WO2022157533A1 - 아민 화합물의 중합반응을 통한 기질의 코팅과 폴리머 코팅된 기질을 갖는 장치 - Google Patents

아민 화합물의 중합반응을 통한 기질의 코팅과 폴리머 코팅된 기질을 갖는 장치 Download PDF

Info

Publication number
WO2022157533A1
WO2022157533A1 PCT/IB2021/000475 IB2021000475W WO2022157533A1 WO 2022157533 A1 WO2022157533 A1 WO 2022157533A1 IB 2021000475 W IB2021000475 W IB 2021000475W WO 2022157533 A1 WO2022157533 A1 WO 2022157533A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
layer
metal
polymerization
polymer layer
Prior art date
Application number
PCT/IB2021/000475
Other languages
English (en)
French (fr)
Inventor
조성찬
이경훈
에스. 알트하우스 존
박형진
Original Assignee
퀀텀 마이크로머티리얼즈, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/KR2021/000798 external-priority patent/WO2021150018A1/ko
Priority claimed from PCT/KR2021/000800 external-priority patent/WO2021150020A1/ko
Priority claimed from PCT/KR2021/000804 external-priority patent/WO2021150021A1/ko
Priority claimed from PCT/KR2021/000805 external-priority patent/WO2021150022A1/ko
Priority claimed from KR1020210058556A external-priority patent/KR20220151377A/ko
Priority claimed from KR1020210058555A external-priority patent/KR20220151376A/ko
Application filed by 퀀텀 마이크로머티리얼즈, 인크. filed Critical 퀀텀 마이크로머티리얼즈, 인크.
Priority to JP2023543283A priority Critical patent/JP2024515407A/ja
Priority to EP21920900.4A priority patent/EP4282907A1/en
Priority to CN202180094216.7A priority patent/CN116848180A/zh
Priority to KR1020237027496A priority patent/KR20230137360A/ko
Publication of WO2022157533A1 publication Critical patent/WO2022157533A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0627Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0616Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • C08J7/065Low-molecular-weight organic substances, e.g. absorption of additives in the surface of the article
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the present invention relates to a technique for forming a polymer layer on a substrate using a polymerization reaction.
  • a surface modification technology for changing the surface properties of a substrate is a technology required in various applied technology fields.
  • the chemical treatment itself for modifying the surface of the substrate is often limited by the properties of the substrate.
  • the substrate must have sufficient nucleophilic reactive groups.
  • Techniques capable of modifying the surface of a substrate without complicating the process and without significantly increasing the cost are versatile. Summary of the invention (SUMMARY)
  • Example 1 provides a metal laminate structure comprising a plastic film comprising at least one layer of plastic material, a metal layer formed over the plastic film, and a polymer layer formed over the metal layer.
  • the polymer layer is not formed by coating a pre-polymerized polymer on the metal layer, but is formed by polymerization on the metal layer.
  • the polymer layer is a compound belonging to Formula 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11, and Compound No. 204-248°
  • the polymer layer does not include a binder for attaching the polymer layer to the metal layer, and a plurality of polymers of the polymer layer are chemically bonded to the metal layer and are attached to the metal layer without a binder.
  • Example 2 is a method for manufacturing a metal laminate structure comprising: providing an intermediate structure including a plastic film and a metal layer formed thereon; and forming a polymer layer by causing a polymerization reaction on the metal layer of the intermediate structure provides
  • the metal laminate structure includes a plastic film, a metal layer formed on the plastic film, and a polymer layer formed on the metal layer, and the polymer layer includes Chemical Formulas 1, 2, 3, 4, 5, 6, 7, 8 in Example 1 , 9, 10 and 11, and a polymer obtained by using at least one of the compounds of Compound No. 204-248 as a monomer, wherein the composition of the polymerization reaction does not contain a binder, and thus is formed by the polymerization reaction The polymer layer does not contain a binder.
  • Example 3 in the method of Example 2, the composition of the polymerization reaction does not contain any of a surfactant, a polymerization initiator, and a polymerization inhibitor, and the polymer layer formed as a result of the polymerization reaction includes a surfactant, polymerization Provided is a method that does not contain an initiator or a polymerization inhibitor.
  • Example 4 in the method of Example 2, wherein the step of providing the intermediate structure comprises the steps of providing a plastic film and a metal layer, applying an adhesive between the plastic film and the metal layer and laminating it between the plastic film and the metal layer It provides a method comprising the step of providing an adhesion syndrome interposed in
  • Example 5 is the method of Example 2, wherein the step of providing the intermediate structure comprises providing a plastic film, vapor-depositing a metal to form a metal layer on the plastic film. to provide.
  • Example 6 is the method of Example 5, wherein the step of providing the intermediate structure further comprises the step of plasma-treating the surface of the plastic film before performing the vapor deposition, wherein the vapor deposition of the metal is Provided is a method made on the surface of a plastic film.
  • Example 7 provides the method of Example 2, wherein the step of causing the polymerization reaction comprises bringing the metal layer of the intermediate structure into contact with the polymerization composition.
  • a plurality of metal laminate structures including a first metal laminate structure and a second metal laminate structure are interposed between the first metal laminate structure and the second metal laminate structure, the first metal laminate structure and the second metal laminate structure It provides a flexible laminate structure comprising an adhesive layer for laminating a two-metal laminate structure.
  • the first metal laminate structure and the second metal laminate structure each include a plastic film including at least one plastic material layer, a metal layer formed on the plastic film, and a polymer layer formed on the metal layer, wherein the polymer layer is pre-polymerized on the metal layer. It is not formed by coating a polymer, but is formed by polymerization on a metal layer.
  • the polymer layer is, in Example 1 °1, a compound belonging to formulas 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 1 1, and compound number 204-248°
  • the polymer layer does not include a binder for attaching the polymer layer to the metal layer, and a plurality of polymers of the polymer layer are chemically bonded to the metal layer and are attached to the metal layer without a binder.
  • Example 9 provides a first metal laminate structure and a second metal laminate structure, wherein the first metal laminate structure and the second metal laminate structure are interposed between the first metal laminate structure and the second metal laminate structure It provides a flexible laminate structure manufacturing method comprising the step of applying and depositing an adhesive between the first metal laminate structure and the second metal laminate structure to form an adhesive layer for laminating the first metal laminate structure and the second metal laminate structure.
  • the first metal laminate structure and the second metal laminate structure each include a plastic film including at least one plastic material layer, a metal layer formed on the plastic film, and a polymer layer formed on the metal layer, wherein the polymer layer is pre-polymerized on the metal layer. It is not formed by coating a polymer, but is formed by polymerization on a metal layer.
  • the polymer layer is prepared by using, as a monomer, at least one of the compounds belonging to Chemical Formulas 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 of Example 1, and the compound of Compound No. 204-248 The resulting polymer is included.
  • the polymer layer does not include a binder for attaching the polymer layer to the metal layer, and a plurality of polymers of the polymer layer are chemically bonded to the metal layer and are attached to the metal layer without a binder.
  • Embodiment 10 provides an information display device including a display panel and a flexible laminate structure.
  • the display panel includes a substrate and a display array, the substrate including a front side and a back side, the display array being positioned on the back side of the substrate and coupled to the substrate with or without an intermediate element between the display array and the back side of the substrate has been
  • the flexible laminate structure is positioned on the back surface of the display array and the substrate so that the flexible laminate structure and the substrate surround the display array therebetween, and the flexible laminate structure and the substrate are coupled so that air does not permeate, so that the display array is It is sealed between the substrate and the flexible laminate structure.
  • the flexible laminate structure includes a plurality of metal laminate structures including a first metal laminate structure and a second metal laminate structure.
  • the first metal laminate structure and the second metal laminate structure each include a plastic film including at least one plastic material layer, a metal layer formed on the plastic film, and a polymer layer formed on the metal layer, wherein the polymer layer is pre-polymerized on the metal layer. It is not formed by coating a polymer, but is formed by polymerization on a metal layer.
  • the polymer layer is a compound belonging to Example 1 °1 Formulas 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 1 1, and Compound No. 204-248°
  • the polymer layer does not include a binder for attaching the polymer layer to the metal layer, and a plurality of polymers of the polymer layer are chemically bonded to the metal layer and are attached to the metal layer without a binder.
  • Example 11 is the information display device of Example 10, wherein the plurality of metal laminate structures include a third metal laminate structure, the adhesive layer is referred to as a first adhesive layer, and a second metal laminate structure and It provides an information display device including a second adhesive layer interposed between the third metal laminate structure and laminating the second metal laminate structure and the third metal laminate structure.
  • Embodiment 12 is the information display device of embodiment 10, wherein the display array is sealed and has a water vapor permeability ranging from about 1 x 10-8 g/m 2 /day to about 1 x10' 6 g/m 2 /day
  • Embodiment 13 provides a method for manufacturing an information display device.
  • the method comprises the steps of providing a display array positioned on a rear surface of a substrate and coupled to the substrate with or without intermediate elements, the flexible laminate comprising a first surface and a second surface opposite to the substrate; providing a structure, aligning the flexible laminate structure on top of a display array and a back surface of the substrate such that a first side of the flexible laminate faces the substrate and a second side faces an opposite side of the substrate, and the display array is and sealing the edge of the flexible laminate structure to a corresponding portion of the display panel so as to prevent air passage between the substrate and the flexible laminate structure.
  • the flexible laminate structure includes a plurality of metal laminate structures including a first metal laminate structure and a second metal laminate structure.
  • the first metal laminate structure and the second metal laminate structure each include a plastic film including at least one plastic material layer, a metal layer formed on the plastic film, and a polymer layer formed on the metal layer, the polymer layer comprising: It is not formed by coating the pre-polymerized polymer on the metal layer, but is formed by polymerization on the metal layer.
  • the polymer layer is a monomer of at least one of the compounds belonging to Formula 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 1 1, and the compound of Compound No.
  • Example 1 a polymer obtained by The polymer layer does not include a binder for attaching the polymer layer to the metal layer, and a plurality of polymers of the polymer layer are chemically bonded to the metal layer and are attached to the metal layer without a binder.
  • Example 14 provides a plastic sheet for packaging comprising a plastic film comprising at least one layer of a plastic material, a metal layer formed by vapor deposition of a metal on the plastic film, and a polymer layer formed on the metal layer.
  • the polymer layer is not formed by coating a pre-polymerized polymer on the metal layer, but is formed by polymerization on the metal layer.
  • the polymer layer, Example 1 °
  • the metal layer has a defect space extending through it in a thickness direction, and at least a part of the defect space is filled with a polymer and an oligomer obtained from the monomer.
  • Example 15 in the plastic sheet for packaging of Example 14, having a moisture permeability in the range of about 1 x10-8 g/m 2 /day to f 1 xi o- 6 g/m 2 /day
  • the packaging plastic sheets are provided.
  • Embodiment 16 includes the steps of providing a packaging plastic bag comprising an opening, placing an article into the packaging plastic bag through the opening, sealing the opening of the packaging plastic bag airtightly to contain the article
  • a method of airtight packaging of an article comprising the step of providing an airtight packaging.
  • the plastic bag for packaging provides a plastic sheet for packaging including a plastic film including at least one layer of a plastic material, a metal layer formed by vapor deposition of a metal on the plastic film, and a polymer layer formed on the metal layer.
  • the polymer layer is not formed by coating a pre-polymerized polymer on the metal layer, but is formed by polymerization on the metal layer.
  • the polymer layer Example 1 °
  • Polymers and oligomers obtained by using at least one of the compounds as a monomer are included.
  • the metal layer has a defect portion penetrating in the thickness direction, and at least a part of the defect portion is filled with a polymer and an oligomer obtained from the monomer.
  • Example 17 is the method of Example 16, wherein the airtight package has a moisture permeability in the range of about 1 x10-8 g/m 2 /day to f 1 xi o- 6 g/m 2 /day provide a way
  • Example 18 provides the method or apparatus of Examples 1 to 17, wherein the metal layer includes a metal foil, and the metal laminate structure includes an adhesive layer between the metal layer and the plastic film. .
  • Embodiment 19 is the method or apparatus of embodiments 1-17, wherein the metal layer is about A method or apparatus is provided, comprising a metal foil having a thickness of 5 pm to about 200 pm, wherein the metal laminate structure includes an adhesive layer between the metal layer and the plastic film.
  • Embodiment 20 is the method or apparatus of Embodiments 1 to 17, wherein the metal layer comprises a metal deposition layer formed on a plastic film, and no separate layer is interposed between the metal layer and the plastic film. A method or device is provided.
  • Embodiment 21 is the method or apparatus of Embodiments 1 to 17, wherein the metal layer comprises a metal deposited layer having a thickness of about 5 pm to about 200 pm formed on a plastic film, the metal layer and the plastic film It provides a method or device in which no separate layers are interposed.
  • Example 22 is the method or apparatus of Examples 1 to 17, wherein the polymer layer comprises an oligomer, a tetramer, a trimer, and a dimer derived from at least one monomer as a result of a polymerization reaction on the metal layer. to provide a method or apparatus comprising a significant amount of one or more compounds selected from the group, such that a commercially available polymer composition having a specified range of molecular weight does not contain as many oligomers, tetramers, trimers and dimers do.
  • Example 23 is the method or apparatus of Examples 1 to 17, wherein the polymer layer comprises an oligomer, a tetramer, a trimer, and a dimer derived from at least one monomer as a result of a polymerization reaction on the metal layer. At least one selected from the group includes chemical bonding to a plastic film, and chemical bonding of oligomers, tetramers, trimers or dimers to the metal layer cannot occur when the pre-polymerized polymer is coated on the metal layer.
  • a method or apparatus is provided.
  • Embodiment 24 is the method or apparatus of Embodiments 1 to 17, wherein the metal layer has a pinhole extending through the thickness of the metal layer, and at least one of an oligomer and a polymer forms at least a part of the pinhole space It is chemically bonded to the inner surface of the pinhole while occupying it, and this chemical bonding to the inner surface of the oligomer, polymer, or pinhole is of a nature that cannot occur when a pre-polymerized polymer is coated on a metal layer.
  • Example 25 in the method or apparatus of Examples 1 to 17, the polymer layer is not obtained by coating a pre-polymerized polymer on a metal layer, but polymerization or crosslinking in a commercially available polymer composition having a specific molecular weight Provided is a method or apparatus that does not contain a polymerization inhibitor to inhibit the reaction.
  • Example 26 in the method or apparatus of Examples 1 to 17, when the polymer layer is formed by coating the pre-polymerized polymer, it can be used to uniformly coat the pre-polymerized polymer on the metal table. A method or apparatus in which a surfactant is not included in the polymer layer is provided.
  • Example 27 is the method or apparatus of Examples 1 to 17, wherein the polymer layer Provided is a method or apparatus that does not contain a surfactant, a polymerization initiator, or a polymerization inhibitor.
  • Example 28 in the method or apparatus of Examples 1 to 17, in the polymer layer, at least one compound selected from the group consisting of oligomers, tetramers, trimers, and dimers derived from the at least one monomer It is included in a significant amount, such that a commercially available polymer composition having a specific molecular weight does not contain as many oligomers, tetramers, trimers and dimers, and the polymer formed as a result of polymerization on the metal layer.
  • the layer includes one or more selected from the group consisting of oligomers, tetramers, trimers, and dimers chemically bonded to the plastic film.
  • the metal layer has a pinhole extending through the thickness of the metal layer, and at least one of the oligomer and the polymer occupies at least a part of the pinhole space. It is chemically bonded to the inner surface, and chemical bonding to the inner surface of oligomers, polymers, or pinholes is of a nature that cannot occur when a pre-polymerized polymer is coated on a metal layer, and the polymer layer is a surfactant, polymerization Provided is a method or apparatus that does not contain an initiator or a polymerization inhibitor.
  • Embodiment 29 is the method or apparatus of Embodiments 1 to 17, wherein the metal layer includes a metal foil, the metal laminate structure includes an adhesive layer between the metal layer and the plastic film, and the polymer layer includes the Included in a significant amount of one or more compounds selected from the group consisting of oligomers, tetramers, trimers, dimers derived from at least one monomer, the substantial amount being present in a marketed polymer composition having a certain range of molecular weight includes that many oligomers, At least one selected from the group consisting of oligomers, tetramers, trimers, and dimers is chemically bonded to the plastic film in the polymer layer formed as a result of the polymerization reaction on the metal layer to the extent that it does not contain tetramers, trimers and dimers.
  • the chemical bonding of the oligomer, tetramer, trimer or dimer to the metal layer is of a nature that cannot occur when the pre-polymerized polymer is coated on the metal layer, and the metal layer penetrates the thickness of the metal layer.
  • a method or apparatus in which a pre-polymerized polymer is coated on a metal layer, which cannot occur, and the polymer layer does not contain a surfactant, a polymerization initiator, or a polymerization inhibitor.
  • Embodiment 30 is the method or apparatus of Embodiments 1 to 17, wherein the metal layer includes a metal deposition layer, there is no separate layer between the metal layer and the plastic film, and the polymer layer includes the at least One or more compounds selected from the group consisting of oligomers, tetramers, trimers, dimers derived from a single monomer are included in a significant amount, the substantial amount comprising: A commercially available polymer composition having a specific molecular weight does not contain as many oligomers, tetramers, trimers and dimers, and the polymer layer formed as a result of polymerization on the metal layer includes oligomers, tetramers, trimers, At least one selected from the group consisting of dimers includes chemical bonding to a plastic film, and chemical bonding of oligomers, tetramers, trimers or dimers to the metal layer occurs when the pre-polymerized polymer is coated on the metal layer.
  • the metal layer has a pinhole extending through the thickness of the metal layer, and at least one of an oligomer and a polymer is chemically bonded to the inner surface of the pinhole while occupying at least a portion of the pinhole space,
  • chemical bonding to the inner surface of oligomers, polymers, or pinholes is a property that cannot occur when a pre-polymerized polymer is coated on a metal layer, and the polymer layer does not contain a surfactant, polymerization initiator, or polymerization inhibitor provide the device.
  • Embodiment 31 is the method or apparatus of Embodiments 1 to 17, wherein the polymer layer is referred to as a first polymer layer, and the metal laminate structure further comprises a second polymer layer formed under the plastic film.
  • the plastic film is interposed between the metal layer and the second polymer layer, and the second polymer layer contains a polymer formed by polymerizing at least one monomer on the plastic film, rather than coating the pre-polymerized polymer composition. , provides a binder-free method or apparatus for adhering a second polymer layer to a plastic film.
  • Embodiment 32 provides the method or apparatus of embodiment 31, wherein the first polymer layer has a thickness in the range of about 1 pm to f 20 pm.
  • Example 33 in the method or apparatus of Example 31, in the first polymer layer formed as a result of the polymerization reaction on the metal layer, an oligomer, tetramer, trimer, dimer derived from the at least one monomer
  • a method or apparatus comprising a significant amount of one or more compounds selected from the group consisting of provides
  • Example 34 in the method or apparatus of Example 31, in the first polymer layer formed as a result of the polymerization reaction on the metal layer, at least one metal layer selected from the group consisting of oligomers, tetramers, trimers, and dimers Provides a method or apparatus in which chemical bonding of an oligomer, tetramer, trimer or dimer to a metal layer is of a nature that cannot occur when a pre-polymerized polymer is coated on a metal layer do.
  • Embodiment 35 is the method or apparatus of embodiment 31, wherein the metal layer has a pinhole extending through the thickness of the metal layer, and at least one of an oligomer and a polymer occupies at least a part of the pinhole space. It is chemically bonded to the inner surface of the pinhole, and chemical bonding to the oligomer or polymer or the inner surface of the pinhole in this way causes the pre-polymerized polymer to form.
  • a method or apparatus of a nature that cannot occur in the case of coating on a metal layer.
  • Example 36 is the method or apparatus of Example 31, wherein the first polymer layer is not obtained by coating a prepolymerized polymer on a metal layer, but polymerization or crosslinking in a commercially available polymer composition having a specific molecular weight Provided is a method or apparatus that does not contain a polymerization inhibitor to inhibit the reaction.
  • Example 37 in the method or apparatus of Example 31, when the first polymer layer is formed by coating the pre-polymerized polymer, it can be used to uniformly coat the pre-polymerized polymer on the metal surface. A method or apparatus in which a surfactant is not included in the first polymer layer is provided.
  • Example 38 provides the method or apparatus of Example 31, wherein the second polymer layer has a thickness in the range of about 1 pm to f 20 pm.
  • Example 39 in the method or apparatus of Example 31, in the second polymer layer formed as a result of the polymerization reaction on the plastic film, an oligomer, a tetramer, a trimer derived from the at least one monomer;
  • One or more compounds selected from the group consisting of dimers are included in a significant amount, such that a commercially available polymer composition having a specific molecular weight range does not contain as many oligomers, tetramers, trimers and dimers. provide the device.
  • Example 40 in the method or apparatus of Example 31, in the second polymer layer formed as a result of polymerization on the plastic film, at least one selected from the group consisting of oligomers, tetramers, trimers, and dimers
  • This method includes chemical bonding to the metal layer, and the chemical bonding of the oligomer, tetramer, trimer or dimer to the plastic film is of a nature that cannot occur when the pre-polymerized polymer is coated on the plastic film. or provide the device.
  • Example 41 is the method or apparatus of Example 31, wherein the plastic film comprises an engineering polymer layer having pores, wherein at least one of the oligomer and the polymer is contained in at least one of these pores, It is chemically bonded to the inner surface, and the chemical bonding of the oligomer and the polymer to the inner surface of the pore is of a nature that cannot occur when the pre-polymerized polymer is coated on a plastic film. .
  • Example 42 is the method or apparatus of Example 31, wherein a plurality of polymer molecules in the second polymer layer are chemically bonded to the plastic film so that the second polymer layer is attached to the plastic film without a binder. or provide the device.
  • Example 43 is the method or apparatus of Example 31, wherein the second polymer layer is not obtained by coating a pre-polymerized polymer composition on a plastic surface, but is polymerized in a commercially available polymer composition having a specific molecular weight. Provided is a method or apparatus that does not contain a polymerization inhibitor to inhibit reaction or crosslinking reaction. [0146]
  • Example 44 in the method or apparatus of Example 31, when the second polymer layer is formed by coating the pre-polymerized polymer, it can be used to uniformly coat the pre-polymerized polymer on the plastic layer. A method or apparatus is provided in which a surfactant is not included in the second polymer layer.
  • Example 45 is a porous polyolefin layer comprising a first side and a second side, not formed by coating a pre-polymerized polymer on the porous polyolefin layer, but formed on the first side by polymerization on the porous polyolefin layer
  • a separator for a secondary battery comprising a first polymer layer, a second polymer layer formed on the second surface by a polymerization reaction on the porous polyolefin layer, not formed by coating a pre-polymerized polymer on the porous polyolefin layer.
  • Each of the first polymer layer and the second polymer layer is a compound of Compound No. 204-248, and Chemical Formulas 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 1 1 of Example 1 It includes a polymer obtained by using at least one of the compounds belonging to it as a monomer.
  • Example 46 provides a secondary battery device including a negative electrode, a positive electrode, a separator electrically positioned between the negative electrode and the positive electrode, and an electrolyte.
  • the separator is not formed by coating a porous polyolefin layer having a first surface and a second surface, a first polymer layer formed on the first surface by a polymerization reaction on the porous polyolefin layer, and a polymer pre-polymerized on the porous polyolefin layer, a second polymer layer formed on a second surface by polymerization reaction on the porous polyolefin layer, wherein the first polymer layer and the second polymer layer do not include a binder for attaching the polymer layer to the porous polyolefin layer, A plurality of polymers are chemically bonded to the porous polyolefin layer and attached to the porous polyolefin layer without a binder.
  • the first polymer layer and the second polymer layer are each a compound of Example 45, Compound Nos. 204-248, and Example 1 °
  • Example 47 comprises the steps of providing a porous polyolefin layer having a first side and a second side, causing a polymerization reaction on the porous polyolefin layer to form a first polymer layer on the first side and on the second side
  • a method for manufacturing a separator for a secondary battery comprising the step of forming a second polymer layer.
  • the composition of the polymerization reaction includes a compound of compound number 204-248 of Example 45, and a compound belonging to Chemical Formulas 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 1 1 of Example 1. at least one monomer.
  • Example 48 provides the apparatus or method of Examples 45 to 47, wherein the porous polyolefin layer comprises a polyethylene or polypropylene nonwoven fabric layer.
  • Embodiment 49 provides the apparatus or method of embodiments 45-47, wherein the porous polyolefin layer comprises a polyethylene or polypropylene fabric layer.
  • Example 50 provides the device or method of Examples 45 to 47, wherein the at least one monomer is selected from compounds of Compound Nos. 1-248. BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flowchart of a method of forming a polymer layer on a substrate surface according to an embodiment.
  • FIG. 2 shows the structure of a metal foil laminate according to an embodiment.
  • FIG 3 shows the structure of a polymer-metal laminate according to one embodiment.
  • FIG. 4 shows a structure in which two sheets of polymer-metal foil laminate are laminated according to an embodiment.
  • Figure 5 shows the structure of a metal deposition plasma laminate according to an embodiment.
  • FIG. 6 shows the structure of a polymer-metal laminate according to one embodiment.
  • Figure 7 shows the structure of the coating of the conventional separator.
  • alkyl includes straight, branched or cyclic alkyl unless otherwise defined.
  • C1-C6 alkyl refers to alkyl having 1 to 6 carbon atoms. it means.
  • alkoxy means “alkyl-O-” unless otherwise defined, and the term “C1-C6 alkoxy” means “C1-C6 alkyl-0-" , wherein “alkyl” or “C1-C6 alkyl” is as defined above.
  • halo'' as used herein includes fluoro, chloro, bromo and iodo.
  • oligomer refers to a polymer consisting of a relatively small number of repeating units, about 20 or less repeating units, wherein the repeating units may consist of the same molecules or different molecules. may consist of
  • the term “(co)polymer” refers to both “polymer” and “copolymer”, and refers to a polymer composed of a larger number of repeating units than an oligomer, and Those produced by bonding are specifically referred to as "copolymers".
  • the form of the copolymer may be in various forms such as an alternating copolymer, a random copolymer, a block copolymer, and a graft copolymer.
  • An embodiment of the present invention provides a method for coating the surface of a substrate through a polymerization reaction using a compound having an amino group or a tautomer thereof as a monomer.
  • the monomer compound having an amino group is a compound represented by the formulas (1) to (11). Polymerization Mechanism
  • Compounds of Formulas 1 to 11 are polymerized through a nucleophilic or electrophilic reaction with a substrate.
  • This polymerization reaction can initiate and proceed polymerization reaction on the surface of a substrate having a nucleophile or a surface of a substrate having an electrophile without a polymerization initiator such as a radical initiator.
  • a polymerization initiator such as a radical initiator.
  • the mechanism of the nucleophilic and electrophilic reaction with the substrate will be described later in detail with respect to each of the compounds of Formulas 1 to 11. These reaction mechanisms are only to help the understanding of the present invention, and the examples of the present invention do not necessarily follow such reaction mechanisms.
  • compound of formula 1 is only to help the understanding of the present invention, and the examples of the present invention do not necessarily follow such reaction mechanisms.
  • An embodiment of the present invention is a formula 1 °
  • An to A 16 are each independently selected from the group consisting of -QR11 R12E -N(R 13 )-, -0- and -S-, and at least one of An to A 16 is -N(R 13 ) )-, -0- or -S-, and at least one of An to A 16 is to be.
  • the enamine tautomer exhibits a behavior similar to that of the enol, wherein the carbon at the alpha position exhibits nucleophilic properties.
  • the imine-enamine tautomerization reaction gives the imine the possibility of a reaction pathway resulting from the nucleophilic nature of the alpha position carbon.
  • the enamine form exhibits more aromatic properties than the imine form, and thus is more stable than the imine form. Therefore, the smaller the tautomerization equilibrium ratio of imine:enamine, the stronger the reactivity of imine.
  • the nucleophile attacks the 2-position carbon of imine to cause a nucleophilic reaction.
  • a chain polymerization reaction between imine type compounds occurs simultaneously with or before or after the nucleophilic reaction by the nucleophile on the surface of the substrate.
  • the imine group at position 4 acts as a nucleophile and attacks the carbon at position 2 of another imine type compound, resulting in a nucleophilic reaction.
  • the surface is modified with a compound of Formula 1 or a tautomer thereof, an oligomer or a (co)polymer thereof, which can control the polymerization degree of the modified polymer by adjusting the concentration ratio of the compounds to the reaction site of the substrate.
  • An embodiment of the present invention provides an aminoheterocycle compound of formula (2).
  • L 21 to L 25 are each independently a single bond or a double bond, and at least one of L 21 to L 25 is a double bond.
  • a 21 to A 25 are each independently selected from the group consisting of -C(R 21 R 22 )-, -N(R 23 )-, -0- and -S-, and A 21 to A 25 At least one of them is -N(R 23 )-, -0- or -S-, and at least one of ⁇ 21 to ⁇ 25 is -C(R21 ⁇ 22)-.
  • L 21 to L 25 adjacent to any one of the double bonds is a single bond, and A connected by a double bond is not -0- or -S-, (b) when A connected by any double bond among L 21 to L 25 is -C(R 21 R 22 )- or -N(R 23 )-, R 22 bonded to the carbon or nitrogen atom thereof; and no compound is present, and (c) at least one of R 21 , R 22 and R 23 is NH 2 .
  • An embodiment of the present invention provides a vinyl amino heterocycle compound of formula (3).
  • L 31 to L% are each independently a single bond or a double bond.
  • a 31 to A 35 are each independently selected from the group consisting of -C(R 31 R 32 E -N(R 33 ) -Z -0- and -S-, and one of A 31 to A 35 More than one is -N (R 33 E -0- or -S-, and more than one of ⁇ 31 to ⁇ 35 is -C(R31du32)- Rj1_ to Rj 4
  • the vinyl group of the vinyl amino heterocycle compound of Formula 3 of the present invention provides a pathway for inducing a nucleophilic reaction by the nucleophile on the substrate surface.
  • a nucleophilic reaction occurs between a nucleophile on the substrate surface and a vinyl group.
  • Kir eukaryotic nucleophilic polymerization
  • a chain polymerization reaction between vinyl heterocycle compounds occurs simultaneously with or before or after the nucleophilic reaction by the nucleophile on the surface of the substrate. That is, the vinyl group acts as a nucleophile and attacks the vinyl group of another vinyl heterocycle compound, resulting in a nucleophilic reaction.
  • the surface of the substrate becomes It is modified with a compound or an oligomer or (co)polymer thereof, which can control the polymerization degree of the modified polymer by adjusting the concentration ratio of the compounds to the reaction site of the substrate.
  • An embodiment of the present invention provides a vinyl amino heterocycle compound of formula (4). Slowly or slowly
  • Nu to L 45 are each independently a single bond or a double bond. Person 4 He or A44
  • a 4 I to A 44 are each independently selected from the group consisting of -QR41 R42)-, -N(R 4 3)-, -0- and -S-, and among A 4 1 to A 44 at least one is -N(R 4 3)-, -0- or -S-, and at least one of A41 to A 44 is -QR41 R42)-.
  • An embodiment of the present invention provides an aminocycloalkene compound of Formula 5.
  • R 51 is each independently selected from the group consisting of H, -NH 2 , halo, C ⁇ C 6 alkyl, QC 6 alkoxy, CN, carboxyl, formyl, OH and ah
  • the amino cycloalkene compound of Formula 5 of the present invention achieves equilibrium between the imine (or Schiff base) compound and its enamine tautomeric compound in an aqueous solution.
  • the imineamine tautomer is a nitrogen analog of the keto-enol tautomer.
  • a hydrogen atom exchange occurs between the heteroatom and the carbon atom.
  • 3-iminocyclohex-1-en-1-amine the following equilibrium is achieved.
  • the enamine tautomer exhibits a behavior similar to that of the enol, wherein the carbon at the alpha position exhibits nucleophilic properties.
  • the imine-enamine tautomerization reaction gives the imine the possibility of a reaction pathway resulting from the nucleophilic nature of the alpha position carbon.
  • the imine form exhibits greater reactivity.
  • the nucleophile attacks the 1-position carbon of the imine, resulting in a nucleophilic reaction.
  • a chain polymerization reaction between imine type compounds occurs simultaneously with or before or after the nucleophilic reaction by the nucleophile on the substrate surface as described above.
  • the imine group at position 3 acts as a nucleophile to attack carbon at position 1 of another imine type compound, and a nucleophilic reaction occurs.
  • the surface of the substrate is modified with a compound of Formula 5 or a tautomer thereof, an oligomer or (co)polymer thereof, as shown in the following Chemical Formula 20 as a result of this reaction, which determines the concentration ratio of the compounds to the reaction site of the substrate of the polymer modified by controlling The degree of polymerization can be controlled.
  • An embodiment of the present invention provides an aminocycloalkene compound of formula (6). Wen_ to Fg 2
  • R 61 is each independently selected from the group consisting of H, NH 2 , halo, Q-C 6 alkyl, C 1 -C 6 alkoxy, CN, carboxyl, formyl, OH and SH
  • An embodiment of the present invention provides a vinyl amino non-aromatic ring compound of Formula 7.
  • L 71 to L 76 are each independently a single bond or a double bond, and the number of double bonds in L 71 to L 76 is 0 to 2.
  • R 73 is selected from the group consisting of H, NH 2 , QQ alkyl, QQ alkoxy, halo, CN, carboxyl, formyl, OH and SH.
  • the vinyl group of the vinyl amino non-aromatic ring compound of Formula 7 of the present invention provides a pathway for inducing a nucleophilic reaction by the nucleophile on the substrate surface.
  • a nucleophilic reaction occurs between a nucleophile on the substrate surface and a vinyl group, as shown in Scheme 17 below.
  • Nir nucleophilic lake nucleophilic polymerization
  • a chain polymerization reaction between vinyl amino non-aromatic ring compounds occurs simultaneously with or before or after the nucleophilic reaction by the nucleophile on the surface of the substrate. That is, the vinyl group acts as a nucleophile and attacks the vinyl group of another vinyl amino non-aromatic cyclic compound, resulting in a nucleophilic reaction.
  • the surface of the substrate becomes chemically 7°
  • An embodiment of the present invention is a formula A vinyl amino non-aromatic ring compound is provided.
  • L 81 to S are each independently a single bond or a double bond, and the number of double bonds in L 81 to L 85 is 0 to 1.
  • R 83 is selected from the group consisting of H, NH 2 , C“C 6 alkyl, C“C 6 alkoxy, halo, CN, carboxyl, formyl, OH and SH do. single/double bond
  • An embodiment of the present invention provides furfuryl amine of Formula 9. polymerization
  • Furfurylamine of Formula 9 is expected to undergo a chain polymerization reaction between furfurylamine compounds at the same time or before or after the nucleophilic reaction by the nucleophile on the substrate surface.
  • the polymerization reaction between furfurylamines appears to follow the Diels-Alder reaction pathway, as predicted from its structure.
  • a Diels-Alder reaction between two double bonds of the furan ring of furfurylamine and a double bond of other compounds is a major reaction route.
  • these predicted reaction pathways are only intended to aid the understanding of the present invention, and scope I of the present invention is not limited or limited by these reaction pathways per se.
  • An embodiment of the present invention provides an unsaturated acyclic amine compound represented by Chemical Formula 10.
  • R ar is hydrogen, QC 6 alkyl, or -CN
  • R a2 and R a3 are each independently hydrogen, QC 6 alkyl, -CN, -OH, -NH 2 , -NH-OH, -C( is a substituent selected from the group consisting of O)R a4 and -C(O)OR a5 , wherein R a4 and the group are hydrogen or QC 6 alkyl.
  • the unsaturated acyclic amine compound is expected to undergo a chain polymerization reaction between the unsaturated acyclic amine compounds at the same time or before or after the nucleophilic reaction by the nucleophile on the substrate surface (Scheme 21 below) to 22).
  • these predicted reaction pathways are only intended to aid the understanding of the present invention, and the scope of the present invention is not limited or particularly limited by the reaction pathway itself.
  • An embodiment of the present invention provides an amine compound represented by Formula 11.
  • is a substituent selected from the group consisting of H, NH 2 , and NH-acyl.
  • an equilibrium between the imine (or Schiff's base) compound and its enamine tautomeric compound is achieved in an aqueous solution.
  • the imine-enamine tautomer is It is a nitrogen analogue of the keto-enol tautomer.
  • a hydrogen atom exchange occurs between the heteroatom and the carbon atom. For example, the following equilibrium is achieved.
  • the enamine tautomer exhibits a behavior similar to that of the enol, wherein the carbon at the alpha position exhibits nucleophilic properties.
  • the imine-enamine tautomerization reaction gives the imine the possibility of a reaction pathway resulting from the nucleophilic nature of the alpha position carbon.
  • the above enamine form exhibits more aromatic properties than the imine form and is therefore more stable than the imine form. Therefore, the smaller the tautomerization equilibrium ratio of imine:enamine, the stronger the reactivity of imine.
  • the nucleophile attacks the carbon of imine to cause a nucleophilic reaction.
  • a chain polymerization reaction between imine type compounds occurs simultaneously with or before or after the nucleophilic reaction by the nucleophile on the surface of the substrate.
  • the imine group at position 4 acts as a nucleophile and attacks the carbon at position 2 of another imine type compound, resulting in a nucleophilic reaction.
  • the surface of the substrate is modified with the compound of Chemical Formula 11 or a tautomer thereof, an oligomer or (co)polymer thereof, which is the ratio of the concentration of the compounds to the reaction site of the substrate.
  • the degree of polymerization can be controlled. For example, the higher the concentration of the compound on the reactive site of the substrate, the higher the polymerization degree of the polymer to be modified, and the lower the concentration of the compound on the reactive site of the substrate, the lower the polymerization degree of the modified polymer.
  • the substrate As illustrated in Scheme 26 below, an electrophilic reaction occurs with the imine group at position 4 of the imine compound and is bound to the substrate surface.
  • a polymerization reaction between the imine compounds occurs and the compound of Formula 11 or its tautomer, oligomer or (co)polymer is modified on the substrate surface as shown in Formula 30 below. do.
  • the compounds of Formulas 1 to 11 and other monomer compounds may each be selected from one or more of the group consisting of compounds listed in Table 1 below.
  • the compounds of Formulas 1 to 11 can be polymerized through both nucleophilic and electrophilic reactions, the polymerization reaction occurs by reacting with a substrate surface having a nucleophile or a substrate having an electrophile on the surface. It is possible. Accordingly, the compounds of Formulas 1 to 11 may react with the surface of various substrates to form a polymer layer on the surface.
  • a substrate may be glass, wood, stone, metal, ceramic, natural or synthetic polymer, and the like, but is not particularly limited.
  • metal substrate may be glass, wood, stone, metal, ceramic, natural or synthetic polymer, and the like, but is not particularly limited.
  • the substrate may be one or more selected from the group consisting of iron, copper, aluminum, zinc, tin, silver, gold, titanium, tungsten, nickel, molybdenum, cobalt, magnesium, and alloys thereof.
  • the substrate is zinc oxide, zirconium oxide, titanium oxide, aluminum borate, iron oxide, calcium carbonate, barium carbonate, lead oxide, tin oxide, cerium oxide, lithium oxide, calcium oxide, magnesium oxide, trimanganese tetraoxide, niobium oxide, Tantalum oxide, tungsten oxide, antimony oxide, aluminum phosphate, calcium silicate, zirconium silicate, ITO (indium oxide with tin), titanium silicate, barium titanate, strontium titanate, calcium titanate, montmorillonite, saponite, vermiculite, hydrotalcite , kaolinite, kanemite, margadiite, kenite, silica, alumina, zeolite, lithium nitride, lithium silicate, lithium borate, lithium aluminate, lithium phosphate, lithium phosphorus oxynitride, lithium silicon sulfide, lithium lanthanum oxide , lithium titanium oxide, lithium borosul
  • the substrate may be one or more selected from the group consisting of starch, cellulose, chitosan, chitin, gelatin, pectin, carrageenan, dextran, collagen, hyaluronic acid, alginate, gluten, fibrin, and agarose.
  • the substrate may be a general-purpose thermoplastic polymer, a thermosetting polymer, an engineering polymer, an elastomer, or the like.
  • the substrate may be a polyolefin elastomer including polyethylene, polypropylene, polymethylpentene, polyolefin including polybutene-1, and the like, polyisobutylene, ethylene-propylene rubber, ethylene-propylene-diene rubber (EPDM), and the like.
  • Halogenated polyolefins including , polyvinyl chloride, polyvinylidene chloride, polychlorotrifluoroethylene, polyvinylidene fluoride, polytetrafluoroethylene, polystyrene, polyvinyl alcohol, polyacetal, poly Polyester, polyimide, polyamideimide, polyetherimide, including vinyl acetate, polyacrylonitrile, polybutadiene, polyisoprene, phenolic resin, epoxy resin, polyamide, polyethylene terephthalate and polybutylene terephthalate , polyacrylate, polyurethane, polysiloxane, polynaphthalene, polythiophene, polyaniline, polyparaphenylene sulfide, polychloroprene, styrene-butadiene rubber, nitrile rubber, silicone rubber, and copolymers thereof.
  • the shape of the substrate may also be a film, a powder, a bead, a plate, a rod, a tube, or any three-dimensional shape.
  • the compounds of Formulas 1 to 11 may react and bind to the substrate surface and form a polymer layer on the substrate surface through a chain polymerization reaction.
  • a polymer layer formed on the surface of a substrate may change the properties (eg, hydrophilicity) of the surface of the substrate, making a particular substrate more suitable for certain applications.
  • the polymer layer is formed by bonding to the surface of the substrate as a monomer unit, defects such as small pores or cracks in the substrate can be filled, and physical properties such as moisture permeability and strength of the substrate can be improved.
  • it since it is chemically bonded to the substrate surface, there is no need to use an adhesive, and the polymer layer is firmly bonded to the substrate surface and does not peel off easily compared to conventional coatings. 1 method
  • the method of forming a polymer layer using one or more of the compounds of Formulas 1 to 11 as a monomer on the surface of a substrate is a solution containing a monomer. and a step 120 of providing, a step 140 of initiating a polymerization reaction of the monomer on the surface of the substrate, a step 160 of polymerizing the monomer on the surface of the substrate to form a polymer layer, and a step of washing and drying 180.
  • a reaction composition solution including a monomer is prepared by adding one or more of the compounds of Formulas 1 to 11 to a solvent. This reaction composition solution is referred to as "monomer solution”. Acidity (pH)
  • the monomer solution may be acidic, neutral or basic.
  • the pH of the monomer solution may be about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14.
  • the pH of the monomer solution may fall within a range obtained by selecting two of the values listed in the immediately preceding sentence.
  • the pH of the monomers ranges from about 3 to 10, and f 7 to 13. menstruum
  • pure water buffer (buffer: weakly acidic, neutral or basic), NaOH solution (0.01 M, 0.1 M or 1 M), 50mM-500mM borate buffer (pH 9) or 15-20% DMEA (N,N-dimethylamine: CAS 598-56-1; salt free, pH 13-14) may be used as a solvent, but is not particularly limited thereto.
  • buffer buffer: weakly acidic, neutral or basic
  • NaOH solution 0.01 M, 0.1 M or 1 M
  • 50mM-500mM borate buffer pH 9
  • DMEA N,N-dimethylamine: CAS 598-56-1; salt free, pH 13-14
  • the concentration of the monomer is not particularly limited, and can be appropriately adjusted depending on the solute and solvent used and other reaction conditions.
  • the concentration of the monomer in the monomer solution is about 0.1 , 0.2, 0.3, 0.5, 0.7, 1 , 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5 , 9, 9.5, or 10 mg/mL.
  • the concentration of the monomer in the monomer solution may be within a range obtained by selecting two of the values listed in the previous sentence.
  • the concentration of the monomer is in the range of about 0.1 to 5 mg/mL, and f in the range of 0.5 to 7 mg/mL.
  • one or more monomers In order to form a polymer layer composed of a copolymer of two or more monomers on the surface of the substrate, two or more monomers may be added to the monomer solution. Initiation of polymerization
  • step 140 of FIG. 1 the polymerization reaction is initiated by contacting the monomer solution with the substrate surface. contact method
  • the monomer solution may be filled in a container having a volume sufficient to accommodate the substrate, and then the substrate may be immersed in the monomer solution.
  • spin-coating, spray-coating, or the like is possible.
  • the monomer solution may be brought into contact with part or all of the substrate, on one side or both sides. initiation of polymerization
  • the polymerization reaction is usually carried out without a separate initiator, but in some cases, it may be carried out with the addition of an initiator.
  • the polymerization reaction proceeds at a temperature lower than the boiling point of the solvent, and usually belongs to 0-90 T. without initiator
  • the polymerization reaction of the monomer can be initiated without adding a separate initiator such as a radical initiator.
  • a separate initiator such as a radical initiator.
  • the composition of the polymerization reaction is an azo compound such as AIBN (Azobisisobutyronitrile), ABCN (1,1'-Azobis(cyclohexane-carbonitrile)), or di-tert-butyl peroxide ((CH3)3C-O-O-C(CH3). )3), benzoyl peroxide ((PhCOO)2) may not contain known radical initiators such as organic peroxides.
  • step 160 of FIG. 1 a polymerization reaction is performed to form a polymer layer on the surface of the substrate.
  • Polymerization through contact [0251]
  • the monomer can react with the substrate surface to form a polymer layer just by sufficiently contacting the substrate with the monomer solution at a predetermined temperature for a predetermined period of time. Monomer solution contact time
  • the time the substrate is in contact with the monomer solution is about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 1 2, 1 3, 14, 1 5, 1 6, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 44, 46, 48, 50, 52, 54, 56, 68, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, or 80 hours.
  • the time for contacting the substrate with the monomer solution may fall within the range obtained by selecting two of the numbers listed in the previous sentence. For example, the time of the polymerization reaction may be in the range of about 2 to about 10 hours L to I 6 to about 12 hours
  • the polymerization reaction proceeds at a temperature lower than the boiling point of the solvent used.
  • the temperature of the monomer solution is about 0, 5, 10, 1 5, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 T. Adjust. This temperature may fall within the range obtained by selecting two of the numbers listed in the previous sentence.
  • the temperature of the polymerization composition is in the range of I 20 to f 70 T, in the range of 40 to 90 T, and in the range of about 10 to f 30 T.
  • a catalyst for accelerating the reaction may be added, but it is not necessary. agitation
  • the polymerization composition may be stirred to activate the binding reaction with the substrate or the polymerization reaction.
  • polymers of various sizes are produced, and oligomers and dimers are also produced.
  • Polymers or oligomers may be formed in a state in which the monomer solution and the substrate are in contact. End of polymerization
  • the polymer layer is removed from the reaction vessel, and the liquid component of the polymerization reaction composition remaining on the surface of the polymer layer or substrate is removed by wiping or contacting the surface with absorbent paper or an absorbent pad. Do not rinse with water or other cleaning solutions before or after wiping off liquid components. In some cases. When cleaning, wipe off the liquid from the surface. baking steps
  • the substrate washed with water or other washing solution may be baked after the polymerization reaction is completed. Baking may be performed in an oven or other suitable appliance in a hot, dry environment. Baking can serve to evaporate the solvent remaining in the polymer layer, crosslink some of the polymer formed in the polymer layer, and cure the polymer layer to make it hard. baking time
  • the baking process time is not particularly limited, and may be appropriately selected and adjusted by a person skilled in the art according to the type of specific compound used and the type of substrate.
  • the baking time is 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 1 2, 13, 14, 15, 1 6, 17, 18, 19, 20, 21 , 22 , 23, or 24 hours.
  • the baking time may fall within the range obtained by selecting two of the values listed in the immediately preceding sentence. For example, baking times range from about 1 to 9 hours, and from 3 to 24 hours. baking temperature
  • This baking is performed at a temperature such that the substrate is not denatured, and may be appropriately selected and adjusted by a person skilled in the art according to the type of specific compound used and the type of substrate.
  • the baking temperature may be 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 T.
  • the baking temperature may fall within a range obtained by selecting two of the values listed in the immediately preceding sentence. For example, baking temperatures range from 50 to 90 °C, and from 60 to 100 °C. wash, dry
  • the baked substrate is washed to remove bound or unpolymerized monomer compounds or impurities. Washing can be carried out with an acidic solution and/or a basic solution.
  • the substrate may be washed with an acidic solution, washed with water, washed again with a basic solution, and washed with water.
  • the substrate may be washed with a basic solution, washed with water, washed again with an acidic solution, and then washed with water.
  • the substrate is dried at room temperature or elevated temperature to obtain a substrate having a polymer layer formed thereon.
  • a solution (“polymer solution”) containing a polymer pre-polymerized in one or more of the above steps may be further used.
  • the substrate may be further reacted with the polymer solution after the polymerization reaction and before the baking treatment.
  • cross-linking can be promoted by adding a pre-polymerized polymer to the polymer layer obtained by the polymerization reaction.
  • a polymer layer is formed on a part or all of the surface of the substrate through the above method.
  • the polymer layer may be bonded to the substrate surface through a chemical bond.
  • at least some of the polymer molecules of the polymer layer may be covalently attached to the substrate surface.
  • the polymer layer may be formed on all or part of the substrate surface, on one side or both sides. thickness of the polymer layer
  • the thickness of the polymer layer formed on the surface of the substrate through the above method is not particularly limited, and a person skilled in the art may appropriately select and adjust it according to the specific compound used, the type of the substrate, and the reaction conditions.
  • the thickness of the polymer layer is 0.05, 0.1 , 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 , 1.2, 1.4, 1.6, 1.8, 2, 2.4, 2.8, It can be 3.2, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5 10, 1 1 , 12, 13, 14, or 15 pm.
  • the polymer layer thickness may fall within a range obtained by selecting two of the values listed in the immediately preceding sentence. For example, the thickness of the polymer layer ranges from about 0.05 to 5 pm, range I, from 1 to 15 pm. Effect of the polymer layer
  • the present invention relates to a polymer layer formed by independently attaching monomers, oligomers or (co)polymers thereof to a substrate, and a method for forming the same, and can be used for chemical surface coating of various substrates.
  • it is possible to impart suitable hydrophilicity to the surface of a hydrophobic material used in applications requiring hydrophilicity, or vice versa.
  • it is possible to improve the separation yield and reliability of biochemicals by modifying the chemical properties of one interface to improve the adhesion between the interfaces, or by using a modified compound appropriately selected to match the properties of the biochemical to be fixed and/or separated. Therefore, the industrial fields in which the present invention can be used are limitless.
  • a technique using glass frit and invar as an encapsulation structure and method of an OLED panel is known.
  • Organic light emitting materials used in OLED panels are oxidized when they come in contact with oxygen or water vapor, and their light emitting performance deteriorates.
  • these encapsulation technologies use airtight materials and structures that prevent oxygen or water vapor in the air from entering the interior of the OLED display product.
  • the technology using glass frit or invar is not suitable for application to large OLED panels or flexible OLED panels.
  • the aluminum oxide-polymer rayate may be formed by alternately laminating an aluminum oxide layer and a polymer layer.
  • an aluminum oxide layer is formed on a polymer substrate using an ALD technique, and a polymer is coated thereon to form a polymer layer.
  • a flexible encapsulation structure in which an aluminum oxide layer and a polymer layer are alternately laminated can be manufactured by repeating the process of forming an aluminum oxide layer again by ALD technology and forming a polymer layer thereon again. Disadvantages of aluminum oxide layer manufacturing process
  • This aluminum oxide thin film is brittle before lamination with the polymer layer several times.
  • an aluminum oxide thin film has to be made with a large area.
  • the disadvantage is that the large area aluminum oxide thin film can be broken during transport or handling for processing even if it is attached to a polymer substrate.
  • ALD technology can deposit an aluminum oxide layer having a density suitable for OLED encapsulation, but a vacuum chamber is required and the deposition takes a lot of time, so the process cost is burdensome.
  • a silicon nitride layer lamination flexible encapsulation structure in which a silicon nitride layer and a polymer layer are alternately laminated for an OLED panel.
  • a quality aluminum oxide layer that can be used for encapsulation of OLED panels can be formed only by using ALD deposition technology, but a silicon nitride layer can be formed using plasma enhanced chemical vapor deposition (PECVD) technology.
  • PECVD plasma enhanced chemical vapor deposition
  • the silicon nitride layer obtained by the PECVD deposition technique has a lower density than the aluminum oxide layer made by the ALD deposition technique, but the PECVD deposition technique has the advantage that the deposition rate is very fast compared to the ALD deposition technique. Disadvantages of silicon nitride layer manufacturing process
  • PECVD deposition technology also requires a vacuum chamber, so the process is expensive.
  • silicon nitride does not have as high interfacial adhesion with the polymer layer as aluminum oxide.
  • ALD technology can be applied to various metals to form a metal layer.
  • metals generally have many defects in their crystal structure, the permeability of oxygen or water molecules (water vapor) is higher than that of metal oxides or nitrides made by the same process.
  • ALD technology must be used, and other conditions being equal, a metal oxide layer is preferred over a metal layer.
  • a metal layer having a thickness of several hundred nanometers can be formed by vapor deposition technology.
  • the vapor deposition technique is less expensive than the ALD technique, but still requires the use of a vacuum chamber and requires a considerable amount of time.
  • a flexible encapsulation structure (or flexible laminate) that can be used in an OLED panel is provided by alternately stacking several sheets of a pre-fabricated metal foil with a polymer.
  • Metal foil is manufactured by forming a thin melt of melted metal and cooling it to harden it. Compared to using ALD or vapor deposition technology, the production cost is very low.
  • Metal foils are distinguished from thin films or films of metal oxides or metal nitrides. Although a thin oxide film is formed on the surface of the metal foil in contact with air, when the cross-section of the foil is cut in the thickness direction, the central part of the cross-section is mainly composed of metal. A metal oxide or a metal nitride is also a metal oxide or a metal nitride at the center of the cross section. metal
  • metal foil laminate Aluminum, copper, tin, zinc, magnesium, stainless steel, nickel, chromium, tungsten and the like can be used. thickness of metal foil
  • the thickness of the metal foil is usually several micrometers to several hundred micrometers. More specifically, about 0.5, 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 2, 14, 16, 18, 20, 22.5, 25, 27.5, 30, 35, 40 , 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 1 10, 1 20, 130, 140, 1 50, 1 60, 170, 180, 190, 200, 220 , 240, 260, 280, 300, 320, 340, 360, 380, or 400 pm.
  • the thickness of the metal foil is It can fall within the range obtained by selecting two of the numbers listed in the sentence.
  • the metal foil can have a thickness in the range of from about 3 to about 100 pm, from about 10 to about 50 pm, from about 20 to about 100 pm, from about 50 to about 200". have. internal defects in metal
  • All these metals have defects in their internal crystal structure. In addition, defects may be added during the manufacturing process, transport, and storage. The shape and size of these defects vary. If you cut a cross section of the metal, these defects will look like depressions with depth in the cut cross section. Metal foils are no different. When the size of the defect is small compared to the thickness of the metal foil, it will be seen as a depression having a depth in the thickness direction. pinhole in metal foil
  • the defect When the defect is large compared to the thickness of the metal foil, it may appear in the form of a hole penetrating in the thickness direction, that is, a pinhole.
  • the pinhole formed in the metal layer of the metal foil laminate can be a channel through which air can pass. If this is not blocked or filled, it is difficult to provide an effective encapsulation structure due to the high oxygen or water molecular permeability of the metal foil laminate. pinhole size
  • the size of the pinhole generated in the metal foil may become larger as the foil becomes thicker. Pinholes with diameters in the range of a few nanometers to a few micrometers are common. However, when the metal foil has a thickness of several hundred micrometers, pinholes having a diameter of 10 micrometers or more are also generated. Structure of plastic film
  • the plastic film used for manufacturing the airtight packaging material may be composed of a single layer or may be composed of a plurality of layers.
  • the multi-layer structure is a structure in which layers of different materials are in contact with each other, and the layers of the same material may be repeated several times. thickness of plastic film
  • the thickness of the plastic film is about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 1 6, 18, 20, 22.5, 25, 27.5, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 1 10, 1 20, 1 30, 140, 150, 1 60, 170, 180, 190, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 425, 450, 474, or 500 pm.
  • the thickness of the plastic film may fall within the range obtained by selecting two of the numbers listed in the previous sentence. For example, the plastic film is about 10 to about 50 pm, to about 100 pm. material of plastic film
  • the plastic film can be made of engineering polymers of various materials. Each single layer or multiple layers of plastic film is made of polypropylene (polypropylene, PP), polyethylene terephthalate (PET), polyethylene (PE), polyvinyl chloride (PVC), polyvinylidene chloride.
  • polyvinylidene chloride PVDC
  • polystyrene PS
  • nylon polycarbonate
  • polycarbonate PC
  • polyvinyl acetate PVA
  • polyvinyl alcohol PVOH
  • EVA poly( ethylene-vinyl acetate)
  • EVOH poly(ethylene-vinyl alcohol)
  • PMMA poly(methyl methacrylate)
  • acrylic resin Kapton, U PI LEX, polyimide resin
  • It may include a substance.
  • the adhesive layer of the metal foil laminate may be any type capable of bonding the plastic film and the metal foil.
  • Epoxy resin, acrylic resin, polyurethane resin can be used.
  • DGEBA diglycidyl ether of bisphenol A
  • EPN epoxyphenol novolak
  • ECN epoxycresol novolak
  • isocyanate There is a polyurethane resin obtained by reacting (isocyanate) and polyol (polyol). pressure
  • the metal foil laminate 101 shows the structure of the metal foil laminate 101, and illustrates defects such as pinholes included in the metal layer 103.
  • the metal foil laminate 101 has a basic structure of the plastic 105 layer-adhesive layer 107-metal layer 103 order, but one or more functional layers may be added between the plastic layer and the metal layer as needed.
  • An adhesive layer may be added between the plastic layer or the metal layer and the added functional layer.
  • metal foil laminate has a structure in the order of plastic layer-adhesive layer-metal layer, even if a special structure is mentioned, and the functional layer is It means there may or may not be.
  • a polymerization reaction vessel (vessel or reservoir) having a size capable of accommodating a metal foil laminate is prepared. This container is filled with a polymerization reaction composition solution. Then, the metal foil laminate is brought into contact with the polymerization reaction composition solution in the container to cause a polymerization reaction on the surface of the metal foil laminate. Dip the metal foil laminate into the composition solution
  • the process of contacting the metal foil laminate with the polymerization composition in the polymerization reaction vessel may proceed as a continuous process. As the metal foil laminate wound on the roll is unwound, it moves to the polymerization reaction vessel and is immersed in the polymerization reaction composition. While being immersed in the polymerization composition, a polymer layer is formed on the surface of the metal foil laminate by polymerization, and while moving, it comes out of the polymerization vessel. Polymer layer is formed by polymerization reaction on the surface
