WO2022157905A1 - 質量分析装置 - Google Patents

質量分析装置 Download PDF

Info

Publication number
WO2022157905A1
WO2022157905A1 PCT/JP2021/002136 JP2021002136W WO2022157905A1 WO 2022157905 A1 WO2022157905 A1 WO 2022157905A1 JP 2021002136 W JP2021002136 W JP 2021002136W WO 2022157905 A1 WO2022157905 A1 WO 2022157905A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
gas
humidity
mass spectrometer
circuit board
Prior art date
Application number
PCT/JP2021/002136
Other languages
English (en)
French (fr)
Inventor
浩二 石黒
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to EP21920125.8A priority Critical patent/EP4283657A1/en
Priority to PCT/JP2021/002136 priority patent/WO2022157905A1/ja
Priority to US18/270,435 priority patent/US20230402273A1/en
Priority to JP2022576313A priority patent/JP7449418B2/ja
Priority to CN202180088733.3A priority patent/CN116745883A/zh
Publication of WO2022157905A1 publication Critical patent/WO2022157905A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping
    • H01J49/4215Quadrupole mass filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/022Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/025Detectors specially adapted to particle spectrometers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10015Non-printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10174Diode

Definitions

  • the present disclosure relates to mass spectrometers.
  • mass spectrometry has been used in various fields. For example, it can be combined with a gas chromatograph to measure residual pesticides in food, or combined with a liquid chromatograph to measure environmental endocrine disruptors in the atmosphere.
  • a gas chromatograph to measure residual pesticides in food
  • a liquid chromatograph to measure environmental endocrine disruptors in the atmosphere.
  • a mass spectrometer that mainly performs quantitative analysis has a mass spectrometer inside the device.
  • a mass spectrometer creates a vacuum inside the device, installs electrodes with various shapes inside, and controls and selects ions introduced into the device with an electric field.
  • a quadrupole mass spectrometer also called a Q mass (QMS) or mass filter, consists of four cylindrical electrodes. The cylindrical electrodes are assembled with the center of the circle at the vertex of the square.
  • a positive and negative DC voltage ⁇ U and a high frequency voltage ⁇ V ⁇ cos ⁇ t are superimposed on adjacent electrodes of the fixed cylindrical electrodes, and a voltage ⁇ U ⁇ V ⁇ cos ⁇ t is applied.
  • Patent Document 1 discloses a detection circuit for detecting the amplitude of a high-frequency voltage applied to a quadrupole electrode and an analog-to-digital feedback control using a conversion circuit and a digital circuit that calculates the error between the digitized detection circuit output and the amplitude target value and adjusts the amplitude, the detection circuit and the analog-to-digital conversion circuit, or Disclosed is a mass spectrometer in which a detection circuit and an analog-digital conversion circuit are kept at a constant temperature by using a heat-generating component mounted on the control board, a temperature sensing element, and a temperature control circuit on a control board having either one of them.
  • Patent Document 1 places a temperature measuring element and a heating element on a substrate on which electrical elements that are affected by the environment are arranged, and controls the on/off of the heating element according to the substrate temperature.
  • the influence of the displacement of the mass axis during self-heating when an electric element is energized is not sufficiently considered.
  • high voltages may be applied to electrical elements that are affected by temperature.
  • a non-grounded type for example, a sheath type thermocouple
  • an electrically insulated temperature sensing element is used, which makes it large and difficult to place on a substrate. is expensive.
  • the temperature sensor when using a grounded temperature sensor, the temperature sensor must be arranged while ensuring electrical insulation between the temperature sensor and the electrical element.
  • the substrate is generally made of a material such as resin with low electrical conductivity. It takes time, and even if PID adjustment is performed, temperature overshoot may occur, and the amount of mass axis drift may not fall below the specification. In particular, when the permissible amount of drift in the mass axis is small, it becomes difficult to satisfy the specifications with the heating method. In addition, the mass axis drift amount changes depending on where the grounded type thermometer is fixed, and it is necessary to find the optimum fixing position by experiment.
  • the lifespan of electrical elements shortens as the temperature rises. For example, if the temperature of an aluminum electrolytic capacitor rises by 10°C, the life of the capacitor is halved. Therefore, in the heating method as disclosed in Patent Document 1, the service life is shortened, and maintenance time and work costs are increased due to a shortened replacement cycle of the control board.
  • the present disclosure proposes a technique that reduces the influence of not only the environmental temperature but also the environmental humidity to prevent the life of the electric elements that constitute the power source of the mass spectrometer from being shortened.
  • the present disclosure provides a circuit board on which an electric element is arranged, a gas supply section, a gas supply section that controls the humidity and temperature of the gas from the gas supply section, and a gas with the humidity and temperature controlled. and a mechanism for irradiating at least part of the circuit board with a mass spectrometer.
  • FIG. 4 is a diagram showing changes in mass spectrum due to differences in environmental humidity in which a power control unit that supplies power to the mass spectrometer of the mass spectrometer is installed.
  • 1 is a diagram showing a schematic configuration example of a mass spectrometer 1 according to this embodiment
  • FIG. 2 is a diagram showing an internal configuration example of a power control unit 10 according to the embodiment
  • FIG. It is a figure which shows the example of a schematic structure of the airtight container 101 by this embodiment.
  • FIG. 10 is a diagram showing a structural example of a connecting portion 1061 between each sealed container 101 and a pipe portion 106 (as seen from directly above).
  • 4 is a diagram showing a structural example (cross section) of a connection portion 1061 between each sealed container 101 and a pipe portion 106;
  • FIG. 1 is a diagram showing changes in mass spectrum due to differences in temperature and humidity in the environment in which a power control unit that supplies power to a mass spectrometer of a mass spectrometer is installed.
  • a solid line and a dotted line represent mass spectra of the same sample measured by changing the temperature and humidity of the environment in which the power control unit is installed. As shown in FIG.
  • the difference in temperature and humidity causes the mass axis (the axis of maximum signal intensity) to shift, resulting in differences in signal intensity.
  • the main cause of these phenomena is that, for example, electrical elements (capacitors, diodes, etc.) used in electrical circuits that feed back the high-frequency voltage supplied to the Q-rods (quadrupole) are affected by temperature and humidity, and their electrical characteristics change. Because it changes. For example, if a capacitor is placed in a high-humidity environment, a water film will adhere to its surface. As a result, the capacitance of the capacitor changes, the voltage division ratio of the voltage supplied to the quadrupole changes, and the high-frequency voltage cannot be accurately fed back.
