에서는 촉매로 Kl를, 일본공개특허 소59-13776호에서는 트리부틸메틸포스포늄 이오다이드(tributyl methyl phosphonium iodide)와 같은 테트라알킬포스포늄 할라이드(tetraalkyl phosphonium halide)를 이용하는 방법을 개시하고 있다. 또한 일본공개특허 평9-235252호에서는 말단기에 4급 포스포늄 할라이드를 갖고 있는 폴리스티렌 공중합 고분자를 이용하는 방법을 개시하고 있다. 이들 특허에서는 반응온도를 100 - 170 ℃로 1 - 5시간 동안 반응시켰을 때 알킬렌 카보네이트 수율이 50 - 95 %가 된다고 기술하고 있으나, 보다 높은 알킬렌 카보네이트 수율을 얻기 위해서는 높은 온도와 긴 반응시간을 필요로 하고, 원료인 이산화탄소와 알킬렌 옥사이드에 포함된 수분 함량을 수백 ppm 이하로 조절해야 하는 문제점을 가지고 있다.
한편, 이온교환수지를 이용하는 방법으로 일본공개특허 평7-206846호에서는 이온교환수지에 CsOH, RbOH, 암모늄 할라이드를 치환시킨 촉매를 사용한 방법을 개시하고 있으며, 미국특허 제4,233,221호에는 도웩스(DOWEX)와 앰버라이트(Amberlite) 계열의 이온교환수지를 사용하는 방법을 개시하고 있으나, 알킬렌 카보네이트 수율이 30 - 80 %정도에 불과하다.
상기에 언급된 촉매들 외에 미국특허 제5,283,356호에서는 Co, Cr, Fe, Mn, Ni, Ti, V, Zr 등의 금속을 포함하는 프탈로시아닌(phthalocyanin)계 화합물을 촉매로 사용하는 방법을, 일본공개특허 평7-206547호에서는 헤테로폴리산(heteropoly acid)의 수소이온 대신 루비듐(Rb) 또는 세슘(Cs) 이온을 치환시킨 촉매를 사용하는 방법을 제시하고 있는데, 두 경우 모두 고가의 촉매를 필요로 하고 반응온도가 120 - 180 ℃로 높을 뿐 아니라 수율도 30 - 90 %로 낮은 편이다.
상기 언급한 바와 같이 종래 기술은 알킬렌 카보네이트를 공업적으로 제조하기 위해서 높은 온도가 필요하고, 원료의 수분제거 등 반응조건이 까다로울 뿐만 아니라, 선택성과 수율이 비교적 낮고 반응시간이 오래 걸리는 문제점이 있다. 이러한 문제점을 해결하기 위하여 한국특허 제10-0531131호 및 제10-0531132호에서는 이미다졸륨 또는 암모늄 할라이드와 아연할라이드를 반응시켜 얻어진 디알킬이미다졸륨 아연테트라할라이드 또는 테트라알킬암모늄 아연테트라할라이드를 촉매로 사용함으로써 알킬렌 카보네이트를 온화한 조건에서 고수율로 얻을 수 있었다. 그러나 상기 아연테트라할라이드계 촉매는 통상 유기용매를 사용하는 2 단계의 반응, 즉 알킬할라이드와 1-알킬이미다졸을 아세토니트릴과 같은 유기용매상에서 반응시켜 이온성액체를 합성하는 1단계 반응과 생성된 이온성액체를 테트라히드로푸란과 같은 유기용매상에서 아연할라이드 화합물과 반응시켜 아연테트라할라이드 화합물을 합성하는 2단계 반응을 거쳐 합성되기 때문에 촉매의 분리·정제 및 용매 회수에 과다한 에너지가 소비되는 문제가 있었다. 또한 상기 디알킬이미다졸륨 아연테트라할라이드 화합물은 활성이 너무 높아 알킬렌 옥사이드와 이산화탄소로부터 알킬렌 카보네이트를 생성하는 정반응 뿐만 아니라 생성물의 진공증류 및 정제과정 중, 즉 CO2 압력이 없는 상태에서는 생성된 알킬렌 카보네이트를 다시 알킬렌 옥사이드와 이산화탄소로 분해시키는 역반응도 촉진하는 문제를 지니고 있다. 예를 들어 알킬렌 카보네이트의 일종인 에틸렌 카보네이트는 통상 130 OC 이상의 온도와 50 mmHg 이하의 감압하에서 증류공정을 통하여 정제되는데, 이때 아연테트라할라이드가 에틸렌 카보네이트를 에틸렌 옥사이드와 이산화탄소로 분해하는 반응의 촉매로 작용하게 되어 결과적으로 생성물인 에틸렌 카보네이트의 손실을 초래하게 될 뿐만 아니라 분해 과정 중 생성된 에틸렌 옥사이드가 이차 반응을 일으켜 부산물이 생성되고 또 이로 인해 반응생성물이 변색되는 문제가 있다.