  • the thickness of the polymer layer is about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.5, 1.6, 1.8, 2, 2.5, 3, 4, 5, 6 , 7, 8, 9, 10, 12, 15, 20, 25, or 30".
  • the thickness of the polymer layer may fall within a range obtained by selecting two of the numbers listed in the previous sentence.
  • the polymer layer may have a thickness in the range of about 0.5 to about 3 pm, and in the range of about 1 to about 5 pm.
  • the thickness of the polymer layer obtained may be different because the rates of polymerization initiation and progress are different on both surfaces.
  • polymer- 3 is a polymer layer (1 13)-plastic layer (105)-adhesive layer (107)-metal layer (103)-polymer layer (1 11) structure obtained as a result of polymerization reaction-metal laminate (polymer-) metal laminate 109) is shown.
  • the structure of the plastic layer 105 - the adhesive layer 107 - the metal layer 103 - the polymer layer 11 1 in which the polymer layer 1 13 is omitted is obtained.
  • This polymer-metal laminate made using the metal foil laminate is called a "polymer-metal laminate" to distinguish it from the polymer-metal laminate of other embodiments. If necessary, one or more functional layers may be added between the plastic layer and the metal layer.
  • one or more functional layers may be added between the plastic layer and the polymer layer as needed.
  • an adhesive layer may be added to one or both sides thereof.
  • polymer-metal foil laminate refers to a plastic layer-adhesive layer-metal layer-polymer layer or polymer layer-plastic layer-adhesive layer-metal layer-golimer layer order, even if a special structure is mentioned. It has a structure, and the functional layer may or may not be present. Polymerization to fill pinholes
  • the polymerization reaction not only creates a polymer layer on the surface of the metal layer, but also fills or blocks the pinhole formed in the metal layer.
  • the polymerization composition permeates into the pinhole and causes a polymerization reaction on the inner surface of the pinhole, the resultant polymer or oligomer fills all or part of the inner space of the pinhole ( 1 15 and 1 17 in FIG. 3 ).
  • the polymer or oligomer filling part or all of the inner space of the pinhole may extend outside the pinhole and be connected to the polymer layer formed on the metal surface ( 1 17 in FIG. 3 ).
  • the polymer layer pinholes generated on the metal surface outside the pinholes are covered and blocked.
  • the moisture permeability of one polymer-metal foil laminate is about 1 x10-6 , 2x10*.
  • the moisture permeability of the intestine may belong to the range obtained by selecting two of the numbers listed in the previous sentence. For example, the moisture permeability is about 1 x10' 5 to about 1 x10' 4 g/m7day
  • FIG. 4 shows a structure in which two polymer-metal foil laminates are laminated. Apply adhesive (1 19) to one side of the polymer-metal foil laminate (109A) and superimpose one side of the other polymer-metal foil laminate (109B) to [polymer-metal foil laminate (109A)]- [adhesive (1 19)) ]- [Polymer-Metal Foil Laminate (109B)]. Then, this structure is pressed and laminated. multiple laminations
  • a flexible laminate made by laminating two or more polymer-metal foil laminates can be used as a flexible encapsulation structure for devices or objects requiring higher airtightness, for example, OLED panels.
  • the flexible encapsulation structure according to the embodiment is a polymer-metal foil laminate 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 1 2, 13, 15, 1 5, 1 6, 17, 18, 19, or 20 sheets have a laminated structure. Attaching the flexible encapsulation structure to the PLED panel
  • An unfinished OLED product in which an OLED panel is formed on the front glass or plastic is provided.
  • a flexible encapsulation structure with an area corresponding to the size of this unfinished OLED product. Cover the back of the unfinished OLED product. The inside is sealed by attaching the edge of the flexible encapsulation structure and the back edge of the unfinished OLED product to prevent air permeation. The airtightness of the flexible encapsulation structure (qas tightness)
  • the encapsulation structure of the OLED panel product should have a moisture permeability of less than 1 x 10-6 g/m 2 /day.
  • the flexible encapsulation structure using the polymer-metal foil laminate is made by laminating several sheets of polymer-metal foil laminate, which significantly lowers oxygen or water vapor permeability by filling the metal foil pinholes with polymerization.
  • the gas permeability path is complicated and the gas permeability is rapidly reduced, and has a moisture permeability of less than 1 x10* g/m 2 /day.
  • the moisture permeability of the flexible encapsulation structure made by laminating two or more polymer-metal foil laminates is about 1x10-9, 2x10-9, 3x10-9, 4x10-9, 5x10' 9 , 6x10' 9 , 7x10' 9 , 8x10' 9 , 9x10' 9 , 10' 7 , 3x10' 7 4x10'
  • the moisture permeability of the flexible encapsulation structure made by laminating the above polymer-metal foil laminate may fall within the range obtained by selecting two of the numbers listed in the previous sentence.
  • the moisture permeability is from about 1 x10-8 to about 1 x10' 6 g/m 2 /day°
  • a flexible encapsulation structure using a polymer-metal foil laminate may function to transfer heat generated by a plurality of metal layers to the edge of the product by receiving heat generated from the OLED panel.
  • An effective heat dissipation system is provided by installing a heat dissipation structure such as a heat dissipation fin at the edge of the OLED product and connecting it to the metal layer of the encapsulation structure.
  • plastic films are used as packaging materials for articles. In many cases, these plastic films have pores through which gases such as air can pass.
  • Packaging materials used for foods that lose their freshness when they meet oxygen or foods that become moist when they meet water vapor form a metal layer such as aluminum on a plastic film to block the permeation of air or water vapor.
  • a packaging material in which a gas permeation barrier of a metal layer is formed on a plastic film is used. Formation of a metal thin film using vapor deposition
  • a metal layer having a thickness of several hundred nanometers can be formed by vapor deposition technology.
  • vapor deposition of metals can be performed at a relatively low temperature.
  • Pinholes exist in the metal layer vapor-deposited on the plastic film. There are pinholes due to defects in the crystal structure of metal, and there are pinholes caused by the state of the plastic film surface or foreign substances during vapor deposition. When metal is vapor-deposited on a plastic film having hydrophobicity, pinholes much larger than those formed by defects in the crystal structure of the metal are formed. The pinholes formed in the vapor-deposited metal layer range in diameter from several nanometers to several hundreds of micrometers. Pinhole size and tightness
  • the polymerization reaction proceeds on the surface of the metal layer formed by vapor deposition on the plastic film.
  • a polymer layer is formed on the surface of the metal layer through a polymerization reaction, and pinholes of sizes that cannot be detected with the naked eye as well as pinholes that can be detected with the naked eye are filled.
  • pinholes in the metal layer are filled, it is possible to provide a plastic packaging material having higher airtightness than a plastic packaging material obtained by providing a portion including a pinhole found with the naked eye.
  • a metal laminate is made by depositing a metal on the surface of a plastic film substrate.
  • the surface of the plastic film can be plasma-treated before vapor deposition.
  • a vapor-deposited metal-plastic laminate In order to distinguish the metal laminate manufactured by depositing metal on the plastic film as described above from the metal laminate in another embodiment, it is called a "vapor-deposited metal-plastic laminate".
  • FIG. 5 shows the basic structure of a metal deposition plasma laminate 121 having a plastic film 125 and a metal layer 123 , and illustrates defects such as pinholes included in the metal layer 123 . Structure of plastic film
  • the plastic film serving as a substrate for vapor deposition may be composed of a single layer or may be composed of multiple layers.
  • the multi-layer structure is a structure in which layers of different materials are adjacently contacted, and layers of the same material may be repeated. material of plastic film
  • the plastic film can be made of engineering polymers of various materials.
  • Plastic films can be made from engineering polymers of various materials.
  • Each single layer or multiple layers of plastic film is made of polypropylene (polypropylene, PP), polyethylene terephthalate (PET), polyethylene (PE), polyvinyl chloride (PVC), polyvinylidene chloride.
  • plastic film (polyvinylidene chloride, PVDC), polystyrene (PS), nylon, polycarbonate (polycarbonate, PC), polyvinyl acetate (PVA), polyvinyl alcohol (PVOH), EVA (poly( ethylene-vinyl acetate)), EVOH (poly(ethylene-vinyl alcohol)), PMMA (poly(methyl methacrylate), acrylic resin, Kapton, U PI LEX, polyimide resin) material may be included. thickness of plastic film
  • the thickness of the plastic film is about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 1 6, 18, 20, 22, 24, 26, 28, 30 , 32, 34, 36, 38, 40, 42, 44, 46, 68, 50, 52.5, 55, 57.5, 60, 62.5, 65, 67.5, 70, 75, 80, 85, 90, 95, 100, 1 10, 1 20, 1 30, 140, 1 50, 1 60, 170, 180, 190, 200, 220, 240, 260, 280, or 300 pm.
  • the thickness of the plastic film may fall within the range obtained by selecting two of the numbers listed in the previous sentence. For example, the plastic film may have a thickness in the range of about 5 to f 40 pm, and the thickness in the range of about 10 to f 30 pm.
  • the metal is aluminum, copper, tin, zinc, magnesium, stainless steel, nickel, chromium, tungsten, and the like. When these metals are exposed to air, a thin oxide film is formed on their surface. thickness of metal layer
  • the thickness of the metal layer formed by vapor deposition ranges from several nanometers to several hundreds of nanometers. Specifically, about 0.5, 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 2, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52.5, 55, 57.5, 60, 62.5, 65, 67.5, 70, 75, 80, 85, 90, 95, 100, 1 10, 1 20, 1 30, 140, 1 50, 160, 170, 180, 190 or 200 nm.
  • the thickness of the metal layer may fall within a range obtained by selecting two of the numbers listed in the previous sentence. For example, the thickness of the metal layer ranges from about 10 to about 30 pm, and from about 20 to about 100 nm.
  • a polymerization reaction composition is filled in a polymerization reaction vessel or reservoir of a size that can accommodate a vapor-deposited metal-plastic laminate or a metal-plastic laminate. Then, the metal-deposited plastic laminate is brought into contact with the polymerization reaction composition solution in the container. A polymerization reaction occurs on the surface of metal-deposited plastic laminate. Metal-deposited plastic laminate is supported in the composition solution.
  • metal-deposited plastic laminate When putting the metal-deposited plastic laminate into the polymerization reaction vessel, only the metal side may be in contact with the composition solution and the plastic film side may not be in contact. can do majority If the metal-deposited plastic laminate is supported together in one polymerization reaction vessel in the composition solution to proceed with the polymerization reaction, the productivity of the process may be increased.
  • a plurality of metal-deposited plastic laminates may be supported in the composition solution so as to be stacked on top of each other, and a spacing structure for maintaining a distance between adjacent metal-deposited plastic laminates so that the composition solution can enter between the metal-deposited plastic laminates. can also be inserted. continuous process
  • the process of contacting the metal-deposited plastic laminate with the polymerization reaction composition in the polymerization reaction vessel may proceed as a continuous process.
  • the same method as the process of contacting the metal foil laminate with the polymerization composition is applicable.
  • Polymer layer is formed by polymerization reaction on the surface
  • the solid polymer layer includes polymers of various sizes, and may include dimers, trimers, tetramers, and oligomers.
  • the thickness of the polymer layer is about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.5, 1.6, 1.8. , 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 12, 1 5, 20, 25, or 30 pm.
  • the thickness of the polymer layer may fall within a range obtained by selecting two of the numbers listed in the previous sentence.
  • the polymer layer may have a thickness ranging from about 1 to about 5 pm in the range of I 0.5 to f 3 pm.
  • Polymer-Metal-Plastic Laminate 6 shows a polymer-metal laminate 131 having a polymer layer 129-plastic layer 125-metal layer 123-polymer layer 127 structure obtained as a result of polymerization.
  • the structure of the plastic layer 125 - the metal layer 123 - the polymer layer 127 in which the polymer layer 129 is omitted is obtained.
  • polymer-metal laminate made using a metallized plastic laminate is referred to as a "polymer-metal-plastic laminate" to distinguish it from the polymer-metal laminate of other examples.
  • One or more functional layers may be added to either or both sides of the polymer layer as needed. When a functional layer is added, an adhesive layer may be added to one or both sides thereof.
  • polymer-metal-plastic laminate has a structure in the order of plastic layer-metal layer-polymer layer or polymer layer-plastic layer-metal layer-polymer layer, even if a special structure is mentioned, and is functional Layers may or may not exist. Polymerization to fill pinholes
  • the polymerization reaction not only creates a polymer layer on the surface of the metal layer, but also fills or blocks the pinholes formed in the metal layer.
  • the polymerization composition permeates the inner surface of the pinhole and causes a polymerization reaction on the inner surface of the pinhole, the resulting polymer or oligomer fills all or part of the inner space of the pinhole (FIG. 6°
  • the polymer or oligomer filling part or all of the inner space of the pinhole may extend outside the pinhole and be connected to the polymer layer formed on the metal surface ( 135 in FIG. 6 ).
  • a polymer layer formed on the metal surface outside the pinhole covers and blocks the pinhole.
  • a polymer-metal-polymer laminate can be used as it is or as a plastic packaging material having airtightness after undergoing additional treatment and processing. Additional treatments and processes may include printing or adding a functional layer.
  • items requiring airtightness for storage are placed, and then sealed to prevent air permeation using various sealing techniques.
  • a plastic packaging material using a polymer-metal-plastic laminate significantly lowers gas permeability by filling the metal foil pinholes with polymerization reaction.
  • the moisture permeability of this plastic packaging is 1 x10-8, 2x10-8, 3x10-8 , 4x10-8 , 5x10-8, 6x10' 8 , 7x10' 8 , 8x10' 8 , 9x1 O' 8 , 1 x 10 ' 7 , 2x10' 7 , 3x10' 7 4x10' 7 , 5x1 O' 7 , 6x1 O' 7 , 7x1 O' 7 , 8x1 O' 7 , 9x10' 7 , 1 x 1 O ⁇ , 2x10' 6 , 3x10' 6 4x10' 6 , 5x1 O ⁇ , 6x1 O ⁇ , 7x1 O ⁇ , 8x10-6, 9 xW -6, ixio ⁇ 2 ⁇ 1 O' 5 , 3x1 O' 5 , 3x1 O
  • the moisture permeability of the plastic packaging material using the polymer-metal-plastic laminate may fall within the range obtained by selecting two of the numbers listed in the previous sentence.
  • the water vapor permeability may be in the range of about 1 x10' 7 to about 1 x1 (r 6 g/rrF/day
  • the flexible encapsulation structure according to the embodiment is a polymer-metal-plastic laminate 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 15, 16, 17, 18 , 19, or 20 sheets have a laminated structure. Attaching the flexible encapsulation structure to the PLED panel
  • the flexible encapsulation structure is attached to the back surface of the OLED product to seal the inside.
  • the airtightness of the flexible encapsulation structure (qas tightness)
  • the OLED flexible encapsulation structure using the polymer-metal-plastic laminate is made by stacking two or more polymer-metal-plastic laminates, which significantly lowered gas permeability by filling the pinholes in the vapor-deposited metal layer with polymerization. will measure When several sheets of polymer-metal-plastic laminates are laminated, the gas permeation path becomes complicated and the gas permeability decreases rapidly, and has a moisture permeability of less than 1 x10* g/m 2 /day.
  • the moisture permeability of the flexible encapsulation structure made by laminating two or more polymer-metal-plastic laminates is about 1x10-9 , 2x10' 9 , 3x1 O' 9 4x1 O' 9 , 5x10-9 , 6x10-9, 7x10-9, 8x10 -9, 9x1 0-9) ⁇ - 8 , 2x1 O' 8 , 3x1 O' 8 4x1 O' 8 , 5x1 O' 8 , 6x1 O' 8 , 7x1 O' 8 , 8x10'
  • the moisture permeability of the flexible encapsulation structure made by laminating two or more polymer-metal foil laminates may fall within the range obtained by selecting two of the numbers listed in the previous sentence. For example, the moisture permeability ranges from about 1 x10-8 to about 1 x10-6 g/m7day, about 5x10' 5 to about 5x10'
  • the flexible encapsulation structure using the polymer-metal-plastic laminate may function to receive heat generated by a plurality of metal layers from the OLED panel and transfer it to the edge of the product.
  • An effective heat dissipation system is provided by installing a heat dissipation structure such as a heat dissipation fin at the edge of the OLED product and connecting it to the metal layer of the encapsulation structure.
  • a metal layer of metal laminates such as a metal foil laminate or a metal-plastic laminate, and Forming the polymer layer on the surface of the plastic layer is a polymerization reaction using the monomer of Formula 1-1.
  • the monomers of Formulas 1 to 11 appear to react with a nucleophilic or electrophilic functional group on the surface of the substrate to initiate a polymerization reaction while binding to the surface of the substrate.
  • not all polymers such as polymers and oligomers obtained as a result of polymerization are bound to the substrate surface.
  • the polymerization reaction and the result expressed in the claims do not necessarily have to be implemented according to such a reaction mechanism.
  • a polymerization reaction composition that proceeds on a metal surface of metal laminates such as metal foil laminates or metal-plastic laminates includes a monomer and a solvent.
  • the polymerization composition may further include a pre-polymerized oligomer or polymer.
  • a base, acid, or buffer solution may be added to adjust the pH.
  • it may further include an initiator of the polymerization reaction.
  • the monomer used in the polymerization reaction is a self-initiating monomer in which the polymerization reaction is initiated spontaneously.
  • this monomer is a basic compound, and is a compound of Formula (1-1). two or more monomers
  • the polymerization reaction occurring on the surface of the aluminum thin film may be a polymerization reaction using two or more monomers.
  • it may be a copolymer by cross-addition polymerization between isomeric compounds having a similar structure, such as a copolymer of 3,4-diaminopyridine and 2,6-diaminopyridine, or 2,5-diaminopyridine. between monomers having significantly different structures, such as a copolymer of din and 3-amino-2-cyclohexen-1-one, or a copolymer of 2,4,6-triaminopyrimidine and methyl 3-aminocrotonic acid.
  • It may be a copolymer by cross-addition polymerization, or a copolymer by Diels-Alder polymerization reaction between furfurylamine and 3-aminocrotonic acid methyl.
  • the concentration of the monomer in the composition for polymerization is about 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10, 10.5, 1 1 , 1 1 1.5, 12, 1 2.5, 1 3, 1 3.5, 14, 14.5, 15, 15.5, 1 6, 1 6.5, 17.5, 18, 18.5, 19, 19.5, or 20 mg/mL.
  • the concentration of the monomer is within the range obtained by selecting two of the numbers listed in the previous sentence. can belong For example, the monomer concentration may be about 2.0 and thus fall within the range of about 5.0, in the range of about 1.0 to about 7.0.
  • the polymerization composition is adjusted to a basic pH of 8 or more.
  • the monomer itself of the compounds of Formulas 1 to 11 is basic, sodium hydroxide (0.01 M, 0.1 M, or 1 M, etc.), 15-20% DMEA (N,N-dimethylethylamine, Basic substances such as CAS 598- 56-1 ) or 15-20% 2-dimethylaminoethanol (CAS 108-01 -0) (near pH 13), boric acid/sodium borate buffer solution (near pH 9) may be added have.
  • the compounds of Formulas 1 to 11 are self-initiating monomers that cause polymerization reaction without an initiator, but most are not monomers in which polymerization reaction occurs rapidly. Therefore, unlike the polymerization inhibitor contained in other polymerization reaction monomos, there are many compounds of Formulas 1 to 11 that are stored and distributed without the polymerization inhibitor. When such a monomer is used, no polymerization inhibitor is mixed in the polymerization composition. without initiator
  • the polymerization reaction may proceed without a separate initiator.
  • the initiator included in the polymer layer has poor results for the organic light emitting layer of the OLED.
  • the polymerization composition is a radical initiator L
  • the monomer of Formula 1-1 is a self-initiating monomer that causes polymerization without an initiator.
  • the polymerization reaction may easily occur without an initiator. For example, when a polymerization reaction is carried out on the surface of a metal substrate, a hydroxyl group and a monomer derived from an oxide film formed on the metal surface act to initiate the reaction.
  • an initiator for example, when a polymerization reaction is carried out on the surface of a metal substrate, a hydroxyl group and a monomer derived from an oxide film formed on the metal surface act to initiate the reaction.
  • the monomer of Formula 1-1 is self-initiating, it is also possible to promote the polymerization reaction using an initiator depending on the material on the substrate surface.
  • the polymerization composition may include an initiator.
  • an initiator may be included.
  • compounds that can be used as initiators include AIBN (Azobisisobutyronitrile), ABCN (1,1 '-Azobis (cyclohexane-carbonitrile)), di-tert-butyl peroxide (di-tert-butyl peroxide), benzoyl peroxide ), etc. these When the initiator reaches a certain temperature, a radical intermediate is produced, and the produced material reacts with a monomer to initiate a polymerization reaction. temperature of polymerization composition
  • the polymerization reaction proceeds at a temperature lower than the boiling point of the solvent used.
  • the temperature of the polymerization composition is about 0, 5, 10, 1 5, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 T adjust with This temperature may fall within the range obtained by selecting two of the numbers listed in the previous sentence.
  • the temperature of the polymerization composition is in the range of I 20 to f 70 T, in the range of 40 to 90 T, and in the range of about 10 to f 30 T. time of contact with the polymerization composition
  • the time for contacting the metal laminate with the polymerization composition is about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 1 2, 1 3, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 44, 46, 48, 50, 52, 54, 56, 68, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, or 80 hours.
  • the time for contacting the metal laminate with the polymerization composition may fall within a range obtained by selecting two of the numbers listed in the preceding sentence. For example, the time for the polymerization reaction may be in the range of from about 2 to about 10 hours, from about 6 to about 12 hours, and from about 8 to about 24 hours.
  • polymers of various sizes are produced, and dimers, trimers, tetramers, and oligomers are also produced. Some of the resulting dimers, trimers, tetramers, oligomers and polymers form chemical bonds with the surface of the substrate.
  • the solid polymer layer includes polymers of various sizes, and may include dimers, trimers, tetramers, and oligomers. Removal of liquid remaining on the surface of a metal laminate with a polymer layer formed thereon
  • a polymer layer is formed on the surface of the metal laminate by contacting the polymerization composition in the polymerization reaction vessel, it is taken out of the polymerization reaction vessel.
  • the liquid component of the polymerization composition remaining on the surface of the polymer layer or laminate is removed by wiping or contacting the surface with absorbent paper or an absorbent pad. In some cases, cleaning with water or other cleaning solutions is performed before or after wiping off liquid components. When cleaning, wipe off the liquid from the surface.
  • baking After removing the liquid on the surface, baking is carried out in an oven. Baking evaporates the liquid components remaining in the polymer layer, causes the polymer formed in the polymer layer to crosslink, and cures the polymer layer to harden it. baking temperature
  • Baking is performed at a temperature low enough that the plastic layer is not denatured, about 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 1 10, 1 1 5, 120, 125, 1 30, 135, 140, 145, or 1 50 ⁇ .
  • the temperature of baking may fall within the range obtained by selecting two of the numbers listed in the previous sentence. For example, baking is conducted in the range of about 50 to about 100 T, and in the range of about 60 to about 1 10 °C. baking time
  • Baking is performed for about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12 hours.
  • the baking time may fall within the range obtained by selecting two numbers listed in the previous sentence. For example, baking is performed in a range of about 2 hours to about 5 hours, and in a range of about 4 hours to about 6 hours. washing and drying
  • the polymer layer contains a component of the polymerization composition or a material formed as a result of the polymerization reaction. Some of these materials are tightly bound to metal surfaces, plastic surfaces, polymers attached to these surfaces, etc., but others are loosely connected. Residues loosely connected to the polymer layer can be removed by washing with acidic and basic cleaning solutions. After washing, dry it. Drying can be done in the oven. Reuse of polymerization reaction result composition
  • the polymer-metal laminate eg, polymer-metal foil laminate or polymer-metal-plastic laminate
  • the composition remaining in the polymerization vessel contains a mixture of the monomer remaining without participating in the reaction and the polymer, oligomer, and dimer produced as a result of the polymerization reaction.
  • This composition which contains the polymer, oligomer and dimer together, is not discarded and can be used for the next polymerization reaction. That is, a polymer-metal laminate is prepared by carrying out a polymerization reaction by supporting a new metal laminate on the composition remaining after the previous polymerization reaction.
  • polymers, oligomers, and dimers already in the composition may be included in the generated polymer layer, and these polymers, oligomers, and dimers are involved in the polymerization reaction. They can also participate to create larger polymers or oligomers.
  • necessary components may be added to adjust the concentration and pH of the monomers in the composition.
  • the polymerization reaction composition solution in contact with the surface of the metal layer of the metal laminate goes into the defect sites such as pinholes and depressions.
  • the composition solution is sucked or permeated into the defect site by capillary action.
  • the metal and metal oxide on the outermost surface of the defect included in the metal layer may be dissolved in the composition solution.
  • a smoothing phenomenon that smoothes the abrupt structure of the defect occurs due to partial melting of metal atoms, and the entrance side of the defect may be widened.
  • the smoothing phenomenon proceeds while the composition solution is in contact with the surface of the metal layer.
  • the degree of smoothing can be controlled by controlling the acidity of the polymerization composition.
  • the initiation of the polymerization reaction may be controlled so that the polymerization reaction occurs after the smoothing phenomenon occurs in the defective part of the metal layer.
  • a smoothing phenomenon may be caused by loading the metal foil laminate in an acidic or basic solution (not a polymerization reaction composition solution) having an appropriate acidity, and then loading it in the composition solution in a polymerization reaction vessel to proceed with polymerization.
  • the surface of the metal layer and the surface of the plastic film are brought into contact with the polymerization composition to cause a polymerization reaction to form a polymer layer on the surface.
  • An easier way to form a polymer layer on the surface of a substrate is to coat the surface with a pre-polymerized polymer.
  • the formation of a polymer layer through polymerization is different from coating a pre-polymerized polymer.
  • a polymer coating layer can be formed relatively simply by dissolving a compound having a very high molecular weight, such as a polymer, in a solvent to prepare a coating solution, applying it to the surface of a substrate, and then evaporating the solvent. In addition to the solvent and the polymer, other substances are added to the coating solution for coating the pre-polymerized polymer on the surface. Coating of pre-polymerized polymer on the surface - Surfactant [0360] In order to form a polymer layer of a certain thickness on the surface, the coating solution must be spread evenly on the surface of the substrate. A surfactant is added to the coating solution to spread the coating solution evenly on the surface of the substrate. In the case of coating the surface of the cohesively polymerized polymer, the resulting coating layer contains a surfactant. Coating of pre-polymerized polymer on the surface - binder
  • the polymer coating layer may not adhere well to the substrate surface, depending on the nature of the substrate surface and the polymer and the structure such as the roughness of the substrate surface.
  • a binder is added to the coating solution.
  • most polymers have low bonding strength with the metal surface. Therefore, to coat the pre-polymerized polymer on the metal surface, a binder such as epoxy resin, polyurethane resin, silicone resin, vinyl resin, or acrylic resin is added to the coating solution.
  • the resulting polymer coating layer contains a binder. Coating of pre-polymerized polymer on the surface - oligomer
  • the polymerization reaction occurs by bringing the polymerization composition into contact with the surface of a substrate such as a metal or plastic film.
  • the compounds of Formulas 1 to 11 may be chemically bonded to and linked to the surface of the substrate while interacting with the surface of the substrate.
  • the compounds of Formulas 1 to 11 are grown into dimers, trimers, tetramers, and oligomers through a chain polymerization reaction to form a polymer.
  • the resultant composition of the polymerization reaction contains polymers of various sizes and at least one of dimers, trimers, tetramers and oligomers. and this If the composition is reused for the next substrate, the result is that the composition can contain more and more different sized polymers.
  • Polymers and oligomers of various sizes are mixed in the polymer layer produced through the polymerization reaction on the substrate surface according to an embodiment of the present invention. And, at least one of a monomer, a dimer, a trimer, and a tetramer is mixed.
  • This polymer layer contains polymers of various molecular weights, not particularly high purity polymers with a specific molecular weight range, and thus a significant degree of oligomers. Monomers, dimers, trimers, and tetramers may be removed during the washing process, but when they are chemically bonded to the substrate surface, significant amounts remain in the polymer layer.
  • any one of a monomer, a dimer, a trimer, and a tetramer is contained in the polymer layer in an amount remarkably distinguishable from the case of a polymer layer obtained by coating a commercially available prepolymerized polymer.
  • a surfactant used for coating the pre-polymerized polymer is not required.
  • the polymer layer produced by conducting the polymerization reaction without a surfactant does not contain a surfactant. Nevertheless, surfactants may be incorporated into the composition of the polymerization reaction, and surfactants may be included in the resulting polymer layer.
  • the polymerization reaction according to an embodiment of the present invention not only creates a polymer layer on the surface of the metal substrate, but also fills or blocks the pinhole formed in the metal layer.
  • Monomers or oligomers in the polymerization composition enter the metal pinhole, interact with the inner surface to form a chemical bond, and grow through polymerization to fill part or all of the inner space of the pinhole.
  • the polymer or oligomer formed in the pinhole extends outside the pinhole and is created outside the pinhole. It can also be linked to oligomers or polymers.
  • the separator prevents a short circuit due to direct contact between the positive electrode and the negative electrode by creating a physical layer between the positive electrode and the negative electrode of the lithium ion battery.
  • the separator must secure electrochemical safety and thermal stability, and maintain a certain level of mechanical strength.
  • the separator must pass lithium ions in the electrolyte to generate an electric current.
  • the separator must be porous and thin, and must have high affinity with the electrolyte.
  • This lithium ion battery separator is generally a microporous polymer membrane, and is usually manufactured using a polyolefin-based material such as polyethylene or polypropylene.
  • a polyolefin-based material such as polyethylene or polypropylene.
  • Polyethylene and polypropylene have suitable electrochemical stability and mechanical strength suitable for separators.
  • the affinity with the electrolyte is low, which increases the resistance during ion conduction, thereby reducing the performance of the battery. coating
  • a method of securing heat resistance and increasing hydrophilicity of a polyolefin membrane by coating a high heat-resistant ceramic layer on one or both sides of the polyolefin membrane is commercialized.
  • a slurry containing a mixture of inorganic particles such as aluminum oxide and an organic binder it is common to prepare a slurry containing a mixture of inorganic particles such as aluminum oxide and an organic binder, and coat it on the surface of the polyolefin membrane by a method such as dip coating.
  • a ceramic layer 1040 including inorganic particles is formed on the surface of the polyolefin separator 1020 to form a structure in which the separator 1020 is sandwiched between the ceramic layers 1040 .
  • An embodiment of the present invention provides a method of forming a polymer layer on a separator using a polymerization reaction of a monomer instead of the ceramic coating or polymer coating.
  • the separator substrate for forming the polymer layer may be any separator material known to be suitable for lithium ion batteries.
  • the membrane substrate may be selected from various microporous polymer membranes. Separator substrate material
  • the material of the separator any material that has good insulation and can secure basic properties required for a separator of a lithium ion battery can be used.
  • the separator material may be selected from the group consisting of commonly used polyethylene, polypropylene, and other PVdF, polyester, polyacrylonitrile (PAN), polyethylene terephthalate (PET), etc. have.
  • PVdF polyacrylonitrile
  • PET polyethylene terephthalate
  • the separation membrane has a macroscopically robust, microscopically porous structure.
  • the separation membrane may have a structure having pores in a thin film formed by an extrusion method or the like, or may have a woven structure or a non-woven structure.
  • the separator substrate may have a woven structure of polyethylene fibers or may be in the form of a woven fabric of polypropylene fibers. pore
  • the separator may have a porosity of 30-60%, and the average diameter of the pores is 0.01 , 0.02, 0.03, 0.05, 0.07, 0.10, 0.1 5, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50 , 0.60, 0.70, 0.80, 0.90, 1 , 1.1 , 1.2, 1.3, 1.4, 1.5, 1.7, 1.9, 2.1 , 2.4, 2.7, 3 pm.
  • the average diameter of the pores may fall within a range obtained by selecting two of the values listed in the previous sentence.
  • the pores have an interconnected structure and can conduct lithium ions from one side to the other in the thickness direction of the separator. the thickness of the separator
  • a thin thickness is preferred in order to facilitate the conduction of lithium ions in the thickness direction of the separator, but a certain thickness or more is required for stability.
  • the thickness of the separator is 10, 1 2, 14, 1 6, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 60 pm can be The thickness of the separator may fall within a range obtained by selecting two of the values listed in the previous sentence.
  • composition solution for preparing the coating separator may be the same as or similar to the monomer solution.
  • the composition solution may include the compounds of Formulas 1 to 11.
  • the composition The solution may further include an organic/inorganic filler to increase the stability of the separator. The separator is in contact with the composition solution
  • a polymerization reaction vessel (vessel or reservoir) of a size that can accommodate the separation membrane.
  • This container is filled with a polymerization reaction composition solution.
  • the separation membrane is brought into contact with the composition solution in the container.
  • a polymerization reaction occurs on the surface of the separator in contact with the composition solution and a polymer layer is formed.
  • the separation membrane is supported in the composition solution
  • the separation membrane When the separation membrane is put into the polymerization reaction vessel, only one side of the membrane may be in contact with the composition solution and the other side may not be in contact, or the entire separation membrane may be supported so that both sides are immersed in the solution.
  • a plurality of separation membranes may be supported together in one polymerization reaction vessel in the composition solution to proceed with polymerization to increase the productivity of the process.
  • a plurality of separation membranes may be supported in the composition solution so that they are stacked on top of each other, and a structure for maintaining a distance between adjacent separation membranes may be inserted so that the composition solution can enter between the separation membranes.
  • Coated separator in which a polymer layer is formed on the surface of the separator
  • polymers of various sizes are produced, and oligomers and dimers are also produced.
  • the polymer layer of the gyeolgonu coating separator includes polymers of various sizes, and may also include oligomers and dimers. Polymerization in pores
  • a portion of the composition solution in contact with the surface of the separation membrane enters some pores of the separation membrane. can go in A polymer layer is formed on at least a portion of the inner surface of the pore while the monomer entering the pores of the separation membrane combines with at least a portion of the inner surface of the separation membrane surrounding the pores while causing a polymerization reaction.
  • 8 shows an example of a polymer layer formed on the inner surface of the pores of the porous separator. As shown in FIG. 8 , the polymer layer 1140 formed on the inner surface surrounding the pores 1160 of the porous separator 1120 improves the hydrophilicity of the pores, thereby improving the conduction of lithium ions dissolved in the electrolyte. washing and drying
  • the coating separator is taken out of the container and washed with water or other cleaning solution to remove unnecessary substances on the surface. After washing, dry it.
  • the polymer layer is formed by polymerizing a monomer on the surface of the separator rather than dissolving the pre-polymerized polymer in a solvent and coating it on the surface of the separator, the adhesion between the surface of the separator and the polymer layer is excellent. Pore and polymer layer
  • the pores of this separator are channels that conduct lithium ions. Therefore, if the coating layer fills or blocks the pores of the separator, the lithium ion conductivity may decrease and the performance of the battery may deteriorate.
  • the polymer is formed while the monomer is spread on the surface of the separator in molecular units by carrying out the polymerization reaction while supporting or contacting the polymerization composition containing the monomer, not the polymer solution, so that the polymer itself is added to the solvent. Compared to coating by dissolution, it is possible to minimize clogging of pores by the polymer layer.
  • the hydrophilic polymer layer formed around the pores helps to conduct lithium ions through the pores. effect
  • a coating separator having greatly increased ionic conductivity.
  • the polymer layer enhances the thermal stability and physical properties of the separator.
  • a polymer layer by bonding with the separator as a monomer unit it is strongly bonded to the separator, and there is little risk of the coating being separated even after repeated room and charging.
  • a polymer layer by combining with the separator in a monomer unit it is possible to coat the separator in the form of a fabric structure instead of the separator in the form of a thin film.
  • the monomer may permeate into the pores of the nano unit to form a hydrophilic polymer layer inside the pores.
  • the polymerization composition proceeding on the metal surface of the separation membrane includes a monomer and a solvent, and may further include an oligomer or polymer in which the monomer is pre-polymerized.
  • a base, acid, or buffer solution may be added to adjust the pH. And in some cases, it may further include an initiator of the polymerization reaction.
  • the composition solution may further include an organic/inorganic filler to increase the stability of the separator.
  • the monomer used in the polymerization reaction is a self-initiating monomer in which the polymerization reaction is initiated spontaneously.
  • this monomer is a basic compound, and is a compound of Formulas (1) to (11). two or more monomers
  • the polymerization reaction occurring on the surface of the separation membrane may be a polymerization reaction using two or more monomers.
  • it may be a copolymer by cross-addition polymerization between isomeric compounds having a similar structure, such as a copolymer of 3,4-diaminopyridine and 2,6-diaminopyridine, or 2,5-diaminopyridine. between monomers having a significantly different structure, such as a copolymer of din and 3-amino-2-cyclohexen-1-one, or a copolymer of 2, 4, 6-triaminopyrimidine and methyl 3-aminocrotonic acid.
  • It may be a copolymer by cross-addition polymerization, or a copolymer by a Diels-Alder polymerization reaction between furfurylamine and methyl 3-aminocrotonic acid.
  • the concentration of the monomer in the composition for polymerization is about 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10, 10.5, 1 1 , 1 1 .5, 1 2, 1 2.5, 1 3, 1 3.5, 14, 14.5, 1 5, 1 5.5, 16, 1 6.5, 17.5, 18, 18.5, 19, 19.5, 20 mg/mL.
  • the concentration of the monomer may fall within a range obtained by selecting two of the numbers listed in the preceding sentence. For example, the monomer concentration may be in the range of f 2.0 to 0.0, about 1.0 to f 7.0.
  • the pH of the polymerization composition is adjusted to a basicity of 8 or more.
  • the monomer itself of the compounds of Formulas 1 to 11 is basic, sodium hydroxide (0.01 M, 0.1 M, or 1 M, etc.), 15-20% DMEA (N,N-dimethylethylamine, Basic substances such as CAS 598- 56-1 ) or 15-20% 2-dimethylaminoethanol (CAS 108-01 -0) (near pH 13), boric acid/sodium borate buffer solution (near pH 9) may be added have.
  • the composition for polymerization does not include a radical initiator L
  • an initiator may be included. initiation of polymerization
  • the polymerization reaction is usually carried out without a separate initiator, but in some cases, it may be carried out with the addition of an initiator.
  • the polymerization reaction proceeds at a temperature lower than the boiling point of the solvent, and usually belongs to 0-90 T.
  • the polymerization reaction is initiated while the nucleophilic functional group on the substrate surface reacts with the unsaturated bond of the compounds of Formulas 1 to 11.
  • an initiator When including an initiator
  • the monomers of the compounds of Formulas 1 to 11 are self-initiating, it may be necessary to initiate the polymerization reaction using an initiator depending on the material on the substrate surface.
  • initiators include AIBN (Azobisisobutyronitrile), ABCN (1,1 '-Azobis (cyclohexane-carbonitrile)), di-tert-butyl peroxide (di-tert-butyl peroxide), benzoyl peroxide (benzoyl peroxide) ), etc.
  • AIBN Azobisisobutyronitrile
  • di-tert-butyl peroxide di-tert-butyl peroxide
  • benzoyl peroxide benzoyl peroxide
  • the monomer to cause polymerization For example, when using AIBN as an initiator, it may be 40, 45, 50, 55, 60, 65, 70 T. temperature
  • This polymerization reaction proceeds at a temperature lower than the boiling point of the solvent used.
  • the temperature of the polymerization composition is about 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 T. Adjust. This temperature may fall within the range obtained by selecting two of the numbers listed in the previous sentence.
  • the temperature of the polymerization composition is in the range of I 20 to f 70 T, in the range of 40 to 90 T, and in the range of about 10 to f 30 T. time of contact with the polymerization composition
  • the time the membrane substrate is in contact with the polymerization composition is about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 1 2, 1 3, 14, 1 5 , 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, 34, 35, 36, 37, 38, 39, 40 , 42, 44, 46, 48, 50, 52, 54, 56, 68, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, or 80 hours.
  • the time for contacting the separation membrane substrate with the polymerization composition may fall within a range obtained by selecting two of the numbers listed in the preceding sentence.
  • the polymerization time may be in the range of about 2 to about 10 hours, in the range of about 6 to about 12 hours, and in the range of about 8 to about 24 hours. Removal of the liquid remaining on the surface of the separator on which the polymer layer is formed
  • a polymer layer is formed on the surface of the separation membrane by contact with the polymerization composition in the polymerization reaction vessel, it is taken out of the polymerization reaction vessel.
  • the liquid component of the polymerization composition remaining on the surface of the polymer layer or separator is removed by wiping or contacting the surface with absorbent paper or an absorbent pad. In some cases, cleaning with water or other cleaning solutions is performed before or after wiping off liquid components. When cleaning, wipe off the liquid from the surface. baking
  • Baking is performed at a temperature low enough that the separator substrate is not denatured, about 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 1 10, 1 1 5, 120, 125, 1 30, 135, 140, 145, or 1 50 ⁇ .
  • the temperature of baking may fall within the range obtained by selecting two of the numbers listed in the previous sentence. For example, baking is conducted in the range of about 50 to about 100 T, and in the range of about 60 to about 1 10 °C. baking time
  • Baking is performed for about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12 hours.
  • the baking time may fall within the range obtained by selecting two numbers listed in the previous sentence. For example, baking is performed in a range of about 2 hours to 5 hours, and in a range of about 4 hours to about 6 hours. thickness of the polymer layer
  • the thickness of the polymer layer is about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.5, 1.6, 1.8, 2 , 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 1 2, 1 5, 20, 25, 30".
  • the thickness of the polymer layer may fall within a range obtained by selecting two of the numbers listed in the previous sentence.
  • the polymer layer may have a thickness in the range of f 0.5 to f 3 pm, and in the range of about 1 to f 5". washing and drying
  • the polymer layer contains a component of the polymerization composition or a material formed as a result of the polymerization reaction. Some of these materials are tightly bound to metal surfaces, plastic surfaces, polymers attached to these surfaces, etc., but others are loosely connected. Residues loosely connected to the polymer layer can be removed by washing with acidic and basic cleaning solutions. After washing, dry it. Drying can be done in the oven. Reuse of polymerization reaction result composition
  • the coating separator is taken out from the polymerization vessel.
  • the composition remaining in the polymerization vessel contains a mixture of the monomer remaining without participating in the reaction and the polymer, oligomer, and dimer produced as a result of the polymerization reaction.
  • This composition which contains the polymer, oligomer and dimer together, is not discarded and can be used for the next polymerization reaction. That is, a new separator is supported on the composition remaining after the previous polymerization reaction to cause a polymerization reaction to prepare a coated separator.
  • polymers, oligomers, and dimers already in the composition may be included in the polymer layer to be formed, and these polymers, oligomers and dimers may participate in polymerization to form larger polymers or oligomers.
  • necessary components may be added before the next polymerization reaction of the separation membrane to adjust the concentration and pH of the monomers in the composition.
  • a solution of 1 mg/1 mL concentration was prepared by adding 2,5-diaminopyridine to borate buffer (50 mM) of pH 9.0. Glass slides were immersed in the solution and incubated at 90T for 20 hours. Remove the glass slides and place in a 60 °C oven for 3 h, then wash with NaOH solution. Washed for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 60°C for 5 minutes. Again, the glass slides were washed with HCl solution for 20 seconds, washed with a sufficient amount of water, and then dried at 60°C for 5 minutes. Comparative Example 1
  • Example 2 Glass slides having the same specifications as those used in Example 1 were immersed in borate buffer (50 mM) of pH 9.0 and incubated at 90T for 20 hours. The glass slides were taken out and placed in an oven at 60 °C for 3 hours and then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 60°C for 5 minutes. Again, the glass slide was washed with HCI solution for 20 seconds, washed with a sufficient amount of water, and then dried at 60°C for 5 minutes.
  • Example 2 2,5-diaminopyridine modification on aluminum plate
  • a comparative example sample was prepared in the same manner as in Comparative Example 1 except that an aluminum plate was used.
  • Example 3 2,5-diaminopyridine modification on PMMA
  • a solution of 1 mg/1 mL concentration was prepared by adding 2,5-diaminopyridine to borate buffer (50 mM) of pH 9.0.
  • a polymethylmethacrylate (PMMA) film was immersed in the solution and incubated at 90T for 24 hours. The film was taken out and placed in an oven at 60°C for 3 hours and then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 60°C for 5 minutes. Again, the film was washed with HCl solution for 20 seconds, washed with sufficient amount of water, and then dried at 60°C for 5 minutes. Comparative Example 3
  • a surface-modified film was prepared in the same manner as in Example 3, except that a polycarbonate (PC) film was used. Comparative Example 4
  • a surface-modified film was prepared in the same manner as in Example 3, except that a polyimide (PI) film was used. Comparative Example 5
  • a solution of 1 mg/mL concentration was prepared by adding 3,4-diaminopyridine to 0.1 M NaOH aqueous solution (25 mL).
  • a 5 x 5 cm polymethylmethacrylate (PMMA) film was immersed in the solution and incubated at 8 (TC for 22 hours. The film was taken out and washed with 15% isopropyl alcohol for 20 seconds, followed by washing with a sufficient amount of water. It was dried for 5 minutes at 60 ° C. Comparative Example 6
  • Example 7 The same 5 x 5 cm polymethylmethacrylate (PMMA) film as used in Example 6 was immersed in 0.1 M NaOH aqueous solution (25 mL) and incubated at 80T for 22 hours. The film was taken out, washed with plenty of water and dried at 60°C for 5 minutes.
  • PMMA polymethylmethacrylate
  • 3,4-diaminopyridine was added to 0.1 M NaOH aqueous solution (25 mL) to prepare a solution having a concentration of 1 mg/mL.
  • a 5 x 5 cm polymethylmethacrylate (PMMA) film was immersed in the solution and incubated for 22 hours at 9 (TC). The film was taken out and washed with 15% isopropyl alcohol for 20 seconds and then washed with a sufficient amount of water. It was dried at 60 °C for 5 minutes. Comparative Example 7
  • a solution having a concentration of 1 mg/mL was prepared by adding 3,4-diaminopyridine to borate buffer (500 mM) of pH 9.0.
  • a polyimide (PI) film was immersed in the solution and incubated at 80T for 24 hours. The film was taken out and placed in an oven at 60°C for 3 hours, then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 60 °C for 5 minutes. Again, the film was washed with HCI solution for 20 seconds, washed with a sufficient amount of water, and then dried at 60T for 5 minutes. Comparative Example 8
  • Example 9 Modification of 2-amino-3 -formylpyri as above
  • a solution having a concentration of 1 mg/mL was prepared by adding 2-amino-3-formylpyridine to borate buffer (500 mM) of pH 9.0.
  • a polyimide (PI) film was immersed in the solution and incubated at 80T for 24 hours. The film was taken out and placed in an oven at 60°C for 3 hours, then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 60°C for 5 minutes. Again, the film was washed with HCl solution for 20 seconds, washed with a sufficient amount of water, and then dried at 60°C for 5 minutes. Comparative Example 9
  • a goniometer (model 300) from Ramehart Instruments, New Jersey, USA was used. Using a micro-injector, 2 drops of the sample solution (dimethylethanolamine 15% aqueous solution) were placed on the sample surface on the goniometer sample stage. After taking a side picture that shows the contact state between the droplet of the sample solution placed on the sample stage of the goniometer and the sample surface, the quantitative information of the contact angle is obtained using the DROPImage software of the goniometer. The contact angle was measured in this way.
  • Example 10 Modified 4-vinylpyridine in the doe
  • a solution of 1 mg/mL concentration was prepared by adding 4-vinylpyridine to borate buffer (500 mM) of pH 9.0. Soak the polyimide (PI) film in the above solution for 24 hours at 80T. Incubated. The film was taken out and placed in an oven at 60°C for 3 hours, then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 60 °C for 5 minutes. Again, the film was washed with HCl solution for 20 seconds, washed with sufficient amount of water, and then dried at 60°C for 5 minutes. Comparative Example 10
  • a polyimide (PI) film of the same standard as that used in Example 10 was used as it was without any treatment.
  • Table 1 shows the results of measuring the contact angles for the sample film of Example 10 and the sample film of Comparative Example 10 in the same manner as above.
  • a solution having a concentration of 1 mg/mL was prepared by adding 3-amino-2-cyclohexen-1-one to borate buffer (50 mM) of pH 9.0. Glass slides were immersed in the solution and incubated at 90 T for 20 h. The glass slides were taken out and placed in an oven at 60 °C for 3 hours and then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 60°C for 5 minutes. Again, the glass slides were washed with HCl solution for 20 seconds, washed with a sufficient amount of water, and then dried at 60°C for 5 minutes. Comparative Example 11
  • Example 12 Glass slides of the same size as those used in Example 11 were immersed in borate buffer (50 mM) of pH 9.0 and incubated at 90T for 20 hours. The glass slides were taken out and placed in an oven at 60 °C for 3 hours and then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 60°C for 5 minutes. Again, the glass slides were washed with HCl solution for 20 seconds, washed with a sufficient amount of water, and then dried at 60°C for 5 minutes.
  • Example 12 3-amino-2 -cyclohexen-1-one coating on aluminum plate
  • a coating sample was prepared in the same manner as in Example 11 except that an aluminum plate was used. Comparative Example 12
  • a solution having a concentration of 1 mg/mL was prepared by adding 3-amino-2-cyclohexen-1-one to borate buffer (500 mM) of pH 9.0.
  • a polyimide (PI) film was immersed in the solution and incubated at 80T for 24 hours. The film was taken out and placed in an oven at 60°C for 3 hours, then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 60°C for 5 minutes. Again, the film was washed with HCl solution for 20 seconds, washed with sufficient amount of water, and then dried at 60°C for 5 minutes. Comparative Example 13
  • a polyimide (PI) film of the same specification as used in Example 13 was soaked in borate buffer (500 mM) of pH 9.0 and incubated at 80T for 24 hours. The film was taken out and placed in an oven at 60°C for 3 hours, then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 60°C for 5 minutes. Again, the film was washed with HCl solution for 20 seconds, washed with sufficient amount of water, and then dried at 60°C for 5 minutes.
  • Example 14 3-Amino-2-cyclohexen-1-one coating on PET
  • Two solutions having a concentration of 1 mg/mL were prepared by adding 3-amino-2-cyclohexen-1-one to a pH 9.0 borate buffer having a concentration of 100 mM and 500 mM, respectively.
  • a polyethylene terephthalate (PET) film was immersed in the solutions and incubated at 80T for 24 hours. The film was taken out and placed in an oven at 60°C for 3 hours, then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 60°C for 5 minutes. Again, the film was washed with HCl solution for 20 seconds, washed with a sufficient amount of water, and then dried at 60°C for 5 minutes.
  • Samples using 100 mM borate buffer were referred to as Example 14-1, and samples using 500 mM borate buffer were referred to as Example 14-2. Comparative Example 14
  • Example 16 Glass slides of the same size as those used in Example 15 were immersed in borate buffer (50 mM) of pH 9.0 and incubated at 90T for 20 hours. The glass slides were taken out and placed in an oven at 60 °C for 3 hours and then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 60T for 5 minutes. Again, the glass slide was washed with HCl solution for 20 seconds, washed with a sufficient amount of water, and then dried at 6 (TC for 5 minutes.
  • Example 16 1-ethenylcyclopentan-1-amine modification on polyimide film
  • a surface-modified film was prepared in the same manner as in Example 15, except that a polyimide (PI) film was used. Comparative Example 16
  • a sample was prepared in the same manner as in Comparative Example 15, except that a polyimide (PI) film was used.
  • PI polyimide
  • Furfurylamine was added to borate buffer (50 mM) of pH 9.0 to prepare a solution having a concentration of 1 mg/1 mL. Glass slides were immersed in the solution at room temperature for 20 hours. The glass slides were taken out and placed in an oven at 70 °C for 3 hours and then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 70T for 5 minutes. Again, the glass slide was washed with HCl solution for 20 seconds, washed with a sufficient amount of water, and then dried at 7 (TC for 5 minutes.
  • Example 17b Furfurylamine and 3-aminocrotonic acid on a glass slide in a weakly basic solution at room temperature) Copolymer modification with methyl
  • Example 18a Furfurylamine Modification on Glass Slides in Strong Basic Solution at Room Temperature
  • Furfurylamine was added to an 8% aqueous solution of dimethylethanolamine at pH 13 to prepare a solution having a concentration of 1 mg/1 mL. Glass slides were immersed in the solution at room temperature for 12 hours. The glass slides were taken out and placed in an oven at 70°C for 3 hours, then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 70T for 5 minutes. Again, the glass slide was washed with HCl solution for 20 seconds, washed with a sufficient amount of water, and then dried at 70T for 5 minutes.
  • Example 18b Modified copolymer of furfurylamine with methyl 3-aminocrotonic acid on glass slides in strong basic solution at room temperature
  • Example 19a Furfurylamine Modification on Polyimide Film in Weak Basic Solution at Room Temperature
  • Example 19b Modified copolymer of furfurylamine and methyl 3-aminocrotonic acid on polyimide film in weakly basic solution at room temperature
  • a surface-modified film was prepared in the same manner as in Example 17b except that a polyimide (PI) film was used. Comparative Example 19
  • Example 20 5 (TC Furfurylamine Modified on Polyimide Film in Weak Basic Solution
  • Furfurylamine was added to borate buffer (50 mM) of pH 9.0 to prepare a solution having a concentration of 1 mg/1 mL.
  • a polyimide (PI) film was immersed in the solution and incubated at 50T for 3 hours.
  • the PI film was taken out and placed in an oven at 70 °C for 3 hours, then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 70T for 5 minutes.
  • the glass slide was washed with HCl solution for 20 seconds, washed with a sufficient amount of water, and then dried at 70T for 5 minutes. Comparative Example 20
  • Example 21 Furfurylamine modified on polyimide film in 70T weakly basic solution
  • Example 22a Furfurylamine modification on polyimide film in strong basic solution at room temperature
  • Example 22b Modified copolymer of furfurylamine and methyl 3-aminocrotonic acid on polyimide film in strong basic solution at room temperature
  • a surface-modified film was prepared in the same manner as in Example 18b except that a polyimide (PI) film was used. Comparative Example 22
  • Example 23 7 (TC Furfurylamine Modified on Polyimide Film in Strong Basic Solution)
  • Furfurylamine was added to an 8% aqueous solution of dimethylethanolamine at pH 13, 1 mg/1 mL A solution of concentration was prepared.
  • a polyimide (PI) film was immersed in the solution and incubated at 70T for 20 hours.
  • the PI film was taken out and placed in an oven at 70 °C for 3 hours, then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 70T for 5 minutes.
  • the glass slide was washed with HCl solution for 20 seconds, washed with a sufficient amount of water, and then dried at 70T for 5 minutes. Comparative Example 23
  • Example 24a Furfurylamine Modification on Polyethylene Film in Weak Basic Solution at Room Temperature
  • a surface-modified film was prepared in the same manner as in Example 17a, except that a polyethylene (PE) film for food packaging (a composite film in which a printing film and an aluminum film are present between the polyethylene films on both sides) was used.
  • PE polyethylene
  • Example 24b Modified copolymer of furfurylamine and methyl 3-aminocrotonic acid on polyethylene film in weakly basic solution at room temperature
  • a surface-modified film was prepared in the same manner as in 17b. Comparative Example 24
  • Example 25a Example except that a furfurylamine-modified polyethylene (PE) film for food packaging was used on a polyethylene film in a strong basic solution at room temperature
  • a surface-modified film was prepared in the same manner as in 18a.
  • Example 25b Modified copolymer of furfurylamine and methyl 3-aminocrotonic acid on polyethylene film in strong basic solution at room temperature
  • Example except that polyethylene (PE) film for food packaging was used A surface-modified film was prepared in the same manner as in 18b. Comparative Example 25
  • a sample was prepared in the same manner as in Comparative Example 18, except that a polyethylene (PE) film for food packaging was used.
  • PE polyethylene
  • Example 27 Glass slides having the same specifications as those used in Example 26 were immersed in borate buffer (50 mM) of pH 9.0 at room temperature for 20 hours. The glass slides were taken out and placed in an oven at 70 °C for 3 hours and then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 70T for 5 minutes. Again, the glass slide was washed with HCI solution for 20 seconds, washed with a sufficient amount of water, and then dried at 70T for 5 minutes.
  • Example 27 Modified methyl 3-aminocrotonic acid on glass slides in strong basic solution at room temperature
  • Methyl 3-aminocrotonic acid was added to an 8% aqueous solution of dimethylethanolamine at pH 13 to prepare a solution having a concentration of 1 mg/1 mL. Glass slides were immersed in the solution at room temperature for 12 hours. The glass slides were taken out and placed in an oven at 70 °C for 3 hours and then washed with NaOH solution for 20 seconds. Then, it was washed with a sufficient amount of water and dried at 70T for 5 minutes. Again, the glass slide was washed with HCl solution for 20 seconds, washed with a sufficient amount of water, and then dried at 70T for 5 minutes. Comparative Example 27
  • Example 28 Glass slides of the same size as those used in Example 28 were immersed in borate buffer (50 mM) of pH 9.0 at room temperature for 12 hours. The glass slides were taken out and placed in an oven at 70 °C for 3 hours and then washed with NaOH solution for 20 seconds. Then plenty of water Washed and dried at 70T for 5 minutes. Again, the glass slide was washed with HCI solution for 20 seconds, washed with a sufficient amount of water, and then dried at 70T for 5 minutes.
  • Example 28 Modification of 3-aminocrotonic acid methyl on polyimide film in weakly basic solution at room temperature
  • a surface-modified film was prepared in the same manner as in Example 27, except that a polyimide (PI) film was used. Comparative Example 28
  • Example 29 Modification of 3-aminocrotonic acid methyl on polyimide film in strong basic solution at room temperature
  • a surface-modified film was prepared in the same manner as in Example 28, except that a polyimide (PI) film was used. Comparative Example 29
  • Example 30 Modification of 3-aminocrotonic acid methyl on a polyethylene film in a weakly basic solution at room temperature
  • a surface-modified film was prepared in the same manner as in Example 27, except that a polyethylene (PE) film for food packaging (a composite film in which a printing film and an aluminum film are present between the polyethylene films on both sides) was used.
  • PE polyethylene
  • Example 31 A sample was prepared in the same manner as in Comparative Example 27, except that a polyethylene (PE) film for food packaging was used.
  • Example 31 A surface-modified film was prepared in the same manner as in Example 28, except that a methyl 3-aminocrotonic acid-modified polyethylene (PE) film for food packaging was used on a polyethylene film in a strong basic solution at room temperature. did. Comparative Example 31
  • the aluminum thin film was immersed in the monomer solution prepared in Experiments 32 to 1 156. After keeping at 60T for 24 hours, take out the aluminum thin film from the monomer solution and place it in a 90°C oven. Place in a 90°C oven for 6 hours, then remove, wash and dry. Check whether a polymer layer is formed on the surface of the dried aluminum thin film.
  • Experiment 1164
  • a polymer layer was formed on an aluminum foil of the same size as in Experiment 1202 in the same manner as in Experiments 632 to 639, and then measured so as to allow moisture permeability. The moisture permeability is confirmed to be 1 x10-4 to 1 xW 3 g/m 2 /day!'.
  • An aluminum foil laminate is prepared by bonding and pressing an aluminum foil having a thickness of about 63 pm and a polyethylene terephthalate (PET) film with an adhesive. Check the defects of the aluminum foil in the prepared aluminum foil laminate, and measure the moisture permeability. Experiments 673 to 680
  • a polypropylene (PP) film having a thickness of about 50 pm is placed in a vapor deposition chamber, and aluminum is deposited using a vapor deposition technique to prepare an aluminum-deposited polypropylene laminate. Check the defects of the aluminum layer in the prepared aluminum-deposited polypropylene laminate, and measure the moisture permeability.
  • Experiment 681 °
  • Experimental Example - Coated Separator Test 690