  • this embodiment will explain a configuration and method that do not change the electrical characteristics of the electric element due to changes in temperature and humidity (at high humidity) in the environment in which the electronic element is installed.
  • FIG. 2 is a diagram showing a schematic configuration example of the mass spectrometer 1 according to this embodiment.
  • the mass spectrometer 1 includes a power control section 10 , a mass spectrometer 20 and an output section 30 .
  • the power control unit 10 supplies power (high frequency voltage) to the mass filter (quadrupole) 202 of the mass spectrometer 20 at a predetermined voltage division ratio.
  • the mass spectrometer 20 includes an ion source 201 that ionizes a sample to be analyzed and supplies it to a mass filter 202, and a mass filter 202 that selects ions with a specific m/z ratio from the ions supplied from the ion source 201. , and an ion detector 203 that detects ions selected by the mass filter 202 and measures the signal intensity.
  • the output unit 30 is configured by, for example, a display device and a printer, and outputs (displays, prints, etc.) the signal intensity corresponding to a specific m/z ratio measured from the ion detector 203 .
  • a quadrupole filter is used as an example of the mass filter 202, but a hexapole, octopole, or multipole filter may be used.
  • FIG. 3 is a diagram showing an internal configuration example of the power control unit 10 according to this embodiment.
  • the power control unit 10 receives a plurality of sealed containers (mass filter sealed containers) 101 holding electrical elements and the like, a gas supply unit 102, and humidity information in each sealed container 101.
  • sealed containers mass filter sealed containers
  • a humidity controller 103 for notifying the humidity adjustment amount to the humidity regulator, a humidity regulator 104, a gas cooling unit 105, a piping unit 106 for supplying the gas output from the gas cooling unit 105 to each of the sealed containers 101, A Peltier controller 107 that determines the gas temperature, and a temperature measuring unit 108 that measures the temperature of the gas to be supplied and notifies the Peltier controller 107 of the temperature.
  • Each of the plurality of sealed containers 101 has a heat-insulating structure, a circuit board on which electric elements such as a detection circuit 1011 including a diode and a voltage dividing circuit 1012 including a capacitor are mounted, and humidity and temperature inside the sealed container 101 are measured. and a humidity/temperature measuring instrument 1013 that notifies the humidity controller 103 of the humidity.
  • the gas supply unit 102 generates gas (for example, nitrogen gas) that is cooled and supplied to each sealed container 101 and supplies the gas to the humidity regulator 104 .
  • the humidity controller 103 determines the humidity adjustment amount based on the humidity and temperature information in each sealed container 101 from the humidity/temperature measuring instrument 1013 .
  • the humidity controller 103 based on the humidity information in each closed container 101 from the humidity/temperature measuring instrument 1013 and the temperature information from the temperature measuring unit 108 on the detection circuit 1011 and the voltage dividing circuit 1012, Determine the amount of humidity adjustment.
  • the humidity controller 103 uses the humidity and temperature information in each sealed container 101 from the humidity/temperature measuring instrument 1013 (for example, using a known dew point temperature calculation formula), and is equipped with an electric element.
  • the humidity controller 103 obtains the humidity of the gas with a dew point T2 (T2 ⁇ T1) smaller than the calculated dew point temperature T1, and notifies the humidity regulator 104 of this.
  • T2 ⁇ T1 is set here is that by irradiating a gas having a dew point lower than the environment (humidity) in the sealed container 101 in which the circuit board is arranged, dew condensation due to the irradiation gas can be prevented.
  • the humidity controller 103 uses the temperature measured by the temperature measurement section 108 on the detection circuit 1011 and the voltage dividing circuit 1012 to calculate the dew point temperature T1.
  • the average temperature of each closed container 101 may be obtained (the difference is about several degrees Celsius since it is inside the apparatus), and the dew point T1 may be obtained. If T2 is set to a value sufficiently smaller than T1 (for example, 1/10), condensation will not occur.
  • the humidity regulator 104 adjusts the humidity of the gas supplied from the gas supply unit 102 based on the humidity information received from the humidity controller 103 (which may be information on the amount of humidity adjustment) (when the dew point of the supplied gas is T2), and the humidity-adjusted gas is supplied to the gas cooling unit 105 (specifically, a metal plate 1051 having a cooling ventilation path, which will be described later).
  • Nitrogen gas (N 2 ) controlled to have a dew point of ⁇ 40° C. (very low humidity) and a humidity of 0.1% or less can be supplied to the gas cooling unit 105 .
  • the gas cooling unit 105 includes a metal plate 1051 having a cooling ventilation path, a Peltier cooling unit (heating may be used) 1052 with an output of several tens of W, a heat sink 1053 made of a heat conductive metal, and a heat sink. and a cooling fan 1054 for cooling (for exhaust heat).
  • the gas cooling unit 105 controls the temperature and flow rate of the gas supplied through the humidity regulator 104 and discharges the gas to the piping unit 106 connected to each sealed container 101 (eg, flow rate is 10 L/min).
  • the temperature measuring unit 108 is composed of, for example, a thermocouple, measures the temperature of the gas discharged from the ventilation passage of the metal plate 1051 at an arbitrary timing (either periodically or constantly), and obtains the measurement result. (temperature) to the Peltier controller 107 .
  • the Peltier controller 107 adjusts the temperature of the gas discharged from the ventilation path to a desired temperature (for example, 18 ⁇ 0.5° C.) based on the temperature notified from the temperature measuring unit 108 . Part) Controls the energizing current value of 1052 .
  • the piping section 106 can be configured, for example, by covering the circumference of a nylon tube with a heat insulating material (for example, wool material).
  • a heat insulating material for example, wool material.
  • the piping part 106 is constructed by making a cut in a hollow cylindrical heat insulating material made of a foam material, wrapping it around the outer circumference of the piping, and fixing it. Then, a heat insulating material is arranged on the outer surface of the metal plate 1051 provided with the cooling ventilation path.
  • the heat insulating material is formed of a resin plate with low electrical conductivity and an air layer (having the lowest thermal conductivity. By suppressing the flow, it becomes a good heat insulating material). Since the heat that flows in from the outer periphery of the metal plate provided with the cooling ventilation path is reduced as much as possible, the output of the Peltier device can be minimized.
  • the temperature of the nitrogen gas is controlled by the Peltier cooler 1052 using the Peltier element, and the nitrogen gas is blown onto the circuit board (including the detection circuit 1011 and the voltage dividing circuit 1012) accommodated in the sealed container 101.
  • nitrogen gas is controlled at, for example, 18° C. ⁇ 0.5° C. and blown into the mass filter sealed container 101 to keep the temperature around the electrical elements in the closed container 101 constant, thereby The element can be forced air cooled.