본 발명자들은 상기한 종래의 알킬렌 카보네이트 제조용 아연테트라할라이드 촉매가 가지는 문제점을 해결하기 위하여 예의 연구 검토한 결과, 알킬렌 카보네이트 용매 중에서 알킬할라이드를 이미다졸과 반응시켜 할라이드 음이온을 지닌 이온성 액체를 합성한 후, 여기에 아연할라이드를 첨가하여 얻어진 알킬렌 카보네이트 용액을 분리·정제 과정 없이 직접 알킬렌 옥사이드와 이산화탄소 간의 반응에 촉매로 사용하는 경우 알킬렌 카보네이트를 높은 수율로 제조할 수 있음을 발견하고 본 발명을 완성하게 되었다.
본 발명의 목적은 알킬렌 카보네이트의 제조에 사용되는 유용한 촉매 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기한 촉매 조성물을 경제적으로 제조하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기한 촉매 조성물을 이용하여 알킬렌 옥사이드와 이산화탄소로부터 고수율 및 고순도로 알킬렌 카보네이트를 제조하는 방법을 제공하는 것이다.
본 발명의 일 실시형태는 하기 화학식 1로 표시되는 알킬렌 카보네이트 용매 중에 하기 화학식 2로 표시되는 이미다졸륨 할라이드와 하기 화학식 3으로 표시되는 아연할라이드를 포함하는 촉매 조성물에 관한 것이다.
[화학식 1]
Figure PCTKR2017002712-appb-I000001
[화학식 2]
Figure PCTKR2017002712-appb-I000002
[화학식 3]
ZnY2
상기 화학식에서,
R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 할로알킬기 또는 아릴기이거나, 결합되어 있는 탄소원자와 함께 6각형 고리를 형성하고,
R3 는 탄소수 1 내지 12의 알킬기, 탄소수 3 내지 10의 사이클로알킬기 또는 아릴기이며,
R4는 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 할로알킬기, 탄소수 1 내지 6의 히드록시알킬기 또는 아릴기이고,
R5, R6 및 R7은 각각 독립적으로 수소, 탄소수 1 내지 6의 알킬기 또는 아릴기이며,
X 및 Y는 각각 독립적으로 할로겐 원자, 구체적으로 Cl, Br 또는 I이다.
본 명세서에서 사용되는 알킬기는 직쇄형 또는 분지형 탄화수소를 의미하며, 예를 들어 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 옥틸, 노닐, 데실, 도데실 등이 포함되나 이에 한정되는 것은 아니다.
본 명세서에서 사용되는 아릴기는 아로메틱기와 헤테로아로메틱기 및 그들의 부분적으로 환원된 유도체를 모두 포함한다. 상기 아로메틱기는 5 내지 15각형으로 이루어진 단순 또는 융합 고리형이며, 헤테로아로메틱기는 산소, 황 또는 질소를 하나 이상 포함하는 아로메틱기를 의미한다. 대표적인 아릴기의 예로는 페닐, 벤질, 나프틸, 피리디닐(pyridinyl), 푸라닐(furanyl), 티오페닐(thiophenyl), 인돌릴(indolyl), 퀴놀리닐(quinolinyl), 이미다졸리닐(imidazolinyl), 옥사졸릴(oxazolyl), 티아졸릴(thiazolyl), 테트라히드로나프틸 등이 있으나 이에 한정되는 것은 아니다. 상기 아릴기는 한 개 또는 그 이상의 수소가 알킬기, 할로알킬기, 알콕시기, 히드록시, 할로겐, 아미노 등으로 치환될 수 있다.
본 명세서에서 사용되는 할로알킬기는 한 개 또는 그 이상의 수소가 할로겐으로 치환된 알킬기를 의미하며, 트리플로오로메틸, 클로로에틸 등을 포함하나 이에 한정되는 것은 아니다.
본 명세서에서 사용되는 히드록시알킬기는 한 개 또는 그 이상의 수소가 히드록시기로 치환된 알킬기를 의미하며, 히드록시메틸, 히드록시에틸 등을 포함하나 이에 한정되는 것은 아니다.
본 명세서에서 사이클로알킬기는 단순 또는 융합 고리형 탄화수소를 의미하며, 예를 들어 사이클로프로필, 사이클로부틸, 사이클로펜틸, 사이클로헥실 등이 포함되나 이에 한정되는 것은 아니다.