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Polymerisation Methods In General (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 자가개시성 모노머 (self-initiating monomer)를 이용하여 기질 표면에 폴리머층을 형성하는 방법을 제공한다. 핀홀 등 결함을 가진 금속층의 표면에서 중합반응을 일으켜 폴리머층을 형성함으로써 결함을 메울 수 있으다. 이렇게 폴리머층이 코팅된 금속층은 수분이나 공기를 차단하기 위한 기밀성 (airtight) 재료로 사용될 수 있다.

Description

아민 화합물의 중합반응을 통한 기질의 코팅과 폴리머 코팅된 기질을 갖는 장치 (COATING SUBSTRATE BY POLYMERIZATION OF AMINE COMPOUND AND APPARATUS HAVING POLYMER COATED SUBSTRATE) 배경기술 (BACKGROUND) 기술분야
[010이 본 발명은 중합반응을 이용하여 기질에 폴리머층을 형성하는 기술에 관한 것이다. 배경기술
[0101] 기질의 표면 성질을 변경하는 표면개질 기술은 다양한 응용기술 분야에서 요구되는 기술이다. 그런데 기질의 표면을 개질하기 위한 화학적 처리 그 자체가 기질의 성질에 의해 제한되는 경우가 많다. 예를 들어, 친핵성 반응으로 표면을 개질하려면, 기질에 친핵성 반응기가 충분히 있어야 한다. 친전자성 반응으로 표면을 개질하려면, 기질내 친전자성 반응기가 충분히 있어야 한다. 그렇지 않으면, 기질내에 친핵성 또는 친전자성 작용기를 도입하는 추가 공정이 필요하고 이는 비용을 증가시킨다. 공정을 복잡하게 하지 않고, 비용을 크게 증가시지 않으면서, 기질의 표면을 변경할 수 있는 기술은 용도가 다양하다. 발명의 요약 (SUMMARY)
[0102] 본 발명의 여러 측면은 실시예의 형태로 아래와 같이 나열된다.
[0103] 실시예 1은, 적어도 하나의 플라스틱 물질층을 포함하는 플라스틱 필름, 플라스틱 필름 위에 형성된 금속층, 금속층 위에 형성된 폴리머층을 포함하는 금속 라미네이트 구조체를 제공한다. 상기 폴리머층은 금속층에 기중합된 폴리머를 코팅하여 형성된 것이 아니라, 금속층 위에서의 중합반응으로 형성된 것이다. 상기 폴리머층은, 화학식 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10 및 11 에 속하는 화합물, 그리고 화합물 번호 204-248°| 화합물 중 적어도 하나를 모노머로 하여 얻어지는 폴리머를 포함한다. 상기 폴리머층은 폴리머층을 금속층에 부착하기 위한 바인더를 포함하지 않으며, 폴리머층의 다수의 폴리머가 금속층에 화학적으로 결합되어 바인더가 없이도 금속층에 부착되어있다.
Figure imgf000004_0001
Figure imgf000005_0001
Figure imgf000005_0002
Figure imgf000005_0003
Figure imgf000006_0002
Figure imgf000006_0001
Figure imgf000007_0001
Figure imgf000008_0001
Figure imgf000009_0001
Figure imgf000010_0001
Figure imgf000011_0001
[0104] 실시예 2는, 플라스틱 필름, 그 위에 형성된 금속층을 포함하는 중간구조체를 제공하는 단계, 상기 중간구조체의 금속층 상에서 중합반응을 일으켜 폴리머층을 형성하는 단계를 포함하는 금속 라미네이트 구조체의 제조방법을 제공한다. 상기 금속 라미네이트 구조체는, 플라스틱 필름, 플라스틱 필름 위에 형성된 금속층, 금속층 위에 형성된 폴리머층을 포함하며, 상기 폴리머층에는, 실시예 1 에서의 화학식 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10 및 11 에 속하는 화합물, 그리고 화합물 번호 204-248의 화합물 중 적어도 하나를 모노머로 하여 얻어지는 폴리머가 포함되고, 상기 중합반응의 조성물은 바인더를 포함하지 않고, 그리하여 중합반응에 의해 형성되는 폴리머층에 바인더가 포함되지 않는다.
[0105] 실시예 3은, 실시예 2의 방법에 있어서, 상기 중합반응의 조성물은 계면활성제, 중합개시제, 중합억제제 중 어느 것도 포함하지 않고, 중합반응의 결과 형성되는 폴리머층이 계면활성제, 중합개시제, 중합억제제를 포함하지 않는 방법을 제공한다.
[0106] 실시예 4는, 실시예 2의 방법에 있어서, 상기 중간구조체를 제공하는 단계가, 플라스틱 필름과 금속층을 제공하는 단계, 플라스틱 필름과 금속층 사이에 접착제를 발라 적층하여 플라스틱 필름과 금속층 사이에 개재된 접착증을 제공하는 단계를 포함하는 방법을 제공한다.
[0107] 실시예 5는, 실시예 2의 방법에 있어서, 상기 중간구조체를 제공하는 단계가 플라스틱 필름을 제공하는 단계, 금속을 증기증착하여 플라스틱 필름 상에 금속층을 형성하는 단계를 포함하는 방법을 제공한다.
[0108] 실시예 6은, 실시예 5의 방법에 있어서, 상기 중간구조체를 제공하는 단계가 증기증착을 수행하기 전에 플라스틱 필름의 표면을 플라즈마 처리하는 단계를 더 포함하고, 금속의 증기증착은 상기 플리스틱 필름의 표면에 이루어지는 방법을 제공한다. [0109] 실시예 7은, 실시예 2의 방법에 있어서, 중합반응을 일으키는 단계가 중간구조체의 금속층을 중합반응 조성물에 접촉하게 하는 것을 포함하는 방법을 제공한다.
[011이 실시예 8은, 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체를 포함하는 복수의 금속 라미네이트 구조체오누 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체 사이에 개재되어 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체를 합지하는 접착층을 포함하는 플렉서블 라미네이트 구조체를 제공한다. 상기 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체는 각각 적어도 하나의 플라스틱 물질층을 포함하는 플라스틱 필름, 플라스틱 필름 위에 형성된 금속층, 금속층 위에 형성된 폴리머층을 포함하며, 상기 폴리머층은 금속층에 기중합된 폴리머를 코팅하여 형성된 것이 아니라, 금속층 위에서의 중합반응으로 형성된 것이다. 상기 폴리머층은, 실시예 1 °1 화학식 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 및 1 1에 속하는 화합물, 그리고 화합물 번호 204-248°| 화합물 중 적어도 하나를 모노머로 하여 얻어지는 폴리머를 포함한다. 상기 폴리머층은 폴리머층을 금속층에 부착하기 위한 바인더를 포함하지 않으며, 폴리머층의 다수의 폴리머가 금속층에 화학적으로 결합되어 바인더가 없이도 금속층에 부착되어 있다.
[0111] 실시예 9는, 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체를 제공하는 단계, 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체 사이에 개재되어 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체를 합지하는 접착층을 형성하도록 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체 사이에 접착제를 발라 증착하는 단계를 포함하는 플렉서블 라미네이트 구조체 제조 방법을 제공한다. 상기 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체는 각각 적어도 하나의 플라스틱 물질층을 포함하는 플라스틱 필름, 플라스틱 필름 위에 형성된 금속층, 금속층 위에 형성된 폴리머층을 포함하며, 상기 폴리머층은 금속층에 기중합된 폴리머를 코팅하여 형성된 것이 아니라, 금속층 위에서의 중합반응으로 형성된 것이다. 상기 폴리머층은, 실시예 1의 화학식 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10 및 11 에 속하는 화합물, 그리고 화합물 번호 204-248의 화합물 중 적어도 하나를 모노머로 하여 얻어지는 폴리머를 포함한다. 상기 폴리머층은 폴리머층을 금속층에 부착하기 위한 바인더를 포함하지 않으며, 폴리 머층의 다수의 폴리머가 금속층에 화학적으로 결합되어 바인더가 없이도 금속층에 부착되어 있다.
[0112] 실시예 10은, 디스플레이 패널과 플렉서블 라미네이트 구조체를 포함하는 정보 디스플레이 장치를 제공한다. 상기 디스플레이 패널은 기판과 디스플레이 어레이 (array)를 포함하고, 상기 기판은 전면과 후면을 포함하며, 상기 디스플레이 어레이는 기판의 후면에 위치하여 디스플레이 어레이와 기판 후면 사이에 중간 요소가 있거나 없이 기판에 결합되어 있다. 상기 플렉서블 라미네이트 구조체는 상기 디스플레이 어레이와 기판 후면 위에 위치하여 플렉서블 라미네이트 구조체와 기판이 그 사이의 디스플레이 어레이를 둘러싸며, 상기 플렉서블 라미네이트 구조체와 기판은 공기가 투과하지 못하게 결합되어 디스플레이 어레이는 기판과 플렉서블 라미네이트 구조체 사이에 밀봉되어있다. 상기 플렉서블 라미네이트 구조체는, 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체를 포함하는 복수의 금속 라미네이트 구조체오누 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체 사이에 개재되어 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체를 합지하는 접착층을 포함한다. 상기 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체는 각각 적어도 하나의 플라스틱 물질층을 포함하는 플라스틱 필름, 플라스틱 필름 위에 형성된 금속층, 금속층 위에 형성된 폴리머층을 포함하며, 상기 폴리머층은 금속층에 기중합된 폴리머를 코팅하여 형성된 것이 아니라, 금속층 위에서의 중합반응으로 형성된 것이다. 상기 폴리머층은, 실시예 1 °1 화학식 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10 및 1 1에 속하는 화합물, 그리고 화합물 번호 204-248°| 화합물 중 적어도 하나를 모노머로 하여 얻어지는 폴리머를 포함한다. 상기 폴리머층은 폴리머층을 금속층에 부착하기 위한 바인더를 포함하지 않으며, 폴리머층의 다수의 폴리머가 금속층에 화학적으로 결합되어 바인더가 없이도 금속층에 부착되어 있다.
[0113] 실시예 11은, 실시예 10의 정보 디스플레이 장치에 있어서, 상기 복수의 금속 라미네이트 구조체가 제 3금속 라미네이트 구조체를 포함하고, 상기 접착층은 제 1접착층으로 지칭되며, 제 2금속 라미네이트 구조체와 제 3금속 라미네이트 구조체 사이에 개재되어 제 2금속 라미네이트 구조체와 제 3금속라미네이트 구조체를 합지하는 제 2접착층을 포함하는 정보 디스플레이 장치를 제공한다.
[0114] 실시예 12는, 실시예 10의 정보 디스플레이 장치에 있어서, 디스플레이 어레이가 밀봉 되어 약 1 x 10-8 g/m2/일 내지 약 1 x10'6 g/m2/일 범위의 투습도를 가지는 정보 디스플레이 장치를 제공한다.
[0115] 실시예 13은 정보 디스플레이 장치를 제조하는 방법을 제공한다. 상기 방법은, 전면과 후면을 포함하는 기판고누 기판의 후면에 위치하여 중간 요소가 있거나 없이 기판에 결합되어 있는 디스플레이 어레이를 제공하는 단계, 제 1 면과 반대편에 위치한 제 2면을 포함하는 플렉서블 라미네이트 구조체를 제공하는 단계, 상기 플렉서블 라미네이트의 제 1 면은 상기 기판을 마주하고, 제 2면은 기판의 반대편을 향하도록 플렉서블 라미네이트 구조체를 디스플레이 어레이와 기판의 후면의 위에 정렬하는 단계, 그리고 디스플레이 어레이가 상기 기판과 상기 플렉서블 라미네이트 구조체 사이에 공기가 통하지 않게 밀폐되도록, 플렉서블 라미네이트 구조체의 가장자리를 디스플레이 패널의 대응하는 부분에 의 가장자리를 밀봉하는 단계를 포함한다. 상기 플렉서블 라미네이트 구조체는, 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체를 포함하는 복수의 금속 라미네이트 구조체오누 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체 사이에 개재되어 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체를 합지하는 접착층을 포함한다. 상기 제 1금속 라미네이트 구조체와 제 2금속 라미네이트 구조체는 각각 적어도 하나의 플라스틱 물질층을 포함하는 플라스틱 필름, 플라스틱 필름 위에 형성된 금속층, 금속층 위에 형성된 폴리머층을 포함하며, 상기 폴리머층은 금속층에 기중합된 폴리머를 코팅하여 형성된 것이 아니라, 금속층 위에서의 중합반응으로 형성된 것이다. 상기 폴리머층은, 실시예 1 °1 화학식 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10 및 1 1에 속하는 화합물, 그리고 화합물 번호 204-248의 화합물 중 적어도 하나를 모노머로 하여 얻어지는 폴리머를 포함한다. 상기 폴리머층은 폴리머층을 금속층에 부착하기 위한 바인더를 포함하지 않으며, 폴리머층의 다수의 폴리머가 금속층에 화학적으로 결합되어 바인더가 없이도 금속층에 부착되어 있다
[0116] 실시예 14는 적어도 하나의 플라스틱 물질층을 포함하는 플라스틱 필름, 플라스틱 필름의 위에 금속의 기상증착으로 형성된 금속층, 금속층 위에 형성된 폴리머층을 포함하는 포장용 플라스틱 시트를 제공한다. 상기 폴리머층은 금속층에 기중합된 폴리머를 코팅하여 형성된 것이 아니라, 금속층 위에서의 중합반응으로 형성된 것이다. 상기 폴리머층은, 실시예 1 °| 화학식 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 및 11 에 속하는 화합물, 그리고 화합물 번호 204 - 248의 화합물 중 적어도 하나를 모노머로 하여 얻어지는 폴리머와 올리고머를 포함한다. 상기 금속층은 두께 방향으로 관통하여 연장되는 결함 공간을 가지며, 상기 결함 공간의 적어도 일부는 상기 모노머에서 얻어지는 폴리머와 올리고머로 채워져 있다.
[0117] 실시예 15는, 실시예 14의 포장용 플라스틱 시트에 있어서, 약 1 x10-8 g/m2/일 내지 으 f 1 x i o-6 g/m2/일 범위의 투습도를 가지는 포장용 플라스틱 시트를 제공한다.
[0118] 실시예 16은, 개구부를 포함하는 포장용 플라스틱 봉투를 제공하는 단계, 물품을 상기 개구부를 통해 상기 포장용 플라스틱 봉투에 담는 단계, 포장용 플라스틱 봉투의 개구부를 공기가 통하지 않도록 밀봉하여 상기 물품을 담고 있는 기 밀성 포장을 제공하는 단계를 포함하는 물품을 기 밀 포장하는 방법을 제공한다. 상기 포장용 플라스틱 봉투는, 적어도 하나의 플라스틱 물질 층을 포함하는 플라스틱 필름, 플라스틱 필름의 위에 금속의 기상증착으로 형성된 금속층, 금속층 위에 형성된 폴리머층을 포함하는 포장용 플라스틱 시트를 제공한다. 상기 폴리머층은 금속층에 기중합된 폴리머를 코팅하여 형성된 것이 아니라, 금속층 위에서의 중합반응으로 형성된 것이다. 상기 폴리머층은, 실시예 1 °| 화학식 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10 및 11에 속하는 화합물, 그리고 화합물 번호 204- 248 ° | 화합물 중 적어도 하나를 모노머로 하여 얻어지는 폴리머와 올리고머를 포함한다. 상기 금속층은 두께 방향으로 관통하는 결함부를 가지며, 상기 결함부의 적어도 일부는 상기 모노머에서 얻어지는 폴리머와 올리고머로 메워져 있다.
[0119] 실시예 17은, 실시예 16의 방법에 있어서, 상기 기밀성 포장은 약 1 x10-8 g/m2/일 내지 으 f 1 x i o-6 g/m2/일 범위의 투습도를 가지는 방법을 제공한다.
[012이 실시예 18은, 실시예 1 내지 17의 방법이나 장치에 있어서, 상기 금속층은 금속포일을 포함하며, 상기 금속 라미네이트 구조체는 금속층과 플라스틱 필름 사아에 접착층을 포함하는 방법이나 장치를 제공한다.
[0121] 실시예 19는, 실시예 1 내지 17의 방법이나 장치에 있어시, 상기 금속층은 약 5 pm 내지 약 200 pm의 두께를 가지는 금속포일을 포함하고, 상기 금속 라미네이트 구조체는 금속층과 플라스틱 필름 사이에 접착층을 포함하는 방법이나 장치를 제공한다.
[0122] 실시예 20은, 실시예 1 내지 17의 방법이나 장치에 있어서, 상기 금속층은 플라스틱 필름위에 형성된 금속 증착층을 포함하고, 금속층과 상기 플라스틱 필름 사이에 어떠한 별개의 층도 개재되어 있지 않은 방법이나 장치를 제공한다.
[0123] 실시예 21은, 실시예 1 내지 17의 방법이나 장치에 있어서, 상기 금속층은 플라스틱 필름위에 형성된 약 5 pm 내지 약 200 pm의 두께를 가지는 금속 증착층을 포함하고, 금속층과 상기 플라스틱 필름 사이에 어떠한 별개의 층도 개재되어 있지 않은 방법이나 장치를 제공한다
[0124] 실시예 22는, 실시예 1 내지 17의 방법이나 장치에 있어서, 상기 폴리머층에는, 적어도 하나의 모노머로부터 금속층 위에서의 중합반응의 결과 유래하는 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상의 화합물이 상당한 양으로 포함되며, 그 상당한 양은, 분자량이 특정 범위인 판매되는 폴리머 조성물에는 그 만큼의 올리고머, 사량체, 삼량체 및 이량체가 들어 있지 않을 정도인 방법이나 장치를 제공한다.
[0125] 실시예 23은, 실시예 1 내지 17의 방법이나 장치에 있어서, 상기 폴리머층에는, 적어도 하나의 모노머로부터 금속층 위에서의 중합반응의 결과 유래하는 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상이 플라스틱 필름에 화학적으로 결합된 것을 포함하며, 이 같이 올리고머, 사량체, 삼량체나 이량체가 금속층에 화학적으로 결합하는 것은 기중합된 폴리머를 금속층에 코팅하는 경우에는 일어날 수 없는 성격의 것인 방법이나 장치를 제공한다.
[0126] 실시예 24는, 실시예 1 내지 17의 방법이나 장치에 있어서, 상기 금속층에는 그 금속층의 두께를 관통하여 연장되는 핀홀이 있고, 올리고머와 폴리머 중 적어도 하나가 상기 핀홀 공간의 적어도 일부를 차지하면서 핀홀의 내부 표면에 화학적으로 결합되어 있으며, 이 같이 올리고머나 폴리머나 핀홀의 내부 표면에 화학적으로 결합하는 것은 기중합된 폴리머를 금속층에 코팅하는 경우에는 일어날 수 없는 성격의 것인 방법이나 장치를 제공한다.
[0127] 실시예 25는, 실시예 1 내지 17의 방법이나 장치에 있어서, 폴리머층은 금속층에 기중합된 폴리머를 코팅하여 얻어지는 것이 아니며, 분자량이 특정 범위인 판매되는 폴리머 조성물에서 중합반응이나 가교반응을 억제하기 위하여 포함하는 중합억제제가 포함되지 않는 방법이나 장치를 제공한다.
[0128] 실시예 26은,실시예 1 내지 17의 방법이나 장치에 있어서, 기중합된 폴리머를 코팅하여 폴리머층을 형성하는 경우 그 기중합된 폴리머를 금속표에 균일하게 코팅하기 위하여 사용될 수 있는 계면활성제가 폴리머층에 포함되지 않은 방법이나 장치를 제공한다.
[0129] 실시예 27은, 실시예 1 내지 17의 방법이나 장치에 있어서, 상기 폴리머층이 계면활성제, 중합개시제, 중합억제제를 포함하지 않는 방법이나 장치를 제공한다.
[013이 실시예 28은, 실시예 1 내지 17의 방법이나 장치에 있어서, 상기 폴리머층에는 상기 적어도 하나의 모노머로부터 유래하는 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상의 화합물이 상당한 양으로 포함되며, 그 상당한 양은, 분자량이 특정 범위인 판매되는 폴리머 조성물에는 그 만큼의 올리고머, 사량체, 삼량체 및 이량체가 들어 있지 않을 정도이고, 상기 금속층 위에서의 중합반응 결과 형성되는 상기 폴리머층에는 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상이 플라스틱 필름에 화학적으로 결합된 것을 포함하며, 이 같이 올리고머, 사량체, 삼량체나 이량체가 금속층에 화학적으로 결합하는 것은 기중합된 폴리머를 금속층에 코팅하는 경우에는 일어날 수 없는 성격의 것이고, 상기 금속층에는 그 금속층의 두께를 관통하여 연장되는 핀홀이 있고, 올리고머와 폴리머 중 적어도 하나가 상기 핀홀 공간의 적어도 일부를 차지하면서 핀홀의 내부 표면에 화학적으로 결합되어 있으며, 이 같이 올리고머나 폴리머나 핀홀의 내부 표면에 화학적으로 결합하는 것은 기중합된 폴리머를 금속층에 코팅하는 경우에는 일어날 수 없는 성격의 것이고, 폴리머층이 계면활성제, 중합개시제, 중합억제제를 포함하지 않는 방법이나 장치를 제공한다.
[0131] 실시예 29는, 실시예 1 내지 17의 방법이나 장치에 있어서, 상기 금속층은 금속포일을 포함하고, 상기 금속 라미네이트 구조체는 금속층과 플라스틱 필름 사이에 접착층을 포함하며, 상기 폴리머층에는 상기 적어도 하나의 모노머로부터 유래하는 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상의 화합물이 상당한 양으로 포함되며, 그 상당한 양은, 분자량이 특정 범위인 판매되는 폴리머 조성물에는 그 만큼의 올리고머, 사량체, 삼량체 및 이량체가 들어 있지 않을 정도이고, 상기 금속층 위에서의 중합반응 결과 형성되는 상기 폴리머층에는 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상이 플라스틱 필름에 화학적으로 결합된 것을 포함하며, 이 같이 올리고머, 사량체, 삼량체나 이량체가 금속층에 화학적으로 결합하는 것은 기중합된 폴리머를 금속층에 코팅하는 경우에는 일어날 수 없는 성격의 것이고, 상기 금속층에는 그 금속층의 두께를 관통하여 연장되는 핀홀이 있고, 올리고머와 폴리머 중 적어도 하나가 상기 핀홀 공간의 적어도 일부를 차지하면서 핀홀의 내부 표면에 화학적으로 결합되어 있으며, 이 같이 올리고머나 폴리머나 핀홀의 내부 표면에 화학적으로 결합하는 것은 기중합된 폴리머를 금속층에 코팅하는 경우에는 일어날 수 없는 성격의 것이고, 폴리머층이 계면활성제, 중합개시제, 중합억제제를 포함하지 않는 방법이나 장치를 제공한다.
[0132] 실시예 30은, 실시예 1 내지 17의 방법이나 장치에 있어서, 상기 금속층은 금속 증착층을 포함하고, 금속층과 플라스틱 필름 사이에 별도의 층이 존재하지 않으며, 상기 폴리머층에는 상기 적어도 하나의 모노머로부터 유래하는 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상의 화합물이 상당한 양으로 포함되며, 그 상당한 양은, 분자량이 특정 범위인 판매되는 폴리머 조성물에는 그 만큼의 올리고머, 사량체, 삼량체 및 이량체가 들어 있지 않을 정도이고, 상기 금속층 위에서의 중합반응 결과 형성되는 상기 폴리머층에는 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상이 플라스틱 필름에 화학적으로 결합된 것을 포함하며, 이 같이 올리고머, 사량체, 삼량체나 이량체가 금속층에 화학적으로 결합하는 것은 기중합된 폴리머를 금속층에 코팅하는 경우에는 일어날 수 없는 성격의 것이고, 상기 금속층에는 그 금속층의 두께를 관통하여 연장되는 핀홀이 있고, 올리고머와 폴리머 중 적어도 하나가 상기 핀홀 공간의 적어도 일부를 차지하면서 핀홀의 내부 표면에 화학적으로 결합되어 있으며, 이 같이 올리고머나 폴리머나 핀홀의 내부 표면에 화학적으로 결합하는 것은 기중합된 폴리머를 금속층에 코팅하는 경우에는 일어날 수 없는 성격의 것이고, 폴리머층이 계면활성제, 중합개시제, 중합억제제를 포함하지 않는 방법이나 장치를 제공한다.
[0133] 실시예 31은, 실시예 1 내지 17의 방법이나 장치에 있어서, 상기 폴리머층은 제 1폴리머층으로 지칭되고, 상기 금속 라미네이트 구조체는, 플라스틱 필름 아래에 형성된 제 2폴리머층을 더 포함하여, 플라스틱 필름은 금속층과 제 2폴리머층 사이에 개제되어 있고, 제 2폴리머층은, 기중합된 폴리머 조성물을 코팅한 것이 아니라, 플라스틱 필름 상에서 적어도 하나의 모노머를 중합반응하여 형성된 폴리머를 포함하지만, 제 2폴리머층을 플라스틱 필름에 부착하기 위한 바인더를 포함하지 않는 방법이나 장치를 제공한다.
[0134] 실시예 32는, 실시예 31의 방법이나 장치에 있어서, 제 1폴리머층은 약 1 pm 내지 으 f 20 pm 범위의 두께를 갖는 방법이나 장치를 제공한다.
[0135] 실시예 33은, 실시예 31의 방법이나 장치에 있어서, 상기 금속층 위에서의 중합반응 결과 형성되는 제 1폴리머층에는, 상기 적어도 하나의 모노머로부터 유래하는 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상의 화합물이 상당한 양으로 포함되며, 그 상당한 양은, 분자량이 특정 범위인 판매되는 폴리머 조성물에는 그 만큼의 올리고머, 사량체, 삼량체 및 이량체가 들어 있지 않을 정도인 방법이나 장치를 제공한다.
[0136] 실시예 34는, 실시예 31의 방법이나 장치에 있어서, 상기 금속층 위에서의 중합반응 결과 형성되는 제 1폴리머층에는 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상이 금속층에 화학적으로 결합된 것을 포함하며, 이 같이 올리고머, 사량체, 삼량체나 이량체가 금속층에 화학적으로 결합하는 것은 기중합된 폴리머를 금속층에 코팅하는 경우에는 일어날 수 없는 성격의 것인 방법이나 장치를 제공한다.
[0137] 실시예 35는, 실시예 31의 방법이나 장치에 있어서, 상기 금속층에는 그 금속층의 두께를 관통하여 연장되는 핀홀이 있고, 올리고머와 폴리머 중 적어도 하나가 상기 핀홀 공간의 적어도 일부를 차지하면서 핀홀의 내부 표면에 화학적으로 결합되어 있으며, 이 같이 올리고머나 폴리머나 핀홀의 내부 표면에 화학적으로 결합하는 것은 기중합된 폴리머를 금속층에 코팅하는 경우에는 일어날 수 없는 성격의 것인 방법이나 장치를 제공한다.
[0138] 실시예 36은, 실시예 31의 방법이나 장치에 있어서, 제 1폴리머층은 금속층에 기중합된 폴리머를 코팅하여 얻어지는 것이 아니며, 분자량이 특정 범위인 판매되는 폴리머 조성물에서 중합반응이나 가교반응을 억제하기 위하여 포함하는 중합억제제가 포함되지 않는 방법이나 장치를 제공한다.
[0139] 실시예 37은, 실시예 31의 방법이나 장치에 있어서, 기중합된 폴리머를 코팅하여 제 1폴리머층을 형성하는 경우 그 기중합된 폴리머를 금속표면에 균일하게 코팅하기 위하여 사용될 수 있는 계면활성제가 제 1폴리머층에 포함되지 않은 방법이나 장치를 제공한다.
[014이 실시예 38은, 실시예 31의 방법이나 장치에 있어서, 제 2폴리머층은 약 1 pm 내지 으 f 20 pm 범위의 두께를 갖는 방법이나 장치를 제공한다.
[0141] 실시예 39는, 실시예 31의 방법이나 장치에 있어서, 상기 플라스틱 필름 위에서의 중합반응 결과 형성되는 제 2폴리머층에는, 상기 적어도 하나의 모노머로부터 유래하는 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상의 화합물이 상당한 양으로 포함되며, 그 상당한 양은, 분자량이 특정 범위인 판매되는 폴리머 조성물에는 그 만큼의 올리고머, 사량체, 삼량체 및 이량체가 들어 있지 않을 정도인 방법이나 장치를 제공한다.
[0142] 실시예 40은, 실시예 31의 방법이나 장치에 있어서, 상기 플리스틱 필름 위에서의 중합반응 결과 형성되는 제 2폴리머층에는 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상이 금속층에 화학적으로 결합된 것을 포함하며, 이 같이 올리고머, 사량체, 삼량체나 이량체가 플라스틱 필름에 화학적으로 결합하는 것은 기중합된 폴리머를 플라스틱 필름에 코팅하는 경우에는 일어날 수 없는 성격의 것인 방법이나 장치를 제공한다.
[0143] 실시예 41은, 실시예 31의 방법이나 장치에 있어서, 상기 플라스틱 필름은 기공을 가지는 엔지 니어링 폴리머층을 포함하고, 올리고머와 폴리머 중 적어도 하나가 이들 기공 중 적어도 하나에 들어 있으면서 기공의 내부 표면에 화학적으로 결합되어 있으며, 이 같이 올리고머와 폴리머가 기공의 내부 표면에 화학적으로 결합되는 것은 기중합된 폴리머를 플라스틱 필름에 코팅하는 경우에는 일어날 수 없는 성격의 것인 방법이나 장치를 제공한다.
[0144] 실시예 42는, 실시예 31의 방법이나 장치에 있어서, 제 2폴리머층에는 다수의 폴리머 분자가 플라스틱 필름에 화학적으로 결합되어 제 2폴리머층이 바인더가 없이도 플라스틱 필름에 부착되어 있는 방법이나 장치를 제공한다.
[0145] 실시예 43은, 실시예 31의 방법이나 장치에 있어서, 상기 제 2폴리머층은 기중합된 폴리머 조성물을 플라스틱표면에 코팅하여 얻어지는 것이 아니고, 분자량이 특정범위인 판매되는 폴리머 조성물에서 중합반응이나 가교반응을 억제하기 위하여 포함하는 중합억제제가 포함되지 않은 방법이나 장치를 제공한다. [0146] 실시예 44는, 실시예 31의 방법이나 장치에 있어서, 기중합된 폴리머를 코팅하여 제 2폴리머층을 형성하는 경우 그 기중합된 폴리머를 플라스틱층에 균일하게 코팅하기 위하여 사용될 수 있는 계면활성제가 제 2폴리머층에 포함되지 않은 방법이나 장치를 제공한다.
[0147] 실시예 45는 제 1 면과 제 2면을 포함하는 다공성 폴리올레핀 층, 다공성 폴리올레핀 층에 기중합된 폴리머를 코팅하여 형성된 것이 아니라, 다공성 폴리올레핀 층 위에서의 중합반응으로 제 1 면 위에 형성된 제 1폴리머층, 다공성 폴리올레핀 층에 기중합된 폴리머를 코팅하여 형성된 것이 아니라, 다공성 폴리올레핀 층 위에서의 중합반응으로 제 2면 위에 형성된 제 2폴리머층을 포함하는, 이차전지용 분리막 장치를 제공한다. 상기 제 1폴리머층과 제 2폴리머층은 각각이 화합물 번호 204-248의 화합물, 그리고 실시예 1의 화학식 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10 및 1 1 에 속하는 화합물 중 적어도 하나를 모노머로 하여 얻어지는 폴리머를 포함한다.
Figure imgf000019_0001
Figure imgf000020_0001
[0148] 실시예 46은, 음극, 양극, 전기적으로 음극과 양극 사이에 위치한 분리막, 전해질을 포함하는 이차전지 장치를 제공한다. 상기 분리막은, 제 1 면과 제 2면을 가지는 다공성 폴리올레핀층, 다공성 폴리올레핀층 위에서의 중합반응으로 제 1 면 위에 형성된 제 1폴리머층, 다공성 폴리올레핀 층에 기중합된 폴리머를 코팅하여 형성된 것이 아니라, 다공성 폴리올레핀 층 위에서의 중합반응으로 제 2면 위에 형성된 제 2폴리머층을 포함하며, 제 1폴리머층과 제 2폴리머층은 폴리머층을 다공성 폴리올레핀층에 부착하기 위한 바인더를 포함하지 않으며, 폴리머층의 다수의 폴리머가 다공성 폴리올레핀층에 화학적으로 결합되어 바인더가 없이도 다공성 폴리올레핀층에 부착되어 있다. 상기 제 1폴리머층과 제 2폴리머층은 각각이 실시예 45의 화합물 번호 204-248의 화합물, 그리고 실시예 1 °| 화학식 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10 및 1 1에 속하는 화합물 중 적어도 하나를 모노머로 하여 얻어지는 폴리머를 포함한다.
[0149] 실시예 47은, 제 1 면과 제 2면을 가지는 다공성 폴리올레핀층을 제공하는 단계, 다공성 폴리올레핀층 상에서 중합반응을 일으켜 제 1 면 위에 제 1폴리머층, 제 2면 위에 제 2폴리머층을 형성하는 단계를 포함하는 이차전지용 분리막 제조방법을 제공한다. 상기 중합반응의 조성물은 실시예 45의 화합물 번호 204-248의 화합물, 그리고 실시예 1의 화학식 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10 및 1 1에 속하는 화합물 중 적어도 하나의 모노머를 포함한다.
[015이 실시예 48은, 실시예 45 내지 47의 장치나 방법에 있어서, 다공성 폴리올레핀층은 폴리에틸렌이나 폴리프로필렌 부직포층을 포함하는 장치나 방법을 제공한다.
[0151] 실시예 49는, 실시예 45 내지 47의 장치나 방법에 있어서, 다공성 폴리올레핀층은 폴리에틸렌이나 폴리프로필렌 직물층을 포함하는 장치나 방법을 제공한다.
[0152] 실시예 50은, 실시예 45 내지 47의 장치나 방법에 있어서, 상기 적어도 하나의 모노머는 화합물 번호 1 -248의 화합물 중에 선택되는 장치나 방법을 제공한다.
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
도면의 간단한 설명 (BRIEF DESCRIPTION OF THE DRAWINGS)
[0153] 도 1은 일 실시예에 따른 기질 표면에 폴리머층을 형성하는 방법의 플로우차트이다.
[0154] 도 2는 일 실시예에 따른 금속포일 라미네이트의 구조를 도시한다.
[0155] 도 3은 일 실시예에 따른 폴리머 -금속 라미네이트의 구조를 도시한다.
[0156] 도 4는 일 실시예에 따른 폴리머 -금속포일 라미네이트 두장이 라미네이션 된 구조를 도시한다.
[0157] 도 5는 일 실시예에 따른 금속증착 플라즈마 라미네이트의 구조를 도시한다.
[0158] 도 6은 일 실시예에 따른 폴리머 -금속 라미네이트의 구조를 도시한다.
[0159] 도 7은 기존의 분리막의 코팅의 구조를 도시한다.
[0160] 도 8은 일 실시예에 따른 코팅분리막의 구조를 도시한다. 발명의 상세한 설명(DETAILED DESCRIPTION OF IMPLEMENTATIONS)
[0161] 본 발명의 실시예를 개시하는 도면을 참조하면서 구체적인 실시예를 들어 좀 더 상세하게 설명하고 논의한다. 다만, 도면에 발명의 모든 실시예가 개시되어 있는 것은 아니다. 동일한 요소나 구성은 동일한 도면번호를 이용하여 설명한다. 이 문서에 개시된 발명은 여러 상이한 형태로 구현될 수 있으며, 본 발명이 이 문서에서 예를 들어 설명된 실시예만으로 제한되는 것으로 해석되어서는 안된다. 이 문서에 개시된 실시예는 특허법의 요건들을 만족하기 위하여 제공된 것이다. 이 문서에 개시된 기술분야에서 통상의 기술을 가진 사람에게는, 여기에 개시된 실시예에 비추어 당연하게 상상해 낼 수 있는 다양한 변형이 있을 수 있을 것이다. 본 발명의 범위는, 이 문서에 개시된 실시예만으로 제한되지 않으며 이들 실시예의 변형이나 당업자가 당연하게 상상할 수 있는 다른 실시예는 청구항의 범위에 속하는 것으로 이해되어야 한다.
[0162] 본 명세서에서 사용된 "알킬’’이라는 용어는 다르게 정의되지 않는 한 직소아, 분지쇄 또는 사이클릭 알킬을 포함한다. "C1 -C6 알킬"이라는 용어는 탄소수가 1 내지 6개인 알킬을 의미한다.
[0163] 본 명세서에 사용된 "알콕시"라는 용어는 다르게 정의되지 않는 한 "알킬- O- "를 의미하고, "C1 -C6 알콕시"라는 용어는 "C1 -C6 알킬- 0-"를 의미하며, 여기서 "알킬" 또는 "C1 -C6 알킬"은 상기 정의된 바와 같다.
[0164] 본 명세서에 사용된 "할로’’라는 용어는 플루오로, 클로로, 브로모 및 요오도를 포함한다.
[0165] 본 명세서에 사용된 "올리고머 ’’라는 용어는 비교적 적은 수의 반복단우 |, 대략 20 이하의 반복단위로 이루어진 중합체를 의미한다. 이때 반복단위는 동일한 분자들로 이루어질 수 있거나 서로 상이한 분자들로 이루어질 수도 있다.
[0166] 본 명세서에 사용된 "(공)중합체"라는 용어는 "중합체"와 "공중합체"를 함께 일컫는 용어로서, 올리고머보다 많은 수의 반복단위로 이루어진 중합체를 의미하 며, 상이한 분자들간의 결합에 의해 생성된 것을 특히 "공중합체"라 지칭한다. 공중합체 의 형태는 교호 공중합체 (alternating copolymer), 랜덤 공중합체 (random copolymer), 블록 공중합체 (block copolymer), 그래프트 공중합체 (graft copolymer) 등 다양한 형태가 가능하다.
L 모노머
[0167] 본 발명의 실시예는 아미노기를 갖는 화합물이나 그 토토머를 모노머로 하는 중합반응을 통하여 기질의 표면을 코팅하는 방법을 제공한다. 아미노기를 갖는 모노머 화합물은 화학식 1 내지 1 1의 화합물이다. 중합반응 메카니즘
[0168] 화학식 1 내지 1 1의 화합물은 기질과 친핵성 또는 친전자성 반응을 통해 중합된다. 이 중합반응은 래디컬 개시제와 같은 중합반응 개시제가 없이도 친핵체를 가진 기질의 표면이나 친전자체를 가진 기질의 표면에서 중합반응을 개시하고 진행할 수 있다. 기질과의 친핵성, 친전자성 반응의 메커 니즘은, 화학식 1 내지 1 1의 화합물 각각에 대하여 상세하게 후술한다. 이들 반응 메카니즘은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 실시예가 반드시 이같은 반응 메카니즘을 따라야 한다는 것은 아니다. 화학식 1 의 화합물
[0169] 본 발명의 실시예는 화학식 1 °| 아미노헤테로사이클 화합물을 제공한다.
Figure imgf000030_0001
!-己나]入| 너 6
[017이 상기 화학식 1 에서, 너 1 내지 너 6은 각기 서로 독립적으로 단일결합 또는 이중결합이고, 너! 내지 너 6 중 하나 이상은 이중결합이다. 人旦내지人西
[0171] An 내지 A16은 각기 서로 독립적으로 -QR11 R12E -N(R13)-, -0- 및 -S-로 이루어진 군으로부터 선택되고, An 내지 A16 중 하나 이상은 -N(R13)-, -0- 또는 -S-이며 또한 An 내지 A16 중 하나 이상은
Figure imgf000030_0002
이다.
RH 내지 휴
[0172] Rn 및 R12는 각기 서로 독립적으로 H, NH2, =NH, Q-C6 알킬, Q-C6 알콕시, 할로, CN, 카르복실, 포밀, OH 및 와로 이루어진 군으로부터 선택되거나 그와 연결된 탄소원자와 함께 카보닐 또는 티오카보닐기를 형성하고, R13은 수소 또는 NH2이다. 단일결합/이중결합
[0173] 단, (a) 너! 내지 너 6 중 이중결합인 임의의 느에 이웃하는 두 개의 L은 단일결합이고, 이중결합인 느에 의해 연결된 A는 -0- 또는 -S-가 아니며, (b) L„ 내지 L16 중 이중결합인 임의의 느에 의해 연결된 A가 -QRnR》 또는 -N(R13)-인 경우, 그 탄소 또는 질소원자에 결합한 R12 및 R13는 존재하지 않고, (c) R11 z R12 및 R13 중 하나 이상은 NH2이다. 이민-엔아민 토토머
[0174] 상기 화학식 1의 화합물은 수용액 상태에서 이민 (또는 쉬프 염기) 형태의 화합물과 그의 엔아민 토토머 형태의 화합물간의 평형이 이루어진다. 이민-엔아민 토토머는 케토-에놀 토토머의 질소 유사체이다. 두 경우 모두 헤테로원자와 탄소원자 사이의 수소원자 교환이 이루어진다. 예컨대, 4 -아미노 피리 딘의 경우 다음과 같은 평형을 이룬다.
Figure imgf000031_0001
[엔아민 형태] [이민 형태] 친핵성 반응
[0175] 엔아민 토토머는 에놀과 유사한 거동을 보이는데, 알파 위치의 탄소가 친핵성 성질을 나타낸다. 이민-엔아민 토토머화 반응에 의해 이민은 알파 위치 탄소의 친핵성 성질로부터 기인하는 반응 경로의 가능성을 부여받는다. 위와 같은 4 -아미노피리 딘의 경우 엔아민 형태가 이민 형태보다 더욱 방향족 성질을 나타내고, 따라서 이민 형태보다 더 안정하다. 그러므로 이민 : 엔아민의 토토머화 평형 비율이 작아질수록 이 민의 반응성은 더 강해진다. 이 경우 하기 반응식 2에 도시한 바와 같이 이민의 2번 위치 탄소에 친핵체가 공격하여 친핵성 반응이 일어 난다.
Figure imgf000031_0002
친핵성 중합반응
[0176] 본 발명에 따르면, 위와 같은 기질 표면의 친핵체에 의한 친핵성 반응과 동시에, 또는 그 전후에 이민 형태 화합물들간의 연쇄 중합 반응이 일어난다. 이때에는 4번 위치의 이민기가 친핵체로서 작용하여 또 다른 이민 형태 화합물의 2번 위치 탄소를 공격하여 친핵성 반응이 일어 난다. 이러한 반응의 결과로 하기 화학식 12에 도시 한 바와 같이 기질의 표면은 화학식 1의 화합물 또는 그의 토토머, 이들의 올리고머 또는(공)중합체로 개질되는데 이는 기질의 반응 부위에 대한 상기 화합물들의 농도 비율을 조절함으로써 개질되는 중합체의 중합도를 조절할 수 있다. 예컨대 기질의 반응 부위에 대한 화합물의 농도가 높아질수록 개질되는 중합체의 중합도가 높아지며, 기질의 반응 부위에 대한 화합물의 농도가 낮아질수록 개질되는 중합체의 중합도가 낮아진다.
Figure imgf000032_0001
친전자성 중합반응
[0177] 한편, 기질 표면에 친전자체가 존재하는 경우에는 하기 반응식 3에 예시하는 바와 같이 이민 형태 화합물의 4번 위치의 이민기와 친전자성 반응이 일어나 기질 표면에 결합된다. 또한, 친핵성 반응의 경우와 마찬가지로 이민 형태의 화합물들간 의 중합 반응이 일어나 하기 화학식 13에 도시된 바와 같이 기질 표면에 화학식 1 °| 화합물 또는 그의 토토머, 이들의 올리고머 또는(공)중합체로 개질된다.
Figure imgf000032_0002
Figure imgf000033_0001
화학식 2 의 화합물
[0178] 본 발명의 실시예는, 화학식 2의 아미노헤테로사이클 화합물을 제공한다.
<화학식 2 >
Figure imgf000033_0002
Lgi스 L[]A| 느드