  • the temperature rise due to the self-heating of the electric elements can be reduced, the drift of the mass axis can be reduced below the allowable value, and the influence of the environment can be minimized, and the drift of the mass axis can be reduced. It becomes possible.
  • FIG. 4 is a diagram showing a schematic configuration example of the sealed container 101 according to this embodiment.
  • the sealed container 101 includes a detection circuit (which can be made up of diodes) 1011 and a voltage dividing circuit (which can be made up of capacitors) 1012 in a closed casing having a heat insulating structure. It has a circuit board to be mounted and a humidity/temperature measuring instrument 1013 for measuring the humidity and temperature in the enclosure for sealing.
  • the sealed container 101 has an inlet and an outlet for nitrogen gas, and a guide portion for uniformly irradiating the circuit board in the space between the inlet and the outlet with the gas.
  • the temperature limit point of electrical elements is 80°C. Therefore, it is necessary to control the temperature of the supplied gas to at least 80° C. or lower. Therefore, as described above, the temperature of the gas (in which the temperature and humidity are controlled) that irradiates the sealed container 101 is adjusted to 80° C. or lower. For the purpose of facilitating temperature adjustment, the temperature may be, for example, within the range of 18°C to 32°C.
  • Diodes and capacitors are more susceptible to temperature and humidity than other elements, so in the present embodiment, capacitors and diodes are used as target electrical elements. may contain. Also, the number of closed containers 101 depends on the number of mass filters. For example, when using a quadrupole filter as a mass filter, there are four closed containers 101, and when using an octopole filter, there are eight closed containers 101. FIG.
  • FIG. 5 is a diagram showing a structural example (as seen from directly above) of the connecting portion 1061 between each sealed container 101 and the piping portion 106.
  • the sealed container 101 has a guide portion (connecting portion) 1061 for connecting the piping portion (diffusion tube) 106 and the sealed container 101 .
  • the guide portion 1061 has a plurality of partition plates (rectifying plates) 1062 that uniformly rectify the gas flow (flow velocity).
  • the partition plate 1062 is arranged so as to form an angle and an opening area at which the gas uniformly flows into the sealed container (casing) 101 (the flow velocity becomes uniform).
  • the guide portion 1061 is configured to expand in the direction in which the gas travels, the flow velocity of the gas in the guide portion 1061 is higher at the central portion of the guide portion 1061 than at the outer peripheral portion. Therefore, by arranging the partition plate 1062 in the guide portion 1061 so that the outer opening area is larger than the central opening area, the flow velocity of the gas flowing through each opening can be made uniform.
  • FIG. 6 is a diagram showing a structural example (cross section) of the connecting portion 1061 between each sealed container 101 and the piping portion 106. As shown in FIG. As shown in FIG. 6, the gas supplied through the piping portion 106 and the connecting portion 1061 flows into the sealed container (housing) 101 and passes through both the upper and lower sides of the circuit board. cooling), flows out of the sealed container 101 and is evacuated.
  • the power control unit that supplies power to the mass spectrometer controls the gas from the gas supply unit (for example, nitrogen gas: dew point temperature ⁇ 40° C. and extremely low humidity (for example, 0.1% )), control the humidity and temperature of the gas so that it has a dew point lower than the dew point of the environment in which the circuit board on which the electrical elements (e.g., capacitors and diodes) are placed (e.g., 80 ° C. or less, preferably 18° C. to 32° C.) and irradiating at least a portion of the circuit board with the humidity and temperature controlled gas.
  • the gas supply unit for example, nitrogen gas: dew point temperature ⁇ 40° C. and extremely low humidity (for example, 0.1% )
  • control the humidity and temperature of the gas so that it has a dew point lower than the dew point of the environment in which the circuit board on which the electrical elements (e.g., capacitors and diodes) are placed (e.g., 80 ° C. or less,
  • the power supply control unit includes a portion that controls the humidity and temperature of the gas by cooling or heating the gas, and a pipe that leads the humidity and temperature-controlled gas to the circuit board. including the part and A humidity/temperature measuring instrument for measuring humidity and temperature is installed in the surrounding environment of the circuit board. By doing so, it is possible to efficiently supply the temperature- and humidity-controlled gas to the environment in which the circuit board is installed.
  • the above mechanism calculates the dew point temperature T1 of the surrounding environment of the circuit board based on the measurement result of the humidity/temperature measuring instrument, and calculates the humidity such that the dew point temperature T2 of the gas is lower than the dew point temperature T1. and a humidity adjuster that adjusts the humidity of the gas from the gas supply unit based on the humidity calculated by the humidity controller. By doing so, it is possible to appropriately adjust the temperature and humidity of the gas to be supplied in consideration of the current state (environment) in which the circuit board is placed.
  • the circuit board and the humidity/temperature measuring instrument are housed in a sealed container (having a heat insulating structure), one end of the piping section (having a heat insulating structure) is connected to a device for controlling the humidity and temperature of the gas, and the other end is connected to Connected to a closed container.
  • the sealed container has an inlet and an outlet for gas, and a guide section (see FIG. 5) that uniformly irradiates the circuit board with gas in the space between the inlet and the outlet.
  • the piping part is connected with the closed container via the guide part.
  • the guide part has a shape that widens in the traveling direction, and has a partition plate installed inside. The partition plate partitions the guide portion to form a plurality of openings, and straightens the flow of gas so that the flow velocity in each opening is uniform. By doing so, the flow of gas can be made uniform in the sealed container, so that the electric elements mounted on the circuit board can be evenly irradiated with the gas.
  • the device (gas cooling unit 105) for controlling the humidity and temperature of the gas includes at least a metal part having a ventilation path for guiding the gas from the gas supply part to the piping part, and a Peltier element provided in contact with the metal part. (Peltier cooling unit) and A part of the piping (near the outlet from the metal part) is provided with a temperature measuring part for measuring the temperature of the supplied gas. Then, the Peltier controller controls the amount of electric current supplied to the Peltier element based on the temperature of the gas notified from the temperature measuring unit. By doing so, even if there is a change in the temperature of the gas to be supplied, it is possible to readjust the temperature to the optimum temperature.
  • control lines and information lines are those considered necessary for explanation, and not necessarily all control lines and information lines are shown on the product. All configurations may be interconnected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本開示は、環境温度のみではなく、環境湿度の影響も小さくして、質量分析装置の電源を構成する電気素子の寿命を短くなるのを防止する技術について開示する。このため、本開示は、電気素子が配置された回路基板と、ガス供給部と、ガス供給部からのガスの湿度および温度を制御し、当該湿度および温度が制御されたガスを回路基板の少なくとも一部に照射する機構と、を備える質量分析装置について提案する(図3参照)。