본 발명의 일 실시형태에서, 상기 아연할라이드의 함량은 상기 이미다졸륨 할라이드 1몰에 대해 0.05 내지 0.5 몰, 특히 0.1 내지 0.3 몰일 수 있다. 상기 함량이 0.05몰 미만이면 알킬렌 카보네이트 용액 중에 포함된 이미다졸륨 할라이드에 비해 아연할라이드 농도가 크게 낮아지기 때문에 촉매 작용에 필요한 루이스 산도를 충족할 수 없어 본 발명의 촉매 조성물을 알킬렌 옥사이드와 이산화탄소의 반응에 촉매로 사용하는 경우 알킬렌 카보네이트의 수율이 떨어지는 문제가 있고, 0.5몰을 초과하는 경우에는 알킬렌 카보네이트 용액 중에 존재하는 루이스산인 아연할라이드의 함량이 필요 이상으로 높아지기 때문에 본 발명의 촉매 조성물을 알킬렌 옥사이드와 이산화탄소의 반응에 촉매로 사용하는 경우 생성물의 색깔이 진해지고 부산물 생성이 많아지는 문제가 있다.
상기 알킬렌카보네이트 용매의 함량은 이미다졸륨 할라이드 1몰에 대해 1 내지 10몰일 수 있다. 상기 함량이 1몰 미만이면 반응물의 점도가 높아지기 때문에 반응기로의 촉매 이송이 어려워지고, 10몰을 초과하면 투입되는 촉매 조성물의 양이 불필요하게 많아지기 때문에 촉매 용액 이송에 에너지가 많이 소모되는 문제가 있다.
본 발명의 일 실시형태에 따른 촉매 조성물은 하기 화학식 1로 표시되는 알킬렌 카보네이트 용매 중에서 하기 화학식 4로 표시되는 알킬할라이드를 하기 화학식 5로 표시되는 이미다졸과 반응시켜 하기 화학식 2로 표시되는 이미다졸륨 할라이드를 수득하고, 생성된 반응 용액에 하기 화학식 3으로 표시되는 아연할라이드를 부가하여 제조할 수 있다.
[화학식 1]
Figure PCTKR2017002712-appb-I000003
[화학식 4]
R3-X
[화학식 5]
Figure PCTKR2017002712-appb-I000004
[화학식 2]
Figure PCTKR2017002712-appb-I000005
[화학식 3]
ZnY2
상기 화학식에서,
R1, R2, R3, R4, R5, R6 및 R7, X 및 Y는 상기에서 정의한 바와 같다.
본 발명의 일 실시형태에서, 화학식 4로 표시되는 알킬할라이드의 사용량은 화학식 5로 표시되는 이미다졸 1몰 당 1 내지 2몰일 수 있다. 알킬할라이드의 사용량이 1몰 미만인 경우에는 알킬렌 카보네이트 용액에 미반응 이미다졸이 존재하게 되어 아연할라이드 첨가 시 활성이 떨어지는 비스이미다졸 아연할라이드가 생성되는 문제가 있고, 2 몰 초과인 경우에는 이미다졸륨 할라이드 생성속도는 더 이상 증가하지 않는 반면 반응 후 제거해야 할 알킬할라이드의 양이 많아지기 때문에 경제적 이득이 없다.
본 발명의 일 실시형태는 상술한 촉매 조성물 중에서 하기 화학식 6으로 표시되는 알킬렌 옥사이드와 이산화탄소를 반응시키는 것을 특징으로 하는 하기 화학식 1로 표시되는 알킬렌 카보네이트의 제조방법에 관한 것이다.
[화학식 6]
Figure PCTKR2017002712-appb-I000006
[화학식 1]
Figure PCTKR2017002712-appb-I000007
상기 화학식에서,
R1 및 R2는 상기에서 정의한 바와 같다.
본 발명의 일 실시형태에서, 상기 화학식 6으로 표시되는 알킬렌 옥사이드는 예를 들어 에틸렌 옥사이드, 프로필렌 옥사이드, 에피클로로히드린, 부틸렌 옥사이드, 스티렌 옥사이드, 시클로헥실렌 옥사이드 등을 포함하나 이에 한정되는 것은 아니다.
본 발명의 일 실시형태에서, 상기 촉매 조성물의 사용량은 상기 촉매 조성물 중에 포함된 이미다졸륨 할라이드의 양이 상기 알킬렌 옥사이드 1몰에 대해 0.0001 내지 0.1몰이 되도록 하는 양일 수 있다. 이미다졸륨 할라이드의 양이 0.0001몰 미만인 경우에는 반응속도가 느려지고, 0.1몰 초과인 경우에는 더 이상 반응속도 및 알킬렌 카보네이트 수율이 향상되지 않을 뿐만 아니라 부산물 생성이 많아지고 생성물의 색깔이 진해지는 문제가 있다.
본 발명의 일 실시형태에서, 반응원료로 사용되는 이산화탄소와 알킬렌 옥사이드는 질소, 수소, 일산화탄소, 낮은 농도의 탄화수소, 물 등이 들어 있어도 반응에 큰 영향을 주지 않기 때문에 공업적으로 생산되는 이산화탄소와 알킬렌 옥사이드를 추가적인 정제과정 없이 사용할 수 있다.
반응압력은 반응속도 및 수율에 크게 영향을 끼치지 않으나, 반응의 안전성과 장치비 등을 고려할 때 10 내지 150 기압, 바람직하게는 20 내지 100 기압에서 진행하는 것이 유리하다. 반응압력이 10 기압 미만이 되면 반응속도가 다소 느려지는 경향이 있으며, 150 기압 초과인 경우에는 반응속도 및 수율 증진효과는 없는 반면 장치비가 과다하게 소요는 문제가 있다.