[0179] 상기 화학식 2에서, L21 내지 L25는 각기 서로 독립적으로 단일결합 또는 이중결합이고, L21 내지 L25 중 하나 이상은 이중결합이다.
A시 내지 A25
[018이 A21 내지 A25는 각기 서로 독립적으로 -C(R21 R22)-, -N(R23)-, -0- 및 -S-로 이루어진 군으로부터 선택되고, A21 내지 A25 중 하나 이상은 -N(R23)-, -0- 또는 -S-이며 또한 人21 내지人25 중 아나 이상은 -C(R21文22)-이다 . 文21 내지 文23
[0181] R21 및 R22는 각기 서로 독립적으로 H, NH2, =NH, Q -C6 알킬, Q -C6 알콕시, 할로, CN, 카르복실, 포밀, OH 및 와로 이루어진 군으로부터 선택되거나 그와 연결된 탄소원자와 함께 카보닐 또는 티오카보닐기를 형성하고, R23은 수소 또는 NH2이다. 이중결합/단일결합
[0182] 단, (a) L21 내지 L25 중 이중결합인 임의의 느에 이웃하는 두 개의 L은 단일결합이고, 이중결합인 느에 의해 연결된 A는 -0- 또는 -S-가 아니며, (b) L21 내지 L25 중 이중결합인 임의의 느에 의해 연결된 A가 -C(R21R22)- 또는 -N(R23)-인 경우, 그 탄소 또는 질소원자에 결합한 R22 및 사는 존재하지 않고, (c) R21, R22 및 R23 중 하나 이상은 NH2이다. 중합반응
[0183] 화합식 2의 5 -원 아미노헤테로사이클 화합물의 경우에도 화학식 1의 6 -원 하미노헤테로사이클 화합물과 동일한 경로를 따라 반응이 일어 난다. 예컨대 4 - 아미노이미다졸의 경우 반응식 4에 도시된 바와 같은 평형을 이루며, 이민 형태의 화합물이 기질 표면 상의 친핵체 또는 친전자체와 반응하여 (반응식 5 및 6), 하기 화학식 14 또는 화학식 15에 도시된 바와 같이 기질 표면에 화학식 2의 화합물 또는 그의 토토머, 이들의 올리고머 또는 (공)중합체로 개질된다.
Figure imgf000034_0001
Figure imgf000035_0001
화학식 3 의 화합물
[0184] 본 발명의 실시예는 화학식 3의 비 닐 아미노 헤테로사이클 화합물을 제공한다.
Figure imgf000035_0002
I의 내지 L흐
[0185] 상기 화학식 3에서, L31 내지 L%은 각기 서로 독립적으로 단일결합 또는 이중결합이다.
A ☆내지包 5
[0186] A31 내지 A35는 각기 서로 독립적으로 -C(R31 R32E -N(R33)-Z -0- 및 -S-로 이루어진 군으로부터 선택되고, A31 내지 A35 중 하나 이상은 -N(R33E -0- 또는 -S-이며 또한 八31 내지八35 중 아나 이상은 -C(R31두32)-이다 • Rj1_ 내지 Rj4
[0187] R31 및 슈는 각기 서로 독립적으로 H, NH2, =NH, Q-C6 알킬, Q-C6 알콕시, 할로, CN, 카르복실, 포밀, OH 및 와로 이루어진 군으로부터 선택되거나 그와 연결된 탄소원자와 함께 카보닐 또는 티오카보닐기를 형성하고, R33은 수소 또는 NH2이며, R34는 수소이다. 이중결합/단일결합
[0188] 단, (a) L31 내지 L* 중 이중결합인 임의의 느에 이웃하는 두 개의 L은 단일결합이고, 이중결합인 느에 의해 연결된 A는 -0- 또는 -S-가 아니며, (b) L31 내지 L36 중 이중결합인 임의의 느에 의해 연결된 A가 -QR31R32)- 또는 -N(R33)-인 경우, 그 탄소 또는 질소원자에 결합한 R32 및 스는 존재하지 않고, (c) L31 또는 L36 가 이중결합이면 R34는 존재하지 않는다. 친핵성 반응
[0189] 본 발명의 화학식 3의 비 닐 아미노 헤테로사이클 화합물의 비 닐기는 기질 표면의 친핵체에 의한 친핵성 반응을 유발하는 경로를 제공한다. 예컨대, 4 -아미노- 2- 에테 닐피리 딘의 경우 하기 반응식 7에 도시한 바와 같이 기질 표면의 친핵체와 비 닐기 간의 친핵성 반응이 일어 난다.
<반응식 7> *
Figure imgf000036_0001
Kir =진핵세 친핵성 중합반응
[019이 본 발명에 따르면, 위와 같은 기질 표면의 친핵체에 의한 친핵성 반응과 동시에, 또는 그 전후에 비 닐 헤테로사이클 화합물들간의 연쇄 중합 반응이 일어난다. 즉, 비 닐기가 친핵체로서 작용하여 또 다른 비 닐 헤테로사이클 화합물의 비 닐기를 공격하여 친핵성 반응이 일어 난다. 이러한 반응의 결과로 하기 화학식 16에 도시된 바와 같이 기질의 표면은 화학식 3°| 화합물 또는 그의 올리고머 또는 (공)중합체로 개질되는데 이는 기질의 반응 부위에 대한 상기 화합물들의 농도 비율을 조절함으로써 개질되는 중합체의 중합도를 조절할 수 있다. 예컨대 기질의 반응 부위에 대한 화합물의 농도가 높아질수록 개질되는 중합체의 중합도가 높아지며, 기질의 반응 부위에 대한 화합물의 농도가 낮아질수록 개질되는 중합체의 중합도가 낮아진다.
Figure imgf000037_0001
친전자성 중합반응
[0191] 한편, 기질 표면에 친전자체가 존재하는 경우에는 하기 반응식 8에 예시하는 바와 같이 비 닐기와 친전자성 반응이 일어나 기질 표면에 결합된다. 또한, 친핵성 반응의 경우와 마찬가지로 비 닐기를 갖는 헤테로사이클 화합물들간의 중합 반응이 일어나 하기 화학식 17에 도시된 바와 같이 기질 표면에 화학식 3의 화합물 또는 그의 올리고머 또는(공)중합체로 개질된다.
Figure imgf000037_0002
화학식 4의 화합물
[0192] 본 발명의 실시예는 화학식 4의 비 닐 아미노 헤테로사이클 화합물을 제공한다.
Figure imgf000038_0001
느丄내지 느^
[0193] 상기 화학식 4에서, 누 내지 L45는 각기 서로 독립적으로 단일결합 또는 이중결합이다. 人4그 내지 A44
[0194] A4I 내지 A44는 각기 서로 독립적으로 -QR41 R42)-, -N(R43)-, -0- 및 -S-로 이루어진 군으로부터 선택되고, A41 내지 A44 중 하나 이상은 -N(R43)-, -0- 또는 -S-이며 또한 A41 내지 A44 중 하나 이상은 -QR41 R42)-이다.
R41 내지 R43
[0195] R41 및 文42는 각기 서로 독립적으로 H, NH2, =NH, Q-C6 알킬, Q-C6 알콕시, 할로, CN, 카르복실, 포밀, OH 및 와로 이루어진 군으로부터 선택되거나 그와 연결된 탄소원자와 함께 카보닐 또는 티오카보닐기를 형성하고, R43은 수소 또는 NH2이며, R44는 수소이다. 단일결합/이중결합
[0196] 단, (a) L41 내지 L45 중 이중결합인 임의의 느에 이웃하는 두 개의 L은 단일결합이고, 이중결합인 느에 의해 연결된 A는 -0- 또는 -S-가 아니며, (b) L41 내지 L45 중 이중결합인 임의의 느에 의해 연결된 A가 -C(R4I R42)- 또는 -N(R43)-인 경우, 그 탄소 또는 질소원자에 결합한 R42 및文43는 존재하지 않고, (c) L41 또는 L45 가 이중결합이면 R44는 존재하지 않는다. 중합반응
[0197] 화합식 4의 5원 비 닐 아미노 헤테로사이클 화합물의 경우에도 화합식 3의 6원 비 닐 아미노 헤테로사이클 화합물과 동일한 경로를 따라 반응이 일어난다. 예컨대 2 - 아미노- 5 -에테 닐- 1 H-이미다졸의 경우 반응식 9 및 10에 각각 도시된 바와 같이 기질 표면 상의 친핵체 또는 친전자체와 반응하여, 하기 화학식 18 또는 화학식 19에 도시된 바와 같이 기질 표면에 화학식 4의 화합물 또는 그의 올리고머 또는(공)중합체로 개질된다.
Figure imgf000039_0001
Figure imgf000040_0001
화학식 5의 화합물
[0198] 본 발명의 실시예는 화학식 5의 아미노사이클로알켄 화합물을 제공한다.
Figure imgf000040_0002
R믜내지 Fg2
[0199] 상기 화학식 5에서, R51은 각기 서로 독립적으로 H, -NH2, 할로, C「C6알킬, Q-C6알콕시, CN, 카르복실, 포밀, OH 및 아로 이루어진 군으로부터 선택되고, R52는 각기 서로 독립적으로 H, -NH2, 할로, Q-Q알킬, Q-Q알콕시, CN, 카르복실, 포밀, OH, SH 및 =NH로 이루어진 군으로부터 선택되거나 그와 연결된 탄소원자와 함께 카보닐 또는 티오카보닐기를 형성하며, 단, (a) R51 및 短 중 적어도 하나 이상은 NH2이고, (b) R52가 NH2, 할로, CrC6알킬, Q-C6알콕시, CN, 카르복실, 포밀, OH 또는 SH인 경우, 그 R52와 같은 탄소에 결합되어 있는 또 다른 文52는 日이며, (c) R52가 =NH이거나 그와 연결된 탄소원자와 함께 카보닐 또는 티오 카보닐기를 형성하는 경우, 그 文52와 같은 탄소에 결합되어 있는 또 다른 文52는 존재하지 않는다. 이민-엔아민 토토머 [0200] 본 발명의 화학식 5의 아미노 사이클로알켄 화합물은 수용액 상태에서 이민(또는 쉬프 염기) 형태의 화합물과 그의 엔아민 토토머 형태의 화합물 간의 평형이 이루어진다. 이민에아민 토토머는 케토-에놀 토토머의 질소 유사체이다. 두 경우 모두 헤테로원자와 탄소원자 사이의 수소원자 교환이 이루어진다. 예컨대, 3 - 이미노사이클로헥스- 1 -엔- 1 -아민의 경우 다음과 같은 평형을 이룬다.
Figure imgf000041_0001
[엔아민 형태] [이민 형태] 친핵성 반응
[0201] 엔아민 토토머는 에놀과 유사한 거동을 보이는데, 알파 위치의 탄소가 친핵성 성질을 나타낸다. 이민-엔아민 토토머화 반응에 의해 이민은 알파 위치 탄소의 친핵성 성질로부터 기인하는 반응 경로의 가능성을 부여받는다. 위와 같은 3 -이미노사이클로헥스- 1 - 엔- 1 -아민의 경우 이민 형태가 더욱 큰 반응성을 나타낸다. 이 경우 이민의 1 번 위치 탄소에 친핵체가 공격하여 친핵성 반응이 일어난다.
<반응식 12>
Figure imgf000041_0002
친핵성 중합반응
[0202] 본 발명에 따르면, 위와 같은 기질 표면의 친핵체에 의한 친핵성 반응과 동시에, 또는 그 전후에 이민 형태 화합물들간의 연쇄 중합 반응이 일어난다. 이때에는 3번 위치의 이민기가 친핵체로서 작용하여 또 다른 이민 형태 화합물의 1 번 위치 탄소를 공격하여 친핵성 반응이 일어난다. 이러한 반응의 결과로 하기 화학식 20에 도시된 바와 같이 기질의 표면은 화학식 5의 화합물 또는 그의 토토머, 이들의 올리고머 또는(공)중합체로 개질되는데 이는 기질의 반응 부위에 대한 상기 화합물들의 농도 비율을 조절함으로써 개질되는 중합체의 중합도를 조절할 수 있다. 예컨대 기질의 반응 부위에 대한 화합물의 농도가 높아질수록 개질되는 중합체의 중합도가 높아지며, 기질의 반응 부위에 대한 화합물의 농도가 낮아질수록 개질되는 중합체의 중합도가 낮아진다.
Figure imgf000042_0001
친전자성 중합반응
[0203] 한편, 기질 표면에 친전자체가 존재하는 경우에는 하기 반응식 13에 예시하는 바와 같이 이민 형태 화합물의 3번 위치의 이민기와 친전자성 반응이 일어나 기질 표면에 결합된다. 또한, 친핵성 반응의 경우와 마찬가지로 이민 형태의 화합물들간의 중합 반응이 일어나 하기 화학식 21 에 도시된 바와 같이 기질 표면에 화학식 5의 화합물 또는 그의 토토머, 이들의 올리고머 또는(공)중합체로 개질된다.
Figure imgf000042_0002
화학식 6의 화합물
[0204] 본 발명의 실시예는 화학식 6의 아미노사이클로알켄 화합물을 제공한다.
Figure imgf000043_0001
文의_내지 Fg2
[0205] 상기 화학식 6에서, R61은 각기 서로 독립적으로 H, NH2, 할로, Q-C6알킬, C1 -C6알콕시, CN, 카르복실, 포밀, OH 및 SH로 이루어진 군으로부터 선택되고, R62는 각기 서로 독립적으로 H, NH2, 할로, Q-Q알킬, Q-Q알콕시, CN, 카르복실, 포밀, OH, SH 및 =NH로 이루어진 군으로부터 선택되거나 그와 연결된 탄소원자와 함께 카보닐 또는 티오카보닐기를 형성하며, 단, (a) R61 및 R62 중 적어도 하나 이상은 NH2이고, (b) R62가 NH2, 할로, CrC6알킬, Q-C6알콕시, CN, 카르복실, 포밀, OH 또는 SH인 경우, 그 R62와 같은 탄소에 결합되어 있는 또 다른 수는 日이며, (c) R62가 =NH이거나 그와 연결된 탄소원자와 함께 카보닐 또는 티오 카보닐기를 형성하는 경우, 그 文62와 같은 탄소에 결합되어 있는 또 다른 文62는 존재하지 않는다. 중합반응
[0206] 화학식 6의 5 -원 아미노사이클로알켄 화합물의 경우에도 화학식 5의 6원 아미노사이클로알켄과 동일한 경로를 따라 반응이 일어난다. 예컨대 3 -아미노사이클로펜트- 2- 엔- 1 -온의 경우 반응식 4에 도시된 바와 같은 평형을 이루며, 이민 형태의 화합물 이 기질 표면 상의 친핵체 또는 친전자체와 반응하여 (반응식 15 및 16), 하기 화학식 22 또는 화학식 23에 도시된 바와 같이 기질 표면에 화학식 6의 화합물 또는 그의 토토머, 이들의 올리고머 또는 (공)중합체로 개질된다.
<반응식 14>
Figure imgf000044_0001
Figure imgf000045_0001
화학식 7의 화합물
[0207] 본 발명의 실시예는 화학식 7의 비 닐 아미노 비방향족고리 화합물을 제공한다.
Figure imgf000045_0002
Lj스 L[] |_j6
[0208] 상기 화학식 7에서 L71 내지 L76은 각기 서로 독립적으로 단일결합 또는 이중결합이고, L71 내지 L76 중 이중결합의 수는 0 내지 2이다.
Rj丄내지
[0209] R71 및 R72는 각기 서로 독립적으로 H, NH2, =NH, Q-C6 알킬, Q-C6 알콕시, 할로, CN, 카르복실, 포밀, 0H 및 와로 이루어진 군으로부터 선택되거나 그와 연결된 탄소원자와 함께 카보닐 또는 티오카보닐기를 형성하고, R73은 H, NH2, Q-Q 알킬, Q-Q 알콕시, 할로, CN, 카르복실, 포밀, OH 및 SH로 이루어진 군으로부터 선택된다. 단일결합/이중결합
[021이 단, (a) L71 내지 L76 중 이중결합인 임의의 느에 이웃하는 두 개의 L은 단일결합이고, (b) L71 내지 L76 중 이중결합인 임의의 느에 의해 연결된 탄소원자에 결합한 R72는 존재하지 않으며, (c) L71 또는 L76 가 이중결합이면 R73은 존재하지 않고, (d) R71 또는 사가 = NH이거나 그와 연결된 탄소원자와 함께 카보닐 또는 티오카보닐기를 형성하는 경우 그와 같은 탄소원자에 연결된 R71 또는 R72는 존재하지 않으며, (e) R71 내지 R73 중 적어도 하나 이상은 NH2이다. 친핵성 반응
[0211] 본 발명의 화학식 7의 비 닐 아미노 비방향족 고리 화합물의 비 닐기는 기질 표면의 친핵체에 의한 친핵성 반응을 유발하는 경로를 제공한다. 예컨대, 1 -아미노- 4- 에테 닐사이클로헥산의 경우 하기 반응식 17에 도시한 바와 같이 기질 표면의 친핵체와 비 닐기 간의 친핵성 반응이 일어난다.
Figure imgf000046_0001
Nir =친핵湖 친핵성 중합반응
[0212] 본 발명에 따르면, 위와 같은 기질 표면의 친핵체에 의한 친핵성 반응과 동시에, 또는 그 전후에 비 닐 아미노 비방향족 고리 화합물들간의 연쇄 중합 반응이 일어난다. 즉, 비 닐기가 친핵체로서 작용하여 또 다른 비 닐 아미노 비방향족 고리화합물의 비 닐기를 공격하여 친핵성 반응이 일어 난다. 이러한 반응의 결과로 기질의 표면은 하기 화학식 24에 도시된 바와 같이 화학식 7°| 화합물 또는 그의 올리고머 또는 (공)중합체로 개질되는데 이는 기질의 반응 부위에 대한 상기 화합물들의 농도 비율을 조절함으로써 개질되는 중합체의 중합도를 조절할 수 있다. 예컨대 기질의 반응 부위에 대한 화합물의 농도가 높아질수록 개질되는 중합체의 중합도가 높아지며, 기질의 반응 부위에 대한 화합물의 농도가 낮아질수록 개질되는 중합체의 중합도가 낮아진다.
<화학식 24 >
Figure imgf000047_0001
친전자성 중합반응
[0213] 한편, 기질 표면에 친전자체가 존재하는 경우에는 하기 반응식 18에 예시하는 바와 같이 비 닐기와 친전자성 반응이 일어나 기질 표면에 결합된다. 또한, 친핵성 반응의 경우와 마찬가지로 비 닐기를 갖는 아미노 비방향족 고리 화합물들간의 중합 반응이 일어나 하기 화학식 25에 도시된 바와 같이 기질 표면에 화학식 7의 화합물 또는 그의 올리고머 또는(공)중합체로
Figure imgf000047_0002
Figure imgf000047_0003
화학식 8의 화합물
[0214] 본 발명의 실시예는 화학식
Figure imgf000047_0004
비 닐 아미노 비방향족고리 화합물을 제공한다.
Figure imgf000048_0001
Lg스 내지 |_g5
[0215] 상기 화학식 8에서, L81 내지 스는 각기 서로 독립적으로 단일결합 또는 이중결합이고, L81 내지 L85 중 이중결합의 수는 0 내지 1이다. 文81내지 文83
[0216] R81 및 R82는 각기 서로 독립적으로 H, NH2, =NH, Q-C6 알킬, Q-C6 알콕시, 할로, CN, 카르복실, 포밀, OH 및 와로 이루어진 군으로부터 선택되거나 그와 연결된 탄소원자와 함께 카보닐 또는 티오카보닐기를 형성하고, R83은 H, NH2, C「C6 알킬, C「C6 알콕시, 할로, CN, 카르복실, 포밀, OH 및 SH로 이루어진 군으로부터 선택된다. 단일결합/이중결합
[0217] 단, (a) L81 내지 L85 중 이중결합인 임의의 느에 이웃하는 두 개의 L은 단일결합이고, (b) L81 내지 L85 중 이중결합인 임의의 느에 의해 연결된 탄소원자에 결 합한 R82는 존재하지 않으며, (c) L81 또는 L85 가 이중결합이면 R83은 존재하지 않고, (d) R81 또는 R82가 = NH이거나 그와 연결된 탄소원자와 함께 카보닐 또는 티오카보닐기를 형성하는 경우 그와 같은 탄소원자에 연결된 R81 또는 R82는 존재하지 않으며, (e) R81 내지 R83 중 적어도 하나 이상은 NN』이다. 중합반응
[0218] 화학식 8의 5원 비 닐 아미노 비방향족고리 화합물의 경우에도 화학식 7°| 6- 원 비 닐 아미노 비방향족고리 화합물과 동일한 경로를 따라 반응이 일어난다. 예컨대 1 -아미노- 3 -에테 닐사이클로펜탄의 경우 화합물의 비 닐기가 기질 표면상의 친핵체 또는 친전자체와 반응하여, 하기 화학식 26 또는 화학식 27에 도시된 바와 같이 기질 표면에 화학식 8의 화합물 또는 그의 올리고머 또는(공)중합체로 개질된다.
Figure imgf000049_0001
Figure imgf000050_0001
화학식 9의 화합물
[0219] 본 발명의 실시예는 화학식 9의 퍼퓨릴 아민을 제공한다.
Figure imgf000050_0002
중합반응
[0220] 화학식 9의 퍼퓨릴아민은 기질 표면의 친핵체에 의한 친핵성 반응과 동시에, 또는 그 전후에 퍼퓨릴아민 화합물들간의 연쇄 중합 반응이 일어나는 것으로 예상된다. 퍼퓨릴아민간의 중합 반응은 그 구조로부터 예측 가능한 바와 같이, 딜스-알더 (Diels-Alder) 반응 경로를 따르는 것으로 보인다. 또한, 퍼퓨릴아민과 이중 결합을 갖는 기타 화합물간의 공중합 반응 역시 퍼퓨릴아민의 퓨란 고리의 이중결합 2개와 기타 화합물의 이중 결합 간의 딜스-알더 반응이 주요 반응 경로가 된다. 그러나, 이러한 예상 반응 경로는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 범우 I가 이러한 반응 경로 자체에 의해 구속되거나 특별히 한정되지는 않는다. 화학식 10의 화합물
[0221] 본 발명의 실시예는 화학식 10의 불포화 비고리 아민 화합물을 제공한다.
<화학식 w>
Figure imgf000051_0001
Xa
[0222] 상기 화학식 10에서, Xa는 -NH2, -N=CH-OH, 또는 -N=O이다.
R희내지 Ra3
[0223] Rar은 수소, Q-C6 알킬, 또는 -CN이며, Ra2 및 Ra3은 각각 독립적으로 수소, Q-C6알킬, -CN, -OH, -NH2, -NH-OH, -C(O)Ra4 및 -C(O)ORa5 (여기서, Ra4 및 사는 수소 또는 Q-C6알킬임)로 이루 어진 군에서 선택되는 치환기이다. 중합반응
[0224] 본 발명에 따르면, 불포화 비고리 아민 화합물은 기질 표면의 친핵체에 의한 친핵성 반응과 동시에, 또는 그 전후에 불포화 비고리 아민 화합물들간의 연쇄 중 합 반응이 일어나는 것으로 예상된다 (하기 반응식 21 내지 22 참조). 그러나, 이러한 예상 반응 경로는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 범위가 이러한 반응 경로 자체에 의해 구속되거나 특별히 한정되지는 않는다.
Figure imgf000051_0002
<반응식 22>
Figure imgf000052_0001
화학식 11의 화합물
[0225] 본 발명의 실시예는 화학식 1 1의 아민 화합물을 제공한다.
Figure imgf000052_0002
E.b1
[0226] 상기 화학식 11 에서, 品은 H, NH2, 그리고 NH-아실로 이루어진 군에서 선택되는 치환기이다. 이민-엔아민 토토머
[0227] 상기 화학식 1 1의 화합물은 수용액 상태에서 이민(또는 쉬프 염기) 형태의 화합물과 그의 엔아민 토토머 형태의 화합물간의 평형이 이루어진다. 이민-엔아민 토토머는 케토-에놀 토토머의 질소 유사체이다. 두 경우 모두 헤테로원자와 탄소원자 사이의 수소원자 교환이 이루어진다. 예컨대, 다음과 같은 평형을 이룬다.
<반응식 24 >
Figure imgf000053_0001
친핵성 반응
[0228] 엔아민 토토머는 에놀과 유사한 거동을 보이는데, 알파 위치의 탄소가 친핵성 성질을 나타낸다. 이민-엔아민 토토머화 반응에 의해 이민은 알파 위치 탄소의 친핵성 성질로부터 기인하는 반응 경로의 가능성을 부여받는다. 위와 같은 엔아민 형태가 이민 형태보다 더욱 방향족 성질을 나타내고, 따라서 이민 형태보다 더 안정하다. 그러므로 이민 : 엔아민의 토토머화 평형 비율이 작아질수록 이민의 반응성은 더 강해진다. 이 경우 하기 반응식 25에 도시한 바와 같이 이민의탄소에 친핵체가 공격하여 친핵성 반응이 일어난다.
<반응식 25>
Figure imgf000053_0002
친핵성 중합반응
[0229] 본 발명에 따르면, 위와 같은 기질 표면의 친핵체에 의한 친핵성 반응과 동시에, 또는 그 전후에 이민 형태 화합물들간의 연쇄 중합 반응이 일어난다. 이때에는 4번 위치의 이민기가 친핵체로서 작용하여 또 다른 이민 형태 화합물의 2번 위치 탄소를 공격하여 친핵성 반응이 일어 난다. 이러한 반응의 결과로 하기 화학식 11 에 도시 한 바와 같이 기질의 표면은 화학식 1 1의 화합물 또는 그의 토토머, 이들의 올리고머 또는(공)중합체로 개질되는데 이는 기질의 반응 부위에 대한 상기 화합물들의 농도 비율을 조절함으로써 개질되는 중합체의 중합도를 조절할 수 있다. 예컨대 기질의 반응 부위에 대한 화합물의 농도가 높아질수록 개질되는 중합체의 중합도가 높아지며, 기질의 반응 부위에 대한 화합물의 농도가 낮아질수록 개질되는 중합체의 중합도가 낮아진다.
<화학식 29>
Figure imgf000054_0001
친전자성 중합반응
[023이 한편, 기질
Figure imgf000054_0002
하기 반응식 26에 예시하는 바와 같이 이민 형태 화합물의 4번 위치의 이민기와 친전자성 반응이 일어나 기질 표면에 결합된다. 또한, 친핵성 반응의 경우와 마찬가지로 이민 형태의 화합물들간 의 중합 반응이 일어나 하기 화학식 30에 도시된 바와 같이 기질 표면에 화학식 1 1의 화합물 또는 그의 토토머, 이들의 올리고머 또는(공)중합체로 개질된다.
<반응식 26>
Figure imgf000054_0003
그외 모노머 화합물
[0231] 상기 화학식 1 내지 1 1에 속하지는 않으나 기질의 표면을 코팅하는 방법에 모노머로 사용될 수 있는 아미노기를 갖는 화합물들이 존재하며, 이들을 "기타모노머화합물"로 칭한다. 기타모노머화합물은 본 명세서의 화학식 1 내지 11의 화합물과 함께, 혹은 그 대신 사용될 수 있다. 모노머 화합물의 예
[0232] 화학식 1 내지 11의 화합물과 기타모노머화합물은 각각 아래 표 1 에 나열된 화합물들로 이루어진 군들 중 하나 이상 선택 될 수 있다.
[표 1]
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
H. 기질
[0233] 위에서 도시한 바와 같이 화학식 1 내지 11의 화합물은, 친핵성, 친전자성 반응을 통한 중합이 모두 가능하므로, 친핵체를 가진 기질표면이나 친전자체를 표면에 가진 기질과 반응하여 중합반응이 가능하다. 따라서 화학식 1 내지 11의 화합물은 다양한 기질의 표면과 반응시켜 그 표면에 폴리머층을 형성할 수 있다. 이러한 기질은 유리, 목재, 석재, 금속, 세라믹, 천연 및 합성 고분자 등일 수 있고 특별히 한정되지 않는다. 금속 기질
[0234] 상기 기질은 철, 구리, 알루미늄, 아연, 주석, 은, 금, 티탄, 텅스텐, 니켈, 몰리브덴, 코발트, 마그네슘 그리고 이들의 합금으로 이루어진 군으로부터 하나 이상 선택 될 수 있다. 세라믹 기질
[0235] 상기 기질은 산화 아연, 산화지르코늄, 산화티탄, 붕산 알루미늄, 산화철, 탄산칼슘, 탄산바륨, 산화납, 산화주석, 산화세륨, 산화리튬, 산화칼슘, 산화마그네슘, 사산화삼망간, 산화니오브, 산화 탄탈, 산화텅스텐, 산화안티몬, 인산알루미늄, 칼슘실리케이트, 지르코늄실리케이트, ITO(주석 함유 산화 인듐), 티탄실리케이트, 티탄산바륨, 티탄산스트론튬, 티탄산칼슘, 몬모릴로나이트, 사포나이트, 버미클라이트, 하이드로탈사이트, 카올리나이트, 카네마이트, 마가디아이트, 케니아이트, 실리카, 알루미나, 제올라이트, 리튬나이트라이드, 리튬실리케이트, 리튬보레이트, 리튬알루미네이트, 리튬포스페이트, 리튬 인 옥시나이트 라이드, 리튬 실리콘설파이드, 리튬 란탄 옥사이드, 리튬 티타늄 옥사이드, 리튬 보로설 파이드, 리튬 알루미노설파이드, 리튬 포스포설파이드, 그리고 알루미늄 티타늄 옥사이드로 이루어진 군으로부터 하나 이상 선택 될 수 있다. 천연 고분자 기질
[0236] 상기 기질은 전분, 셀룰로스, 키토산, 키 틴, 젤라틴, 펙틴, 카라기난, 덱스트란, 콜라겐, 히알루론산, 알지네이트, 글루텐, 피브린, 그리고 아가로스로 이루어진 군으로부터 하나 이상 선택 될 수 있다. 합성 고분자 기질
[0237] 상기 기질은 범용 열가소성 고분자, 열경화성 고분자, 엔지니어링 고분자, 엘라스토머 등일 수 있다. 예컨대, 상기 기질은 폴리에틸렌, 폴리프로필렌, 폴리메틸펜텐, 폴리부텐 -1 등을 포함하는 폴리올레핀, 폴리이소부틸렌, 에틸렌-프로필렌 고무, 에틸렌즈로필렌-디엔 고무 (EPDM) 등을 포함하는 폴리올레핀 엘라스토머, 폴리비 닐클로라이드, 폴리비 닐리덴클로라이드, 폴리클로로트리플루오로에틸렌, 폴리비 닐리 덴플루 오라이드, 폴리테트라플루오로에틸렌 등을 포함하는 할로겐화폴리올레핀, 폴리스티렌, 폴리비 닐알코올, 폴리아세탈, 폴리비 닐아세테이트, 폴리아크릴로니트릴, 폴리부타디엔, 폴리이소프렌, 페놀수지, 에폭시수지, 폴리아미드, 폴리에틸렌테레프탈레이트 및 폴리 부틸렌테레프탈레이트 등을 포함하는 폴리에스테르, 폴리이미드, 폴리아미드이미드, 폴리에테르이미드, 폴리아크릴레이트, 폴리우레탄, 폴리실록산, 폴리나프탈렌, 폴리티오펜, 폴리아닐린, 폴리파라페닐렌설파이드, 폴리클로로프렌, 스티렌-부타디엔 고무, 니트릴고무, 실리콘고무 및 이들의 공중합체 등으로 이루어진 군으로부터 하나 이상 선택 될 수 있다. 기질의 형상
[0238] 기질의 형상도 브 t므 t (film), 분말 (powder), 비드 (bead), 평판 (plate), 막대 (rod), 튜브 (tube) 또는 임의의 3차원 형상일 수 있다. 또한 필요에 따라 기질의 일부분만을 화학식 1 내지 화학식 1 1의 화합물과 접촉시킴으로써 기질의 일부분만을 개질하는 것도 가능하다.
HL 기질 표면에 폴리머층을 형성
[0239] 위에서 설명한대로, 상기 화학식 1 내지 1 1의 화합물은 기질 표면과 반응, 결합하며 연쇄 중합반응을 통해 기질 표면에 폴리머층을 형성 할 수 있다. 기질 표면에 형성된 폴리머층은 기질 표면의 성질 (예를 들어, 친수성)을 바꿈으로써 특정 기질을 어떤 용도에 있어서 더욱 적합하게 만들 수 있다. 또한, 모노머 단위로 기질 표면에 결합되어 폴리머층이 형성되므로, 기질의 작은 동공이나 크랙 등의 흠결 역시 메울 수 있으며, 기질의 투습성이나 강도 등의 물성도 개선할 수 있다. 추가로, 기질 표면에 화학적으로 결합되므로, 접착제의 사용이 필요 없고, 일반적인 코팅에 비해 폴리머층이 기질 표면에 단단히 결합되어 쉽게 박리되지 않는다. 도 1의 방법
[024이 도 1 에 도시된 것 처럼, 본 발명의 한 실시예에 따르면, 기질 표면에 화학식 1 내지 1 1의 화합물중 한가지 이상을 모노머로 이용해 폴리머층을 형성하는 방법은 모노머를 포함하는 용액을 제공하는 단계 120, 기질 표면에서 모노머의 중합반응을 개시하는 단계 140, 기질 표면의 모노머를 중합하여 폴리머층을 형성하는 단계 160, 그리고 세척 및 건조하는 단계 180를 포함한다. 모노머용액 제조
[0241] 도 1의 단계 120에서, 용매에 화학식 1 내지 1 1의 화합물 중 한가지 이상을 가하여 모노머를 포함하는 반응 조성물 용액을 제조한다. 이 반응 조성물 용액을 "모노머용액"으로 칭한다. 산도 (pH)
[0242] 상기 기질의 개질방법에서 모노머용액은 산성, 중성 또는 염기성 일 수 있다. 예를 들어, 모노머용액의 pH는 약 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 또는 14일 수 있다. 모노머 용액의 pH는 바로 이전 문장에 나열된 값중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 모노머의 pH는 약 3 내지 10의 범위, 으 f 7 내지 13의 범위를 갖는다. 용매
[0243] 예컨대, 순수 (pure water), 완충액 (buffer: 약산성, 중성 또는 염기성), NaOH 용액 (0.01 M, 0.1 M 또는 1 M), 50mM-500mM borate buffer (pH 9) 또는 15~20% DMEA(N,N-디메틸아민: CAS 598-56-1; salt free, pH 13-14) 등을 용매로 사용할 수 있으며, 이들로 특별히 제한 되지는 않는다. 농도
[0244] 모노머의 농도는 특별히 한정되지 않으며, 사용하는 용질과 용매, 기타 반응 조건에 따라 적절히 조절 가능하다. 예컨대 모노머용액 내 모노머의 농도는 약 0.1 , 0.2, 0.3, 0.5, 0.7, 1 , 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 혹은 10 mg/mL일 수 있다. 상기 모노머용액 내 모노머의 농도는 바로 이전 문장에 나열된 값중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 모노머의 농도는 약 0.1 내지 5 mg/mL의 범위, 으 f 0.5 내지 7 mg/mL의 범위를 갖는다. 하나 이상의 모노머 [0245] 기질 표면에 두가지 이상의 모노머의 공중합체로 이루어진 폴리머층을 형성하기 위해서, 모노머용액에 두가지 이상의 모노머를 가할 수 있다. 중합반응 개시
[0246] 도 1의 단계 140에서, 모노머용액을 기질 표면에 접촉하여 중합반응을 개시한다. 접촉방법
[0247] 기질의 표면이 상기 모노머용액과 일정 시간 동안 충분히 접촉할 수만 있다면, 어떠한 알려진 코팅 공정에서 사용하는 방법이든 가능하다. 예를 들면, 기질을 충분히 수용할 수 있는 용적의 용기에 모노머용액을 채운 다음, 기질을 상기 모노머용액에 담글 수 있다. 혹은, 스핀 코팅 (spin-coating), 스프레이 코팅 (spray-coating)등이 가능하다. 또한 모노머용액을 기질의 일부분 혹은 전체, 단면 혹은 양면에 접촉시킬 수 있다. 중합반응의 개시
[0248] 중합반응은 별도의 개시제 없이 진행하는 것이 보통이나, 경우에 따라 개시제를 첨가한 상태에서 진행할 수도 있다. 중합반응은 용매의 끓는점보다 낮은 온도에서 진행하며, 통상 0-90 T에 속한다. 개시제 없이
[0249] 본 발명의 한 실시예에 따르면, 래디컬 개시제와 같은 별도의 개시제를 가하지 않고서도 모노머의 중합반응을 개시할 수 있다. 예컨데, 상기 화학식 1 내지 1 1의 화합물 중 적어도 일부는 별도의 개시제 없이 기질 표면과 반응하여 중합 반응을 개시할 수 있는 자가개시성 모노머 (self-initiating monomer)이다. 예를 들어, 중합반응의 조성물은 AIBN (Azobisisobutyronitrile), ABCN (1 ,1 '-Azobis(cyclohexane-carbonitrile)), 등의 아조 화합물, 혹은 di-tert- butyl peroxide ((CH3)3C-O-O-C(CH3)3), benzoyl peroxide ((PhCOO)2) 유기 과산화물 과 같이 알려진 래디컬 개시제를 포함하지 않을 수 있다. 중합반응
[025이 도 1의 단계 160에서, 중합반응을 진행하여 기질 표면에 폴리머층을 형성한다. 접촉을 통한 중합반응 [0251] 한 실시예에 따르면 기질을 모노머용액과 일정시간 동안 일정온도에서 충분히 접촉하는 것만으로도 모노머가 기질 표면과 반응하여 폴리머층을 형성할 수 있다. 모노머용액 접촉 시간
[0252] 기질이 모노머용액에 접촉하는 시간은 약 0.5, 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 1 2, 1 3, 14, 1 5, 1 6, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 44, 46, 48, 50, 52, 54, 56, 68, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 또는 80 시간일 수 있다. 기질을 모노머용액에 접촉시키는 시간은, 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 중합반응의 시간은 약 2 내지 약 10시간의 범우 L 으 I 6 내지 약 1 2시간의 범우 |, 으 f 8 내지 으 f 24시간의 범위에 속하는 시간일 수 있다. 모노머용액 온도
[0253] 중합반응은 사용하는 용매의 끓는점보다 낮은 온도에서 진행한다. 모노머용액의 온도는 약 0, 5, 10, 1 5, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 T로 조절한다. 이 온도는 전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 중합반응 조성물의 온도는 으 I 20 내지 으 f 70 T의 범위, 으 f 40 내지 약 90 T의 범우 |, 약 10 내지 으 f 30 T의 범위에 속한다. 촉매
[0254] 촉매를 사용할 수 있는 경우에는 반응을 촉진시키기 위한 촉매를 투입할 수도 있으나, 반드시 필요한 것은 아니다. 교반
[0255] 기질과의 결합반응, 혹은 중합반응을 활성화하기 위해 중합반응 조성물을 교반할 수 있다. 올리고머
[0256] 중합반응에서는 다양한 크기의 폴리머가 생성되며 올리고머나 다이머도 생성된다. 모노머용액과 기질을 접촉시킨 상태에서 폴리머나 올리고머가 생성될 수 있다. 중합반응 종료
[0257] 중합반응이 끝나면, 반응용기에서 꺼내어, 흡수지나 흡수패드 등으로 표면을 닦거나 접촉하여 폴리머층이나 기질의 표면에 남아 있는 중합반응 조성물의 액체 성분을 제거한다. 액체 성분을 닦아내기 전 또는 닦아낸 다음, 물이나 다른 세척용액으로 세척을 하는 경우도 있다. 세척을 하는 경우, 표면의 액체를 닦아낸다. 베이킹 단계
[0258] 한 실시예에 따르면, 중합반응이 끝나고 물이나 다른 세척용액으로 세척한 기질을 베이킹할 수 있다. 베이킹은 오븐이나 다른 적절한 기구를 이용하여 고온건조한 환경에서 진행할 수 있다. 베이킹은 폴리머층에 남아 있는 용매를 증발시키고, 폴리머층에 형성된 폴리 머가 일부 크로스링크하며, 폴리머층을 큐어링하여 견고하게 하는 기능을 할 수 있다. 베이킹 시간
[0259] 베이킹 공정 시간은 특별히 제한되지는 않으며, 사용하는 구체적인 화합물의 종류 및 기질의 종류에 따라 통상의 기술자가 적절히 선택 및 조절할 수 있다. 예컨대 베이킹 시간은 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 1 2, 13, 14, 15, 1 6, 17, 18, 19, 20, 21 , 22, 23, 혹은 24 시간 일 수 있다. 베이킹 시간은 바로 이전 문장에 나열된 값중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 베이킹 시간은 약 1 내지 9 시간의 범우 |, 3 내지 24 시간의 범위를 갖는다. 베이킹 온도
[026이 베이킹은 기질이 변성되지 않을 정도의 온도에서 수행하며, 사용하는 구체적인 화합물의 종류 및 기질의 종류에 따라 통상의 기술자가 적절히 선택 및 조절할 수 있다. 예컨대 베이킹 처리온도는 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 혹은 100 T 일 수 있다. 베이킹 온도는 바로 이전 문장에 나열된 값중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 베이킹 온도는 으 I 50 내지 90 °C의 범우 |, 60 내지 100 °C의 범위를 갖는다. 세척, 건조
[0261] 도 1의 단계 180에서, 베이킹된 기질을 세척하여 결합 또는 중합되지 않은 모노머 화합물이나 불순물을 제거한다. 세척은 산성용액 혹은/그리고 염기성 용액으로 행할 수 있다. 예를 들어, 기질을 산성용액으로 세척하고 물로 세척후, 다시 염기성용액으로 세척하여 물로 세척 할 수 있다. 또는, 기질을 염기성용액으로 세척하고 물로 세척 후, 다시 산상용액으로 세척하고 물로 세척할 수 있다. 세척 후 상온 또는 승온하에서 건조하여 폴리머층이 형성된 기질을 얻는다. 기중합된 폴리머의 이용 [0262] 본 발명의 한 실시예에 따르면, 상기 단계중 하나 이상의 단계에 에 기중합된 폴리머를 포함하는 용액 ("폴리머용액")을 추가로 사용할 수 있다. 예를 들어, 중합반응 후 베이킹 처리 전, 기질을 폴리머용액과 추가로 반응시킬 수 있다. 이러한 경우, 중합반응으로 얻어진 폴리머층에 기중합된 폴리머를 추가하여 크로스링킹을 촉진할 수 있다.
IV. 기질 표면에 형성된 폴리머층 폴리머층의 형태
[0263] 상기 방법을 통하여 기질 표면의 일부 혹은 전체에 폴리머층이 형성된다. 폴리머층은 기질 표면과 화학적 결합을 통해 결합되어 있을 수 있다. 예를 들어, 폴리머층의 폴리머 분자중 적어도 일부는, 기질 표면과 공유결합을 통해 부착되어 있을 수 있다. 폴리머층은 기질 표면 전체 혹은 일부, 단면 혹은 양면에 형성될 수 있다. 폴리머층의 두께
[0264] 상기 방법을 통하여 기질 표면에 형성된 폴리머층의 두께는 특별히 제한되지는 않으며, 사용하는 구체적인 화합물의 종류, 기질의 종류, 반응조건에 따라 통상의 기술자가 적절히 선택 및 조절할 수 있다. 예컨대 폴리머층의 두께는 0.05, 0.1 , 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 , 1 .2, 1 .4, 1 .6, 1 .8, 2, 2.4, 2.8, 3.2, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5 10, 1 1 , 12, 13, 14, 혹은 1 5 pm 일 수 있다. 폴리머층 두께는 바로 이전 문장에 나열된 값중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 폴리머층의 두께는 약 0.05 내지 5 pm의 범우 I, 1 내지 1 5 pm의 범위를 갖는다. 폴리머층의 효과
[0265] 본 발명은 모노머, 이들의 올리고머 또는(공)중합체가 기질에 비의존적으로 부착되어 형성된 폴리머층 및 그 형성 방법 에 관한 것으로서, 다양한 기질의 화학적 표면 코팅에 사용할 수 있다. 특히, 친수성이 필요한 적용 분야에 사용되는 소수성 재료의 표면에 적합한 친수성을 부여하거나, 그 반대의 개질도 가능하다. 또한, 계면간의 접착력 향상을 위하여 한쪽 계면의 화학적 성질을 개질하거나, 고정 및/또는 분리하고자 하는 생화학물질의 성질에 맞도록 적절히 선택 된 개질 화합물을 사용함으로써 생화학물질의 분리 수율 및 신뢰성을 높이는 것도 가능 하므로, 본 발명을 이용할 수 있는 산업 분야는 무궁무진하다.
V. PLED 패널 봉지 구조 기존의 PLED 패널 봉지구조
[0266] OLED 패널의 봉지 구조와 방법으로 유리프릿 (glass frit)과 인바 (invar)를 이용하는 기술이 알려져 있다. OLED 패널에 사용되는 유기발광물질은 산소나 수증기와 만나면 산화되어 그 발광성능이 열화된다. 그리하여, 이들 봉지기술은, 공기 중 산소나 수증기가 OLED 디스플레이 제품의 내부로 들어가지 못하게 하는, 기 밀성 (airtight) 재료와 구조를 이용한다. 하지만, 유리프릿이나 인바를 이용하는 기술은, 대형 OLED패널이나 플렉서블 OLED 패널에 적용하기에 적합하지 않다. 플렉서블 봉지구조체 (Flexible Encaps니 ation Apparatus)
[0267] 대형 OLED패널이나 플렉서블 OLED 패널에 적용하기 위하여 플렉서블 봉지구조체의 아이디어가 제안되었다. 산화알루미늄층과 폴리머층을 여러차례 번갈아 라미네이트한 산화알루미늄 플렉서블 봉지구조가 연구되고 있으며, 산화알루미늄을 대신하여 질화규소를 이용하는 플레서블 봉지구조도 연구되고 있다. 산화알루미늄 라미네이트 봉지구조체