Description

質量分析装置
 本開示は、質量分析装置に関する。
 従来から質量分析法は様々な分野で活用されており、例えばガスクロマトグラフと結合し食品中の残留農薬の測定や、液体クロマトグラフと結合し、大気中の環境ホルモン等の測定を行ったりしている。最近はDNAシーケンサの普及から、遺伝情報から生成するタンパク質や、細胞内の修飾後タンパクの構造解析が注目されており、創薬、臨床研究での新たな知見が得られ始めている。
 質量分析装置の使用環境も、企業、大学の研究室から病院の臨床検査室等に広がってきており、質量分析の専門家が使用する装置から、他分野の専門家が利用する装置に変わってきている。そのため、質量分析法の特長の一つである高感度はもちろんのこと、より簡便で、耐久性の高い装置が求められている。
 定量分析を主に行う質量分析装置は、装置内に質量分析計を有している。質量分析計は装置内部に真空を生成し、内部に様々な形状をした電極を設置、装置に導入されたイオンを電場で制御、選択する。例えば、四重極型質量分析計はQマス(QMS)もしくはマスフィルタとも呼ばれ、4本の円柱状電極からなる。円柱状電極は、円の中心を正方形の頂点に置き組み合わされる。固定された円柱状電極の隣り合った電極に、それぞれに正負の直流電圧±Uと高周波電圧±V・cosωtを重畳し,±U±V・cosωtなる電圧を印加する。電荷を持ったイオンがその中を通過する際、振動しながら通過し、電圧,周波数に応じて、ある一定のイオンのみ安定な振動をして電極内を通過する。一方、それ以外のイオンは電極内を通過中に振動が大きくなり、電極に衝突するなどして、通過することができなくなる。この直流電圧と高周波電圧の比を一定に保ちつつ高周波電圧を直線的に変化させることで質量スペクトル(マススペクトル)を得る。また、質量分析装置を用いて、正確な質量スペクトルを得るために、計測環境の変化による質量軸(マス軸とも言う)のずれを防止することが必要となる。例えば、特許文献1は、周囲温度が変化した場合の質量軸のずれを防止するために、四重極電極に印加される高周波電圧の振幅を検出する検波回路と、検波回路出力をアナログ-ディジタル変換する回路と、ディジタル化された検波回路出力と振幅目標値との誤差を算出し振幅を調整するディジタル回路を用いてフィードバック制御を行うように構成し、検波回路およびアナログ-ディジタル変換回路、またはどちらか一方を有する制御基板に、同制御基板に搭載した発熱部品と、感温素子と、温度制御回路を用いて、検波回路およびアナログ-ディジタル変換回路を恒温化する質量分析装置を開示している。
特開2014-146525号公報
 しかしながら、特許文献1に開示の技術は、環境の影響を受ける電気素子が配置された基板上に測温体、発熱体を配置し、基板温度により発熱体のオン、オフをコントロールするものであり、電気素子に通電した場合の自己発熱時のマス軸のずれに対する影響を十分に考慮していない。具体的には、温度影響を受ける電気素子には高電圧が印可されている場合がある。電気素子の測温体には非接地型、接地型がある。非接地型(例えば、シース型熱電対など)の場合、電気絶縁された測温体を用いることになるので、大型化し、基板に配置することは困難であり、また、そのような測温体は高価である。一方、接地型測温体を用いる場合、測温体と電気素子との電気絶縁性を確保して、測温体を配置することになる。この場合、基板は一般的に電気伝導率の低い樹脂などの材料でできており、温度を計測し、その温度結果で基板上に配置した発熱体の発熱量を制御する場合、比較的、応答時間がかかり、PID調整を行っても温度のオーバシュートが発生し、マス軸ドリフト量が仕様以下にならないことがある。特に、許容されるマス軸のドリフト量が小さい場合、加熱方式では仕様を満足することが困難になる。また、接地型測温体の固定する場所によって、マス軸ドリフト量は変化し、最適な固定場所を実験で求める必要がある。
 一般的に、電気素子は温度が上昇すると、寿命が短くなる。例えば、アルミ電解コンデンサは温度が10℃上昇すると寿命は約半分になる。従って、特許文献1のような加熱方式では、寿命が短くなり、制御基板の交換周期が短くなるメンテ時間、作業費の増大になる。
 また、特許文献1に開示の技術では、周囲温度が変化した場合のマス軸のずれに関しては対策が講じられているものの、湿度変化によるマス軸のずれについては何ら考慮されていない。
 本開示は、このような状況に鑑み、環境温度のみではなく、環境湿度の影響も小さくして、質量分析装置の電源を構成する電気素子の寿命を短くなるのを防止する技術を提案する。
 上記課題を解決するために、本開示は、電気素子が配置された回路基板と、ガス供給部と、ガス供給部からのガスの湿度および温度を制御し、当該湿度および温度が制御されたガスを回路基板の少なくとも一部に照射する機構と、を備える質量分析装置について提案する。
 本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素および多様な要素の組み合わせ、および以降の詳細な記述と添付される請求の範囲の様態により達成され実現される。
 本明細書の記述は典型的な例示に過ぎず、本開示の請求の範囲又は適用例をいかなる意味においても限定するものではない。
 本開示の技術によれば、環境温度のみではなく、環境湿度の影響も小さくして、質量分析装置の電源を構成する電気素子の寿命を短くなるのを防止することができる。
質量分析装置の質量分析計に電源を供給する電源制御部が設置される環境の湿度の違いによるマススペクトルの変化を示す図である。 本実施形態による質量分析装置1の概略構成例を示す図である。 本実施形態による電源制御部10の内部構成例を示す図である。 本実施形態による密閉容器101の概略構成例を示す図である。 各密閉容器101と配管部106との接続部分1061の構造例(真上からみた様子)を示す図である。 各密閉容器101と配管部106との接続部分1061の構造例(断面)を示す図である。
 以下、添付図面を参照して本開示の実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本開示の原理に則った具体的な実施形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。
 本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
 <マス軸のずれについて>
 質量分析装置が設置されている環境(特に、湿度、温度)によって、質量分析計で計測されるマススペクトルは、マス軸がずれ、信号強度が変化し、および分解能が劣化してしまう。図1は、質量分析装置の質量分析計に電源を供給する電源制御部が設置される環境の温度、湿度の違いによるマススペクトルの変化を示す図である。図1において、実線と点線は、同一サンプルについて、上記電源制御部が設置される環境の温度、湿度を変えて測定した場合のマススペクトルを表している。図1に示されるように、温度、湿度の違いにより、マス軸(最高信号強度の軸)がずれ、信号強度にも違いが出てくることが分かる。これらの現象の主な原因は、例えば、Qロッド(四重極)に供給する高周波電圧をフィードバックする電気回路に用いる電気素子(コンデンサ、ダイオードなど)が温度、湿度の影響を受け、電気特性が変化するためである。例えば、高湿度の環境下にコンデンサがあると、その表面に水膜が付着する。これにより、コンデンサの電気容量が変化し、四重極に供給する電圧の分圧比が変化してしまい、正確に高周波電圧をフィードバックできなくなってしまう。