반응온도는 60 내지 200 ℃, 바람직하게는 100 내지 180 ℃일 수 있다. 반응온도가 60 ℃ 미만이면 반응속도가 느려지고, 반응온도가 200 ℃를 초과하면 알킬렌 옥사이드가 자체 고분자화반응(self-polymerization)을 일으켜 반응 선택성이 떨어질 수 있다.
본 발명의 일 실시형태에 따른 알킬렌 카보네이트의 제조방법에서, 촉매 조성물 중에 포함된 알킬렌 카보네이트 용매는 반응원료 알킬렌 옥사이드로부터 제조되는 알킬렌 카보네이트와 동일한 물질을 사용하는 것이 바람직하다. 예를 들면 에틸렌 옥사이드로부터 에틸렌 카보네이트를 제조하는 경우에는 에틸렌 카보네이트 용매를 포함하는 촉매 조성물을, 프로필렌 옥사이드로부터 프로필렌 카보네이트를 제조하는 경우에는 프로필렌 카보네이트 용매를 포함하는 촉매 조성물을 사용하는 것이 바람직하다.
본 발명의 일 실시형태에 따른 알킬렌 카보네이트의 제조방법에는 교반기가 설치된 반응기를 이용한 회분식 공정과 버블 칼럼(bubble column) 또는 루프반응기(loop reactor)를 이용한 연속공정이 모두 이용될 수 있다.
본 발명에 따른 촉매 조성물은 알킬렌 옥사이드와 이산화탄소로부터 낮은 온도 및 압력하에서 짧은 시간에 고수율 및 고순도로 알킬렌 카보네이트를 제조할 수 있으며, 부산물 생성 및 생성물의 변색문제를 해결할 수 있다. 또한, 본 발명에 따른 촉매 조성물은 알킬렌 카보네이트 용매 중에서 제조하여 추가적인 분리 정제 과정 없이 바로 사용할 수 있으므로 경제적인 관점에서도 우수하다.
이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다.
실시예 1: 촉매 조성물의 제조
환류 장치가 부착된 250 mL 3 구 플라스크에 에틸렌 카보네이트(66 g, 0.75 mol), 1-메틸이미다졸(15.6 g, 0.2 mol) 및 1-브로모부탄(27.4 g, 0.2 mol)을 충진하고, 80 oC에서 교반하면서 2.5 시간 동안 반응시켜 1-부틸-3-메틸이미다졸륨 브로마이드를 합성하였다. 반응의 진행은 FT-IR로 확인하였으며, 1-메틸이미다졸이 완전히 반응한 것을 확인한 후에, 질소 기류하에서 ZnBr2(22.5 g, 0.1 mol)를 추가하여 0.5 시간 더 반응시켜 에틸렌 카보네이트 촉매 조성물 131.5 g을 제조하였다.
실시예 2 - 11: 촉매 조성물의 제조
이미다졸, 알킬할라이드(RX), 아연할라이드(ZnY2), 알킬렌 카보네이트(AC)의 종류 및 양을 변화시키면서 실시예 1과 동일한 방법으로 촉매 조성물을 제조하고 그 결과를 하기 표 1에 나타내었다. 반응에 사용한 과량의 알킬할라이드는 반응이 끝난 후 진공하에서 제거하였다.
실시예 이미다졸(몰수) RX (몰수) ZnY2 (몰수) AC (몰수) 촉매 조성물 총량(g) 이미다졸륨 할라이드 중량(g)
2 1-메틸이미다졸 (0.2) 1-BuBr (0.3) ZnBr2 (0.01) EC (0.2) 64 43.8
3 1-메틸이미다졸 (0.2) EtBr (0.4) ZnBr2 (0.05) EC (0.4) 86 38.2
4 1-부틸이미다졸 (0.2) EtBr (0.3) ZnCl2 (0.1) EC (0.6) 113 46.6
5 1-헥실이미다졸 (0.2) 1-BuCl (0.2) ZnBr2 (0.05) EC (0.8) 132 48.9
6 1-(2-히드록시 에틸)이미다졸 (0.2) BzCl (0.24) ZnI2 (0.02) EC (1.0) 156 47.7
7 1-페닐이미다졸 (0.2) BzBr (0.2) ZnCl2 (0.1) PC (0.8) 289 65.0
8 1,2-메틸이미다졸 (0.2) DeCl (0.2) ZnBr2 (0.05) EC (0.6) 120 54.5
9 1-클로로에틸이미다졸 (0.2) DDeBr (0.2) ZnCl2 (0.08) BC (0.4) 135 77.1
10 1-(4-클로로페닐)이미다졸 (0.2) 1-BuCl (0.22) ZnCl2 (0.08) SC (0.6) 168 71.1