[0268] 원자층증착 (Atomic Layer Deposition: ALD) 기술을 이용하여 산화알루미늄을 증착하면 산소나 수증기가 통과하기 어려운 치밀한 구조의 산화알류미늄층을 형성할 수 있다. 산화알루미늄은 대부분의 엔지니어 링 폴리머와 계면접착력 (interfacial adhesion)이 우수하여, 폴리머층과 함께 라미네이트하면 플렉서블한 OLED 패널 봉지구조체가 이론적으로 가능하다. 산화알루미늄-폴리머 라미네이트의 제조
[0269] 산화알루미늄-폴리머 레이네이트는 산화알류미늄층과 폴리머층을 번갈아 가면서 라미네이트하여 형성할 수 있다. 예를 들어, 폴리머 기질 위에 ALD 기술을 이용하여 산화알루미늄층을 형성하고, 그 위에 폴리머를 코팅하여 폴리머층을 형성한다. 그 위에 다시 ALD 기술로 산화알루미늄층을 형성하고, 또 다시 그 위에 폴리머층을 형성하는 공정을 반복하면 산화알루미늄층과 폴리머층이 번갈아 라미네이트된 플렉서블 봉지구조체를 제조할 수 있다. 산화알루미늄층 제조 공정상의 단점
[027이 산화알루미늄 박막은 폴리머층과 여러번의 라미네이션을 하기 전에는 깨지기 쉬운 특성이 있다. 대형 OLED 패널의 봉지구조체를 만들기 위해서는 산화알루미늄 박막을 대면적으로 만들어야 하는데, 대면적의 산화알루미늄 박막은 폴리머 기질에 붙어 있더라도 공정을 위하여 이송하거나 다루는 과정에서 깨질 수 있다는 것이 단점이다. 또한, ALD 기술은 OLED봉지에 적합한 치밀도를 가지는 산화알루미늄층을 증착할 수는 있으나, 진공체임버가 필요하고 또 증착에 많은 시간이 소요되어 공정 비용이 부담스럽다. 질화규소 라미네이트 플렉서블 봉지구조체
[0271] 질화규소층과 폴리머층을 번갈아 레이네이트한 질화규소층 라미네이션 플레서블 봉지구조체도 OLED 패널에 이용하는 것이 이론적으로 가능하다. OLED 패널의 봉지에 이용할 수 있는 품질의 산화알루미늄층은 ALD 증착기술을 이용해야만 형성할 수 있지만, 질화규소층은 플라즈마화학기상증착 (Plasma Enhanced Chemical Vapor Deposition PECVD) 기술을 이용해서 형성할 수 있다. PECVD 증착기술로 얻어지는 질화규소층은 ALD 증착기술로 만드는 산화알루미늄층보다 치밀도가 낮지만, PECVD 증착기술은 증착 속도가 ALD에 비하여 매우 빠르다는 장점이 있다. 질화규소층 제조 공정상의 단점
[0272] PECVD 증착기술도 진공체임버를 필요로 하므로 공정이 비싸진다. 더구나, 질화규소는 산화알루미늄 만큼 폴리머층과의 계면접착력이 높지 않다. 폴리머층의 접착력을 높이기 위하여, 폴리머층의 표면을 플라즈마로 처리하는 것이 필요한데, 플라즈마 공정은 진공체임버를 필요로 하기 때문에 공정이 더욱 비싸지는 것이 문제이다.
ALD를 이용한 금속층 형성
[0273] 산화알루미늄이나 질화규소와 같이 금속의 산화물이나 질화물 대신 금속층을 폴리머층과 여러차례 번갈아 라미네이트하여 플렉서블 봉지구조체를 만드는 것도 생각해 볼 수 있다. ALD 기술은 다양한 금속에 적용하여 금속층을 형성할 수 있다. 하지만, ALD 기술을 이용하면 공정 비용이 부담스러워진다. 뿐만 아니라, 금속은 대체로 결정구조상 결함이 많아서 동일한 공정으로 만든 금속산화물이나 질화물보다 산소나 물분자 (수증기)의 투과도가 높다. 그리하여, ALD 기술을 이용해야 하고, 다른 조건이 동일하다면, 금속층보다는 금속산화물층을 선호하게 된다. 기상증착 (Vapor Deposition)을 이용한 금속층의 형성
[0274] 끓는점이 낮은 금속의 경우, 기상증착 기술로 수백 나노미터 두께의 금속층을 형성할 수 있다. 기상증착 기술은 ALD 기술에 비하여 공정의 비용이 적게 들지만, 여전히 진공 체임버를 이용해야 하며, 상당한 시간을 필요로 한다.
VI. 금속포일 라미네이트 금속포일을 이용하는 플렉서블 봉지구조체
[0275] 본 발명의 실시예 (implementations)에 따르면, 미리 제조된 금속포일을 폴리머와 번갈아 여러장 적층하면 OLED 패널에 이용할 수 있는 플렉서블 봉지구조체 (또는 플렉서블 라미네이트)를 제공한다. 금속포일은 금속을 녹인 멜트를 얇게 형성하고 이를 식혀서 굳히는 방법으로 제조된다. ALD나 기상증착 기술을 이용하는 것에 비하여 그 생산 단가가 매우 저렴하다. 금속포일 라미네이트
[0276] 금속포일을 적층하여 플렉서블 봉지구조체를 제조하기 위하여 금속포일의 시트 (sheets)를 이송하고 다루어야 하는데, 기계적인 강도가 어느정도 있는 플라스틱필름 위에 금속포일을 부착하여 다루는 것이 보다 편리하고 작업성을 높일 수 있다. 대면적의 금속포일을 사용해야 하는 경우는 더욱 그러하다. 이를 위하여, 먼저 플라스틱필름을 제공하고, 그 한쪽면에 접착제층을 형성한다. 접착제층 위에 금속포일을 올려시, 이를 양쪽에서 압착하여, 플라스틱층-접착제층-금속층의 구조를 갖는 금속 라미네이트를 만든다. 이 같이 금속포일을 이용한 금속 라미네이트를, 다른 실시예의 금속 라미네이트와 구별하기 위하여 "금속포일 라미네이트"라 부른다. 금속포일 라미네이트는 OLED 패널의 크기에 따라 다양한 면적으로 제작할 수 있다. 금속포일
[0277] 금속포일은 금속산화물이나 금속질화물의 박막이나 필름과 구별된다. 공기에 접하는 금속포일의 표면에는 얇은 산화막이 형성되어 있으나, 포일의 단면을 두께 방향으로 자른 단면을 보면 단면의 중앙부는 금속이 주성분이다. 금속산화물이나 금속질화물은 단면의 중앙부도 금속산화물이나 금속질화물이다. 금속
[0278] 금속포일 라미네이트에는 다양한 금속의 포일을 이용할 수 있다. 알루미늄, 구리, 주석, 아연, 마그네슘, 스테인리스강, 니켈, 크로뮴, 텅스텐 등을 사용할 수 있다. 금속포일의 두께
[0279] 금속포일의 두께는 통상 수 마이크로미터에서 수백 마이크로미 터이다. 보다 구체적으로는, 약 0.5, 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 2, 14, 16, 18, 20, 22.5, 25, 27.5, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 1 10, 1 20, 130, 140, 1 50, 1 60, 170, 180, 190, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 또는 400 pm일 수 있다. 금속포일의 두께는, 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 금속포일은 약 3 내지 약 100 pm의 범우 |, 약 10 내지 약 50 pm의 범우 |, 약 20 내지 약 100 pm의 범우 |, 약 50 내지 약 200『의 범위에 속하는 두께일 수 있다. 금속의 내부 결함
[028이 모든 금속은 그 내부의 결정구조에 결함이 있다. 뿐만아니라 제조공정, 이송, 보관의 과정에서 결함이 추가될 수 있다. 이들 결함의 형상과 크기는 다양하다. 금속의 단면을 자른다면, 이들 결함은 잘라진 단면에서 깊이를 갖는 함몰부처럼 보일 것이다. 금속포일도 다르지 않다. 금속포일의 두께에 비하여 결함의 크기가 작은 경우는 두께 방향으로 깊이를 갖는 함몰부로 보일 것이다. 금속포일의 핀홀
[0281] 금속포일의 두께에 비하여 결함이 큰 경우는, 두께 방향으로 관통하는 구멍, 즉 핀홀의 형태로 나타날 수 있다. 금속포일 라미네이트의 금속층에 형성된 핀홀은 공기가 드나들 수 있는 채널이 될 수 있다. 이를 막거나 메우지 못하면 금속포일 라미네이트의 산소나 물분자 투과도가 커서 효과적인 봉지구조체를 제공하기 어 렵다. 핀홀의 크기
[0282] 금속포일에 생기는 핀홀의 크기는, 포일이 두꺼워지 면 더 커질 수 있다. 직경이 수 나노미 터에서 수 마이크로미 터의 범위에 들어가는 핀홀이 흔하다. 하지만, 금속포일이 수백 마이크로미 터의 두께를 가지는 경우 10 마이크로미 터 이상의 직경을 갖는 핀홀도 생긴다. 플라스틱필름의 구조
[0283] 기 밀성 포장재의 제조에 이용되는 플라스틱필름은 단일층으로 구성될 수도 있고 복수층으로 구성될 수 있다. 복수층의 구조는 서로 다른 물질의 층이 인접하게 접촉하는 구조이며, 동일한 물질의 층이 여러차례 반복될 수 있다. 플라스틱필름의 두께
[0284] 플라스틱필름의 두께는 약 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 1 6, 18, 20, 22.5, 25, 27.5, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 1 10, 1 20, 1 30, 140, 150, 1 60, 170, 180, 190, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 425, 450, 474, 또는 500 pm일 수 있다. 플라스틱필름의 두께는, 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 플라스틱필름은 약 10 내지 약 50 pm의 범우 |, 약 20 내지 약 100 pm의 범위에 속하는 두께일 수 있다. 플라스틱필름의 물질
[0285] 플라스틱필름은 다양한 재질의 엔지 니어 링 폴리머로 만들 수 있다. 플라스틱필름 단일층이나 복수층 각각은 폴리프로필렌 (polypropylene, PP), 폴리에틸렌테레프탈레이트 (polyethylene terephthalate, PET), 폴리에틸렌 (polyethylene, PE), 폴리염화비 닐 (polyvinyl chloride, PVC), 폴리염화비 닐리덴 (polyvinylidene chloride, PVDC), 폴리스티렌 (polystyrene, PS), 나일론, 폴리카보네이트 (polycarbonate, PC), 폴리아세트산비 닐 (polyvinyl acetate, PVA), 폴리비 닐알코올 (polyvinyl alcohol, PVOH), EVA(poly(ethylene-vinyl acetate)), EVOH(poly(ethylene-vinyl alcohol)), PMMA(poly(methyl methacrylate), 아크릴수지 (acrylic resin), Kapton, U PI LEX, 폴리이미드수지 (polyimide resin)중 하나 이상의 폴리머 물질을 포함할 수 있다. 접착제
[0286] 금속포일 라미네이트의 접착제층은 플라스틱필름과 금속포일을 접착할 수 있는 것이면 어떤 것이든 가능하다. 에폭시수지, 아크릴수지, 폴리우레탄수지를 사용할 수 있다. 예를 들어, DGEBA(diglycidyl ether of bisphenol A), EPN(epoxyphenol novolak), ECN (epoxycresol novolak), 폴리 (아크릴산 메틸), 폴리 (메타크릴산 메틸) (PMMA), 폴리 (아크릴산 n- 부틸), 폴리 (메타크릴산 n-부틸), 폴리 (아크릴산 n-도데실), 폴리 (메타크릴산 n-도데실), 폴리 (메타크릴산 하이드록시에틸) (HEMA) 등이 있으며, 아이소사이안화물 (isocyanate)와 다가알콜 (polyol)을 반응시켜 얻는 폴리우레탄수지이 있다. 압착
[0287] 플라스틱필름의 한쪽면에 접착제를 바르고 그 위에 금속포일을 올려서 만들어진 플라스틱필름-접착제-금속포일의 3단 구조는 압착롤러를 통과하면서 압착되어 금속포일 라미네이트로 완성된다. 금속포일 라미네이트의 구조
[0288] 도 2는 금속포일 라미네이트 (101 )의 구조를 도시하며, 금속층 (103)에 포함된 핀홀 등 결함을 예시한다. 금속포일 라미네이트 (101 )는 플라스틱 (105)층-접착제층 (107)- 금속층 (103) 순서의 기본적인 구조를 갖지만, 필요에 따라 플라스틱층과 금속층 사이에 하나 이상의 기능성층이 추가될 수 있다. 플라스틱층이나 금속층과 추가되는 기능성층의 사이에는 접착제층이 추가될 수 있다. 본 문서 (청구항은 제외)에서, "금속포일 라미네이트"는, 특별한 구조가 언급되어 있더라도, 플라스틱층-접착제층-금속층 순서의 구조를 가지며, 기능성층은 있을 수도 있고 없을 수도 있는 것을 의미한다.
VH. 중합반응으로 폴리머-금속포일 라미네이트 제조 금속포일 라미네이트를 중합반응 조성물 용액에 접촉
[0289] 금속포일 라미네이트 (metal foil laminate)를 수용할 수 있는 크기의 중합반응 용기 (vessel or reservoir)를 준비한다. 이 용기에 중합반응 조성물 용액을 채운다. 그리고, 금속포일 라미네이트를 용기속 중합반응 조성물 용액에 접촉하게 하여 금속포일 라미네이트의 표면에서 중합반응을 일으킨다. 금속포일 라미네이트를 조성물 용액에 담지
[029이 금속포일 라미네이트를 중합반응 용기에 넣을 때 금속층쪽의 면만 조성물 용액에 접촉하고 플라스틱층쪽의 면은 접촉하지 않게 할 수도 있고, 양쪽면이 모두 용액에 접촉하도록 금속포일 라미네이트 전체를 용액에 담지시킬 수 있다. 다수의 금속포일 라미네이트를 하나의 중합반응 용기에 함께 담지하여 중합반응을 진행하면 공정의 생산성을 높일 수도 있다. 다수의 금속포일 라미네이트를 겹겹이 쌓아지도록 조성물 용액에 담지할 수도 있는데, 조성물 용액이 금속포일 라미네이트의 사이 사이에 들어 갈 수 있도록 인접한 금속포일 라미네이트 사이에 거리를 유지하기 위한 구조물 (spacing structure)을 끼워 넣을 수도 있다. 연속공정
[0291] 중합반응 용기에서 금속포일 라미네이트가 중합반응 조성물과 접촉하는 공정은 연속공정으로 진행할 수 있다. 롤에 감겨진 금속포일 라미네이트가 풀리면서 중합반응 용기로 이동하여 중합반응 조성물에 잠긴다. 중합반응 조성물에 잠긴 상태로 이동하는 중에 금속포일 라미네이트의 표면에는 중합반응으로 폴리머층이 형성되고 계속 이동하면서 중합반응의 용기로부터 빠져 나온다. 표면에서 중합반응으로 폴리머층 생성
[0292] 중합반응 조성물 용액과 금속포일 라미네이트의 금속층 표면이 중합반응에 충분한 시간동안 접촉하면 금속층 표면에서 중합반응이 일어나고 폴리머층이 생성된다. 금속포일 라미네이트의 양쪽면이 조성물 용액에 잠기도록 담지하는 경우에는, 금속층의 표면과 플라스틱층의 표면 각각에 폴리머층이 생성된다. 폴리머층이 생성된 금속포일 라미네이트는, 추후 베이킹 공정에서 폴리머층 내부의 인접한 폴리머끼리 크로스링크를 형성하는 등, 큐어 링되어 견고하게 된다. 폴리머층의 두께
[0293] 폴리머층의 두께는 약 0.1 , 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 , 1.2, 1.4, 1.5, 1.6, 1.8, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 또는 30『일 수 있다. 폴리머층의 두께는, 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 폴리머층은 약 0.5 내지 약 3 pm의 범위, 약 1 내지 약 5 pm의 범위에 속하는 두께일 수 있다. 금속층의 표면과 플라스틱층의 표면을 동시에 중합반응 조성물에 접촉시키고 또 분리하는 경우에도, 이들 양 표면에서 중합반응 개시와 진행의 속도가 다르기 때문에 얻어지는 폴리머층의 두께는 다를 수 있다. 폴리머 -금속포일 라미네이트
[0294] 도 3은 중합반응의 결과 얻어지는 폴리머층 (1 13)-플라스틱층 (105)- 접착제층 (107)-금속층 (103)-폴리머층 (1 11 ) 구조의 폴리머-금속 라미네이트 (polymer-metal laminate 109)을 도시한다. 플라스틱층의 표면에서 중합반응이 진행하지 않는 경우, 폴리머층 (1 13)이 생략된 플라스틱층 (105)-접착제층 (107)-금속층 (103)-폴리머층 (11 1)의 구조가 얻어진다. 금속포일 라미네이트를 이용하여 제조된 이 폴리머-금속 라미네이트를, 다른 실시예의 폴리머 -금속 라미네이트와 구별하기 위하여 "폴리머-금속포일 라미네이트 (polymer- metal laminate)"라 부른다. 필요에 따라 플라스틱층과 금속층 사이에 하나 이상의 기능성층이 추가될 수 있다. 또 플라스틱층과 폴리머층 사이에도 필요에 따라 하나 이상의 기능성층이 추가될 수 있다. 기능성층이 추가되는 경우 그 한쪽 또는 양쪽에 접착제층이 추가될 수 있다. 본 문서 (청구항은 제외)에서 "폴리머-금속포일 라미네이트"는, 특별한 구조가 언급되어 있더라도, 플라스틱층-접착제층-금속층-폴리머층 또는 폴리머층-플라스틱층-접착제층-금속층골리머층 순서의 구조를 가지며, 기능성층은 있을 수도 있고 없을 수도 있다. 핀홀을 매우는 중합반응
[0295] 중합반응은 금속층표면에 폴리머층을 생성함은 물론, 금속층에 형성된 핀홀을 메우거나 막는다. 핀홀속으로 중합반응 조성물이 스며들어가서 핀홀 내부 표면에서 중합반응을 일으키면, 그 결과 생성되는 폴리머나 올리고머가 핀홀의 내부 공간 전부나 일부 (도 3의 1 15, 1 17)를 메운다. 그리고, 핀홀의 내부 공간 일부 또는 전부를 메우는 폴리머나 올리고머는 핀홀 바깥으로 연장하여 금속 표면에 형성되는 폴리머층과 연결 (도 3의 1 17)될 수 있다. 또한, 핀홀 바깥의 금속표면에 생성되는 폴리머층 핀홀을 덮어서 막는다.
VIII. 폴리머 -금속포일 라미네이트를 이용한 플렉서블 봉지구조체 폴리머 -금속포일 라미네이트의 기밀성
[0296] 폴리머-금속포일 라미네이트의 기체투과도 (transmission rate, GTR)나 수증기투과도 (투습도: water vapor transmission rate, WVTR)는 낮을 수록 좋다. 금속포일의 두께에 따라 달라지지만, 폴리머 -금속포일 라미네이트 한 장의 투습도는 약 1 x10-6, 2x10*,
Figure imgf000076_0001
장의 투습도는 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 투습도는 약 1 x10'5 내지 약 1 x10'4 g/m7day으 | 범우 |, 약 5x10'5 내지 약 5x10'4 g/m2/day의 범위에 속할 수 있다. 폴리머 -금속포일 라미네이트 두장의 라미네이션
[0297] 도 4는 폴리머-금속포일 라미네이트 두 장이 라미네이션 된 구조를 도시한다. 폴리머 -금속포일 라미네이트 (109A)의 한쪽면에 접착제 (1 19)를 바르고 다른 폴리머 -금속포일 라미네이트 (109B)의 한쪽면을 포개어 [폴리머 -금속포일 라미네이트 (109A)]- [접착제 (1 19)]- [폴리머-금속포일 라미네이트 (109B)]의 구조를 만든다. 그 다음, 이 구조를 압착하여 합지한다. 여러장의 라미네이션
[0298] 폴리머-금속포일 라미네이트 두장이 합지된 것과 한장의 폴리머 -금속포일 라미네이트의 사이에 접착제를 넣고 압착하여 합지하면 3장의 폴리머-금속포일 라미네이트가 합지된 라미네이션을 만들 수 있다. 폴리머-금속포일 라미네이트 두장이 합지된 것 두개를 접착제로 붙여 합지하면 4장의 폴리머 -금속포일 라미네이트가 합지된 라미네이션을 만들 수 있다. 동일한 방법을 반복하면, 원하는 숫자의 폴리머-금속포일 라미네이트가 합지된 라미네이션을 만들 수 있다. 합지된 라미네이션의 다양한 구조
[0299] 폴리머-금속포일 라미네이트 두장을 합지할 때, 어떤 면이 마주보게 합지하는지, 그리고 폴리머층이 양쪽에 있는 폴리머-금속포일 라미네이트인지 한쪽에만 있는 폴리머 -금속포일 라미네이트인지에 따라 여러 구조의 라미네이션을 생산할 수 있다. 아래에 이들 구조를 예시한다.
(1 ) [폴리머층-플라스틱층-접착체층-금속층-폴리머층]- [접착제층]- [폴리머층- 플라스틱층-접착체층-금속층-폴리머층] (2)[폴리머층-플라스틱층-접착체층-금속층-폴리머층]-[접착제층]-[폴리머층-금속층- 접착제층-플라스틱층-폴리머층]
(3)[폴리머층-금속층-접착제층-플라스틱층-폴리머층]-[접착제층]-[폴리머층- 플라스틱층-접착체층-금속층-폴리머층]
(4)[플라스틱층-접착체층-금속층-폴리머층]-[접착제층]-[폴리머층-플라스틱층- 접착체층-금속층-폴리머층]
(5)[플라스틱층-접착체층-금속층-폴리머층]-[접착제층]-[폴리머층-금속층-접착제층- 플라스틱층-폴리머층]
(6)[폴리머층-금속층-접착제층-플라스틱층]-[접착제층]-[폴리머층-플라스틱층- 접착체층-금속층-폴리머층]
(7)[폴리머층-금속층-접착제층-플라스틱층]-[접착제층]-[폴리머층-금속층-접착체층- 플라스틱층-폴리머층]
(8)[플라스틱층-접착체층-금속층-폴리머층]-[접착제층]-[플라스틱층-접착체층-금속층- 폴리머층]
(9)[플라스틱층-접착체층-금속층-폴리머층]-[접착제층]-[폴리머층-금속층-접착제층- 플라스틱층]
(10)[폴리머층-금속층-접착제층-플라스틱층]-[접착제층]-[플라스틱층-접착제층-금속층- 폴리머층] 두장의 폴리머 -금속포일 라미네이트 人수이, 플라스틱층과 금속층人수이, 폴리머층과 플라스틱층 사이에 하나 이상의 기능성층이 추가될 수 있다. 꼭 그러한 것은 아니지만, 기능성층은 한쪽 또는 양쪽에 접착제층을 필요로 할 수 있다. 금속포일을 이용한 플렉서블 봉지구조체
[030이 금속포일을 이용하여 만든 폴리머 -금속포일 라미네이트 한장은 그 자체로 상당한 기 밀성을 제공하므로 디스플레이 장치 등 기 밀성을 필요로 하는 장치나 물건을 봉지하는데 이용할 수 있다. 폴리머 -금속포일 라미네이트 두장 이상을 합지하여 만든 플렉서블 라미네이트는 더 높은 기 밀성을 요구하는 장치나 물건, 예를 들어 OLED 패널의 플렉서블 봉지구조제로 이용할 수 있다. 실시예에 따른 플렉서블 봉지구조체는, 폴리머 -금속포일 라미네이트 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 1 2, 13, 15, 1 5, 1 6, 17, 18, 19, 또는 20장이 합지된 구조를 가진다. 플렉서블 봉지구조체를 PLED 패널에 부착
[0301] 전면의 유리나 플라스틱 위에 OLED 패널이 형성된 미완성 OLED 제품을 제공한다. 이 미완성 OLED 제품의 크기에 대응하는 면적을 가진 플렉서블 봉지구조체로 미완성 OLED 제품을 배면을 덮는다. 플렉서블 봉지구조체의 가장자리와 미완성 OLED 제품의 배면 가장자리를 공기가 투과하지 못하게 부착하여 내부를 밀봉한다. 플렉서블 봉지구조체의 기 밀성 (qas tightness)
[0302] OLED 패널 제품의 봉지구조체는 투습도가 1 x10-6 g/m2/day 미만이어야 하는 것으로 알려져 있다. 폴리머 -금속포일 라미네이트를 이용한 플렉서블 봉지구조체는, 금속포일 핀홀을 중합반응으로 메워서 산소나 수증기 투과도를 크게 낮춘 폴리머-금속포일 라미네이트를 여러 장 적층하여 만든 것이다. 여러 장의 폴리머-금속포일 라미네이트를 합지하면 기체 투과 경로가 복잡해져서 기체투과도가 급격하게 감소하여 1 x10* g/m2/day 미만의 투습도를 갖는다. 두 장 이상의 폴리머 -금속포일 라미네이트를 적층하여 만든 플렉서블 봉지구조체의 투습도는 약 1x10-9, 2x10-9, 3x10-9, 4x10-9, 5x10'9, 6x10'9, 7x10'9, 8x10'9, 9x10'9, 10'7, 3x10'7 4x10'
Figure imgf000078_0001
이상의 폴리머 - 금속포일 라미네이트 합지하여 만든 플렉서블 봉지구조채의 투습도는 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 투습도는 약 1 x10-8 내지 약 1 x10'6 g/m2/day°| 범우 |, 약 5x10'5 내지 약 5x1 O'7 g/m2/day°| 범위에 속할 수 있다. 플렉서블 봉지구조체의 방열기능
[0303] 폴리머-금속포일 라미네이트를 이용한 플렉서블 봉지구조체는 다수의 금속층이 OLED 패널에서 발생하는 열을 전달받아 제품의 가장자리로 전달하는 기능을 할 수 있다. OLED 제품의 가장자리에 방열핀과 같은 방열구조를 설치하고 이를 봉지구조체의 금속층에 연결하면 효과적인 방열시스템을 제공한다.
IX. 기 밀성 플라스틱필름 기체투과를 차단하는 기밀성 플라스틱 필름
[0304] 다양한 플라스틱필름이 물품의 포장재로 사용된다. 많은 경우 이들 플라스틱필름에는 공기등 기체가 투과할 수 있는 기공이 형성되어 있다. 산소를 만나면 신선도가 떨어지는 식품이나 수증기를 만나면 눅눅해지는 성격의 식품등에 사용하는 포장재는, 플라스틱필름 위에 알루미늄과 같은 금속층을 형성하여 공기나 수증기의 투과를 차단한다. 식품만이 아니라 보관중에 산소, 수증기나 다른 기체의 투과를 차단해야 하는 물품의 경우도, 플라스틱필름 위에 금속층의 기체투과 차단막을 형성한 포장재를 이용한다. 기상증착을 이용한 금속박막 형성
[0305] 끓는점이 낮은 금속의 경우, 기상증착 (Vapor Deposition) 기술로 수백 나노미 터 두께의 금속층을 형성할 수 있다. 기상증착 체임버의 압력을 낮추면 비교적 낮은 온도에서 금속의 기상증착을 수행할 수 있다. 그리하여, 유기화합물 기질을 손상하지 않는 낮은 온도에서 그 기질 위에 금속을 증착하는 것이 가능하다. 기상증착한 금속층의 핀홀과 그 크기
[0306] 플라스틱필름에 기상증착한 금속층에는 핀홀이 존재한다. 금속의 결정구조상 결함에 의한 핀홀도 있고, 기상증착시 플라스틱필름 표면의 상태나 이물질에 의해 생기는 핀홀도 있다. 소수성을 갖는 플라스틱 필름에 금속을 기상증착하면 금속의 결정구조상 결함에 의해 형성되는 핀홀보다 훨씬 큰 핀홀이 생긴다. 기상증착한 금속층에 생기는 핀홀은 직경이 수 나노미 터에서 수백 마이크로미터에 이른다. 핀홀의 크기와 기 밀성
[0307] 금속층 핀홀의 숫자와 크기가 작으면 포장재의 산소, 수증기 등의 기체투과도가 낮아지고 기 밀성 (air tightness)은 높아진다. 기 밀성이 높은 플라스틱 포장재는 포장하는 물품의 고유한 성질을 오래동안 유지할 수 있기 때문에 그 용도가 다양하다. 반면, 핀홀의 크기가 너무 크면 기체투과 차단용 포장재로서 기능하기 어렵다. 기밀성을 크게 회손할 정도로 큰 핀홀이 형성된 부위는 제거하고, 나머지를 기체투과 차단용 포장재로 사용한다. 육안관찰로 핀홀 발견
[0308] 금속층이 형성된 포장재의 한쪽면에 빛을 쬐고, 포장재의 반대편에서 투과되는 빛의 양으로 핀홀을 발견하는 방법이 있다. 가장 쉽게는, 육안으로 빛의 투과가 관찰되면 핀홀이 있는 것으로 판단하고 해당 부위를 제거하거나 포장재에 사용하지 않는 것이다. 이 같은 방법으로 수십에서 수백 나노미 터 직경의 큰 핀홀이 없는 포장재를 확보할 수 있으며, 1x10-1 g/m2/day 이하의 투습도를 확보할 수 있다. 육안으로 발견하기 어려운 핀홀
[0309] 플라스틱필름 위에 기상증착으로 형성한 금속층에는, 육안으로 발견할 수 있는 핀홀도 있으나 육안으로는 발견하기 어려운 작은 핀홀도 있을 수 있다. 기 밀성이 높은 포장재료를 제공하기 위해서는, 육안으로 발견할 수 없는 핀홀에 대해서도 해결 방안이 있어야 한다.
X. 금속증착 플라스틱 라미네이트 기밀성 높은 플라스틱 포장재
[031이 본 발명의 실시예에 따르면, 플라스틱필름 위에 기상증착으로 형성된 금속층의 표면에서 중합반응을 진행한다. 중합반응을 통하여 금속층의 표면에 폴리머층을 형성하고, 육안으로 발견할 수 있는 핀홀은 물론, 육안으로 발견할 수 없는 크기의 핀홀을 메운다. 이 같이, 금속층의 핀홀을 메우면, 육안으로 발견된 핀홀이 포함된 부위를 제공하여 얻을 수 있는 플라스틱 포장재보다 기 밀성이 높은 플라스틱 포장재를 제공할 수 있다. 금속증착 플라스틱 라미네이트
[0311] 먼저, 기상증착 기술을 이용하여, 플라스틱필름 기질의 표면에 금속을 증착하여 금속 라미네이트를 만든다. 금속과의 계면접착력 (interfacial a사 wion)을 높이기 위하여 기상증착을 수행하기 전에 플라스틱필름의 표면을 플라즈마 처리할 수 있다. 이 같이 플라스틱필름에 금속을 증착하여 제조한 금속 라미네이트를, 다른 실시예에서의 금속 라미네이트와 구별하기 위하여 "금속증착 플라스틱 라미네이트 (vapor-deposited metal-plastic laminate)"라 부른다. 도 5는, 플라스틱필름 (125)과 금속층 (123)을 갖는 금속증착 플라즈마 라미네이트 (121 )의 기본구조를 도시하며, 금속층 (123)에 포함된 핀홀 등의 결함을 예시한다. 플라스틱필름의 구조
[0312] 기상증착의 기질이 되는 플라스틱필름은 단일층으로 구성될 수도 있고 복수층으로 구성될 수 있다. 복수층의 구조는 서로 다른 물질의 층이 인접하게 접촉하는 구조이며, 동일한 물질의 층이 반복될 수 있다. 플라스틱필름의 물질
[0313] 플라스틱필름은 다양한 재질의 엔지 니어 링 폴리머로 만들 수 있다. 플라스틱필름은 다양한 재질의 엔지니어링 폴리머로 만들 수 있다. 플라스틱필름 단일층이나 복수층 각각은 폴리프로필렌 (polypropylene, PP), 폴리에틸렌테레프탈레이트 (polyethylene terephthalate, PET), 폴리에틸렌 (polyethylene, PE), 폴리염화비 닐 (polyvinyl chloride, PVC), 폴리염화비 닐리덴 (polyvinylidene chloride, PVDC), 폴리스티렌 (polystyrene, PS), 나일론, 폴리카보네이트 (polycarbonate, PC), 폴리아세트산비 닐 (polyvinyl acetate, PVA), 폴리비 닐알코올 (polyvinyl alcohol, PVOH), EVA(poly(ethylene-vinyl acetate)), EVOH(poly(ethylene-vinyl alcohol)), PMMA(poly(methyl methacrylate), 아크릴수지 (acrylic resin), Kapton, U PI LEX, 폴리이미드수지 (polyimide resin)중 하나 이상의 폴리머 물질을 포함할 수 있다. 플라스틱필름의 두께
[0314] 플라스틱필름 두께는 약 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 1 6, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 68, 50, 52.5, 55, 57.5, 60, 62.5, 65, 67.5, 70, 75, 80, 85, 90, 95, 100, 1 10, 1 20, 1 30, 140, 1 50, 1 60, 170, 180, 190, 200, 220, 240, 260, 280, 또는 300 pm일 수 있다. 플라스틱필름의 두께는, 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 플라스틱필름은 약 5 내지 으 f 40 pm의 범위, 약 10 내지 으 f 30 pm의 범위에 속하는 두께일 수 있다. 금속증착 플라스틱 라미네이트의 금속층
[0315] 기상증착으로 플라스틱필름의 표면에 증착하여 금속은 알루미늄, 구리, 주석, 아연, 마그네슘, 스테인리스강, 니켈, 크로뮴, 텅스텐 등이다. 이들 금속은 공기중에 노출되면 그 표면에 얇은 산화막이 생긴다. 금속층의 두께
[0316] 기상증착으로 형성한 금속층의 두께는 수 나노미 터에서 수백 나노미 터이다. 구체적으로는, 약 0.5, 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 2, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52.5, 55, 57.5, 60, 62.5, 65, 67.5, 70, 75, 80, 85, 90, 95, 100, 1 10, 1 20, 1 30, 140, 1 50, 160, 170, 180, 190 또는 200 nm일 수 있다. 금속층의 두께는, 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 금속층의 두께는 약 10 내지 약 30 pm의 범우 |, 약 20 내지 약 100 nm의 범위를 갖는다.
XL 중합반응으로 폴리머-금속-플라스틱 라미네이트 제조 금속증착 플라스틱 라미네이트를 중합반응 조성물 용액에 접촉
[0317] 금속증착 플라스틱 라미네이트 (vapor-deposited metal-plastic laminate 또는 metal-plastic laminate)를 수용할 수 있는 크기의 중합반응 용기 (vessel or reservoir)에 중합반응 조성물 용액 (polymerization reaction composition)을 채운다. 그리고, 금속증착 플라스틱 라미테이트를 용기속 중합반응 조성물 용액에 접촉하게 하여 한다. 금속증착 플라스틱 라미테이트의 표면에서 중합반응을 일으킨다. 금속증착 플라스틱 라미테이트를 조성물 용액에 담지
[0318] 금속증착 플라스틱 라미네이트를 중합반응 용기에 넣을 때 금속쪽 면만 조성물 용액에 접촉하고 플라스틱필름쪽 면은 접촉하지 않게 할 수도 있고, 양쪽면이 모두 용액에 잠기도록 금속증착 플라스틱 라미네이트 전체를 담지시킬 수 할 수 있다. 다수의 금속증착 플라스틱 라미네이트를 조성물 용액에 하나의 중합반응 용기에 함께 담지하여 중합반응을 진행하면 공정의 생산성을 높일 수도 있다. 다수의 금속증착 플라스틱 라미네이트를 겹겹이 쌓아지도록 조성물 용액에 담지할 수도 있는데, 조성물 용액이 금속증착 플라스틱 라미네이트의 사이 사이에 들어 갈 수 있도록 인접한 금속증착 플라스틱 라미네이트 사이에 거리를 유지하기 위한 구조물 (spacing structure)을 끼워 넣을 수도 있다. 연속공정
[0319] 중합반응 용기에서 금속증착 플라스틱 라미네이트가 중합반응 조성물과 접촉하는 공정은 연속공정으로 진행할 수 있다. 금속포일 라미네이트를 중합반응 조성물과 접촉하는 공정과 동일한 방식이 적용가능하다. 표면에서 중합반응으로 폴리머층 생성
[032이 중합반응 조성물 용액과 금속증착 플라스틱 라미네이트의 금속층 표면이 중합반응에 충분한 시간동안 접촉하면 금속층 표면에서 중합반응이 일어나고 폴리머층이 생성된다. 금속증착 플라스틱 라미네이트의 양쪽면이 조성물 용액에 잠기도록 담지하는 경우에는, 금속층의 표면과 플라스틱층의 표면 각각에 폴리머층이 생성된다. 폴리머층이 생성된 금속증착 플라스틱 라미네이트는, 추후 베이킹 공정에서 폴리머층 내부의 인접한 폴리머끼리 크로스링크를 형성하는 등, 큐어링되어 견고하게 된다. 폴리머층
[0321] 중합반응에서는 다양한 크기의 폴리머가 생성되며 다이머, 트라이머, 테트라머, 올리고머도 생성된다. 생성되는 다이머, 트라이머, 테트라머, 올리고머, 폴리머 중에는 기질의 표면과 화학적인 결합을 형성하는 것도 있다. 그 결고누 폴리머층은 다양한 크기의 폴리머를 포함하며, 다이머, 트라이머, 테트라머, 올리고머를 포함할 수 있다.
[0322] 폴리머층의 두께폴리머층의 두께는 약 0.1 , 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 , 1 .2, 1 .4, 1.5, 1 .6, 1 .8, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 12, 1 5, 20, 25, 또는 30 pm일 수 있다. 폴리머층의 두께는, 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 폴리머층은 으 I 0.5 내지 으 f 3 pm의 범우 |, 약 1 내지 약 5 pm의 범위에 속하는 두께일 수 있다. 금속층의 표면과 플라스틱층의 표면을 동시에 중합반응 조성물에 접촉시키고 또 분리하는 경우에도, 이들 양 표면에서 중합반응 개시와 진행의 속도가 다르기 때문에 얻어지는 폴리머층의 두께는 다를 수 있다. 폴리머 -금속-플라스틱 라미네이트 [0323] 도 6은 중합반응의 결과 얻어지는 폴리머층 (129)-플라스틱층 (125)- 금속층 (123)-폴리머층 (127) 구조의 폴리머 -금속 라미네이트 (polymer-metal laminate 131)을 도시한다. 플라스틱층의 표면에서 중합반응이 진행하지 않는 경우, 폴리머층 (129)이 생략된 플라스틱층 (125)-금속층 (123)-폴리머층 (127)의 구조가 얻어진다. 금속증착 플라스틱 라미네이트를 이용하여 제조된 이 폴리머-금속 라미네이트를, 다른 실시예의 폴리머-금속 라미네이트와 구별하기 위하여 "폴리머-금속-플라스틱 라미네이트"라 부른다. 필요에 따라 폴리머층의 양측면 중 어느 한쪽 또는 양쪽에 하나 이상의 기능성층이 추가될 수 있다. 기능성층이 추가되는 경우 그 한쪽 또는 양쪽에 접착제층이 추가될 수 있다. 본 문서 (청구항은 제외)에서 "폴리머 -금속-플라스틱 라미네이트"는, 특별한 구조가 언급되어 있더라도, 플라스틱층-금속층-폴리머층 또는 폴리머층-플라스틱층-금속층-폴리머층 순서의 구조를 가지며, 기능성층은 있을 수도 있고 없을 수도 있다. 핀홀을 매우는 중합반응
[0324] 중합반응은 금속층표면에 폴리머층을 생성함은 물론, 금속층에 형성된 핀홀을 메우거나 막는다. 핀홀의 내부 표면에 중합반응 조성물이 스며들어가서 핀홀 내부 표면에서 중합반응을 일으키면, 그 결과 만들어지는 폴리머나 올리고머가 핀홀의 내부 공간 전부나 일부 (도 6°| 133, 135)를 메운다. 그리고, 핀홀의 내부 공간 일부 또는 전부를 메우는 폴리머나 올리고머는 핀홀 바깥으로 연장하여 금속 표면에 형성되는 폴리머층과 연결 (도 6의 135)될 수 있다. 또한, 핀홀 바깥의 금속표면에 생성되는 폴리머층은 핀홀을 덮어서 막는다.
XIL 기밀성 플라스틱 포장재 (GAS-TIGHT PLASTIC PACKAGING MATERIAL) 기밀성 플라스틱 포장재를 이용한 물품의 포장
[0325] 폴리머-금속-플라스틱 라미네이트 (polymer-metal-polymer laminate)는 그 자체로서 또는 추가적인 처리와 공정을 거친 다음 기 밀성을 갖는 플라스틱 포장재로 사용할 수 있다. 추가적인 처리와 공정에는 인쇄나 기능성층을 추가하는 것이 있을 수 있다. 물품의 포장에 이용하기 위해서는, 폴리머-금속-플라스틱 라미네이트를 봉투와 같이 접거나 두장의 폴리머 -금속-플라스틱 라미네이트를 겹친다음 가장자리를 밀봉하여 물품을 넣을 수 있는 플렉서블한 용기를 준비한다. 그 용기 속에, 보관시 기밀성을 요구하는 물품을넣은 다음, 다양한 밀봉 기술을 이용하여 공기가 투과하지 못하게 밀봉한다. 보관시 기 밀성을 요구하는 물품에는 식품, 전자부품 등 다양하고 제한이 없다. 기밀성 포장 [0326] 폴리머-금속-플라스틱 라미네이트를 이용한 플라스틱 포장재는 금속포일 핀홀을 중합반응으로 메워서 기체투과도를 크게 낮춘 것이다. 이 플라스틱 포장재의 투습도는 1 x10-8, 2x10-8, 3x10-8, 4x10-8, 5x10-8, 6x10'8, 7x10'8, 8x10'8, 9x1 O'8, 1 x 10'7, 2x10'7, 3x10'7 4x10' 7, 5x1 O'7, 6x1 O'7, 7x1 O'7, 8x1 O'7, 9x10'7, 1 x 1 O^, 2x10'6, 3x10'6 4x10'6, 5x1 O^, 6x1 O^, 7x1 O^, 8x10-6, 9xW-6, i x i o^ 2乂1 O'5, 3x1 O'5, 4x1 O'5, 5x1 O'5, 6x1 O'5, 7x1 O'5, 8x1 O'5, 9x1 O'5, 또는 1 x 1 O'4 g/m2/day이다. 폴리머-금속-플라스틱 라미네이트를 이용한 플라스틱 포장재의 투습도는 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 투습도는 약 1 x10'7 내지 약 1 x1 (r6 g/rrF/day의 범우 |, 약 5x10'7 내지 약 5x10'5 g/rrF/day의 범위에 속할 수 있다. 폴리머-금속-플라스틱 라미네이트를 이용한 플렉서블 봉지구조체 폴리머 -금속-플라스틱 라미네이트 두장의 라미네이션
[0327] 폴리머-금속-플라스틱 라미네이트의 한쪽면에 접착제를 바르고 다른 폴리머- 금속-플라스틱 라미네이트의 한쪽면을 포개어 [폴리머 -금속-플라스틱 라미네이트]- [접착제]- [폴리머-금속-플라스틱 라미네이트]의 구조를 만든다. 그 다음, 이 구조를 압착하여 합지한다. 여러장의 라미네이션
[0328] 폴리머-금속-플라스틱 라미네이트 두장이 합지된 것과 한장의 폴리머-금속- 플라스틱 라미네이트의 사이에 접착제를 넣고 압착하여 합지하면 3장의 폴리머 -금속-플라스틱 라미네이트가 합지된 라미네이션을 만들 수 있다. 폴리머 -금속-플라스틱 라미네이트 두장이 합지된 것 두개를 접착제로 붙여 합지하면 4장의 폴리머 -금속-플라스틱 라미네이트가 합지된 라미네이션을 만들 수 있다. 동일한 방법을 반복하면, 원하는 숫자의 폴리머-금속-플라스틱 라미네이트가 합지된 라미네이션을 만들 수 있다. 합지된 라미네이션의 다양한 구조
[0329] 폴리머-금속-플라스틱 라미네이트 두장을 합지할 때, 어떤 면이 마주보게 합지하는지, 그리고 폴리 머층이 양쪽에 있는 폴리머-금속-플라스틱 라미네이트인지 한쪽에만 있는 것인지에 따라 여러 구조의 라미네이션을 생산할 수 있다. 그리고, 접착제가 들어가는 위치에는 하나 이상의 기능성층이 추가될 수 있다. 꼭 그러한 것은 아니지만, 기능성층은 한쪽 또는 양쪽에 접착제층을 필요로 할 수 있다. 폴리머 -금속-플라스틱 라미네이트를 이용한 플렉서블 봉지구조체 [033이 폴리머-금속-플라스틱 라미네이트 그 자체나 두장 이상의 폴리머-금속- 플라스틱 라미네이트가 합지된 라미네이션은 OLED의 플렉서블 봉지구조제로 이용할 수 있다. 실시예에 따른 플렉서블 봉지구조체는, 폴리머-금속-플라스틱 라미네이트 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 15, 16, 17, 18, 19, 또는 20장이 합지된 구조를 가진다. 플렉서블 봉지구조체를 PLED 패널에 부착
[0331] 폴리머-금속포일 라미네이트를 이용한 플렉서블 봉지구조체의 설명에서와 동일한 방법으로 플렉서블 봉지구조체를 OLED 제품의 배면에 부착하여 내부를 밀봉한다. 플렉서블 봉지구조체의 기 밀성 (qas tightness)
[0332] 폴리머-금속-플라스틱 라미네이트를 이용한 OLED 플렉서블 봉지구조체는, 기상증착한 금속층에 있는 핀홀을 중합반응으로 메워서 기체투과도를 크게 낮춘 폴리머-금속- 플라스틱 라미네이트를 두장 이상 적층하여 만든 것이다. 측하여 것이다. 여러 장의 폴리머 - 금속-플라스틱 라미네이트를 합지하면 기체 투과 경로가 복잡해져서 기체투과도가 급격하게 감소하여 1 x10* g/m2/day 미만의 투습도를 갖는다. 두 장 이상의 폴리머-금속-플라스틱 라미네이트를 적층하여 만든 플렉서블 봉지구조체의 투습도는 약 1x10-9, 2x10'9, 3x1 O'9 4x1 O'9, 5x10-9, 6x10-9, 7x10-9, 8x10-9, 9x1 0-9)匕九-8, 2x1 O'8, 3x1 O'8 4x1 O'8, 5x1 O'8, 6x1 O'8, 7x1 O'8, 8x10'