 以下、本実施形態は、上記電子素子が設置された環境における温度、湿度の変化(高湿度にして)上記電気素子の電気特性を変化させない構成および方法について説明する。
 <質量分析装置の基本構成例>
 図2は、本実施形態による質量分析装置1の概略構成例を示す図である。図2に示されるように、質量分析装置1は、電源制御部10と、質量分析計20と、出力部30と、を備えている。電源制御部10は、質量分析計20のマスフィルタ(四重極)202に、予め決められた分圧比で電源(高周波電圧)を供給する。質量分析計20は、分析対象のサンプルをイオン化してマスフィルタ202に供給するイオン源201と、イオン源201から供給されたイオンのうち特定のm/z比のイオンを選択するマスフィルタ202と、マスフィルタ202によって選択されたイオンの検出し、信号強度を計測するイオン検出器203と、を備えている。出力部30は、例えば、表示装置やプリンタなどによって構成され、イオン検出器203から計測された、特定のm/z比に対応する信号強度を出力(表示、印刷等)する。
 なお、本実施形態では、マスフィルタ202の例として四重極フィルタを挙げているが、六重極や八重極、さらに多重極であってもよい。
 <電源制御部の内部構成>
 図3は、本実施形態による電源制御部10の内部構成例を示す図である。図3に示すように、電源制御部10は、電気素子などを保持する複数の密閉容器(マスフィルタ用密閉容器)101と、ガス供給部102と、各密閉容器101内の湿度の情報を受け取り、湿度調整器に湿度調整量を知らせる湿度コントローラ103と、湿度調整器104と、ガス冷却部105と、ガス冷却部105から出力されるガスを密閉容器101のそれぞれに供給する配管部106と、ガス温度を決定するペルチェコントローラ107と、供給するガスの温度を測定してペルチェコントローラ107に通知する測温部108と、を備えている。
 複数の密閉容器101のそれぞれは、断熱構造を有し、ダイオードを含む検波回路1011およびコンデンサを含む分圧回路1012などの電気素子を搭載する回路基板と、密閉容器101内の湿度および温度を計測して湿度コントローラ103に通知する湿度/温度計測器1013と、を備えている。
 ガス供給部102は、冷却して各密閉容器101に供給されるガス(例えば、窒素ガス)を発生させ、湿度調整器104に供給する。
 湿度コントローラ103は、湿度/温度計測器1013からの各密閉容器101内の湿度および温度の情報に基づいて湿度調整量を決定する。または、湿度コントローラ103は、湿度/温度計測器1013からの各密閉容器101内の湿度の情報と、検波回路1011、分圧回路1012上の測温部108からの温度の情報とに基づいて、湿度調整量を決定する。具体的には、湿度コントローラ103は、湿度/温度計測器1013からの各密閉容器101内の湿度および温度の情報を用いて(例えば、公知の露点温度計算式を用いる)、電気素子を搭載する回路基板が配置されている密閉容器101内の空間の露点温度T1を算出する(温度によって飽和水蒸気量が分かるため、密閉容器101内の露点温度T1を算出することが可能となる)。そして、湿度コントローラ103は、算出した露点温度T1よりも小さい露点T2(T2<T1)となる上記ガスの湿度を求め、これを湿度調整器104に通知する。ここでT2<T1とするのは、回路基板を配置している密閉容器101内の環境(湿度)より低い 露点を有するガスを照射することで、照射ガスによる結露を防止できるからである。これにより、コンデンサ等の表面に水膜形成によるマス軸ドリフトを防止できる。装置稼働時には、回路基板内の電気素子の発熱により、検波回路1011、分圧回路1012の温度が上昇する。これらの電気素子を含む回路基板の温度は、湿度/温度計測器1013で計測される温度とは異なる。よって、より正確に湿度を制御するため、湿度コントローラ103は、露点温度T1の算出に検波回路1011、分圧回路1012上の測温部108によって計測された温度を用いる。なお、複数個の密閉容器101がある場合には、各密閉容器101の平均温度を求め(装置内にあるので、差分は数℃程度)、露点T1を求めるようにしてもよい。T2をT1よりも十分に小さい値(例えば、1/10)にすれば、結露は発生しない。
 湿度調整器104は、湿度コントローラ103から受け取った湿度の情報(湿度調整量の情報でもよい)に基づいて、ガス供給部102から供給されるガスの湿度を調整し(供給されるガスの露点がT2となるように調整)、湿度調整されたガスをガス冷却部105(具体的には、後述の冷却通風路を備える金属板1051)に供給する。なお、ガス冷却部105には、露点が-40℃(極低湿度)で湿度0.1%以下にコントロールされた窒素ガス(N)を供給することができる。
 ガス冷却部105は、冷却通風路を備える金属板1051と、出力が数十Wのペルチェ冷却部(加熱でもよい)1052と、伝熱性を有する金属で構成されるヒートシンク1053と、熱を除去するため(排熱用)の冷却ファン1054と、を備える。ガス冷却部105は、湿度調整器104を介して供給されたガスの温度と流量をコントロールして各密閉容器101に接続された配管部106に排出する(例えば、流量は10L/分)。
 測温部108は、例えば熱電対で構成され、金属板1051の通風路から排出されたガスの温度を任意のタイミング(定期的でもよいし、常に監視してもよい)で計測し、計測結果(温度)をペルチェコントローラ107に通知する。
 ペルチェコントローラ107は、測温部108から通知された温度に基づいて、通風路から排出されたガスの温度が所望の温度(例えば、18±0.5℃)になるようにペルチェ素子(ペルチェ冷却部)1052の通電電流値を制御する。
 配管部106は、例えば、ナイロンチューブの周囲を断熱材(例えばウール材)で覆うことによって構成することができる。詳細には、配管部106は、発砲材で製作した中空円筒形状の断熱材に切れ目を入れて、配管外周にまきつけ、固定することにより構成する。そして、冷却通風路を設けた金属板1051の外表面に断熱材を配置する。断熱材は電気伝導率の低い樹脂板と空気層(最も熱伝導率が低い。流れを抑制することで、良好な断熱材となる)で形成する。冷却通風路を設けた金属板外周から流入する熱を極力低下させるので、ペルチェ素子の出力を最小化できる。
 このように、ペルチェ素子を用いるペルチェ冷却部1052で窒素ガスの温度をコントロールし、密閉容器101に収容されている回路基板(検波回路1011および分圧回路1012を含む)に吹きかける。上述のように、窒素ガスを、例えば、18℃±0.5℃にコントロールし、マスフィルタ用密閉容器101内部に吹きかけることにより、密閉容器101内の電気素子の周りの温度を一定にし、電気素子を強制風冷することができる。これにより、電気素子の自己発熱による温度上昇値を低減でき、マス軸のドリフト量を許容値以下に低減でき、よって環境の影響を最小限度に抑えることができ、マス軸ドリフト量の低減化が可能となる。