11 1-메틸이미다졸 (0.2) CyBr (0.2) ZnBr2 (0.02) CMEC (1.0) 191 49.0
Bu : 부틸, Et : 에틸, Bz : 벤질, De :데실, DDe : 도데실, Cy: 사이클로헥실, EC : 에틸렌 카보네이트, PC : 프로필렌 카보네이트, BC : 부틸렌 카보네이트, SC : 스티렌 카보네이트, CMEC : 클로로메틸에틸렌카보네이트
실시예 12 : 에틸렌 카보네이트의 제조
200 mL 고압반응기에 반응물인 에틸렌 옥사이드(EO, 66 g, 1.5 mol)와 촉매로 실시예 1에서 얻어진 에틸렌 카보네이트 촉매 조성물(0.2 g, 1-메틸이미다졸 3.04 x 10- 4 mol)을 충진한 후, 10 기압의 이산화탄소(CO2) 압력하에서 온도를 120 ℃로 올린 후 다시 이산화탄소를 가하여 반응기의 압력을 30 기압이 되도록 하였다. 반응이 진행되는 동안 소모되는 양만큼의 이산화탄소는 외부에서 지속적으로 공급하여 반응기의 압력은 30 기압으로 유지시켰다. 120 ℃에서 1시간 동안 반응시킨 후 반응기를 40 oC로 냉각하고 질소 기류하에서 휘발성분을 제거한 다음, 고체생성물을 회수하여 무게를 측정하고, 가스-액체 크로마토그래피로 고체생성물의 조성을 분석한 결과, 에틸렌 카보네이트(EC)의 수율은 99.2%, TOF-1 (h-1) 및 TOF-2 (h-1)는 각각 4,931및 9,862이었으며, 불순물은 생성되지 않았음을 확인할 수 있었다.
수율과 TOF (h-1)는 다음과 같이 산출하였다.
수율(%) = (알킬렌 카보네이트의 생성 몰수/원료 알킬렌 옥사이드의 몰수) x 100
TOF-1(h-1) = 알킬렌 카보네이트의 생성 몰수/(촉매 조성물 중 이미다졸륨 할라이드의 몰수 x 반응시간(h))
TOF-2(h-1) = 알킬렌 카보네이트의 생성 몰수/(촉매 조성물 중 아연할라이드 몰수 x 반응시간(h))
실시예 13 - 22:
실시예 2 - 11에서 제조한 촉매 조성물 0.2g을 사용하여 실시예 12와 동일한 조건에서 촉매 반응을 수행한 결과를 하기 표 2에 나타내었다.
실시예 촉매 EC 수율(%) TOF-1(h-1) TOF-2(h-1)
13 실시예 2 94.8 2,275 45,500
14 실시예 3 99.6 3,213 12,582
15 실시예 4 98.5 4,282 8,564
16 실시예 5 99.3 4,916 19,664
17 실시예 6 96.7 5,850 58,502
18 실시예 7 91.5 9,917 19,834
19 실시예 8 95.9 4,500 18,000
20 실시예 9 93.6 4,738 11,846
21 실시예 10 92.7 5,840 14,600
22 실시예 11 97.7 2,046 20,460
실시예 23 - 29:
실시예 3에서 제조한 촉매 조성물 0.2 g을 사용하여 실시예 12와 동일한 조건에서 온도를 변화시키면서 촉매 반응을 수행한 결과를 하기 표 3에 나타내었다.
실시예 온도 (oC) EC 수율(%) TOF-1(h-1) TOF-2(h-1)
23 60 44.8 1,335 5,340
24 80 65.6 2,116 8,464
25 100 85.4 2,755 11,020
26 140 99.9 3,223 12,892
27 160 99.9 3,223 12,892
28 180 99.3 3,203 12,812
29 200 98.9 3,190 12,764
실시예 30 - 36:
실시예 3에서 제조한 촉매 조성물 0.2 g을 사용하여 실시예 12와 동일한 조건에서 CO2 압력을 변화시키면서 촉매 반응을 수행한 결과를 하기 표 4에 나타내었다.
실시예 압력 (atm) EC 수율(%) TOF-1(h-1) TOF-2(h-1)
30 10 97.9 3,158 12,632
31 20 98.6 3,181 12,724
32 40 99.9 3,223 12,892
33 60 99.9 3,223 12,892
34 100 99.9 3,223 12,892
35 120 99.9 3,223 12,892
36 150 99.9 3,223 12,892
실시예 37 - 42:
실시예 12와 동일한 조건에서 에틸렌 옥사이드의 양을 66 g(1.5 mol)으로 고정하고, 실시예 3에서 제조한 에틸렌 카보네이트 촉매 조성물의 양을 변화시키면서 촉매 반응을 수행한 결과를 하기 표 5에 나타내었다.