8, 9x10-8, 1 x1 O'7, 2x1 O'7, 3x1 O'7 4x1 O'7, 5x1 O'7, 6x1 O'7, 7x1 O'7, 8x1 O'7, 9x1 O'7, 또는 1 x1 O'6 g/m2/day이다. 두 장 이상의 폴리머 -금속포일 라미네이트 합지하여 만든 플렉서블 봉지구조채의 투습도는 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 투습도는 약 1 x10-8 내지 약 1 x10-6 g/m7day의 범우 |, 약 5x10'5 내지 약 5x10'
7 g/m2/day의 범위에 속할 수 있다. 플렉서블 봉지구조체의 방열기능
[0333] 폴리머-금속-플라스틱 라미네이트를 이용한 플렉서블 봉지구조체는, 다수의 금속층이 OLED 패널에서 발생하는 열을 전달받아 제품의 가장자리로 전달하는 기능을 할 수 있다. OLED 제품의 가장자리에 방열핀과 같은 방열구조를 설치하고 이를 봉지구조체의 금속층에 연결하면 효과적인 방열시스템을 제공한다.
XIV. 중합반응 표면에 폴리머층 형성하는 중합반응
[0334] 금속포일 라미네이트 (metal foil laminate)나 금속증착 플라스틱 라미네이트 (metal-plastic laminate) 같은 금속 라미네이트 (metal laminates)의 금속층과 플라스틱층의 표면에 폴리머층을 형성하는 것은 화학식 1 -1 1의 모노머를 이용하는 중합반응이다. 화학식 1 내지 1 1의 모노머는 기질 표면의 친핵성 또는 친전자성 작용기와 반응하여 기질 표면에 결합하면서 중합반응을 개시하는 것으로 보인다. 하지만, 중합반응의 결과 얻어지는 폴리머나 올리고머 등 중합체가 모두 기질 표면에 결합하는 것은 아니다. 또, 청구항에 표현된 중합반응과 그 결과물이 반드시 이 같은 반응 메카니즘에 따라 구현되어야 하는 것은 아니다. 중합반응의 조성물
[0335] 금속포일 라미네이트 (metal foil laminate)나 금속증착 플라스틱 라미네이트 (metal-plastic laminate) 같은 금속라미네이트 (metal laminates) 금속표면에서 진행하는 중합반응 조성물은 모노머와 용매를 포함한다. 중합반응 조성물을 다음 번 중합반응에 재사용하는 경우, 기중합된 올리고머나 폴리머를 더 포함할 수 있다. pH 조절을 위하여 염기나 산, 완충 용액이 들어갈 수 있다. 그리고 경우에 따라서 중합반응의 개시제도 더 포함할 수 있다. 모노머
[0336] 중합반응에 사용되는 모노머는, 중합반응이 자발적으로 개시되는 자가개시성 (self-initiating) 모노머이다. 그리고, 이 모노머는 염기성의 화합물이며, 화학식 1 - 1 1의 화합물이다. 둘 이상의 모노머
[0337] 알루미늄 박막의 표면에서 일어나는 중합반응은 둘 이상의 모노머를 이용하는 중합반응일 수 있다. 예를 들어, 3, 4 -디아미노피리 딘과 2, 6 -디아미노피리 딘의 공중합체와 같이 유사 구조의 이성질체 화합물 간의 교차 첨가 중합에 의한 공중합체일 수도 있고, 2, 5 -디아미노피리 딘과 3 -아미노- 2 -사이클로헥센- 1 -온의 공중합체나, 2,4,6- 트리아미노피리미 딘과 3 -아미노크로톤산 메틸의 공중합체와 같이 서로 크게 다른 구조의 모노머 사이의 교차 첨가 중합에 의한 공중합체일 수도 있으며, 퍼퓨릴아민과 3 - 아미노크로톤산 메틸 사이의 딜스-알더 중합 반응에 의한 공중합체 등일 수도 있다. 중합반응 조성물의 모노머 농도
[0338] 중합반응을 위한 조성물에서 모노머의 농도는 약 0.001 , 0.005, 0.01 , 0.05, 0.1 , 0.5, 1 .0, 1 .5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10, 10.5, 1 1 , 1 1 .5, 12, 1 2.5, 1 3, 1 3.5, 14, 14.5, 15, 15.5, 1 6, 1 6.5, 17.5, 18, 18.5, 19, 19.5, 또는 20 mg/mL이다. 모노머의 농도는 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 모노머 농도는 약 2.0어서 약 5.0의 범우 |, 약 1.0에서 약 7.0의 범위에 속할 수 있다. 염기성 조성물
[0339] 일 실시예에 따르면, 중합반응 조성물은 pH는 8 이상의 염기성으로 조절한다. 화학식 1 내지 1 1의 화합물의 모노머 자체가 염기성이지만, 조성물의 pH를 조절하기 위하여 수산화나트륨 (0.01 M, 0.1 M, 또는 1 M 등), 15-20% DMEA (N,N-디메틸에틸아민, CAS 598- 56-1 ) 또는 15-20% 2 -디메틸아미노에탄올 (CAS 108-01 -0) (pH 13 부근), 붕산/붕산나트륨 완충 용액 (pH 9 부근) 등의 염기성 물질이 추가될 수 있다. 중합반응 억제제 (polymerization inhibitor)
[034이 화학식 1 내지 11의 화합물은 개시제가 없이도 중합반응을 일으키는 자가개시성 모노머이지만, 대부분 중합반응이 급격하게 일어나는 성격의 모노머가 아니다. 그러므로, 다른 중합반응의 모노모에 중합반응 억제제가 포함되어 있는 것과는 달리, 화학식 1 내지 11의 화합물 중에는 중합반응 억제제 없는 상태로 보관 유통되는 것이 많이 있다. 그러한, 모노머를 사용하는 경우, 중합반응 조성물에는 중합반응 억제제가 섞여있지 않다. 개시제 없이
[0341] 중합반응은 별도의 개시제 없이 진행할 수 있다. OLED의 봉지구조체에 이용하기 위한 폴리머 -금속 라미네이트의 경우, 폴리머층에 개시제가 포함되면 OLED의 유기발광층에 좋지 않은 결과를 갖는다. 그리하여 중합반응 조성물은, 레디컬개시제 (radical initiator) L|- 광개시제 (photo initiator)오!’ 같은 중합반응 개시제를 포함하지 않는다. 화학식 1 -1 1의 모노머는 개시제가 없이도 중합반응을 일으키는 자가개시성 모노머이기 때문이다. 기질 표면의 물질에 따라서 개시제 없이 중합반응이 쉽게 일어나는 경우도 있다. 예를 들어, 금속 기질의 표면에서 중합반응을 진행하는 경우, 금속표면에 형성된 산화막으로부터 유래하는 수산화기와 모노머가 작용하여 반응이 개시된다. 개시제를 포함하는 경우
[0342] 화학식 1 -1 1의 모노머가 자가개시성이지만, 기질 표면의 물질에 따라서는 개시제를 이용하여 중합반응을 촉진하는 것도 가능하다. 최종 결과물에 개시제가 포함되어되 된다면 중합반응 조성물에 개시제를 포함할 수도 있다. 예를 들어, 배터리 분리막에 폴리머층을 형성하는 경우는 개시제를 포함할 수도 있다. 개시제로 사용할 수 있는 화합물을 예시하면, AIBN(Azobisisobutyronitrile), ABCN(1,1 '-Azobis(cyclohexane-carbonitrile)), 과산화디- tert-부틸 (di-tert-butyl peroxide), 과산화벤조일 (benzoyl peroxide) 등이 있다. 이들 개시제는 특정 온도가 되면 래디컬 중간체 (radical intermediate)를 생성하고 이 생성된 물질이 모노머와 반응하여 중합반응을 일으킨다. 중합반응 조성물의 온도
[0343] 중합반응은 사용하는 용매의 끓는점보다 낮은 온도에서 진행한다. 중합반응 조성물의 온도는 약 0, 5, 10, 1 5, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 T로 조절한다. 이 온도는 전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 중합반응 조성물의 온도는 으 I 20 내지 으 f 70 T의 범위, 으 f 40 내지 약 90 T의 범우 |, 약 10 내지 으 f 30 T의 범위에 속한다. 중합반응 조성물에 접촉하는 시간
[0344] 금속 라미네이트를 중합반응 조성물에 접촉시키는 시간은 약 0.5, 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 1 2, 1 3, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 44, 46, 48, 50, 52, 54, 56, 68, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 또는 80 시간일 수 있다. 금속 라미네이트를 중합반응 조성물에 접촉시키는 시간은, 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 중합반응의 시간은 약 2 내지 약 10시간의 범우 |, 약 6 내지 약 12시간의 범우 |, 약 8 내지 약 24시간의 범위에 속하는 시간일 수 있다. 폴리머층
[0345] 중합반응에서는 다양한 크기의 폴리머가 생성되며 다이머, 트라이머, 테트라머, 올리고머도 생성된다. 생성되는 다이머, 트라이머, 테트라머, 올리고머, 폴리머 중에는 기질의 표면과 화학적인 결합을 형성하는 것도 있다. 그 결고누 폴리머층은 다양한 크기의 폴리머를 포함하며, 다이머, 트라이머, 테트라머, 올리고머를 포함할 수 있다. 폴리머층이 형성된 금속 라미네이트의 표면에 남은 액체 제거
[0346] 중합반응 용기에서 중합반응 조성물과 접촉하여 금속 라미네이트의 표면에 폴리머층이 형성되면 이를 중합반응의 용기에서 꺼낸다. 다음으로, 흡수지나 흡수패드 등으로 표면을 닦거나 접촉하여 폴리머층이나 라미네이트의 표면에 남아 있는 중합반응 조성물의 액체 성분을 제거한다. 액체 성분을 닦아내기 전 또는 닦아낸 다음, 물이나 다른 세척용액으로 세척을 하는 경우도 있다. 세척을 하는 경우, 표면의 액체를 닦아낸다. 베이킹 [0347] 표면의 액체를 제거한 다음에는 오븐에서 베이킹을 진행한다. 베이킹은 폴리머층에 남아 있는 액체 성분을 증발시키고, 폴리머층에 형성된 폴리머가 크로스링크하게 하며, 폴리머층을 큐어 링하여 견고하게 한다. 베이킹 온도
[0348] 베이킹은 플라스틱층이 변성되지 않을 정도로 낮은 온도에서 수행하며, 약 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 1 10, 1 1 5, 120, 125, 1 30, 135, 140, 145, 또는 1 50 。仁에서 진행된다. 베이킹의 온도는, 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 베이킹은 약 50 내지 약 100 T의 범우 |, 약 60 내지 약 1 10 °C 의 범위에서 진행된다. 베이킹 시간
[0349] 베이킹은 약 0.5, 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12시간동안 진행된다. 베이킹 시간은, 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 베이킹은 약 2 시간 내지 약 5시간의 범위, 약 4시간 내지 약 6시간의 범위에서 진행된다. 세척과 건조
[035이 베이킹이 끝나면, 폴리머층에 남아 있는 잔류물질을 제거하기 위하여 세척한다. 폴리머층에는 중합반응 조성물의 성분이나 중합반응의 결과 형성된 물질이 들어 있다. 이들 중에는 금속표면, 플라스틱의 표면, 이들 표면에 붙은 폴리머 등과 단단하게 결합한 물질도 있지만, 느슨하게 연결되어 있는 것들도 있다. 산성의 세척액 그리고 염기성의 세척액으로 세척을 하면 폴리머층에 느슨하게 연결되어 있는 잔류물질을 제거할 수 있다. 세척이 끝나면 건조한다. 건조는 오븐에서 할 수 있다. 중합반응 결과조성물의 재사용
[0351] 중합반응이 끝나면 폴리머-금속 라미네이트(예를 들어, 폴리머-금속포일 라미네이트나 폴리머-금속-플라스틱 라미네이트)를 중합반응의 용기로부터 꺼낸다. 그 결과, 중합반응의 용기에 남아 있는 조성물에는 반응에 참여하지 않고 남은 모노머와 중합반응의 결과 생성된 폴리머, 올리고머, 다이머가 함께 섞여져 들어 있다. 폴리머, 올리고머, 다이머가 함께 들어있는 이 조성물은 버리지 않고, 다음 번 중합반응에 사용할 수 있다. 즉, 직전 중합반응을 하고 남은 조성물에 새로운 금속 라미네이트를 담지하여 중합반응을 일으켜서 폴리머 -금속라미네이트를 제조한다. 이 경우, 이미 조성물에 들어 있는 폴리머, 올리고머, 다이머가 생성되는 폴리머층에 포함될 수 있고, 또 이들 폴리머, 올리고머, 다이머가 중합반응에 참여하여 더 큰 폴리머나 올리고머를 생성할 수도 있다. 다음 번 금속 라미네이트의 중합반응을 하기 전에 조성물에 들어 있는 모노머의 농도, pH등을 조절하기 위하여 필요한 성분을 추가할 수 있다.
XV. 중합반응으로 금속층의 핀홀을 메움 모세관 현상
[0352] 금속 라미네이트 금속층의 표면에 접촉한 중합반응 조성물 용액은 핀홀과 함몰부 등의 결함부위 속으로 간다. 조성물 용액이 모세관 현상에 의하여 결함부위로 빨려들어가거나 스며들어 간다. 금속의 결함부나 핀홀에서의 중합반응
[0353] 금속층의 결함부나 핀홀 속으로 들어간 모노머나 올리고머가 핀홀의 내부 표면과 인터액션하면서 올리고머나 폴리머로 성장하여 핀홀을 메운다. 금속층을 관통하여 형성된 핀홀의 공간 전부, 즉 핀홀의 금속층 한쪽면쪽 입구에서 반대면쪽 입구까지의 공간 전부를 완전히 매우지 않더라도, 올리고머나 폴리머가 그 공간의 일부를 매우거나 막아서 공기나 수분이 지나다니기 어 렵게 한다. 금속표면이 녹아들어감
[0354] 중합반응 조성물 용액의 산도에 따라, 이 용액이 금속층의 표면에 접촉하면 금속층에 포함된 결함의 최외곽 표면의 금속과 금속산화물이 조성물 용액에 녹을 수 있다. 특히, 금속층의 두께가 급격하게 앏아지거나 없어지는 구조를 갖는 핀홀과 같은 결함부의 경우, 금속 원자가 일부 녹아서 결함의 급격한 구조를 완만하게 하는 스무딩 (smoothing) 현상이 일어나고, 결함의 입구쪽이 넓어질 수도 있다. 결함부 스무딩의 효과
[0355] 스무딩은 모노머가 핀홀과 같은 결함의 깊은 곳까지 침투할 수 있게 하고 결함의 깊은 곳에까지 중합반응이 진행되어 폴리머나 올리고머가 결함을 채우는 것이 가능해 진다. 또한, 결함의 깊은 곳에까지 중합반응이 진행되지 않더라도, 결합의 입구가 완만하게 넓어지고 그곳에서 중합반응이 진행되면 폴리머나 올리고머가 결함의 입구쪽에서 어느 정도의 깊이까지를 채우는 것이 가능해 진다. 이 같이 폴리머나 올리고머가 결함의 입구쪽이나 깊은 곳까지를 채우게 되면, 산소나 수증기 등의 기체가 금속층을 그 두께 방향으로 통과하기 어렵게 하는 효과를 가질 수 있다. 스무딩을 위한 중합반응의 조절
[0356] 중합반응 조성물 용액의 산도에 따라 스무딩 현상은 조성물 용액이 금속층의 표면에 접촉하는 내내 진행된다. 중합반응 조성물의 산도를 조절함으로써 스무딩 현상의 정도를 조절할 수 있다. 금속층 결함부에 스무딩 현상이 일어난 뒤에 중합반응이 일어나도록 중합반응의 개시를 조절할 수도 있다. 또한, 적절한 산도의 산성이나 염기성 용액 (중합반응 조성물 용액이 아닌)에 금속포일 라미네이트를 담지하여 스무딩 현상을 일으킨 다음, 중합반응 용기에서 조성물 용액에 담지하여 중합반응을 진행할 수도 있다.
XVI. 기중합된 폴리머를 코팅하는 것과는 다름 표면에 폴리머층을 형성하는 방법
[0357] 본 발명의 실시예 (implementations)에 따르면, 금속층의 표면과 플라스틱필름의 표면을 중합반응의 조성물에 접촉하고 중합반응을 일으켜 그 표면에 폴리머층을 형성한다. 기질 표면에 폴리머층을 형성하는 더욱 쉬운 방법은, 기중합된 폴리머를 그 표면에 코팅하는 것이다. 중합반응을 통한 폴리머층의 형성은 기중합된 폴리머를 코팅하는 것과 다른 점이 있다. 기중합된 폴리머
[0358] 제품으로 판매하는 기중합된 폴리머 (commercially available prepolymerized polymers)는 통상 분자량의 범위가 정해져 있다. 동일한 폴리머라 하더라도 용도에 따라 분자량이 다른 것을 사용해야 하는 경우가 있기 때문이다. 이들 판매되는 폴리머는, 제조과정에서 중합반응의 결과조성물 (resulting mixture)에 들어 있는 모노머, 다이머, 트라이머, 테트라머 등 분자량이 매우 작은 불순물이 거의 없는 상태의 것이다. 특정 범위의 (올리고머 아닌) 분자량을 갖는 것으로 표시된 폴리머에는, 제조과정에서 중합반응의 결과조성물에 들어 있는 모노머 10-20개의 올리고머도 상당히 제거된 상태의 것이다. 기중합된 폴리머를 표면에 코팅
[0359] 폴리머와 같이 분자량이 매우 큰 화합물은 용매에 녹여 코팅액을 준비하고, 이를 기질의 표면에 도포한 다음 용매를 증발시키는 방법으로 비교적 간단하게 폴리머 코팅층을 형성할 수 있다. 기중합된 폴리머를 표면에 코팅하기 위한 코팅액에는 용매와 폴리머 이외에도 다른 물질이 추가된다. 기중합된 폴리머를 표면에 코팅 - 계면활성제 [0360] 표면에 일정한 두께의 폴리머층을 형성하려면 코팅액이 기질의 표면에 고르게 펴져야 한다. 코팅액이 기질의 표면에 고르게 퍼지게 하기 위하여 코팅액에 계면활성제를 넣는다. 그 결고누 기중합된 폴리머를 표면에 코팅하는 경우, 얻어지는 코팅층에는 계면활성제가 포함된다. 기중합된 폴리머를 표면에 코팅 - 바인더
[0361] 기질 표면과 폴리머의 성격에 따라 그리고 기질 표면의 거칠기 등 구조에 따라, 폴리머 코팅층이 기질 표면에 잘 접착되지 않을 수가 있다. 기질 표면과의 접착력을 위하여, 코팅액에 바인더를 넣는다. 특히, 대부분의 폴리머가 금속표면과의 결합력이 낮다. 그러므로, 금속 표면에 기중합된 폴리머를 코팅하려면 코팅액에 에폭시 수지, 폴리우레판 수지, 실리콘 수지, 비 닐 수지, 아크릴 수지 등의 바인더를 넣는다. 그 결과 얻어지는 폴리머 코팅층은 바인더를 포함하게 된다. 기중합된 폴리머를 표면에 코팅 - 올리고머
[0362] 기중합된 폴리머를 기질 표면에 코팅하여 형성된 폴리머층에는 모노머, 다이머, 트라이머, 테트라머와 같이 분자량이 매우 작은 화합물이나 올리고머가 거의 없다. 특정범위의 분자량을 갖는 것으로 표시되는 기중합된 폴리머의 경우, 이들 작은 화합물은 불순물이라 거의 포함되지 않기 때문이다. 기중합된 폴리머 - 화학결합을 형성하지 않고, 핀홀 속으로 들어가지 않음
[0363] 기중합된 폴리머를 코팅하는 경우, 폴리머는 금속 표면과 화학적인 결합을 잘 형성하지 않는다. 화학식 1 내지 1 1의 화합물로 기중합된 폴리머도 금속 표면에 화학적으로 잘 결합하지 않는다. 이것이, 바인더가 필요한 이유이기도 하다. 뿐만아니라, 기중합된 폴리머를 코팅하는 경우, 폴리머가 금속의 핀홀 속으로 들어갈 확률은 크지 않다. 폴리머가 상당한 크기나 길이를 갖기 때문이고, 또 코팅과 코팅액의 증발에 많은 시간이 소요되지 않기 때문이기도 하다. 기질 표면에서 일어나는 중합반응
[0364] 본 발명 실시예에 따르면, 금속, 플라스틱 필름과 같은 기질의 표면에 중합반응 조성물이 접촉하여 중합반응이 일어난다. 화학식 1 내지 11의 화합물은 기질의 표면과의 상호작용을 하면서 기질의 표면에 화학적으로 결합하여 연결될 수 있다. 또한, 화학식 1 내지 11의 화합물은 연쇄적인 중합반응을 통하여 다이머, 트라이머, 테트라머, 올리고머로 성장하여 폴리머를 만든다. 그 결과 중합반응의 결과조성물에는 다양한 크기의 폴리머와 다이머, 트라이머, 테트라머, 올리고머 중 하나 이상이 섞여 있다. 그리고, 이 조성물을 다음 번 기질에 대하여 재사용 한다면, 그 결과 조성물에는 더욱 더 다양한 크기의 폴리머가 포함될 수 있다. 중합반응에 의한 폴리머층 - 모노머, 다이머, 트라이머, 테트라머, 올리고머
[0365] 본 발명의 실시예에 따라 기질 표면에서의 중합반응을 통하여 생성된 폴리머층에는, 다양한 크기의 폴리머와 올리고머가 섞여 있다. 그리고, 모노머, 다이머, 트라이머, 테트라머 중 하나 이상이 섞여 있다. 이 폴리머층에는 특정한 범위의 분자량을 갖는 폴리머의 순도가 특별히 높은 것이 아니라 다양한 분자량을 갖는 폴리머가 들어 있고, 따라서 상당한 정도의 올리고머도 들어 있다. 모노머, 다이머, 트라이머, 테트라머는 세척과정에서 제거될 수도 있으나, 이들이 기질 표면과 화학적인 결합을 이룬 경우 폴리머층에 상당이 남게 된다. 결국, 판매되는 기중합 폴리머를 코팅하여 얻어지는 폴리머층의 경우와는 현저하게 구별할 수 있을 정도의 양으로 모노머, 다이머, 트라이머, 테트라머 중 어느 하나가 폴리머층에 들어 있다. 중합반응에 의한 폴리머층 - 계면활성제
[0366] 본 발명의 실시예에 따라 기질 표면에서의 중합반응을 진행하는데에는, 기중합 폴리머의 코팅시 이용되는 계면활성제가 필요하지 않다. 계면활성제 없이 중합반응을 진행하여 생성된 폴리머층에는 계면활성제가 들어 있지 않다. 그럼에도, 중합반응의 조성물에 계면활성제를 넣을 수는 있고, 그 결과 생성되는 폴리머층에 계면활성제가 포함될 수도 있다. 중합반응에 의한 폴리머층 - 바인더
[0367] 본 발명의 실시예에 따라 기질 표면에서의 중합반응을 진행하면 모노머, 다이머, 트라이머, 테트라머, 올리고머, 폴리머 중 상당수가 표면과 화학결합으로 연결된다. 따라서, 이 중합반응에는 기중합된 폴리머의 코팅시 이용되는 바인더가 필요하지 않다. 바인더 없이 중합반응을 진행하여 생성된 폴리머층에는 바인더가 들어 있지 않다. 그럼에도, 중합반응의 조성물에 바인더를 넣을 수는 있고, 그 결과 생성되는 폴리머층에 바인더가 포함될 수도 있다. 핀홀을 매우는 중합반응
[0368] 본 발명의 실시예에 따른 중합반응은 금속 기질의 표면에 폴리머층을 생성함은 물론, 금속층에 형성된 핀홀을 메우거나 막는다. 중합반응 조성물에 들어 있는 모노머나 올리고머가 금속 핀홀 속으로 들어가고, 그 내부 표면과 상호작용하여 화학결합을 이루고 또 중합반응을 통하여 성장하여 핀홀 내부 공간의 일부 또는 전부를 메운다. 이렇게 핀홀 속에 형성된 폴리머나 올리고머가 핀홀 바깥으로 연장되어 핀홀 바깥에 생성되는 올리고머나 폴리머와 연결될 수도 있다.
XVIL 분리막코팅 리튬 이온 전지 분리막
[0369] 분리막은 리튬 이온 전지의 양극과 음극 사이에 물리적인 층을 만들어 양극과 음극의 직접적인 접촉에 의한 단락을 방지한다. 이를 위해 분리막은 전기화학적인 안전성과 열 안정성이 확보되어야 하며, 일정 수준의 기계적 강도도 유지해야 한다. 동시에 분리막은, 전해질의 리튬이온은 통과시켜 전류를 발생시켜야 한다. 이를 원활히 하기 위해서 분리막은 다공성이고 얇아야 하며 전해액과의 친화력이 높아야 한다. 폴리올레핀 소재
[037이 리튬 이온 전지 분리막은 일반적으로 미세다공성 고분자막으로, 보통 폴리에틸렌 또는 폴리프로필렌과 같은 폴리올레핀계 소재를 사용하여 제조된다. 폴리에틸렌과 폴리프로필렌은 분리막에 적합한 전기화학적 안정성과 적절한 역학적 강도를 갖고 있다. 하지만, 폴리올레핀계 소재의 낮은 친수성으로 인해 전해액과의 친화력이 낮고, 이로인해 이온 전도시 저항을 상승시켜 전지의 성능을 저하시킨다. 코팅
[0371] 상기 문제를 해결하기 위해, 폴리올레핀계 분리막의 친수성을 향상 시키려는 연구가 활발히 진행되고 있다. 대표적인 방법으로 세라믹 코팅, 폴리머 코팅 등의 방법이 가능하다. 세라믹 코팅
[0372] 현재 폴리올레핀 분리막의 단면, 혹은 양면에 고내열성 세라믹 층을 코팅함으로써 폴리올레핀 분리막의 내열성을 확보하고, 친수성을 증가시키는 방법이 상용화 되어있다. 예를 들어, 산화알루미늄과 같은 무기물 입자과 유기 바인더의 혼합물을 함유한 슬러리를 제조하여, 이를 딥 코팅 등의 방법으로 폴리올레핀 분리막의 표면에 코팅하는 것이 보편적이다. 이 경우 도 7에 도시된 것과 같이, 폴리 올레핀 분리막 1020의 표면에, 무기물 입자를 포함하는 세라믹층 1040이 형성되어 분리막 1020이 세라믹층 1040 사이에 샌드위치 되어있는 구조가 만들어진다. 세라믹 코팅의 단점 [0373] 상기 세라믹 층을 형성하기 위해 세라믹을 분리막 전체에 코팅하는 경우 기공을 막아서 통기 특성 저하가 일어나 이온 전도시 저항을 상승시켜 전지 성능에 좋지 않은 영향을 미칠 수 있다. 이를 방지 또는 완화하기 위해서는 코팅층에 기공을 형성하기 위한 공정이 필수적이다. 또한 폴리올레핀계 분리막의 낮은 표면 에너지로 인해 세라믹 코팅층와의 접착성이 좋지 않으며, 코팅층이 이차전지 조립시 또는 전지내에서 부분적으로 무기코팅층이 쉽게 탈리가 될 수 있다. 세라믹층이 쉽게 탈리될 경우 전지의 안정성이 저하되며, 슬리 팅 (slitting) 또는 조립 공정 중 발생하는 이물로 인한 불량이 증가하는 문제가 있다. 이러한 단점을 개선하기 위하여 무기물 입자의 가공이나 다층코팅 등의 공정들이 개발되고 있으나, 추가 공정 도입에 따른 단가 상승이 문제이다. 폴리머 코팅
[0374] 세라믹 코팅의 대안으로, 폴리머를 분리막에 코팅하는 방법이 접근하기 쉽고 대량생산에 용이하여 최근 많이 연구되고 있다. 대표적으로 PVdF (polyvinylidene difluoride), PVdF-HFP(polyvinylidene fluoride-co-hexafluoropropylene) 등 불소계 폴리머를 폴리올레핀계 분리막 표면 코팅으로 연구되고 있다. 폴리머 코팅의 단점
[0375] 폴리머 코팅 역시 세라믹과 마찬가지로 분리막 전체에 코팅하는 경우 기공을 막아서 통기 특성 저하가 문제가 될 수 있다. 또한 친수성을 향상시키려면, 친수성 폴리머를 사용하여야 하는데, 폴리올레핀계 소재는 소수성이므로, 폴리머층과 올리올레핀계 분리막의 접착력이 좋지 않으며, 충, 방전 과정에서 코팅된 층이 탈리되어 전지 성능이 낮아지고, 안정성이 저하되는 단점이 있다. 분리막 기질
[0376] 본 발명의 일 실시예는, 상기 세라믹 코팅이나 폴리머 코팅 대신, 모노머의 중합반응을 이용해 분리막에 폴리머층을 형성하는 방법을 제공한다. 폴리머층을 형성할 분리막 기질은, 리튬이온전지에 적합하다고 알려져있는 분리막 물질이라면 어떤 것이든 가능하다. 예를 들어 분리막 기질은 다양한 미세다공성 고분자막 중에서 선택될 수 있다. 분리막 기질 소재
[0377] 분리막의 소재로는 절연성이 좋고 리튬이온 전지의 분리막에 필요한 기본 물성을 확보 가능한 소재라면 어떤 것이든 사용가능하다. 예를 들어, 분리막 소재는 일반적으로 많이 사용되는 폴리에틸렌이나, 폴리프로필렌, 그리고 그 외에 PVdF, 폴리에스터, 폴리아크릴로니트릴 (PAN), 폴리에틸렌 테레프탈레이트 (PET) 등으로 이루어지는 군에서 하나 이상 선택될 수 있다. 분리막 기질 구조
[0378] 분리막은 거시적으로는 견고하면서도 미시적으로는 다공성인 구조를 가진다. 예를 들어 분리막은 압출등의 방법으로 형성된 박막에 기공을 가지는 구조를 가지거나, 혹은 직물 구조 (woven structure), 혹은 부직포 구조 (non-woven structure)를 가질 수 있다. 예컨데, 분리막 기질은, 폴리에틸렌 섬유의 직물 구조를 가지거나, 폴리프로필렌 섬유의 직물 형태일 수 있다다. 기공
[0379] 분리막의 두께 방향으로의 리튬이온의 전도를 원활히 하기 위하여 충분한 양의 기공을 포함하여야 하며, 그 크기는 균일할 수록 좋다. 예를 들어 분리막은 30-60%의 기공도를 가질 수 있으며, 기공의 평균 직경은 0.01 , 0.02, 0.03, 0.05, 0.07, 0.10, 0.1 5, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.60, 0.70, 0.80, 0.90, 1 , 1 .1 , 1 .2, 1.3, 1 .4, 1 .5, 1 .7, 1.9, 2.1 , 2.4, 2.7, 3 pm일 수 있다. 기공의 평균 직경은, 직전 문장에 나열된 값중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 기공은 상호 연결된 구조를 가지며 분리막의 두께방향으로 한면에서 다른면까지 리튬이온을 전도할 수 있다. 분리막의 두께
[038이 분리막의 두께 방향으로의 리튬이온의 전도를 원활히 하기 위하여 얇은 두께가 선호되나, 안정성을 위하여 일정 이상의 두께가 필요하다. 예컨데, 분리막의 두께는 10, 1 2, 14, 1 6, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 60 pm일 수 있다. 분리막의 두께는, 직전 문장에 나열된 값중 두개를 선택하여 얻어지는 범위에 속할 수 있다.
XVIH. 중합반응으로 코팅분리막 제조 조성물 용액을 준비
[0381] 코팅분리막 제조를 위한 조성물 용액은, 상기 모노머용액과 같거나 유사할 수 있다. 예를 들어, 조성물 용액은, 화학식 1 내지 1 1의 화합물을 포함할 수 있다. 또한, 조성물 용액은, 분리막의 안정성을 증가시키기 위해 유/무기 필러를 추가로 포함할 수 있다. 분리막을 조성물 용액에 접촉
[0382] 분리막을 수용할 수 있는 크기의 중합반응 용기 (vessel or reservoir)를 준비한다. 이 용기에 중합반응 조성물 용액을 채운다. 그리고, 분리막을 용기속 조성물 용액에 접촉하게 한다. 조성물 용액에 접촉한 분리막 표면에서 중합반응이 일어나고 폴리머층이 생긴다. 분리막을 조성물 용액에 담지
[0383] 분리막을 중합반응 용기에 넣을 때 한면만 조성물 용액에 접촉하고 다른 면은 접촉하지 않게 할 수도 있고, 양쪽면이 모두 용액에 잠기도록 분리막 전체를 담지시킬 수 할 수 있다. 다수의 분리막을 조성물 용액에 하나의 중합반응 용기에 함께 담지하여 중합반응을 진행하여 공정의 생산성을 높일 수도 있다. 다수의 분리막을 겹겹이 쌓아지도록 조성물 용액에 담지할 수도 있는데, 조성물 용액이 분리막의 사이 사이에 들어 갈 수 있도록 인접한 분리막 사이에 거리를 유지하기 위한 구조물을 끼워 넣을 수도 있다. 분리막 표면에 폴리머층이 형성된 코팅분리막
[0384] 분리막의 표면에 접촉한 조성물 용액에서 중합반응이 개시되면, 분리막의 표면에 폴리머가 생성된다. 이 폴리머는 분리막 표면에 폴리머층을 형성하여, 거시적으로는 분리막-폴리머층의 순서로 적층된 폴리머층이 만들어진다. 이렇게 폴리머층이 형성된 분리막을 "코팅분리막"이라고 부른다. 양쪽에 폴리머층을 가지는 코팅분리막
[0385] 분리막의 양쪽면이 조성물 용액에 잠기도록 담지하여 중합반응을 진행하면 양쪽면에 폴리머층이 형성될 수 있다. 거시적으로는 폴리머 =분리막-폴리머층의 순서로 적층된 폴리머층이 만들어진다. 폴리머층
[0386] 중합반응에서는 다양한 크기의 폴리머가 생성되며 올리고머와 다이머도 생성된다. 그 결고누 코팅분리막의 폴리머층은 다양한 크기의 폴리머를 포함하며, 올리고머와 다이머도 포함할 수 있다. 기공에서의 중합반응
[0387] 분리막의 표면에 접촉한 조성물 용액의 일부는 분리막의 일부 기공 속으로 들어갈 수 있다. 분리막의 기공 속으로 들어간 모노머가 중합반응을 일으키면서 기공을 둘러싼 분리막의 내부 표면의 적어도 일부와 결합하면서 기공 내부 표면의 적어도 일부에 폴리머층을 형성한다. 도 8은 다공성 분리막 의 기공 내부표면에 형성된 폴리머층의 한 예를 도시한다. 도 8에서 도시한대로, 다공성 분리막 1120의 기공 1160을 둘러싼 내부 표면에 형성된 폴리머층 1140은 기공의 친수성을 향상시켜, 전해액에 용해된 리튬 이온의 전도를 향상시킨다. 세척과 건조
[0388] 중합반응이 끝나면 코팅분리막을 용기에서 꺼내어 물이나 다른 세척용액으로 세척하여 표면에 있는 불필요한 물질을 제거한다. 세척이 끝나면 건조시킨다.
XIX. 코팅분리막 폴리머층의 부착성
[0389] 기중합된 폴리머를 용매에 용해하여 분리막 표면에 입히는 것이 아니라, 모노머를 분리막 표면에서 중합하여 폴리머층을 형성하게 한 것이므로, 분리막 표면과 폴리머층의 부착이 우수하다. 기공과 폴리머층
[039이 분리막의 기공은 리튬이온을 전도시키는 채널이다. 따라서 코팅층이 분리막의 기공을 메우거나 막으면 리튬이온 전도도가 떨어져 전지의 성능이 저하될 수 있다. 위 실시예에서는 분리막을 고분자 용액이 아닌, 모노머를 포함하는 중합반응 조성물에 담지시키거나 접촉시킨 채 중합반응을 일으킴으로써 모노머가 분자단위로 분리막의 표면에 퍼진채로 폴리머가 형성되므로 폴리머 자체를 용매에 용해하여 코팅을 행하는 것에 비해 폴리머 층이 기공을 막는 것을 최소화 할 수 있다. 또한 기공주변에 형성된 친수성 폴리머층은, 리튬이온이 기공을 통과하여 전도되는 것을 돕는다. 효과
[0391] 본 발명의 실시예에 따르면, 분리막 표면에 친수성 폴리머층을 형성함으로써 이온전도도를 크게 높인 코팅 분리막을 제공한다. 동시에 폴리머층은 분리막의 열안정성과 물성을 강화시킨다. 또한 모노머 단위로 분리막과 결합하여 폴리머층을 형성함으로써 분리막에 강하게 결합되어 반복된 방, 충전에도 코팅이 분리될 위험이 적다. 또한 모노머 단위로 분리막과 결합하여 폴리머층을 형성함으로써 박막 형태의 분리막 대신, 직물 구조형태의 분리막에도 코팅이 가능하다. 또한 모노머가 나노 단위의 기공에도 스며들어 기공 내부에 친수성 폴리머층을 형성할 수도 있다. 이러한 장점을 가지는 폴리머층을 비교적 간단하고 저렴한 공정을 통하여 형성할 수 있다.
XX. 분리막표면에서의 중합반응 중합반응의 조성물
[0392] 분리막의 금속표면에서 진행하는 중합반응 조성물은 모노머와 용매를 포함하며, 모노머가 기중합된 올리고머나 폴리머를 더 포함할 수 있다. pH 조절을 위하여 염기나 산, 완충 용액이 들어갈 수 있다. 그리고 경우에 따라서 중합반응의 개시제도 더 포함할 수 있다. 조성물 용액은, 분리막의 안정성을 증가시키기 위해 유/무기 필러를 추가로 포함할 수 있다. 모노머
[0393] 중합반응에 사용되는 모노머는, 중합반응이 자발적으로 개시되는 자가개시성 (self-initiating) 모노머이다. 그리고, 이 모노머는 염기성의 화합물이며, 화학식 1 내지 1 1의 화합물이다. 둘 이상의 모노머
[0394] 분리막의 표면에서 일어나는 중합반응은 둘 이상의 모노머를 이용하는 중합반응일 수 있다. 예를 들어, 3, 4 -디아미노피리 딘과 2, 6 -디아미노피리 딘의 공중합체와 같이 유사 구조의 이성질체 화합물 간의 교차 첨가 중합에 의한 공중합체일 수도 있고, 2, 5 - 디아미노피리 딘과 3 -아미노- 2 -사이클로헥센- 1 -온의 공중합체나, 2, 4, 6 -트리아미노피리미 딘과 3 -아미노크로톤산 메틸의 공중합체와 같이 서로 크게 다른 구조의 모노머 사이의 교차 첨가 중합에 의한 공중합체일 수도 있으며, 퍼퓨릴아민과 3 -아미노크로톤산 메틸 사이의 딜스-알더 중합 반응에 의한 공중합체 등일 수도 있다. 중합반응 조성물의 모노머 농도
[0395] 중합반응을 위한 조성물에서 모노머의 농도는 약 0.001 , 0.005, 0.01 , 0.05, 0.1 , 0.5, 1.0, 1 .5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10, 10.5, 1 1 , 1 1 .5, 1 2, 1 2.5, 1 3, 1 3.5, 14, 14.5, 1 5, 1 5.5, 16, 1 6.5, 17.5, 18, 18.5, 19, 19.5, 20 mg/mL이다. 모노머의 농도는 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 모노머 농도는 으 f 2.0에서 으片 .0의 범위, 약 1 .0에서 으 f 7.0의 범위에 속할 수 있다. 염기성 조성물
[0396] 일 실시예에 따르면, 중합반응 조성물은 pH는 8 이상의 염기성으로 조절한다. 화학식 1 내지 1 1의 화합물의 모노머 자체가 염기성이지만, 조성물의 pH를 조절하기 위하여 수산화나트륨 (0.01 M, 0.1 M, 또는 1 M 등), 15-20% DMEA (N,N-디메틸에틸아민, CAS 598- 56-1 ) 또는 15-20% 2 -디메틸아미노에탄올 (CAS 108-01 -0) (pH 13 부근), 붕산/붕산나트륨 완충 용액 (pH 9 부근) 등의 염기성 물질이 추가될 수 있다. 개시제
[0397] 일 실시예에 따르면, 중합반응을 위한 조성물은, 레디컬개시제 (radical initiator) L|- 광개시제 (photo initiator)를 포함하지 않는다. 다른 실시예에 따르면, 개시제를 포함할 수 있다. 중합반응의 개시
[0398] 중합반응은 별도의 개시제 없이 진행하는 것이 보통이나, 경우에 따라 개시제를 첨가한 상태에서 진행할 수도 있다. 중합반응은 용매의 끓는점보다 낮은 온도에서 진행하며, 통상 0-90 T의에 속한다. 개시제 없이 중합반응을 진행하는 경우, 기질 표면의 친핵성 작용기가 화학식 1 내지 1 1의 화합물의 불포화 결합과 반응하면서 중합반응이 개시된다. 개시제를 포함하는 경우
[0399] 화학식 1 내지 1 1의 화합물 모노머가 자가개시성이지만, 기질 표면의 물질에 따라서는 개시제를 이용하여 중합반응을 개시하는 것이 필요한 경우도 있다. 개시제로 사용할 수 있는 화합물을 예시하면, AIBN(Azobisisobutyronitrile), ABCN(1 ,1 '-Azobis(cyclohexane- carbonitrile)), 과산화디- tert-부틸 (di-tert-butyl peroxide), 과산화벤조일 (benzoyl peroxide) 등이 있다. 이들 개시제는 특정 온도가 되면 래디컬 중간체 (radical intermediate)를 생성하고 이 생성된 물질이 모노머와 반응하여 중합반응을 일으킨다. 예를 들어, AIBN을 개시제로 사용하는 경우 40, 45, 50, 55, 60, 65, 70 T일 수 있다. 중합반응 조성물의 온도
[040이 중합반응은 사용하는 용매의 끓는점보다 낮은 온도에서 진행한다. 중합반응 조성물의 온도는 약 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 T로 조절한다. 이 온도는 전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 중합반응 조성물의 온도는 으 I 20 내지 으 f 70 T의 범위, 으 f 40 내지 약 90 T의 범우 |, 약 10 내지 으 f 30 T의 범위에 속한다. 중합반응 조성물에 접촉하는 시간
[0401] 분리막 기질이 중합반응 조성물에 접촉하는 시간은 약 0.5, 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 1 2, 1 3, 14, 1 5, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 44, 46, 48, 50, 52, 54, 56, 68, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 또는 80 시간일 수 있다. 분리막 기질을 중합반응 조성물에 접촉시키는 시간은, 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 중합반응의 시간은 약 2 내지 약 10시간의 범우 |, 약 6 내지 약 1 2시간의 범위, 약 8 내지 약 24시간의 범위에 속하는 시간일 수 있다. 폴리머층이 형성된 분리막의 표면에 남은 액체 제거
[0402] 중합반응 용기에서 중합반응 조성물과 접촉하여 분리막의 표면에 폴리머층이 형성되면 이를 중합반응의 용기에서 꺼낸다. 다음으로, 흡수지나 흡수패드 등으로 표면을 닦거나 접촉하여 폴리머층이나 분리막의 표면에 남아 있는 중합반응 조성물의 액체 성분을 제거한다. 액체 성분을 닦아내기 전 또는 닦아낸 다음, 물이나 다른 세척용액으로 세척을 하는 경우도 있다. 세척을 하는 경우, 표면의 액체를 닦아낸다. 베이킹
[0403] 표면의 액체를 제거한 다음에는 오븐에서 베이킹을 진행한다. 베이킹은 폴리머층에 남아 있는 액체 성분을 증발시키고, 폴리머층에 형성된 폴리머가 크로스링크하게 하며, 폴리머층을 큐어 링하여 견고하게 한다. 베이킹 온도
[0404] 베이킹은 분리막 기질이 변성되지 않을 정도로 낮은 온도에서 수행하며, 약 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 1 10, 1 1 5, 120, 125, 1 30, 135, 140, 145, 또는 1 50 。仁에서 진행된다. 베이킹의 온도는, 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 베이킹은 약 50 내지 약 100 T의 범우 |, 약 60 내지 약 1 10 °C 의 범위에서 진행된다. 베이킹 시간
[0405] 베이킹은 약 0.5, 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12시간동안 진행된다. 베이킹 시간은, 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 베이킹은 약 2 시간 내지 5시간의 범우 |, 약 4시간 내지 약 6시간의 범위에서 진행된다. 폴리머층의 두께
[0406] 폴리머층의 두께는 약 0.1 , 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 , 1 .2, 1 .4, 1 .5, 1 .6, 1 .8, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 1 2, 1 5, 20, 25, 30『일 수 있다. 폴리머층의 두께는, 직전 문장에 나열된 숫자중 두개를 선택하여 얻어지는 범위에 속할 수 있다. 예를 들어, 폴리머층은 으 f 0.5 내지 으 f 3 pm의 범위, 약 1 내지 으 f 5『의 범위에 속하는 두께일 수 있다. 세척과 건조
[0407] 베이킹이 끝나면, 폴리머층에 남아 있는 잔류물질을 제거하기 위하여 세척한다. 폴리머층에는 중합반응 조성물의 성분이나 중합반응의 결과 형성된 물질이 들어 있다. 이들 중에는 금속표면, 플라스틱의 표면, 이들 표면에 붙은 폴리머 등과 단단하게 결합한 물질도 있지만, 느슨하게 연결되어 있는 것들도 있다. 산성의 세척액 그리고 염기성의 세척액으로 세척을 하면 폴리머층에 느슨하게 연결되어 있는 잔류물질을 제거할 수 있다. 세척이 끝나면 건조한다. 건조는 오븐에서 할 수 있다. 중합반응 결과조성물의 재사용