 <密閉容器101について>
 図4は、本実施形態による密閉容器101の概略構成例を示す図である。図4に示されるように、密閉容器101は、断熱構造を備える密閉用筐体内に、検波回路(ダイオードで構成することができる)1011および分圧回路(コンデンサで構成することができる)1012を搭載する回路基板と、密閉用筐体内の湿度および温度を測定する湿度/温度計測器1013と、を備える。また、密閉容器101は、窒素ガスの入口と出口を有し、当該入口と出口との間の空間にある回路基板に均一にガスを照射させるためのガイド部を有している。
 電気素子(コンデンサやダイオード)の温度限界点は、80℃である。そのため、供給するガスの温度は少なくとも80℃以下にコントロールする必要がある。よって、上述のように、密閉容器101に照射するガス(温度および湿度制御された状態)は、80℃以下に温度調整される。温度調整をさらに容易にすることを目的として、例えば、18℃から32℃の範囲に収まるようにしてもよい。
 なお、ダイオードやコンデンサが他の素子よりも温度や湿度の影響を受けやすいため、本実施形態では、対象とする電気素子はコンデンサおよびダイオードとしているが、密閉容器101は、これら以外の電気素子を含んでもよい。また、密閉容器101の個数は、マスフィルタの員数による。例えば、マスフィルタとして四重極フィルタを用いる場合には密閉容器101は4個、八重極フィルタを用いる場合には密閉容器101は8個となる。
 <配管部106と密閉容器101との接続>
 図5は、各密閉容器101と配管部106との接続部分1061の構造例(真上からみた様子)を示す図である。図5に示されるように、密閉容器101は、配管部(拡散管)106と密閉容器101とを接続するためのガイド部(接続部分)1061を有する。ガイド部1061は、ガスの流れ(流速)を均等に整流する複数の仕切り板(整流板)1062を有している。仕切り板1062は、密閉容器(筐体)101に均一にガスが流入する(流速が均一となる)角度および開口面積を形成するように配置される。つまり、ガイド部1061は、ガスの進行方向に向かって広がって構成されているため、ガイド部1061におけるガスの流速は、ガイド部1061の中心部の方が外周部よりも大きい。このため、外側の開口面積が中心部の開口面積よりも大きくなるように仕切り板1062をガイド部1061の部に配置することにより、各開口部に流れるガスの流速を均一にすることができる。
 図6は、各密閉容器101と配管部106との接続部分1061の構造例(断面)を示す図である。図6に示されるように、配管部106および接続部1061を介して供給されるガスは、密閉容器(筐体)101内に流入し、回路基板の上下両側を通過(回路基板の上下面を冷却する)し、密閉容器101から流出し、排気される。
 <まとめ>
(i)本実施形態によれば、質量分析計に電源供給する電源制御部は、ガス供給部からのガス(例えば、窒素ガス:露点温度-40℃で極低湿度(例えば、0.1%))を、電気素子(例えば、コンデンサおよびダイオード)を搭載する回路基板が配置されている環境の露点よりも低い露点を有するようにガスの湿度および温度を制御(例えば、80℃以下、好ましくは18℃から32℃)し、当該湿度および温度が制御されたガスを回路基板の少なくとも一部に照射する。このようにすることにより、電気素子の電気特性が環境温度および湿度の影響を受けて変化することを防止することが可能となる。このため、マススペクトルにおけるマス軸のずれ、信号強度の変化、分解能の劣化という課題を解決することができるようになる。
 上記電源制御部は、ガスの湿度および温度を制御する機構として、ガスを冷却あるいは加熱することによりガスの湿度および温度を制御する部位と、湿度および温度が制御されたガスを回路基板まで導く配管部と、を含んでいる。そして、回路基板の周辺環境には、その湿度および温度を計測する湿度/温度計測器が設置されている。このようにすることにより、温度および湿度が制御されたガスを効率的に回路基板が設置された環境に供給することが可能となる。
 上記機構は、湿度/温度計測器の計測結果に基づいて、回路基板の周辺環境の露点温度T1を算出し、ガスの露点温度T2を露点温度T1よりも低くなるような湿度を算出する湿度コントローラと、湿度コントローラが算出した湿度に基づいてガス供給部からのガスの湿度を調整する湿度調整器と、を備えている。このようにすることにより、回路基板が置かれた現在の状態(環境)を考慮して、供給すべきガスの温度および湿度を適切に調整することが可能となる。
 回路基板および湿度/温度計測器は、密閉容器(断熱構造を有する)に収容され、配管部(断熱構造を有する)は、一端がガスの湿度および温度を制御する装置に接続され、他端が密閉容器に接続されている。回路基板を設置する環境を密閉容器内とすることにより、環境の湿度および温度コントロールを安定的に行うことができる。
 さらに、密閉容器は、ガスの入口と出口を有し、当該入口と出口との間の空間に回路基板に均一に気体を照射させるガイド部(図5参照)を有している。そして、配管部は、密閉容器と、ガイド部を介して接続されている。ガイド部は、進行方向に向かって広がった形状を有しており、内部に設置された仕切り板を有する。仕切り板は、ガイド部を区切って複数の開口を形成し、各開口における流速を均一にするようにガスの流れを整流する。このようにすることにより、密閉容器内においてガスの流れを均一にすることができるので、回路基板に搭載した電気素子にまんべんなくガスを照射することができるようになる。
 ガスの湿度および温度を制御する装置(ガス冷却部105)は、少なくとも、ガス供給部からのガスを配管部に誘導する通風路を有する金属部と、当該金属部と接して設けられたペルチェ素子(ペルチェ冷却部)と、を備えている。配管部の一部(金属部からの出口付近)には、供給されるガスの温度を計測する測温部が設けられている。そして、ペルチェコントローラは、測温部から通知されたガスの温度に基づいて、ペルチェ素子の通電電流量を制御する。このようにすることにより、供給するガスの温度に変化があったとしても最適な温度に調整し直すことが可能となる。
(ii)本実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていても良い。
 また、本技術分野の通常の知識を有する者には、本開示のその他の実装がここに開示された本開示の明細書及び実施形態の考察から明らかになる。記述された実施形態の多様な態様及び/又はコンポーネントは、単独又は如何なる組み合わせでも使用することが出来る。明細書と具体例は典型的なものに過ぎず、本開示の範囲と精神は後続する請求範囲で示される。
1 質量分析装置、10 電源制御部、 20 質量分析計、 30 出力部、201 イオン源、202 マスフィルタ、203 イオン検出器、101 密閉容器、102 ガス供給部、103 湿度コントローラ、104 湿度調整器、105 ガス冷却部、106 配管部、 107 ペルチェコントローラ、108 測温部、1011 検波回路、1012 分圧回路、1013 湿度/温度計測器、1051 金属板、1052ペルチェ冷却部(ペルチェ素子)、1053 ヒートシンク、1054 冷却ファン