실시예 촉매 조성물의 양(g) 이미다졸륨 브로마이드/EO (몰비) EC 수율(%) TOF-1(h-1) TOF-2(h-1)
37 0.0645 0.0001 67.1 6,712 26,848
38 0.3225 0.0005 99.7 1,995 7,980
39 0.645 0.001 99.9 999 3,996
40 1.29 0.002 100 500 2,000
41 6.45 0.01 100 150 600
42 64.5 0.1 98.2 9.8 39
실시예 43 - 51:
1-메틸이미다졸(0.2 몰), 1-브로모부탄(0.2 몰), 에틸렌 카보네이트(0.4 몰)의 양을 고정한 상태에서 아연할라이드의 종류 및 양을 변화시키면서 실시예 1과 동일한 방법으로 에틸렌 카보네이트 촉매 조성물을 제조하고, 이중 일부를 취하여 에틸렌옥사이드와 이산화탄소로부터 에틸렌 카보네이트를 제조하는 반응의 촉매로 사용하였다. 에틸렌 옥사이드의 양을 66 g(1.5 mol), 촉매로 사용한 에틸렌 카보네이트 조성물 중 포함된 1-부틸-3-메틸이미다졸륨의 몰수는 0.001 몰, 에틸렌 옥사이드/1-부틸-3-메틸이미다졸륨의 몰비는 1,500으로 고정한 상태에서 실시예 12와 동일한 방법으로 진행하였으며, 그 결과는 표 6에 나타내었다.
실시예 1-부틸-3-메틸이미다졸륨 몰수(A) 아연할라이드 몰수(B) B/A EC 수율(%) TOF-1(h-1) TOF-2(h-1)
43 0.001 ZnCl2(0.00005) 0.05 78.3 1,175 2,350
44 0.001 ZnCl2(0.0002) 0.2 85.2 1,278 6,390
45 0.001 ZnCl2(0.0005) 0.5 96.7 1,451 2,902
46 0.001 ZnBr2(0.00005) 0.05 91.5 1,373 27,460
47 0.001 ZnBr2(0.0002) 0.2 100 1,500 7,500
48 0.001 ZnBr2(0.0005) 0.5 98.8 1,482 2,964
49 0.001 ZnI2(0.00005) 0.05 97.1 1,457 29,140
50 0.001 ZnI2(0.0002) 0.2 100 1,500 7,500
51 0.001 ZnI2(0.0005) 0.5 99.9 1,499 2,998
실시예 52 - 55:
1-메틸이미다졸(0.2 몰), 1-브로모부탄(0.2 몰), ZnBr2(0.004몰)의 양을 고정한 상태에서 에틸렌 카보네이트의 양을 변화시키면서 실시예 1과 동일한 방법으로 에틸렌 카보네이트 촉매 조성물을 제조하고, 이중 일부를 취하여 에틸렌 옥사이드와 이산화탄소로부터 에틸렌 카보네이트를 제조하는 반응의 촉매로 사용하였다. 촉매 반응은 촉매로 사용한 에틸렌 카보네이트 조성물 중 포함된 1-부틸-3-메틸이미다졸륨의 몰수는 0.001 몰, ZnBr2의 양은 0.0002몰로 고정한 상태에서 실시예 12와 동일한 방법으로 진행하였으며, 그 결과는 표 7에 나타내었다.
실시예 1-부틸-3-메틸 이미다졸륨 몰수(A) 에틸렌 카보네이트의 몰수(C) C/A EC 수율(%) TOF-1(h-1) TOF-2(h-1)
52 0.001 0.001 1 100 1,500 7,500
53 0.001 0.002 2 100 1,500 7,500
54 0.001 0.005 5 100 1,500 7,500
55 0.001 0.01 10 100 1,500 7,500
실시예 56 - 60:
실시예 3에서 제조한 촉매 조성물 0.2 g을 사용하여 실시예 12와 동일한 조건에서 알킬렌 옥사이드의 양을 66 g(1.5 mol), 알킬렌 옥사이드/1-부틸-3-메틸이미다졸륨의 몰비를 3,225로 고정한 상태에서 알킬렌 옥사이드의 종류를 변화시키면서 촉매 반응을 수행한 결과를 하기 표 8에 나타내었다.
실시예 알킬렌 옥사이드 알킬렌 카보네이트 수율(%) TOF-1(h-1)
56 프로필렌 옥사이드 95.1 3,067
57 에피클로로히드린 78.2 2,522
58 스티렌 옥사이드 89.3 2,880
59 1,2-에폭시부탄 93.6 3,019
60 시클로헥실렌 옥사이드 73.2 2,361