[0408] 중합반응이 끝나면 코팅분리막을 중합반응의 용기로부터 꺼낸다. 그 결과, 중합반응의 용기에 남아 있는 조성물에는 반응에 참여하지 않고 남은 모노머와 중합반응의 결과 생성된 폴리머, 올리고머, 다이머가 함께 섞여져 들어 있다. 폴리머, 올리고머, 다이머가 함께 들어있는 이 조성물은 버리지 않고, 다음 번 중합반응에 사용할 수 있다. 즉, 직전 중합반응을 하고 남은 조성물에 새로운 분리막을 담지하여 중합반응을 일으켜서 코팅분리막을 제조한다. 이 경우, 이미 조성물에 들어 있는 폴리머, 올리고머, 다이머가 생성되는 폴리머층에 포함될 수 있고, 또 이들 폴리머, 올리고머, 다이머가 중합반응에 참여하여 더 큰 폴리머나 올리고머를 생성할 수도 있다. 다음 번 분리막의 중합반응을 하기 전에 조성물에 들어 있는 모노머의 농도, pH등을 조절하기 위하여 필요한 성분을 추가할 수 있다.
XXL 실험예
[0409] 아래에서는 본 발명의 다양한 실시예를 구현한 실험등을 설명한다. 본 발명의 보호범위는 결코 후술하는 실험예로만 제한되지 않는다. 실험 1:유리 슬라이드상에 2, 5 -디아미노피리 딘 개질
[0410] pH 9.0의 보레이트 버퍼 (50 mM)에 2, 5 -디아미노피리 딘을 가하여 1 mg/1 mL 농도의 용액을 제조하였다. 상기 용액에 유리 슬라이드를 담가 90T에서 20 시간 동안 항온처리하였다. 유리 슬라이드를 꺼내 60°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 60°C 에서 5 분간 건조시켰다. 다시 유리 슬라이드를 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 60°C 에서 5분간 건조시켰다. 비교예 1
[0411] pH 9.0의 보레이트 버퍼 (50 mM)에 실시예 1 에서 사용한 것과 동일한 규격의 유리 슬라이드를 담가 90T에서 20시간 동안 항온처리하였다. 유리 슬라이드를 꺼내 60°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 60°C 에서 5분간 건조시켰다. 다시 유리 슬라이드를 HCI용액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 60°C 에서 5분간 건조시켰다. 실시예 2: 알루미늄 판 상에 2, 5 -디아미노피리 딘 개질
[0412] 알루미늄 판을 사용한 점만 제외하고 실시예 1에서와 동일한 방법으로 개질 시료를 제조하였다. 비교예 2
[0413] 알루미늄 판을 사용한 점만 제외하고 비교예 1 에서와 동일한 방법으로 비교예 시료를 준비하였다. 실시예 3: PMMA상에 2, 5 -디아미노피리 딘 개질
[0414] pH 9.0의 보레이트 버퍼 (50 mM)에 2, 5 -디아미노피리 딘을 가하여 1 mg/1 mL 농도의 용액을 제조하였다. 상기 용액에 폴리메틸메타크릴레이트 (PMMA) 필 름을 담가 90T에서 24시간 동안 항온처리하였다. 필름을 꺼내 60°C 오븐에 3시간 동 안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 60°C 에서 5분간 건조시켰다. 다시 필름을 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 60°C 에서 5분간 건조시켰다. 비교예 3
[0415] pH 9.0의 보레이트 버퍼 (50 mM)에 실시예 1 에서 사용한 것과 동일한 규격의 폴리메틸메타크릴레이트 (PMMA) 필름을 담가 9(TC에서 24시간 동안 항온처리 하였다. PMMA 필름을 꺼내 60°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초 간 세척하였다. 그 다음 충분한 양의 물로 세척하고 60°C 에서 5분간 건조시켰다. 다시 PMMA 필름을 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 60°C 에 서 5분간 건조시켰다. 실시예 4: PC상에 2, 5 -디아미노피리 딘 개질
[0416] 폴리카보네이트 (PC) 필름을 사용한 점만 제외하고 실시예 3에서와 동 일한 방법으로 표면개질 필름을 제조하였다. 비교예 4
[0417] 폴리카보네이트 (PC) 필름을 사용한 점만 제외하고 비교예 3에서와 동 일한 방법으로 시료를 준비하였다. 실시예 5: 이상에 2, 5 -디아미노피리 딘 개질
[0418] 폴리이미드 (PI) 필름을 사용한 점만 제외하고 실시예 3에서와 동일한 방법으로 표면개질 필름을 제조하였다. 비교예 5
[0419] 폴리이미드 (PI) 필름을 사용한 점만 제외하고 비교예 3에서와 동일한 방법으로 시료를 준비하였다. 실시예 6: PMMA상에 3, 4 -디아미노피리 딘 개질
[0420] 0.1 M NaOH 수용액 (25 mL)에 3, 4 -디아미노피리 딘을 가하여 1 mg/mL 농도의 용액 을 제조하였다. 상기 용액에 5 x 5 cm의 폴리메틸메타크릴레이트 (PMMA) 필름을 담가 8(TC에서 22시간 동안 항온처리하였다. 필름을 꺼내 15% 이소 프로필알코올로 20초간 세척한 다음 충분한 양의 물로 세척하고 60°C 에서 5분간 건조시켰다. 비교예 6
[0421] 0.1 M NaOH 수용액 (25 mL)에 실시예 6에서 사용한 것과 동일한 5 x 5 cm의 폴리메틸메타크릴레이트 (PMMA) 필름을 담가 80T에서 22시간 동안 항온처리 하였다. 필름을 꺼내 충분한 양의 물로 세척하고 60°C 에서 5분간 건조시켰다. 실시예 7: PMMA상에 3, 4 -디아미노피리 딘 개질
[0422] 0.1 M NaOH 수용액 (25 mL)에 3, 4 -디아미노피리 딘을 가하여 1 mg/mL 농도의 용액 을 제조하였다. 상기 용액에 5 x 5 cm의 폴리메틸메타크릴레이트 (PMMA) 필름을 담가 9(TC에서 22시간 동안 항온처리하였다. 필름을 꺼내 15% 이소 프로필알코올로 20초간 세척한 다음 충분한 양의 물로 세척하고 60°C 에서 5분간 건조 시켰다. 비교예 7
[0423] 비교예 6과 동일한 시료이다. 실시예 8: 이상에 3, 4 -디아미노피리 딘 개질
[0424] pH 9.0의 보레이트 버퍼 (500 mM)에 3, 4 -디아미노피리 딘을 가하여 1 mg/mL 농도의 용액을 제조하였다. 상기 용액에 폴리이미드 (PI) 필름을 담가 80T에서 24시간 동안 항온처리하였다. 필름을 꺼내 60°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 60°C 에서 5분간 건 조시켰다. 다시 필름을 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 60T 에서 5분간 건조시켰다. 비교예 8
[0425] 실시예 8에서 사용한 것과 동일한 폴리이미드 (PI) 필름을 아무런 처리 를 가하지 않고 그대로 사용하였다. 실시예 9: 이상에 2 -아미노- 3 -포밀피리 단 개질
[0426] pH 9.0의 보레이트 버퍼 (500 mM)에 2 -아미노- 3 -포밀피리 딘을 가하 여 1 mg/mL 농도의 용액을 제조하였다. 상기 용액에 폴리이미드 (PI) 필름을 담가 80T에서 24시간 동안 항온처리하였다. 필름을 꺼내 60°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 60°C 에서 5 분간 건조시켰다. 다시 필름을 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척 한 다음 60°C 에서 5분간 건조시켰다. 비교예 9
[0427] 비교예 8과 동일한 시료이다. 접촉각의 측정
[0428] 접촉각을 측정하기 위하여 미국 뉴저지주 소재 라메하트 인스트루먼트 사의 고니오미터 (모델 300)를 사용하였다. 미량주사기를 사용하여 시료액 (디메틸에탄올 아민 15% 수용액) 2 此 의 액체방울을 고니오미 터 샘플스테이지 상의 시료 표면에 올려놓았다. 고니오미터의 샘플스테이지에 올려 놓은 시료액 방울과 시료 표면과의 접촉상태를 알 수 있는 측면사진을 찍은 후에, 고니오미 터의 드롭이미지 (DROPImage) 소프트웨어를 사용하여 접촉각의 정량적인 정보를 알아내는 방식으로 접촉각을 측정하였다.
[0429] 위와 같은 방법으로 실시예 1 -9 시료 필름과 비교예 1 -9 시료 필름 에 대해 접촉각을 측정한 결과를 표 2 내지 표 9에 나타내었다. 【표 2] 실시예 1 시료와 비교예 1 시료의 접촉각 측정 결과
Figure imgf000106_0001
【표 3] 실시예 2 시료와 비교예 2 시료의 접촉각 측정 결과
Figure imgf000106_0002
【표 4】실시예 3 시료 필름과 비교예 3 시료 필름의 접촉각 측정 결과
Figure imgf000106_0003
【표 5] 실시예 4 시료 필름과 비교예 4 시료 필름의 접촉각 측정 결과
Figure imgf000106_0004
【표 6] 실시예 5 시료 필름과 비교예 5 시료 필름의 접촉각 측정 결과
Figure imgf000106_0005
Figure imgf000107_0001
【표 기 실시예 6 시료 필름과 비교예 6 시료 필름의 접촉각 측정 결과
Figure imgf000107_0002
【표 8] 실시예 7 시료 필름과 비교예 7 시료 필름의 접촉각 측정 결과
Figure imgf000107_0003
【표 9] 실시예 8 시료 필름과 비교예 8 시료 필름의 접촉각 측정 결과
Figure imgf000107_0004
【표 1이 실시예 9 시료 필름과 비교예 9 시료 필름의 접촉각 측정 결과
Figure imgf000107_0005
실시예 10: 미상에 4 -비 닐피리 딘 개질
[0430] pH 9.0의 보레이트 버퍼(500 mM)에 4 -비 닐피리 딘을 가하여 1 mg/mL 농도의 용액을 제조하였다. 상기 용액에 폴리이미드(PI) 필름을 담가 80T에서 24시간 동안 항온처리하였다. 필름을 꺼내 60°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 60°C 에서 5분간 건 조시켰다. 다시 필름을 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 60°C 에서 5분간 건조시켰다. 비교예 10
[0431] 실시예 10에서 사용한 것과 동일한 규격의 폴리이미드 (PI) 필름을 아무런 처리 없이 그대로 사용하였다.
[0432] 위와 같은 방법으로 실시예 10 시료 필름과 비교예 10 시료 필름에 대해 접촉각을 측정한 결과를 표 1 에 나타내었다.
【표 1 1】 실시예 10 시료와 비교예 10 시료의 접촉각 측정 결과
Figure imgf000108_0001
실시예 11:유리 슬라이드상에 3 -아미노- 2 -사이클로헥센- 1 -온 코팅
[0433] pH 9.0의 보레이트 버퍼 (50 mM)에 3 -아미노- 2 -사이클로헥센- 1 -온 을 가하여 1 mg/mL 농도의 용액을 제조하였다. 상기 용액에 유리 슬라이드를 담가 90T에서 20시간 동안 항온처리하였다. 유리 슬라이드를 꺼내 60°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 60°C 에서 5분간 건조시켰다. 다시 유리 슬라이드를 HCI 용액으로 20초간 세척하고 충분 한 양의 물로 세척한 다음 60°C 에서 5분간 건조시켰다. 비교예 11
[0434] pH 9.0의 보레이트 버퍼 (50 mM)에 실시예 11 에서 사용한 것과 동일한 규격의 유리 슬라이드를 담가 90T에서 20시간 동안 항온처리하였다. 유리 슬라이드를 꺼내 60°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 60°C 에서 5분간 건조시켰다. 다시 유리 슬라이드를 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 60°C 에서 5분간 건조시켰다. 실시예 12: 알루미늄 판 상에 3 -아미노- 2 -사이클로헥센- 1 -온 코팅
[0435] 알루미늄 판을 사용한 점만 제외하고 실시예 11 에서와 동일한 방법으로 코팅 시료를 제조하였다. 비교예 12
[0436] 알루미늄 판을 사용한 점만 제외하고 비교예 1 1에서 사용한 것과 동일한 방법으로 시료를 준비하였다. 실시예 13: 미상에 3 -아미노- 2 -사이클로헥센- 1 -온 코팅
[0437] pH 9.0의 보레이트 버퍼 (500 mM)에 3 -아미노- 2 -사이클로헥센- 1 -온을 가하여 1 mg/mL 농도의 용액을 제조하였다. 상기 용액에 폴리이미드 (PI) 필름 을 담가 80T에서 24시간 동안 항온처리하였다. 필름을 꺼내 60°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 60°C 에서 5분간 건조시켰다. 다시 필름을 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 60°C 에서 5분간 건조시켰다. 비교예 13
[0438] pH 9.0의 보레이트 버퍼 (500 mM)에 실시예 13에서 사용한 것과 동일 한 규격의 폴리이미드 (PI) 필름을 담가 80T에서 24시간 동안 항온처리하였다. 필름을 꺼내 60°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 60°C 에서 5분간 건조시켰다. 다시 필름을 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 60°C 에서 5분간 건조시켰다. 실시예 14: PET상에 3 -아미노- 2 -사이클로헥센- 1 -온 코팅
[0439] 농도가 각각 100 mM 및 500 mM인 pH 9.0 보레이트 버퍼에 3 -아미노- 2- 사이클로헥센- 1 -온을 가하여 1 mg/mL 농도의 두 가지 용액을 제조하였다. 상기 용액들에 폴리에틸렌테레프탈레이트 (PET) 필름을 담가 80T에서 24시간 동안 항온 처리하였다. 필름을 꺼내 60°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 60°C 에서 5분간 건조시켰다. 다시 필 름을 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 60°C 에서 5분간 건조시켰다. 100 mM 보레이트 버퍼를 사용한 시료를 실시예 14-1, 500 mM 보레이트 버퍼를 사용한 시료를 실시예 14-2로 표시하였다. 비교예 14
[044이 실시예 14에서 사용한 것과 동일한 규격의 PET 필름을 아무런 처리없이 그대로 사용하였다.
[0441] 위와 같은 방법으로 실시예 1 1 -14 시료 필름과 각각의 비교예 11 -14 시료 필름 에 대해 접촉각을 측정한 결과를 표 12 내지 표 15에 나타내었다.
【표 12] 실시예 11 시료와 비교예 11 시료의 접촉각 측정 결과
Figure imgf000110_0001
【표 13】 실시예 12 시료와 비교예 12 시료의 접촉각 측정 결과
Figure imgf000110_0002
【표 14】 실시예 13 시료 필름과 비교예 13 시료 필름의 접촉각 측정 결과
Figure imgf000110_0003
【표 15】 실시예 14-1 및 14-2 시료 필름과 비교예 14 시료 필름의 접촉각 측정 결과
Figure imgf000110_0004
실시예 15: 유리 슬라이드 상에 1 -에테닐사이클로펜탄- 1 -아민 개질
[0442] pH 9.0의 보레이트 버퍼 (50 mM)에 1 -에테닐사이클로펜탄- 1 -아민을 가하여 1 mg/mL 농도의 용액을 제조하였다. 상기 용액에 유리 슬라이드를 담가 90T에서 20시간 동안 항온처리하였다. 유리 슬라이드를 꺼내 60°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 6(TC에서 5분간 건조시켰다. 다시 유리 슬라이드를 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 60T에서 5분간 건조시켰다. 비교예 15
[0443] pH 9.0의 보레이트 버퍼 (50 mM)에 실시예 15에서 사용한 것과 동일한 규격의 유리 슬라이드를 담가 90T에서 20시간 동안 항온처리하였다. 유리 슬라이드를 꺼내 60°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 60T에서 5분간 건조시켰다. 다시 유리 슬라이드를 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 6(TC에서 5분간 건조시켰다. 실시예 16: 폴리이미드 필름 상에 1 -에테닐사이클로펜탄- 1 -아민 개질
[0444] 폴리이미드 (PI) 필름을 사용한 점만 제외하고 실시예 15에서와 동일한 방법으로 표면개질 필름을 제조하였다. 비교예 16
[0445] 폴리이미드 (PI) 필름을 사용한 점만 제외하고 비교예 15에서와 동일한 방법으로 시료를 준비하였다.
[0446] 위와 같은 방법으로 실시예 15-16및 비교예 15-16 시료 필름들에 대해 접촉각을 측정한 결과를 표 16 및 표 17에 나타내었다.
【표 16】
Figure imgf000111_0001
【표 1기
Figure imgf000112_0001
실시예 17a: 실온의 약염기성 용액에서 유리 슬라이드 상에 퍼퓨릴아민 개질
[0447] pH 9.0의 보레이트 버퍼 (50 mM)에 퍼퓨릴아민을 가하여 1 mg/1 mL 농도의 용액을 제조하였다. 상기 용액에 유리 슬라이드를 실온에서 20시간 동안 담가두 었다. 유리 슬라이드를 꺼내 70°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 70T에서 5분간 건조시켰다. 다시 유리 슬라이드를 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 7(TC에서 5 분간 건조시켰다. 실시예 17b: 실온의 약염기성 용액에서 유리 슬라이드 상에 퍼퓨릴아민과 3 -아미노크로톤산 메틸과의 공중합체 개질
[0448] pH 9.0의 보레이트 버퍼 (50 mM)에 퍼퓨릴아민과 3 -아미노크로톤산 메틸을 가하여 두 용질에 대하여 각각 1 mg/1 mL, 1.7mg/1 mL 농도의 용액을 제조하였다. 이후의 과정은 실시예 1 a에서와 동일한 방법으로 개질 시료를 제조하였다. 비교예 17
[0449] pH 9.0의 보레이트 버퍼 (50 mM)에 실시예 17에서 사용한 것과 동일한 규격의 유리 슬라이드를 실온에서 20시간 동안 담가 두었다. 유리 슬라이드를 꺼내 70°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양 의 물로 세척하고 70T에서 5분간 건조시켰다. 다시 유리 슬라이드를 HCI용액으로 20 초간 세척하고 충분한 양의 물로 세척한 다음 70T에서 5분간 건조시켰다. 실시예 18a: 실온의 강염기성 용액에서 유리 슬라이드 상에 퍼퓨릴아민 개질
[0450] pH 13의 디메틸에탄올아민 8% 수용액에 퍼퓨릴아민을 가하여 1 mg/1 mL 농도의 용액을 제조하였다. 상기 용액에 유리 슬라이드를 실온에서 12시간 동안 담가 두었다. 유리 슬라이드를 꺼내 70°C 오븐에 3시간 동안 두었다가 NaOH 용액 으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 70T에서 5분간 건조시켰 다. 다시 유리 슬라이드를 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다 음 70T에서 5분간 건조시켰다. 실시예 18b: 실온의 강염기성 용액에서 유리 슬라이드 상에 퍼퓨릴아민과 3 -아미노크로톤산 메틸과의 공중합체 개질
[0451] pH 13의 디메틸에탄올아민 8% 수용액에 퍼퓨릴아민과 3 -아미노크로 톤산 메틸을 가하여 두 용질에 대하여 각각 1 mg/1 mL, 1.7mg/1 mL 농도의 용액을 제조 하였다. 이후의 과정에서는 실시예 18a에서와 동일한 방법으로 개질 시료를 제조하였다. 비교예 18
[0452] pH 9.0의 보레이트 버퍼 (50 mM)에 실시예 18에서 사용한 것과 동일한 규격의 유리 슬라이드를 실온에서 12시간 동안 담가 두었다. 유리 슬라이드를 꺼내 70°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양 의 물로 세척하고 70T에서 5분간 건조시켰다. 다시 유리 슬라이드를 HCI용액으로 20 초간 세척하고 충분한 양의 물로 세척한 다음 70T에서 5분간 건조시켰다. 실시예 19a: 실온의 약염기성 용액에서 폴리이미드 필름 상에 퍼퓨릴아민 개질
[0453] 폴리이미드 (PI) 필름을 사용한 점만 제외하고 실시예 17a에서와 동일한 방법으로 표면개질 필름을 제조하였다. 실시예 19b: 실온의 약염기성 용액에서 폴리이미드 필름 상에 퍼퓨릴아민과 3 -아미노크로톤산 메틸과의 공중합체 개질
[0454] 폴리이미드 (PI) 필름을 사용한 점만 제외하고 실시예 17b에서와 동일한 방법으로 표면개질 필름을 제조하였다. 비교예 19
[0455] 폴리이미드 (PI) 필름을 사용한 점만 제외하고 비교예 17에서와 동일한 방법으로 시료를 준비하였다. 실시예 20: 5(TC 약염기성 용액에서 폴리이미드 필름 상에 퍼퓨릴아민개질
[0456] pH 9.0의 보레이트 버퍼 (50 mM)에 퍼퓨릴아민을 가하여 1 mg/1 mL 농도의 용액을 제조하였다. 상기 용액에 폴리이미드 (PI) 필름을 담가 50T에서 3시간 동안 항온처리하였다. PI 필름을 꺼내 70°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 70T에서 5분간 건조시켰다. 다시 유리 슬라이드를 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세 척한 다음 70T에서 5분간 건조시켰다. 비교예 20
[0457] pH 9.0의 보레이트 버퍼 (50 mM)에 실시예 20a에서 사용한 것과 동일 한 규격의 PI 필름을 담가 50T에서 3시간 동안 항온처리하였다. PI 필름을 꺼내 70°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 70T에서 5분간 건조시켰다. 다시 PI 필름을 HCI용액으로 20초간 세척 하고 충분한 양의 물로 세척한 다음 70T에서 5분간 건조시켰다. 실시예 21 : 70T 약염기성 용액에서 폴리이미드 필름 상에 퍼퓨릴아민개질
[0458] pH 9.0의 보레이트 버퍼 (50 mM)에 퍼퓨릴아민을 가하여 1 mg/1 mL 농도의 용액을 제조하였다. 상기 용액에 폴리이미드 (PI) 필름을 담가 70T에서 20시간 동안 항온처리하였다. 이후의 과정에서는 실시예 20에서와 동일한 방법으로 개질 시료를 제조하였다. 비교예 21
[0459] pH 9.0의 보레이트 버퍼 (50 mM)에 실시예 21 에서 사용한 것과 동일한 규격의 PI 필름을 담가 7(TC에서 20시간 동안 항온처리하였다. 이후의 과정에서는 비교예 20에서와 동일한 방법으로 개질 시료를 제조하였다. 실시예 22a: 실온의 강염기성 용액에서 폴리이미드 필름 상에 퍼퓨릴아민 개질
[046이 폴리이미드 (PI) 필름을 사용한 점만 제외하고 실시예 18a에서와 동일한 방법으로 표면개질 필름을 제조하였다. 실시예 22b: 실온의 강염기성 용액에서 폴리이미드 필름 상에 퍼퓨릴아민과 3 -아미노크로톤산 메틸과의 공중합체 개질
[0461] 폴리이미드 (PI) 필름을 사용한 점만 제외하고 실시예 18b에서와 동일한 방법으로 표면개질 필름을 제조하였다. 비교예 22
[0462] 폴리이미드 (PI) 필름을 사용한 점만 제외하고 비교예 18에서와 동일한 방법으로 시료를 준비하였다. 실시예 23: 7(TC 강염기성 용액에서 폴리이미드 필름 상에 퍼퓨릴아민 개질
[0463] pH 13의 디메틸에탄올아민 8% 수용액에 퍼퓨릴아민을 가하여 1 mg/1 mL 농도의 용액을 제조하였다. 상기 용액에 폴리이미드 (PI) 필름을 담가 70T에 서 20시간 동안 항온처리하였다. PI 필름을 꺼내 70°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 70T에서 5분 간 건조시켰다. 다시 유리 슬라이드를 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 70T에서 5분간 건조시켰다. 비교예 23
[0464] pH 13의 디메틸에탄올아민 8% 수용액에 실시예 7에서 사용한 것과 동일한 규격의 PI 필름을 담가 70T에서 20시간 동안 항온처리하였다. 유리 슬라이드를 꺼내 70°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 70T에서 5분간 건조시켰다. 다시 유리 슬라이드를 HCI-g 액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 70T에서 5분간 건조시켰다. 실시예 24a: 실온의 약염기성 용액에서 폴리에틸렌 필름 상에 퍼퓨릴아민 개질
[0465] 식품포장재용 폴리에틸렌 (PE) 필름 (양면의 폴리에틸렌 필름 사이에 인쇄면 필름 및 알루미늄 필름이 존재하는 복합 필름)을 사용한 점만 제외하고 실시예 17a에서와 동일한 방법으로 표면개질 필름을 제조하였다. 실시예 24b: 실온의 약염기성 용액에서 폴리에틸렌 필름 상에 퍼퓨릴아민과 3 -아미노크로톤산 메틸과의 공중합체 개질
[0466] 식품포장재용 폴리에틸렌 (PE) 필름을 사용한 점만 제외하고 실시예
17b에서와 동일한 방법으로 표면개질 필름을 제조하였다. 비교예 24
[0467] 식품포장재용 폴리에틸렌 (PE) 필름을 사용한 점만 제외하고 비교예 17 에서와 동일한 방법으로 시료를 준비하였다. 실시예 25a: 실온의 강염기성 용액에서 폴리에틸렌 필름 상에 퍼퓨릴아민 개질 [0468] 식품포장재용 폴리에틸렌 (PE) 필름을 사용한 점만 제외하고 실시예
18a에서와 동일한 방법으로 표면개질 필름을 제조하였다. 실시예 25b: 실온의 강염기성 용액에서 폴리에틸렌 필름 상에 퍼퓨릴아민과 3 -아미노크로톤산 메틸과의 공중합체 개질
[0469] 식품포장재용 폴리에틸렌 (PE) 필름을 사용한 점만 제외하고 실시예 18b에서와 동일한 방법으로 표면개질 필름을 제조하였다. 비교예 25
[047이 식품포장재용 폴리에틸렌 (PE) 필름을 사용한 점만 제외하고 비교예 18 에서와 동일한 방법으로 시료를 준비하였다.
[0471] 위와 같은 방법으로 실시예 17-25 시료 필름과 비교예 17-25 시료 필름 에 대해 접촉각을 측정한 결과를 표 18 내지 표 26에 나타내었다. "점적액’’이란 접촉각 측정 에 사용한 시료액을 의미한다.
Figure imgf000116_0001
Figure imgf000117_0001
【표 21 ] 실시예 20 시료와 비교예 20 시료의 접촉각 측정 결과
Figure imgf000117_0002
【표 22] 실시예 21 시료와 비교예 21 시료의 접촉각 측정 결과
Figure imgf000117_0003
【표 23] 실시예 22a 및 22b 시료와 비교예 22 시료의 접촉각 측정 결과
Figure imgf000117_0004
【표 24] 실시예 23 시료와 비교예 23 시료의 접촉각 측정 결과
Figure imgf000118_0001
【표 25】 실시예 24a 및 24b 시료와 비교예 24 시료의 접촉각 측정 결과
Figure imgf000118_0002
【표 26] 실시예 25a 및 25b 시료와 비교예 25 시료의 접촉각 측정 결과
Figure imgf000118_0003
[0472] 상기 결과로부터, 다양한 기질의 표면 개질에 퍼퓨릴아민을 단독으로 사용하거나 메틸 3 -아미노크로토네이트와 함께 사용하는 경우 모두 소수성 코팅을 제공한다는 사실을 확인할 수 있었다. 특정한 기질과 표면 개질 조건에 따라 개질된 표면 의 성질이 다양하게 변할 수 있으며 퍼퓨릴아민과 메틸 3 -아미노크로토네이트 두 가지 화합물을 함께 사용하였을 때 더욱 소수성이 강한 코팅을 얻는 경향을 확인할 수 있었다. 통상의 기술자는 위 실험 결과로부터 원하는 성질을 갖는 기질 표면을 얻기 위 해 적합한 화합물 및 표면 개질 조건을 최적화할 수 있을 것이다. 실시예 26: 실온의 약염기성 용액에서 유리 슬라이드 상에 3 -아미노크로톤산 메틸 개질
[0473] pH 9.0의 보레이트 버퍼 (50 mM)에 3 -아미노크로톤산 메틸을 가하여 1 mg/1 mL 농도의 용액을 제조하였다. 상기 용액에 유리 슬라이드를 실온에서 20시간 동안 담가두었다. 유리 슬라이드를 꺼내 70°C 오븐에 3시간 동안 두었다가 NaOH 용액 으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 70T에서 5분간 건조시켰다. 다시 유리 슬라이드를 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다 음 70T에서 5분간 건조시켰다. 비교예 26
[0474] pH 9.0의 보레이트 버퍼 (50 mM)에 실시예 26에서 사용한 것과 동일한 규격의 유리 슬라이드를 실온에서 20시간 동안 담가 두었다. 유리 슬라이드를 꺼내 70°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 70T에서 5분간 건조시켰다. 다시 유리 슬라이드를 HCI용액으로 20 초간 세척하고 충분한 양의 물로 세척한 다음 70T에서 5분간 건조시켰다. 실시예 27: 실온의 강염기성 용액에서 유리 슬라이드 상에 3 -아미노크로톤산 메틸 개질
[0475] pH 13의 디메틸에탄올아민 8% 수용액에 3 -아미노크로톤산 메틸을 가하여 1 mg/1 mL 농도의 용액을 제조하였다. 상기 용액에 유리 슬라이드를 실온에서 12시간 동안 담가 두었다. 유리 슬라이드를 꺼내 70°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양의 물로 세척하고 70T에서 5분간 건조시켰다. 다시 유리 슬라이드를 HCI 용액으로 20초간 세척하고 충분한 양의 물로 세척한 다음 70T에서 5분간 건조시켰다. 비교예 27
[0476] pH 9.0의 보레이트 버퍼 (50 mM)에 실시예 28에서 사용한 것과 동일한 규격의 유리 슬라이드를 실온에서 12시간 동안 담가 두었다. 유리 슬라이드를 꺼내 70°C 오븐에 3시간 동안 두었다가 NaOH 용액으로 20초간 세척하였다. 그 다음 충분한 양 의 물로 세척하고 70T에서 5분간 건조시켰다. 다시 유리 슬라이드를 HCI용액으로 20 초간 세척하고 충분한 양의 물로 세척한 다음 70T에서 5분간 건조시켰다. 실시예 28: 실온의 약염기성 용액에서 폴리이미드 필름 상에 3 -아미노크로톤산 메틸 개질
[0477] 폴리이미드 (PI) 필름을 사용한 점만 제외하고 실시예 27에서와 동일한 방법으로 표면개질 필름을 제조하였다. 비교예 28
[0478] 폴리이미드 (PI) 필름을 사용한 점만 제외하고 비교예 27에서와 동일한 방법으로 시료를 준비하였다. 실시예 29: 실온의 강염기성 용액에서 폴리이미드 필름 상에 3 -아미노크로톤산 메틸 개질
[0479] 폴리이미드 (PI) 필름을 사용한 점만 제외하고 실시예 28에서와 동일한 방법으로 표면개질 필름을 제조하였다. 비교예 29
[048이 폴리이미드 (PI) 필름을 사용한 점만 제외하고 비교예 28에서와 동일한 방법으로 시료를 준비하였다. 실시예 30: 실온의 약염기성 용액에서 폴리에틸렌 필름 상에 3 -아미노크로톤산 메틸 개질
[0481] 식품포장재용 폴리에틸렌 (PE) 필름 (양면의 폴리에틸렌 필름 사이에 인쇄면 필름 및 알루미늄 필름이 존재하는 복합 필름)을 사용한 점만 제외하고 실시예 27 에서와 동일한 방법으로 표면개질 필름을 제조하였다. 비교예 30
[0482] 식품포장재용 폴리에틸렌 (PE) 필름을 사용한 점만 제외하고 비교예 27에서와 동일한 방법으로 시료를 준비하였다. 실시예 31 : 실온의 강염기성 용액에서 폴리에틸렌 필름 상에 3 -아미노크로톤산 메틸 개질 [0483] 식품포장재용 폴리에틸렌 (PE) 필름을 사용한 점만 제외하고 실시예 28 에서와 동일한 방법으로 표면개질 필름을 제조하였다. 비교예 31
[0484] 식품포장재용 폴리에틸렌 (PE) 필름을 사용한 점만 제외하고 비교예 28에서와 동일한 방법으로 시료를 준비하였다.
Figure imgf000121_0001
【표 30] 실시예 29 시료와 비교예 29 시료의 접촉각 측정 결과
Figure imgf000122_0001
【표 31 ] 실시예 30 시료와 비교예 30 시료의 접촉각 측정 결과
Figure imgf000122_0002
【표 32] 실시예 31 시료와 비교예 31 시료의 접촉각 측정 결과
Figure imgf000122_0003
[0485] 상기 결과로부터, 다양한 기질의 표면 개질에 불포화 비고리 아민 화합물을 사용하는 경우 소수성 코팅을 제공한다는 사실을 확인할 수 있었다. 특정한 기질과 표면 개질 조건에 따라 개질된 표면의 성질이 다양하게 변할 수 있으며 표면 개질에 사용하는 불포화 비고리 아민 화합물을 적절히 선택함으로써 개질된 표면의 성질을 조정 하는 것도 가능하다는 사실을 확인할 수 있었다. 통상의 기술자는 위 실험 결과로부터 원하는 성질을 갖는 기질 표면을 얻기 위해 적합한 화합물 및 표면 개질 조건을 최적화 할 수 있을 것이다. 실험예 - 모노머용액 준비 실험 32
[0486] pH 9.0의 보레이트 버퍼 (50 mM)에 표 1의 화합물 번호 1을 추가하여 1 mg/1 mL 농도의 모노머용액을 준비한다. 실험 33-256
[0487] 표 1의 화합물 번호 1 대신 각각 화합물 번호 2 내지 225를 가하는 것 이외에는 실험 32와 동일한 방법으로 모노머용액을 준비한다. 실험 257
[0488] pH 9.0의 보레이트 버퍼 (50 mM)에 표 1의 화합물 번호 1을 추가하여 0.5mg/1 mL 농도의 모노머용액을 준비한다. 실험 258-481
[0489] 표 1의 화합물 번호 1 대신 각각 화합물 번호 2 내지 225를 가하는 것 이외에는 실험 257과 동일한 방법으로 모노머용액을 준비한다. 실험 482
[0490] pH 9.0의 보레이트 버퍼 (50 mM)에 표 1의 화합물 번호 1을 추가하여 5mg/1 mL 농도의 모노머용액을 준비한다. 실험 483-706
[0491] 표 1의 화합물 번호 1 대신 각각 화합물 번호 2 내지 225를 가하는 것 이외에는 실험 482와 동일한 방법으로 모노머용액을 준비한다. 실험 707
[0492] pH 13의 디메틸에탄올아민 8% 수용액에 표 1의 화합물 번호 1를 가하여 1 mg/1 mL 농도의 모노머용액을 준비한다. 실험 708-931 [0493] 표 1의 화합물 번호 1 대신 각각 화합물 번호 2 내지 225를 가하는 것 이외에는 실험 707와 동일한 방법으로 모노머용액을 준비한다. 실험 932
[0494] 0.1 M NaOH 수용액에 표 1의 화합물 번호 1를 가하여 1 mg/1 mL 농도의 모노머용액을 준비한다. 실험 933-1 156
[0495] 표 1의 화합물 번호 1 대신 각각 화합물 번호 2 내지 225를 가하는 것 이외에는 실험 932와 동일한 방법으로 모노머용액을 준비한다. 실험예 - 폴리머층 형성 실험 1157
[0496] 실험 32 내지 1 156에서 준비된 모노머 용액에 알루미늄 박막을 담근다. 60T에서 12시간을 유지한 다음, 모노머 용액에서 알루미늄 박막을 꺼내어 90°C 오븐에 넣는다. 90°C 오븐에 3시간을 둔 다음 꺼내어 세척하고 건조한다. 건조된 알루미늄 박막의 표면에 폴리머층이 형성되었는지 확인한다. 실험 1158
[0497] 실험 32 내지 1 156에서 준비된 모노머 용액에 알루미늄 박막을 담근다. 60T에서 24시간을 유지한 다음, 모노머 용액에서 알루미늄 박막을 꺼내어 90°C 오븐에 넣는다. 90°C 오븐에 3시간을 둔 다음 꺼내어 세척하고 건조한다. 건조된 알루미늄 박막의 표면에 폴리머층이 형성되었는지 확인한다. 실험 1159
[0498] 실험 32 내지 1 156에서 준비된 모노머 용액에 알루미늄 박막을 담근다. 60T에서 48시간을 유지한 다음, 모노머 용액에서 알루미늄 박막을 꺼내어 90°C 오븐에 넣는다. 90°C 오븐에 3시간을 둔 다음 꺼내어 세척하고 건조한다. 건조된 알루미늄 박막의 표면에 폴리머층이 형성되었는지 확인한다. 실험 1160
[0499] 실험 32 내지 1 156에서 준비된 모노머 용액에 알루미늄 박막을 담근다. 90T에서 12시간을 유지한 다음, 모노머 용액에서 알루미늄 박막을 꺼내어 90°C 오븐에 넣는다. 90°C 오븐에 3시간을 둔 다음 꺼내어 세척하고 건조한다. 건조된 알루미늄 박막의 표면에 폴리머층이 형성되었는지 확인한다. 실험 1161
[0500] 실험 32 내지 1 156에서 준비된 모노머 용액에 알루미늄 박막을 담근다. 90T에서 24시간을 유지한 다음, 모노머 용액에서 알루미늄 박막을 꺼내어 90°C 오븐에 넣는다. 90°C 오븐에 3시간을 둔 다음 꺼내어 세척하고 건조한다. 건조된 알루미늄 박막의 표면에 폴리머층이 형성되었는지 확인한다. 실험 1162
[0501] 실험 32 내지 1 156에서 준비된 모노머 용액에 알루미늄 박막을 담근다. 90T에서 48시간을 유지한 다음, 모노머 용액에서 알루미늄 박막을 꺼내어 90°C 오븐에 넣는다. 90°C 오븐에 3시간을 둔 다음 꺼내어 세척하고 건조한다. 건조된 알루미늄 박막의 표면에 폴리머층이 형성되었는지 확인한다. 실험 1163
[0502] 실험 32 내지 1 156에서 준비된 모노머 용액에 알루미늄 박막을 담근다. 60T에서 24시간을 유지한 다음, 모노머 용액에서 알루미늄 박막을 꺼내어 90°C 오븐에 넣는다. 90°C 오븐에 6시간을 둔 다음 꺼내어 세척하고 건조한다. 건조된 알루미늄 박막의 표면에 폴리머층이 형성되었는지 확인한다. 실험 1164
[0503] 실험 32 내지 1 156에서 준비된 모노머 용액에 알루미늄 박막을 담근다. 60T에서 24시간을 유지한 다음, 모노머 용액에서 알루미늄 박막을 꺼내어 120°C 오븐에 넣는다. 120°C 오븐에 3시간을 둔 다음 꺼내어 세척하고 건조한다. 건조된 알루미늄 박막의 표면에 폴리머층이 형성되었는지 확인한다. 실험 1165
[0504] 실험 32 내지 1 156에서 준비된 모노머 용액에 알루미늄 박막을 담근다. 60T에서 24시간을 유지한 다음, 모노머 용액에서 알루미늄 박막을 꺼내어 120°C 오븐에 넣는다. 120°C 오븐에 6시간을 둔 다음 꺼내어 세척하고 건조한다. 건조된 알루미늄 박막의 표면에 폴리머층이 형성되었는지 확인한다. 실험 1166 내지 1174
[0505] 알루미늄 박막 대신 폴리에틸렌 (PE) 필름을 사용하는 것 이외에는 실험 1 157 내지 1 165에서와 동일한 방법으로 실험을 행하여 폴리머층이 형성되었는지 확인한다. 실험 1175 내지 1183
[0506] 알루미늄 박막 대신 폴리프로필렌 (PP) 필름을 사용하는 것 이외에는 실험 1 157 내지 1 165에서와 동일한 방법으로 실험을 행하여 폴리머층이 형성되었는지 확인한다. 실험 1184 내지 1192
[0507] 알루미늄 박막 대신 폴리이미드 (PI) 필름을 사용하는 것 이외에는 실험 1 157 내지 1 165에서와 동일한 방법으로 실험을 행하여 폴리머층이 형성되었는지 확인한다. 실험 1193 내지 1201
[0508] 알루미늄 박막 대신 PET 부직포를 사용하는 것 이외에는 실험 1 157 내지 1 165에서와 동일한 방법으로 실험을 행하여 폴리머층이 형성되었는지 확인한다. 실험예 - 알루미늄 포일의 투습도 실험 1202
[0509] 63 pm 두께와 10 cm x 10 cm 면적의 알루미늄 포일 시료의 투습도를 측정한다. 투습도는 1 x10-2 내지 1 x1 (r1 g/m2/day의 값을 가지는 것으로 확인된다. 실험 1203
[0510] 상기 실험 1202와 동일한 크기의 알루미늄 포일에 실험 632 내지 639 에서와 동일한 방법으로 폴리머층을 생성한 다음 투습도록 측정한다. 투습도는 1 x10-4 내지 1 xW3 g/m2/day로 확인된仁!’. 실험예 - PLED 패널 봉지구조체 실험 672
[0511] 두께 약 63 pm의 알루미늄 포일과 폴리에틸렌테레프탈레이트 (PET) 필름을 접착제로 접착하고 압착하여 알루미늄 포일 라미네이트를 준비한다. 준비된 알루미늄 포일 라미네이트에서 알루미늄 포일의 결함을 확인하고, 투습도를 측정한다. 실험 673 내지 680
[0512] 알루미늄 박막 대신 실험 672의 알루미늄 포일 라미네이트를 사용하는 것 이외에는 실험 632 내지 639에서와 동일한 방법으로 실험을 행하여 알루미늄 포일 표면에 폴리머층이 형성되었는지 확인한다. 실험 672에서 확인한 알루미늄 포일의 결함이 폴리머층에 의해 메워진 것을 확인하고, 투습도를 측정한다. 실험예 - 식품포장재 실험 681
[0513] 두께 약 50 pm의 폴리프로필렌 (PP) 필름을 기상증착 체임버에 넣어, 기상증착 기술을 이용하여 알루미늄을 증착하여 알루미늄 증착 폴리프로필렌 라미네이트를 준비한다. 준비한 알루미늄 증착 폴리프로필렌 라미네이트에서 알루미늄 층의 결함을 확인하고, 투습도를 측정한다. 실험 682 내지 689
[0514] 알루미늄 브 t므 t 대신 실험 681 °| 알루미늄 증착 폴리프로필렌 라미네이트를 사용하는 것 이외에는 실험 632 내지 639에서와 동일한 방법으로 실험을 행하여 알루미늄 층 표면에 폴리머층이 형성되었는지 확인한다. 실험 632에서 확인한 알루미늄 층의 결함이 폴리머층에 의해 메워진 것을 확인하고 투습도를 측정한다. 실험예 - 코팅분리막 실험 690
[0515] 약 30 『 두께의 다공성 폴리프로필렌 (PP) 분리막을 준비하여, 이온전도도를 확인한다. 실험 691
[0516] 알루미늄 박막 대신 실험 690의 다공성 폴리프로필렌 (PP) 분리막을 사용하는 것 이외에는 실험 632 내지 639에서와 동일한 방법으로 실험을 행하여 다공성 폴리프로필렌 (PP)층 표면에 폴리머층이 형성되었는지 확인한다. 폴리머층이 형성된 코팅분리막의 이온전도도를 확인한다.