Claims (13)

  1.  電気素子が配置された回路基板と、
     ガス供給部と、
     前記ガス供給部からのガスの湿度および温度を制御し、当該湿度および温度が制御されたガスを前記回路基板の少なくとも一部に照射する機構と、
    を備える質量分析装置。
  2.  請求項1において、
     前記機構は、前記ガスを冷却あるいは加熱することにより前記ガスの湿度および温度を制御する装置と、湿度および温度が制御されたガスを前記回路基板まで導く配管部と、を含む、質量分析装置。
  3.  請求項2において、さらに、
     前記回路基板の周辺環境の湿度および温度を計測する湿度/温度計測器と、
     前記湿度/温度計測器の計測結果に基づいて、前記回路基板の周辺環境の露点温度T1を算出し、前記ガスの露点温度T2を前記露点温度T1よりも低くなるような湿度を算出する湿度コントローラと、
     前記湿度コントローラが算出した湿度に基づいて前記ガス供給部からのガスの湿度を調整する湿度調整器と、
    を備える質量分析装置。
  4.  請求項3において、
     前記回路基板および前記湿度/温度計測器は、密閉容器に収容され、
     前記配管部は、一端が前記ガスの湿度および温度を制御する装置に接続され、他端が前記密閉容器に接続されている、質量分析装置。
  5.  請求項4において、
     前記密閉容器は断熱され、
     前記配管部は断熱構造を有している、質量分析装置。
  6.  請求項4において、
     前記密閉容器は、前記ガスの入口と出口を有し、当該入口と出口との間の空間に前記回路基板に均一に気体を照射させるガイド部を有し、
     前記配管部は、前記密閉容器と前記ガイド部を介して接続されている、質量分析装置。
  7.  請求項6において、
     前記ガイド部は、その内部に設置された仕切り板を有し、
     前記仕切り板は、前記ガイド部を区切って複数の開口を形成し、各開口における流速を均一にするように前記ガスの流れを整流する、質量分析装置。
  8.  請求項2において、
     前記機構における前記ガスの湿度および温度を制御する装置は、少なくとも、前記ガス供給部からのガスを前記配管部に誘導する通風路を有する金属部と、当該金属部と接して設けられたペルチェ素子と、を備える質量分析装置。
  9.  請求項8において、さらに、
     前記金属部から前記配管部に排出される前記ガスの温度を計測する測温部と、
     前記測温部から通知された前記ガスの温度に基づいて、前記ペルチェ素子の通電電流量を制御するペルチェコントローラと、
    を備える質量分析装置。
  10.  請求項1において、
     前記ガス供給部は、窒素ガスを供給する、質量分析装置。
  11.  請求項10において、
     前記機構は、窒素ガスの温度を80℃以下に制御する、質量分析装置。
  12.  請求項11において、
     前記機構は、前記窒素ガスの温度を18℃から32℃に制御する、質量分析装置。
  13.  請求項1において、
     前記回路基板に前記電気素子は、分圧回路を構成するコンデンサと、検波回路を構成するダイオードと、を含み、
     前記回路基板を介して、四重極フィルタに高周波電圧を供給する、質量分析装置。
PCT/JP2021/002136 2021-01-22 2021-01-22 質量分析装置 WO2022157905A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21920125.8A EP4283657A1 (en) 2021-01-22 2021-01-22 Mass spectrometer
PCT/JP2021/002136 WO2022157905A1 (ja) 2021-01-22 2021-01-22 質量分析装置
US18/270,435 US20230402273A1 (en) 2021-01-22 2021-01-22 Mass Spectrometer
JP2022576313A JP7449418B2 (ja) 2021-01-22 2021-01-22 質量分析装置
CN202180088733.3A CN116745883A (zh) 2021-01-22 2021-01-22 质量分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002136 WO2022157905A1 (ja) 2021-01-22 2021-01-22 質量分析装置