Claims (11)

  1. 하기 화학식 1로 표시되는 알킬렌 카보네이트 용매 중에 하기 화학식 2로 표시되는 이미다졸륨 할라이드와 하기 화학식 3으로 표시되는 아연할라이드를 포함하는 촉매 조성물:
    [화학식 1]
    Figure PCTKR2017002712-appb-I000008
    [화학식 2]
    Figure PCTKR2017002712-appb-I000009
    [화학식 3]
    ZnY2
    상기 화학식에서,
    R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 할로알킬기 또는 아릴기이거나, 결합되어 있는 탄소원자와 함께 6각형 고리를 형성하고,
    R3 는 탄소수 1 내지 12의 알킬기, 탄소수 3 내지 10의 사이클로알킬기 또는 아릴기이며,
    R4는 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 할로알킬기, 탄소수 1 내지 6의 히드록시알킬기 또는 아릴기이고,
    R5, R6 및 R7은 각각 독립적으로 수소, 탄소수 1 내지 6의 알킬기 또는 아릴기이며,
    X 및 Y는 각각 독립적으로 할로겐 원자이다.
  2. 제1항에 있어서, 상기 아연할라이드의 함량은 상기 이미다졸륨 할라이드 1몰에 대해 0.05 내지 0.5 몰인 촉매 조성물.
  3. 제1항에 있어서, 상기 알킬렌카보네이트 용매의 함량은 상기 이미다졸륨 할라이드 1몰에 대해 1 내지 10몰인 촉매 조성물.
  4. 하기 화학식 1로 표시되는 알킬렌 카보네이트 용매 중에서 하기 화학식 4로 표시되는 알킬할라이드를 하기 화학식 5로 표시되는 이미다졸과 반응시켜 하기 화학식 2로 표시되는 이미다졸륨 할라이드를 수득하고, 생성된 반응 용액에 하기 화학식 3으로 표시되는 아연할라이드를 부가하는 것을 특징으로 하는 제1항 내지 제3항 중 어느 한 항에 따른 촉매 조성물의 제조방법:
    [화학식 1]
    Figure PCTKR2017002712-appb-I000010
    [화학식 4]
    R3-X
    [화학식 5]
    Figure PCTKR2017002712-appb-I000011
    [화학식 2]
    Figure PCTKR2017002712-appb-I000012
    [화학식 3]
    ZnY2
    상기 화학식에서,
    R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 할로알킬기 또는 아릴기이거나, 결합되어 있는 탄소원자와 함께 6각형 고리를 형성하고,
    R3 는 탄소수 1 내지 12의 알킬기, 탄소수 3 내지 10의 사이클로알킬기 또는 아릴기이며,
    R4는 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 할로알킬기, 탄소수 1 내지 6의 히드록시알킬기 또는 아릴기이고,
    R5, R6 및 R7은 각각 독립적으로 수소, 탄소수 1 내지 6의 알킬기 또는 아릴기이며,
    X 및 Y는 각각 독립적으로 할로겐 원자이다.
  5. 제4항에 있어서, 상기 알킬할라이드의 사용량은 상기 이미다졸 1몰 당 1 내지 2몰인 제조방법.
  6. 제1항 내지 제3항 중 어느 한 항에 따른 촉매 조성물 중에서 하기 화학식 6으로 표시되는 알킬렌 옥사이드와 이산화탄소를 반응시키는 것을 특징으로 하는 하기 화학식 1로 표시되는 알킬렌 카보네이트의 제조방법:
    [화학식 6]
    Figure PCTKR2017002712-appb-I000013
    [화학식 1]
    Figure PCTKR2017002712-appb-I000014
    상기 화학식에서,
    R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 할로알킬기 또는 아릴기이거나, 결합되어 있는 탄소원자와 함께 6각형 고리를 형성한다.
  7. 제6항에 있어서, 상기 알킬렌 옥사이드는 에틸렌 옥사이드, 프로필렌 옥사이드, 에피클로로히드린, 부틸렌 옥사이드, 스티렌 옥사이드 또는 시클로헥실렌 옥사이드인 제조방법.
  8. 제6항에 있어서, 상기 촉매 조성물의 사용량은 상기 촉매 조성물 중에 포함된 이미다졸륨 할라이드의 양이 상기 알킬렌 옥사이드 1몰에 대해 0.0001 내지 0.1몰이 되도록 하는 양인 제조방법.
  9. 제6항에 있어서, 반응온도는 60 내지 200 ℃인 제조방법.
  10. 제6항에 있어서, 반응압력은 10 내지 150 기압인 제조방법.
  11. 제6항에 있어서, 상기 촉매 조성물 중에 포함된 알킬렌 카보네이트 용매는 상기 알킬렌 옥사이드로부터 제조되는 알킬렌 카보네이트와 동일한 물질인 제조방법.
PCT/KR2017/002712 2016-03-18 2017-03-14 알킬렌 카보네이트의 제조방법 및 그를 위한 촉매 조성물 WO2017160044A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160032648A KR101742989B1 (ko) 2016-03-18 2016-03-18 알킬렌 카보네이트의 제조방법 및 그를 위한 촉매 조성물
KR10-2016-0032648 2016-03-18