Claims

청구범위
1. 플라스틱 필름, 그 위에 형성된 금속층을 포함하는 중간구조체를 제공하는 단계, 상기 중간구조체의 금속층 상에서 중합반응을 일으켜 폴리머층을 형성하는 단계를 포함하는 금속 라미네이트 구조체의 제조방법으로서, 상기 금속 라미네이트 구조체는, 플라스틱 필름, 플라스틱 필름 위에 형성된 금속층, 금속층 위에 형성된 폴리머층을 포함하며, 상기 중합반응의 조성물은 바인더를 포함하지 않고, 그리하여 중합반응에 의해 형성되는 폴리머층에 바인더가 포함되지 않고, 상기 폴리머층에는, 화학식 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10 및 1 1에 속하는 화합물, 그리고 화합물 번호 204-248의 화합물 중 적어도 하나를 모노머로 하여 얻어지는 폴리머가 포함되는 금속 라미네이트 구조체를 제조하는 방법:
Figure imgf000128_0001
Figure imgf000129_0001
Figure imgf000129_0002
Figure imgf000130_0002
Figure imgf000130_0001
Figure imgf000131_0001
Figure imgf000132_0001
Figure imgf000133_0001
Figure imgf000134_0001
132
Figure imgf000135_0001
2. 제 1항에 있어시, 상기 금속층은 약 1川 내지 약 200 ⑷ 범위의 두께를 갖는 금속 호일을 포함하고, 상기 중간구조체에는 금속층과 플라스틱 필름 사이에 접착층이 끼어 있는, 금속 라미네이트 구조체를 제조하는 방법.
3. 제 1항에 있어시, 상기 중간구조체를 제공하는 단계가, 플라스틱 필름과 금속층을 제공하는 단계; 플라스틱 필름과 금속층 사이에 접착제를 발라 적층하여 플라스틱 필름과 금속층 사이에 개재된 접착층을 제공하는 단계를 포함하는, 금속 라미네이트 구조체를 제조하는 방법.
133
4. 제 1항에 있어시, 상기 금속층은 플라스틱 필름 위에 형성된 금속 증착물을 포함하며, 금속층의 두께는 약 1 nm 내지 약 50 nm이며, 금속층과 플라스틱 필름 사이에는 개재된 별개의 층이 없는, 금속 라미네이트 구조체를 제조하는 방법.
5. 제 1항에 있어시, 상기 중간구조체를 제공하는 단계가, 플라스틱 필름을 제공하는 단계; 금속을 증착하여 플라스틱 필름 상에 금속층을 형성하는 단계를 포함하는, 금속 라미네이트 구조체를 제조하는 방법.
6. 제 5항에 있어시, 상기 중간구조체를 제공하는 단계가, 금속의 증착을 수행하기 전에 플라스틱 필름의 표면을 플라즈마 처리하는 단계를 더 포함하고, 금속의 증착은 플라스틱 필름의 표면에 이루어지는, 금속 라미네이트 구조체를 제조하는 방법.
7. 제 1항 내지 제 6항 중 어느 한 항에 있어서, 중합반응을 일으키는 단계가, 중간구조체의 금속층을 중합반응 조성물에 접촉하게 하는 것을 포함하는, 금속 라미네이트 구조체를 제조하는 방법.
8. 제 1항 내지 제 6항 중 어느 한 항에 있어서, 금속층 위에서의 중합반응 결과 형성되는 폴리머층에는, 상기 적어도 하나의 모노머로부터 유래하는 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상의 화합물이 상당한 양으로 포함되며, 그 상당한 양은, 분자량이 특정 범위인 판매되는 폴리머 조성물에는 그 만큼의 올리고머, 사량체, 삼량체 및 이량체가 들어 있지 않을 정도인, 금속 라미네이트 구조체를 제조하는 방법.
9. 제 1항 내지 제 6항 중 어느 한 항에 있어서, 금속층에 위에서의 중합반응 결과 형성되는 폴리머층에는, 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상의 화합물이, 금속층에 화학적으로 결합되어 있으며, 이 같이 올리고머, 사량체, 삼량체나 이량체가 금속층에 화학적으로 결합하는 것은 기중합된 폴리머를 금속층에 코팅하는 경우에는 일어날 수 없는 성격의 것인, 금속 라미네이트 구조체를 제조하는 방법.
134
10. 제 1항 내지 제 6항 중 어느 한 항에 있어시, 상기 금속층에는 그 금속층의 두께를 관통하여 연장되는 핀홀이 있고, 올리고머와 폴리머 중 적어도 하나가 상기 핀홀 공간의 적어도 일부를 차지하면서 핀홀의 내부 표면에 화학적으로 결합되어 있으며, 이 같이 올리고머나 폴리머나 핀홀의 내부 표면에 화학적으로 결합하는 것은 기중합된 폴리머를 금속층에 코팅하는 경우에는 일어날 수 없는 성격의 것인, 금속 라미네이트 구조체를 제조하는 방법.
11. 제 1항 내지 제 6항 중 어느 한 항에 있어서, 폴리머층은 금속층에 기중합된 폴리머를 코팅하여 얻어지는 것이 아니며, 분자량이 특정 범위인 판매되는 폴리머 조성물에서 중합반응이나 가교반응을 억제하기 위하여 포함하는 중합억제제가 포함되지 않는, 금속 라미네이트 구조체를 제조하는 방법.
12. 제 1항 내지 제 6항 중 어느 한 항에 있어서, 기중합된 폴리머를 코팅하여 폴리머층을 형성하는 경우 그 기중합된 폴리머를 금속표면에 균일하게 코팅하기 위하여 사용될 수 있는 계 면활성제가 폴리머층에 포함되지 않은, 금속 라미네이트 구조체를 제조하는 방법.
13. 제 1항 내지 제 6항 중 어느 한 항에 있어서, 상기 폴리머층은 제 1폴리머층으로 지칭되고, 상기 금속 라미네이트 구조체를 제조하는 방법이, 상기 중간구조체의 플라스틱 필름이 상기 중합반응을 위한 중합반응 조성물과 접촉하여 제 2폴리머층을 플라스틱 필름 아래에 형성하여 플라스틱 필름이 금속층과 제 2폴리머층 사이에 개제되게 하는 단계를 더 포함하며, 제 2폴리머층은, 기중합된 폴리머 조성물을 코팅한 것이 아니라, 플라스틱 필름 상에서 적어도 하나의 모노머를 중합반응하여 형성된 폴리머를 포함하지만, 제 2폴리머층을 플라스틱 필름에 부착하기 위한 바인더를 포함하지 않는, 금속 라미네이트 구조체를 제조하는 방법.
14. 제 13항에 있어서, 제 1폴리머층과 제 2폴리머층은 각각이 약 1川 내지 약 2(川 m 범위의 두께를 갖는, 금속 라미네이트 구조체를 제조하는 방법.
135
15. 제 13항에 있어서, 상기 플라스틱 필름 위에서의 중합반응 결과 형성되는 제 2폴리머층에는, 상기 적어도 하나의 모노머로부터 유래하는 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상의 화합물이 상당한 양으로 포함되며, 그 상당한 양은, 분자량이 특정 범위인 판매되는 폴리머 조성물에는 그 만큼의 올리고머, 사량체, 삼량체 및 이량체가 들어 있지 않을 정도인, 금속 라미네이트 구조체를 제조하는 방법.
16. 제 13항에 있어서, 상기 플라스틱 필름 위에서의 중합반응 결과 형성되는 제 2폴리머층에는 올리고머, 사량체, 삼량체, 이량체로 이루어진 군으로부터 선택된 하나 이상이 플라스틱 필름에 화학적으로 결합된 것을 포함하며, 이 같이 올리고머, 사량체, 삼량체나 이량체가 플라스틱 필름에 화학적으로 결합하는 것은 기중합된 폴리머를 플라스틱 필름에 코팅하는 경우에는 일어날 수 없는 성격의 것인, 금속 라미네이트 구조체를 제조하는 방법.
17. 제 13항에 있어시, 상기 플라스틱 필름은 기공을 가지는 엔지니어 링 폴리머층을 포함하고, 올리고머와 폴리머 중 적어도 하나가 이들 기공 중 적어도 하나에 들어 있으면서 기공의 내부 표면에 화학적으로 결합되어 있으며, 이 같이 올리고머와 폴리머가 기공의 내부 표면에 화학적으로 결합되는 것은 기중합된 폴리머를 플라스틱 필름에 코팅하는 경우에는 일어날 수 없는 성격의 것인, 금속 라미네이트 구조체를 제조하는 방법.
18. 제 13항에 있어서, 제 2폴리머층에는 다수의 폴리머 분자가 플라스틱 필름에 화학적으로 결합되어 제 2폴리머층이 바인더가 없이도 플라스틱 필름에 부착되어 있는, 금속 라미네이트 구조체를 제조하는 방법.
19. 제 13항에 있어서, 상기 제 2폴리머층은 기중합된 폴리머 조성물을 플라스틱 필름 표면에 코팅하여 얻어지는 것이 아니고, 분자량이 특정범위인 판매되는 폴리머 조성물에서 중합반응이나 가교반응을 억제하기 위하여 포함하는 중합억제제가 포함되지 않은, 금속 라미네이트 구조체를 제조하는 방법.
136
20. 제 13항에 있어시, 상기 중합반응 조성물이 계면활성제, 중합개시제, 중합억제제 중 어느 것도 포함하지 않고, 중합반응의 결과 형성되는 폴리머층이 계면활성제, 중합개시제, 중합억제제를 포함하지 않는, 금속 라미네이트 구조체를 제조하는 방법.
137
PCT/IB2021/000475 2021-01-20 2021-07-20 아민 화합물의 중합반응을 통한 기질의 코팅과 폴리머 코팅된 기질을 갖는 장치 WO2022157533A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023543283A JP2024515407A (ja) 2021-05-06 2021-07-20 アミン化合物の重合反応を通じた基質のコーティングとポリマーコーティングされた基質を有する装置
EP21920900.4A EP4282907A1 (en) 2021-01-20 2021-07-20 Coating substrate by polymerization of amine compound, and apparatus having polymer coated substrate
CN202180094216.7A CN116848180A (zh) 2021-01-20 2021-07-20 通过胺化合物的聚合涂覆基材以及具有聚合物涂覆的基材的设备
KR1020237027496A KR20230137360A (ko) 2021-01-20 2021-07-20 아민 화합물의 중합반응을 통한 기질의 코팅과 폴리머코팅된 기질을 갖는 장치

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
PCT/KR2021/000798 WO2021150018A1 (ko) 2020-01-21 2021-01-20 아미노 불포화 헤테로사이클 화합물로 표면개질된 기질 및 그의 표면개질 방법
KRPCT/KR2021/000804 2021-01-20
PCT/KR2021/000800 WO2021150020A1 (ko) 2020-01-21 2021-01-20 비닐 헤테로사이클 화합물로 표면개질된 기질 및 그의 표면개질 방법
PCT/KR2021/000804 WO2021150021A1 (ko) 2020-01-21 2021-01-20 아미노 사이클로알켄 화합물로 표면개질된 기질 및 그의 표면개질 방법
PCT/KR2021/000805 WO2021150022A1 (ko) 2020-01-21 2021-01-20 비닐 아미노 비방향족고리 화합물로 표면개질된 기질 및 그의 표면개질 방법
KRPCT/KR2021/000805 2021-01-20
KRPCT/KR2021/000798 2021-01-20
KRPCT/KR2021/000800 2021-01-20
KR1020210058556A KR20220151377A (ko) 2021-05-06 2021-05-06 불포화 비고리 아민 화합물로 표면 개질된 기질 및 그의 표면 개질 방법
KR10-2021-0058556 2021-05-06
KR10-2021-0058555 2021-05-06
KR1020210058555A KR20220151376A (ko) 2021-05-06 2021-05-06 퍼퓨릴아민 화합물로 표면 개질된 기질 및 그의 표면 개질 방법

Publications (1)

Publication Number Publication Date
WO2022157533A1 true WO2022157533A1 (ko) 2022-07-28

Family

ID=82549349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/000475 WO2022157533A1 (ko) 2021-01-20 2021-07-20 아민 화합물의 중합반응을 통한 기질의 코팅과 폴리머 코팅된 기질을 갖는 장치

Country Status (4)

Country Link
EP (1) EP4282907A1 (ko)
JP (1) JP2024515407A (ko)
KR (1) KR20230137360A (ko)
WO (1) WO2022157533A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12077646B2 (en) 2020-01-21 2024-09-03 Quantum MicroMaterials, Inc. Coating substrate by polymerization of amine compound and apparatus having polymer coated substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126680A (ja) * 1998-10-28 2000-05-09 Denka Himaku Kogyo Kk 金属基板のコーティング方法及び金属材
WO2005064993A1 (en) * 2003-12-30 2005-07-14 Agency For Science, Technology And Research Flexible electroluminescent devices
KR20060113910A (ko) * 2003-10-01 2006-11-03 꼬미싸리아 아 레네흐지 아또미끄 전자융합에 의해 전기를 전도 또는 반전도하는 표면에서폴리머 막을 형성하는 방법, 이로부터 얻어진 표면 및 응용
EP3450487A1 (en) * 2016-04-28 2019-03-06 Core Biosystems Inc. Polymer surface-coated with aromatic amine-based compound in substrate-independent manner and coating method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126680A (ja) * 1998-10-28 2000-05-09 Denka Himaku Kogyo Kk 金属基板のコーティング方法及び金属材
KR20060113910A (ko) * 2003-10-01 2006-11-03 꼬미싸리아 아 레네흐지 아또미끄 전자융합에 의해 전기를 전도 또는 반전도하는 표면에서폴리머 막을 형성하는 방법, 이로부터 얻어진 표면 및 응용
WO2005064993A1 (en) * 2003-12-30 2005-07-14 Agency For Science, Technology And Research Flexible electroluminescent devices
EP3450487A1 (en) * 2016-04-28 2019-03-06 Core Biosystems Inc. Polymer surface-coated with aromatic amine-based compound in substrate-independent manner and coating method therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAS , no. 108- 01-0
DOLLINGER FELIX, NEHM FREDERIK, MÜLLER-MESKAMP LARS, LEO KARL: "Laminated aluminum thin-films as low-cost opaque moisture ultra-barriers for flexible organic electronic devices", ORGANIC ELECTRONICS, ELSEVIER, AMSTERDAM, NL, vol. 46, 1 July 2017 (2017-07-01), AMSTERDAM, NL, pages 242 - 246, XP055952361, ISSN: 1566-1199, DOI: 10.1016/j.orgel.2017.04.022 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12077646B2 (en) 2020-01-21 2024-09-03 Quantum MicroMaterials, Inc. Coating substrate by polymerization of amine compound and apparatus having polymer coated substrate

Also Published As

Publication number Publication date
JP2024515407A (ja) 2024-04-10
EP4282907A1 (en) 2023-11-29
KR20230137360A (ko) 2023-10-04

Similar Documents

Publication Publication Date Title
Chen et al. Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries
CN109792020B (zh) 包括功能性粘合剂的电池隔板以及包括该电池隔板的电化学装置
US9676171B2 (en) Gas barrier laminate having excellent water barrier property
CN114402467A (zh) 用于锂离子电池的混杂官能化含氟聚合物
CN114402482A (zh) 用于锂离子电池的具有含氟聚合物的经涂布的隔离膜
WO2015053340A1 (ja) 水分バリア性の良好なガスバリア性積層体
JP6287288B2 (ja) 水分バリア性に優れたガスバリア性積層体
WO2015133441A1 (ja) ガスバリア性積層体
KR20110009097A (ko) 전기화학 전지 및 이를 제조하는 방법
TW202242041A (zh) 用於鋰離子電池之以pvdf丙烯酸酯乳膠為主的分隔件塗層
KR20160077968A (ko) 폴리올레핀계 필름, 이를 포함하는 알루미늄 파우치 필름 및 이를 포함하는 이차전지
US20100325877A1 (en) Porous film having reactive polymer layer thereon for use in battery separator, and use of the porous film
JPWO2016021459A1 (ja) 水分バリア性積層体
WO2022157533A1 (ko) 아민 화합물의 중합반응을 통한 기질의 코팅과 폴리머 코팅된 기질을 갖는 장치
JP2019505970A (ja) 多層アセンブリ
WO2018116295A1 (en) Layer preparation, treatment, transfer and lamination in cell stack assembly processes for lithium ion batteries
JP3651609B2 (ja) 熱活性化微多孔質膜および電池へのこれの使用
US7354625B2 (en) Gas barrier film
JP2015178231A (ja) ガスバリア性積層構造体
US12077646B2 (en) Coating substrate by polymerization of amine compound and apparatus having polymer coated substrate
JP2019505957A (ja) 複合材料
JP2021514523A (ja) 曲げ現象が改善されたスタック型の電極組立体及びその製造方法
US20240209231A1 (en) Airtight film with ceramic sealing layer and polymer sealing layer
US20230357578A1 (en) Airtight film with ceramic sealing layer and polymer sealing layer
CN116848180A (zh) 通过胺化合物的聚合涂覆基材以及具有聚合物涂覆的基材的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920900

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543283

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237027496

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180094216.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021920900

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021920900

Country of ref document: EP

Effective date: 20230821