Publications (1)

Publication Number Publication Date
WO2022157905A1 true WO2022157905A1 (ja) 2022-07-28

Family

ID=82548594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002136 WO2022157905A1 (ja) 2021-01-22 2021-01-22 質量分析装置

Country Status (5)

Country Link
US (1) US20230402273A1 (ja)
EP (1) EP4283657A1 (ja)
JP (1) JP7449418B2 (ja)
CN (1) CN116745883A (ja)
WO (1) WO2022157905A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271712U (ja) * 1985-10-22 1987-05-08
JPH0418960U (ja) * 1990-06-06 1992-02-18
US20130015343A1 (en) * 2011-07-15 2013-01-17 Bruker Daltonics, Inc. Radio Frequency Voltage Temperature Stabilization
WO2014041862A1 (ja) * 2012-09-14 2014-03-20 株式会社日立ハイテクノロジーズ 質量分析装置及び方法
JP2014146525A (ja) 2013-01-30 2014-08-14 Hitachi High-Technologies Corp 質量分析装置
JP2014202664A (ja) * 2013-04-08 2014-10-27 コニカミノルタ株式会社 RIfS(反射干渉分光法)測定装置
JP2015192803A (ja) * 2014-03-31 2015-11-05 株式会社東芝 X線コンピュータ断層撮影装置
CN105703121A (zh) * 2014-12-12 2016-06-22 塞莫费雪科学(不来梅)有限公司 电连接组件
WO2020213283A1 (ja) * 2019-04-16 2020-10-22 株式会社日立ハイテク 質量分析装置および質量分析方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166785A (ja) 2001-11-30 2003-06-13 Dainippon Printing Co Ltd 乾燥装置
JP2014123469A (ja) 2012-12-20 2014-07-03 Hitachi High-Technologies Corp 質量分析装置および質量分析装置の調整方法
EP2999340A1 (en) 2013-05-20 2016-03-30 Honbu Sankei Co., Ltd. Drug-resistant microbe and variant microbe disinfectant containing chlorous acid aqueous solution
GB2552965B (en) 2016-08-15 2020-07-15 Thermo Fisher Scient Bremen Gmbh Temperature-compensated rectifying component

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271712U (ja) * 1985-10-22 1987-05-08
JPH0418960U (ja) * 1990-06-06 1992-02-18
US20130015343A1 (en) * 2011-07-15 2013-01-17 Bruker Daltonics, Inc. Radio Frequency Voltage Temperature Stabilization
WO2014041862A1 (ja) * 2012-09-14 2014-03-20 株式会社日立ハイテクノロジーズ 質量分析装置及び方法
JP2014146525A (ja) 2013-01-30 2014-08-14 Hitachi High-Technologies Corp 質量分析装置
JP2014202664A (ja) * 2013-04-08 2014-10-27 コニカミノルタ株式会社 RIfS(反射干渉分光法)測定装置
JP2015192803A (ja) * 2014-03-31 2015-11-05 株式会社東芝 X線コンピュータ断層撮影装置
CN105703121A (zh) * 2014-12-12 2016-06-22 塞莫费雪科学(不来梅)有限公司 电连接组件
WO2020213283A1 (ja) * 2019-04-16 2020-10-22 株式会社日立ハイテク 質量分析装置および質量分析方法

Also Published As

Publication number Publication date
JP7449418B2 (ja) 2024-03-13
CN116745883A (zh) 2023-09-12
US20230402273A1 (en) 2023-12-14
JPWO2022157905A1 (ja) 2022-07-28
EP4283657A1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
US7112788B2 (en) Apparatus and method for controllably affecting the temperature of FAIMS components
KR101840231B1 (ko) 플라스마 처리 장치
US8823404B2 (en) Evaluation device and evaluation method for substrate mounting apparatus and evaluation substrate used for the same
US11443934B2 (en) Time-of-flight mass spectrometry device
JP6286215B2 (ja) プラズマ処理装置
US20090118872A1 (en) Temperature control device for target substrate, temperature control method and plasma processing apparatus including same
KR20220034893A (ko) 반도체 제조에서의 다중 구역 가열기 모델 기반 제어
KR19990087819A (ko) 플라즈마 처리장치
CA2623222A1 (en) Method and apparatus for high-order differential ion mobility separations
JP6047414B2 (ja) 質量分析装置
CN210743914U (zh) 电喷雾离子源及系统
WO2022157905A1 (ja) 質量分析装置
JP2008077980A (ja) イオン移動度計およびイオン移動度計測方法
JP7018978B2 (ja) プラズマ処理装置
US8674298B2 (en) Quadrupole mass spectrometer
KR101110376B1 (ko) 오존발생장치
JP3629536B2 (ja) カロリーメータ及び検出器システム
RU2821217C1 (ru) Устройство для определения работы выхода электрона
EP3068922A1 (en) Method for monitoring se vapor in vacuum reactor apparatus
JP2024500329A (ja) 補助ヒーター付き等温イオンソース
Chapman et al. Crystal heater supply utilizing controlled electron bombardment
JP2003222700A (ja) 電子線照射処理装置
JPH09312141A (ja) 電子ビーム制御装置及びこれを用いた走査型電子顕微鏡
KR20060135458A (ko) 샤워해드 간격 측정용 지그 및 이를 이용한 샤워해드 간격측정방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576313

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180088733.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021920125

Country of ref document: EP

Effective date: 20230822