Publications (2)

Publication Number Publication Date
WO2017160044A2 true WO2017160044A2 (ko) 2017-09-21
WO2017160044A3 WO2017160044A3 (ko) 2018-09-07

Family

ID=59222228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002712 WO2017160044A2 (ko) 2016-03-18 2017-03-14 알킬렌 카보네이트의 제조방법 및 그를 위한 촉매 조성물

Country Status (2)

Country Link
KR (1) KR101742989B1 (ko)
WO (1) WO2017160044A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433229A (zh) * 2020-10-20 2022-05-06 中国石油化工股份有限公司 一种用于制备碳酸亚烷酯的催化剂及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109569717B (zh) * 2017-09-29 2021-11-30 中国石油化工股份有限公司 离子交换树脂及用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316373A (ja) * 2000-05-01 2001-11-13 Sanko Kagaku Kogyo Kk 1−アルキル−3−アルキルイミダゾールハライド塩の製造方法
KR100531132B1 (ko) * 2002-12-30 2005-11-28 한국과학기술연구원 이미다졸륨 아연테트라할라이드 촉매를 이용한알킬렌카보네이트의 제조방법
KR100612957B1 (ko) * 2004-06-04 2006-08-16 한국과학기술연구원 금속염과 지방족환형 아민염으로 구성되어 있는 촉매계를이용한 알킬렌카보네이트의 제조방법
KR100898319B1 (ko) * 2007-05-29 2009-05-20 경희대학교 산학협력단 이미다졸륨 할로겐화합물을 이용한알킬렌트리티오카보네이트의 제조방법
KR101232125B1 (ko) * 2010-06-21 2013-02-12 경희대학교 산학협력단 알킬렌 카보네이트의 제조방법 및 그를 위한 촉매

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433229A (zh) * 2020-10-20 2022-05-06 中国石油化工股份有限公司 一种用于制备碳酸亚烷酯的催化剂及其制备方法和应用
CN114433229B (zh) * 2020-10-20 2024-01-30 中国石油化工股份有限公司 一种用于制备碳酸亚烷酯的催化剂及其制备方法和应用

Also Published As

Publication number Publication date
KR101742989B1 (ko) 2017-06-02
WO2017160044A3 (ko) 2018-09-07

Similar Documents

Publication Publication Date Title
US3535342A (en) Process for making alkylene carbonates
EP2473544A2 (en) Continuous process for manufacturing aliphatic polycarbonate from carbon dioxide and epoxide compounds
WO2017160044A2 (ko) 알킬렌 카보네이트의 제조방법 및 그를 위한 촉매 조성물
US6407264B2 (en) Synthesis of alkylene carbonates using a catalyst system comprising metal halide and pyridine or pyridine derivative
WO2021060948A1 (ko) 이온성 액체를 매개로 한 에피나코나졸의 신규 제조방법
KR101864998B1 (ko) 신규한 알루미늄 촉매 및 이를 이용한 고리형 알킬렌 카보네이트의 제조방법
US6399536B2 (en) High performance catalyst systems for the synthesis of alkylenecarbonates
EP0709363A1 (en) Process for preparing carbonate compounds
KR100321115B1 (ko) 알킬렌카보네이트 제조방법
CN108276356B (zh) 3,5-二取代噻唑烷-2-硫酮类化合物制备方法
US4375548A (en) Preparation of trichloromethyl carbinols
KR101232125B1 (ko) 알킬렌 카보네이트의 제조방법 및 그를 위한 촉매
KR100531132B1 (ko) 이미다졸륨 아연테트라할라이드 촉매를 이용한알킬렌카보네이트의 제조방법
KR100321116B1 (ko) 납할로겐 및/또는 인듐할로겐을 촉매로 사용한 알킬렌카보네이트 제조방법
KR100612957B1 (ko) 금속염과 지방족환형 아민염으로 구성되어 있는 촉매계를이용한 알킬렌카보네이트의 제조방법
CN111471017B (zh) 利用有机小分子催化制备5-硝基咪唑类药物的工艺
KR880001051B1 (ko) 2, 3-디하이드로-2, 2-디메틸벤조푸란-7-올의 제조방법
EP0217651A2 (en) Preparation of organic carbonates
KR100354454B1 (ko) 리튬할로겐을 촉매로 사용한 알킬렌카보네이트 제조방법
EP2532646A1 (en) Process for preparing esters and organic halides
WO2022158713A1 (ko) 3,5-다이아미노-1,2,4-트라이아졸의 제조 방법
KR100531131B1 (ko) 4급 암모늄 아연테트라할라이드 촉매를 이용한알킬렌카보네이트 제조방법
US20240199570A1 (en) Method for catalyzing reaction of epoxide compound and carbon dioxide with catalyst
KR20020066819A (ko) 알킬렌 카보네이트의 제조방법
JPS6372661A (ja) アルキルヒドラジン類の製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766945

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 17766945

Country of ref document: EP

Kind code of ref document: A2